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Abstract The linear stability of thermal convection in a rotating horizontal layer of
fluid-saturated porous medium, confined between two rigid boundaries, is studied for
temperature modulation, using Brinkman’s model. In addition to a steady temper-
ature difference between the walls of the porous layer, a time-dependent periodic
perturbation is applied to the wall temperatures. Only infinitesimal disturbances are
considered. The combined effect of rotation, permeability and modulation of walls’
temperature on the stability of flow through porous medium has been investigated
using Galerkin method and Floquet theory. The critical Rayleigh number is calcu-
lated as function of amplitude and frequency of modulation, Taylor number, porous
parameter and Prandtl number. It is found that both, rotation and permeability are
having stabilizing influence on the onset of thermal instability. Further it is also found
that it is possible to advance or delay the onset of convection by proper tuning of the
frequency of modulation of the walls’ temperature.

Keywords Thermal convection · Modulation · Rayleigh number ·
Porous medium · Rotation · Galerkin method

Nomenclature
a Horizontal wave number

(
a2

x + a2
y

)1/2

ac Critical wave number
d Depth of the porous layer
g Gravitational acceleration
k Permeability of the porous medium
κf Thermal conductivity of the fluid
κs Thermal conductivity of the solid
κm δκf + (1 − δ) κs, effective thermal conductivity of porous media
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p Pressure
Pl Porous parameter, k/d2

Pr Prandtl number, ν/κ

R Thermal Rayleigh number, αg�Td3

νκ

� Angular velocity vector (0, 0,�)
T Taylor number 4�2d4/ν2

Rc Critical Rayleigh number
T Temperature
θ Perturbed temperature
�T Temperature difference between the walls
V Mean filter velocity, (u, v, w)
x, y, z Space coordinates(
ρcp

)
f Heat capacity of the fluid(

ρcp
)

s Heat capacity of the solid(
ρcp

)
m δ

(
ρcp

)
f + (1 − δ)

(
ρcp

)
s relative heat capacity of the porous medium

TS(z) Steady temperature field
To(z, t) Oscillating temperature field

Greek symbols
ζ Z-component of vorticity
α Coefficient of thermal expansion
ε Amplitude of modulation
δ Porosity
γ Heat capacity ratio,(

ρcp
)

m /
(
ρcp

)
f

κ Effective thermal diffusivity, κm/
(
ρcp

)
f

µ Coefficient of viscosity
ν Kinematic viscosity, µ/ρR
ρ Density
ω Modulation frequency
φ Phase angle

Other symbols

∇2
1

∂2

∂x2 + ∂2

∂y2

∇2 ∇2
1 + ∂2

∂z2

D ∂
∂z

1 Introduction

The study of fluid convection in a rotating porous medium is of great practical impor-
tance in many branches of modern science such as centrifugal filtration processes,
petroleum industry, food engineering, chemical engineering, geophysics and biome-
chanics. Several studies are available in which phenomena related to the onset of
convection in a rotating porous medium have been investigated. A detailed review of
most of these findings has been given by Vadasz (1997, 1998), and Nield and Bejan
(1999). The problem of thermal instability in a rotating porous medium subject to
uniform temperature gradient has been investigated by several authors, Pearlstein
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(1981), Chakrabarti and Gupta (1981), Patil and Vaidyanathan (1983), Rudraiah et al.
(1986), Prabhamani et al. (1990), Vadasz (1992, 1994), and Qin and Kaloni (1995),
for different mathematical models and boundary conditions. Recently, Desaive et al.
(2002) have investigated the convective instability in a rotating porous medium, using
rigid–rigid boundaries.

There are, however, many practically important situations in which temperature
gradient is a function of both space and time. This non-uniform temperature gradient
(temperature modulation) can be used as a mechanism to control the convective flow.
There can be an appreciable enhancement of heat, mass or momentum if an imposed
modulation can destabilize an otherwise stable system. Similarly if it can stabilize
an otherwise unstable system, higher efficiency can be achieved in many processing
techniques, particularly in solidification processes.

The effect of temperature modulation on thermal stability in a viscous fluid layer
was first considered by Venezian (1969), nevertheless a similar problem had been stud-
ied earlier by Gershuni and Zhukhovitskii (1963) for a temperature profile, obeying
rectangular law. Some other researchers who have investigated temperature modula-
tion of thermal instability in a viscous fluid layer are: Rosenblat and Herbert (1970),
Rosenblat and Tanaka (1971), Yih and Li (1972), Roppo et al. (1984), and Bhadauria
and Bhatia (2002). Recently, Bhadauria (2005, 2006a) has investigated the effect of
temperature modulation on thermal instability in horizontal fluid layer, and studied
the effects of rotation and vertical magnetic field. However, the studies related to
the effect of temperature modulation on thermal convection in a porous medium
has received only limited attention. The effect of temperature modulation on ther-
mal instability in a horizontal porous layer has been studied by Caltagirone (1976),
Chhuon and Caltagirone (1979), Rudraiah and Malashetty (1988, 1990), Malashetty
and Wadi (1999), and Malashetty and Basavaraja (2002, 2003). Most of these studies
are made using free–free boundary conditions, which are less accessible to the experi-
ments. The literature on convection in a porous medium with temperature modulation
of rigid–rigid boundaries is scarce. Only very recently Bhadauria (2006b) has inves-
tigated this problem and studied the effect of temperature modulation of rigid–rigid
boundaries on convection in a sparsely packed porous medium. To the best of author’s
knowledge, no literature is available in which combined effect of both rotation and
temperature modulation has been considered on thermal stability in a porous medium
with rigid–rigid boundaries.

Therefore, the objective of the present study is to investigate the combined effect of
rotation and temperature modulation of rigid–rigid boundaries on thermal stability of
flow through sparsely packed porous medium. Since the porous medium considered
is sparsely packed, we use the Brinkman’s model that accounts for friction caused by
microscopic shear. To modulate the walls’ temperature, sinusoidal function has been
taken. The results have been obtained for the following three cases: (a) when the
plate temperatures are modulated in phase, (b) when the modulation is out of phase,
and (c) when only the lower plate temperature is modulated, the upper plate is held
at fixed constant temperature. The findings of this study are believed to bridge the
gap between the results valid for Darcy model (low permeability) and those valid for
classical viscous fluids. The results of the present paper can be used to study the onset
of convection in geothermal areas where the ground water flows through a porous
medium and is subjected to the earth’s rotation.
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2 Mathematical formulation

Consider a porous medium, which is composed of sparse distribution of particles com-
pletely saturated with Boussinesq fluid, and confined between two parallel horizontal
walls, at z = −d/2 and z = d/2, a distance d apart. The walls are infinitely extended
in x and y directions, and are rigid. Let the system be rotating uniformly about the
z-axis with a constant angular velocity �. The effect of rotation is restricted to the
Coriolis force, neglecting thus the centrifugal effects; the porous medium is described
by the Brinkman’s model. The porous medium is regarded as an assemblage of small,
identical, spherical particles fixed in the space of porosity close to unity. Then under
the Boussinesq approximation the governing equations, for the study of thermal con-
vection in a fluid saturated sparsely packed rotating porous medium, are Rudraiah
et al. (1986), Prabhamani et al. (1990),

∂V
∂t

+ V · ∇V + 2�× V = − 1
ρR

∇p + ρ

ρR
g − ν

k
V + ν∇2V, (2.1)

(
ρCp

)
m
∂T
∂t

+ (
ρCp

)
f V · ∇T = κm∇2T, (2.2)

∇ · V = 0, (2.3)

ρ = ρR
[
1 − α (T − TR)

]
, (2.4)

where ρR and TR are (constants) reference density and temperature, respectively.
Walls’ temperature is modulated according to the following externally imposed
conditions:

T (t) = TR +�T
[
1 + εRe

{
eiωt}] at z = −d/2 (2.5a)

= TR +�TεRe{ei(ωt+φ)} at z = d/2. (2.5b)

Here, ε represents the amplitude of modulation,�T is the temperature difference,
φ is phase angle, and ω is modulation frequency. The applicability of the present the-
ory is seems to be doubtful in the limit ω → 0 (Venezian 1969, Rosenblat and Herbert
1970, Chhuon and Caltagirone 1979) as in this case non-linear effect becomes impor-
tant. Therefore the present results would not agree with the results obtained by putting
ω = 0 in the above boundary conditions (2.5).

The following three cases are considered: (a) walls’ temperature modulation is in
phase i.e. φ = 0, (b) temperature modulation is out of phase i.e., φ = π , and (c)
when only the lower wall’s temperature is modulated, the upper wall is held at fixed
constant temperature i.e. φ = i∞.

2.1 Basic state

An equilibrium solution for the Eqs. (2.1)–(2.4), and (2.5a) can be written as

V = (u, v, w) = 0, T = TH(z, t), p = pH(z, t), ρ = ρH(z, t). (2.6)

The temperature TH(z, t), pressure pH and density ρH are given by the equations

γ
∂TH

∂t
= κ

∂2TH

∂z2 , (2.7)
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∂pH

∂z
= −ρHg (2.8)

and

ρH = ρR
[
1 − α (TH − TR)

]
, (2.9)

where γ = (
ρCp

)
m /

(
ρCp

)
f and κ = κm/

(
ρCp

)
f . For all the above cases (a), (b) and

(c), the solution of the differential Eq. (2.7) subject to the boundary conditions (2.5a)
can be written as

TH (z, t) = TR + TS (z)+ εRe {To (z, t)} , (2.10)

where

TS(z) = �T
(

1
2

− z
d

)
, (2.11)

To(z, t) = �T
sinh λ

{
eiφ sinh λ

(
1
2

+ z
d

)
+ sinh λ

(
1
2

− z
d

)}
eiωt (2.12)

and

λ2 = iωγd2/κ . (2.13)

In Eq. (2.10), Re stands for real part.

2.2 Linear stability analysis

Let the system (2.6) be slightly perturbed, then we have

V = (
u′, v′, w′) , T = TH + θ ′, p = pH + p′, ρ = ρH + ρ′, (2.14)

where V′, θ ′, p′ and ρ′ represent the perturbed quantities which are assumed to be
small. We substitute (2.14) into (2.1)–(2.4) and linearize with respect to the perturba-
tion quantities V′, θ ′, p′. Now taking curl twice of the reduced momentum equation
(2.1), the system of equations becomes

∂

∂t
∇2w′ = ν∇4w′ − ν

k
∇2w′ + αg∇2

1θ
′ − 2�

∂ζ ′

∂z
(2.15)

∂θ ′

∂t
= −w′ ∂TH

∂z
+ κ∇2θ ′, (2.16)

∂ζ ′

∂t
= 2�

∂w′

∂z
+ ν∇2ζ ′ − ν

k
ζ ′, (2.17)

where ζ ′ = ∂v′
∂x − ∂u′

∂y is the vertical component of the vorticity. For convenience, the
entire problem has been written in terms of w′, θ ′, ζ ′. In the above equations, the value
of γ is set equal to one for simplicity. Now using normal mode technique, we seek
solutions for the three unknown fields in the form


w′ (x, y, z, t)
θ ′ (x, y, z, t)
ζ ′ (x, y, z, t)


 =




w′ (z, t)
θ ′ (z, t)
ζ ′ (z, t)


 exp[i(axx + ayy)]. (2.18)
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Here, a = (a2
x + a2

y)
1/2 is the horizontal wave number. If we scale length, time, tem-

perature, wave number, frequency, velocity and vorticity according to

r = dr∗, t = t∗/ω, TH = �T · T∗
H, θ = �T · θ∗, a2 = d2a∗2, ω = ω∗κ/d2,

V′ = (αg�Ta2/ν)V∗, ζ ′ = (αg�Ta2/ (dν))ζ ∗ (2.19)

then the governing equations in non-dimensionalized form are

ω∗ (
D∗2 − a∗2

) ∂w∗

∂t∗
= Pr

(
D∗2 − a∗2

) {(
D∗2 − a∗2

)
− P−1

l

}

×w∗ − Prθ
∗ − √

T PrD∗ζ ∗ (2.20)

ω∗ ∂θ∗

∂t∗
= −a2R

(
∂T∗

H

∂z∗

)
w∗ +

(
D∗2 − a∗2

)
θ∗ (2.21)

ω∗ ∂ζ ∗

∂t∗
= √

TPrD∗w∗ + Pr

{(
D∗2 − a∗2

)
− P−1

l

}
ζ ∗, (2.22)

where, Pr = ν/κ is the Prandtl number, Pl = k/d2 is the porous parameter, R =
αg�Td3/νκ is the Rayleigh number, T = 4�2d4/ν2 is the Taylor number. Henceforth
the asterisk will be dropped in the above equations. The non-dimensional temperature
gradient is given by

∂TH

∂z
= −1 + εRe

[
f (z) eit] , (2.23)

where

f (z) = λ

sinh λ

{
eiφ cosh λ

(
1
2

+ z
)

− cosh λ

(
1
2

− z
)}

(2.24)

and

λ2 = iω. (2.25)

The boundary conditions for the rigid walls are given by

w = Dw = θ = ζ = 0 on z = ±1
2

. (2.26)

3 Method

Here we use Galerkin technique, to transform the partial differential equations
(2.20)–(2.22) into a system of ordinary differential equations. The latter are then
solved numerically. The results have been obtained for moderate values of ε, as we
are interested only in the modulating effect of the oscillating temperature gradient.
We put

w (z, t) =
N∑

m=1

Am (t)ψm (z) , (3.1)
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θ (z, t) =
N∑

m=1

Bm (t)ϕm (z) , (3.2)

ζ (z, t) =
N∑

m=1

Cm (t)φm (z) , (3.3)

where

ψm (z) =





coshµmz
cosh µm

2
− cosµmz

cos µm
2

if m is odd,

sinhµmz
sinh µm

2
− sinµmz

sin µm
2

if m is even,
(3.4)

ϕm (z) = √
2 sin mπ

(
z + 1

2

)
, (3.5)

φm (z) = √
2 sin

[
(m + 1) πz + (m − 1)

π

2

]
(m = 1, 2, 3, . . .). (3.6)

The above functions ψm (z) ,ϕm (z) and φm (z) are chosen in such a way that each

form an orthonormal set in the interval
(
− 1

2 , 1
2

)
and vanish at z = ± 1

2 . For the deriva-

tives of ψm (z) to vanish at these boundaries, it is required that µm are to be the roots
of the characteristic equation(Chandrasekhar 1961, p. 636)

tanh
1
2
µm − (−1)m tan

1
2
µm = 0. (3.7)

We substitute (3.1)–(3.3) into Eqs. (2.20)–(2.22), multiply the equations by ψn (z) ,
ϕn (z) and φn (z) respectively, n = 1, 2, 3, . . .N and then integrate the resulting equa-

tions with respect to z, in the interval
(
− 1

2 , 1
2

)
. We get a system of 3N ordinary

differential equations for the unknown coefficients An (t), Bn (t) and Cn (t),

ω

N∑
m=1

[
Knm − a2δnm

]dAm

dt
= Pr

N∑
m=1

[ {(
µ4

m + a4
)
δnm − 2a2Knm

}

−P−1
l

(
Knm − a2δnm

) ]
Am

−Pr

N∑
m=1

PnmBm − √
TPr

N∑
m=1

LnmCm, (3.8)

ω
dBn

dt
= a2R

N∑
m=1

[
Pmn − εRe

{
Fnmeit}]Am −

(
n2π2 + a2

)
Bn, (3.9)

ω
dCn

dt
= √

TPr

N∑
m=1

RnmAm −Pr

[
(n + 1)2 π2 + a2 + P−1

l

]
Cn (n = 1, 2, . . . , N)

(3.10)
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where δnm is the Kronecker delta. The other coefficients, which occur in (3.8)–(3.10)
are

Kn m =
∫ 1/2

−1/2
D2ψm (z) · ψn (z)dz, (3.11)

Pnm =
∫ 1/2

−1/2
ϕm (z) · ψn (z)dz, (3.12)

Lnm =
∫ 1/2

−1/2
Dφm (z) · ψn (z)dz, (3.13)

Rnm =
∫ 1/2

−1/2
Dψm (z) · φn (z)dz, (3.14)

and

Fn m =
∫ 1/2

−1/2
f (z) .ψm (z) .ϕn (z) dz. (3.15)

The coefficients given by (3.11)–(3.15) have been evaluated numerically using
Simpson’s (1/3)rd rule (Sastry 1993, p. 125). For computational purposes, it is conve-
nient to introduce the notation

x1 = A1, x2 = B1, x3 = C1, x4 = A2, x5 = B2, x6 = C2 etc. (3.16)

and then rearrange Eqs. (3.8)–(3.10) in the form

dxi

dt
= Gij (t) xj (i, j = 1, 2, . . . , 3N), (3.17)

where
(
Gij (t)

)
is the matrix of the coefficients in Eqs. (3.8)–(3.10). Since the coeffi-

cients Gij (t) are periodic in t with period 2π , therefore the stability of the solution
of (3.17) can be discussed on the basis of the classical Floquet theory (Cesari 1963, p.
55). Let

xn (t) = xin (t) = col [x1n (t) , x2n (t) , . . . , xLn (t)] (n = 1, 2, 3, . . . , 3N & L = 3N)

(3.18)

be the solutions of (3.17) which satisfy the initial conditions

xin(0) = δin. (3.19)

The solutions (3.18) with the conditions (3.19) form 3N linearly independent solu-
tions of Eq. (3.17). These solutions are obtained by integrating the system (3.17), using
Runge-Kutta–Gill Procedure (Sastry 1993, pp. 217, 227). We rearrange the values of
xin(2π) and get the constant matrix

C = [xin(2π)]. (3.20)

Then using Rutishauser method (Jain et al. 1991, p. 116), eigenvalues λ1, λ2, λ3, . . . ,
λL of the matrix C are found. We define the characteristic exponents χr, of the system
(3.17) by the relations

λr = exp (2πχr) , r = 1, 2, 3, . . . , 3N. (3.21)
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The values of the characteristic exponents determine the stability of the system. We
assume that the χr are ordered so that

Re (χ1) ≥ Re (χ2) ≥ · · · ≥ Re (χL) . (3.22)

Then the system is stable if Re(χ1) < 0, while Re (χ1) = 0 corresponds to one peri-
odic solution and represents a stability boundary. This periodic disturbance is the only
disturbance, which will manifest itself at marginal stability.

Thus, the value of the Rayleigh number R for the onset of convection corresponds
to Re(χ1) = 0. Since in our calculations(in the next section) we find all characteristic
exponents as real numbers, therefore the above value of the Rayleigh number cor-
responds to λ1 = 1, the largest eigenvalue of the matrix C. The minimum value of
R can be found at some value of the wave number a, for some fixed values of other
parameters. This minimum value of the Rayleigh number is known as the critical
Rayleigh number (Rc)and the corresponding value of a is known as the critical wave
number (ac).

4 Results and discussion

For the parameter ranges of our interest, it is sufficient to take N = 4 (Four Galerkin
terms-two even and two odd) in the Galerkin procedure (Fig. 12). Therefore all the
following results are related to N = 4. The values of the critical Rayleigh number RC
and corresponding values of the critical wave number ac in the absence of modulation
(ε = 0) are found as given below:

ε = 0, T = 0.0, P−1
l = 0.0, ac = 3.114, Rc = 1709.03. (4.1)

Here, result (4.1) corresponds to the non-rotating (� = 0), non-porous convection,
and are very close to results of Chandrasekhar (1961, p. 43). On comparing (4.1) with
the results (1.1)–(1.8) and (2.1)–(2.8) given in Tables 1 and 2, respectively, we find
that the effect of rotation and porous medium on the thermal instability is stabilizing
as the values of Rc in these cases is higher than 1709.03. From Table 2, when P−1

l → 0
we see that the results correspond to the convection in an ordinary rotating fluid layer
and when Pl → 0 we recover the results of Dacry model.

Now when ε �= 0, we calculate the value of Rc at different values of other param-
eters. The results have been obtained by solving the Eqs. (3.17) for x1, x2, x3, x4, x5,

Table 1 The results
correspond to N = 4

Pl = 1.0, ε = 0

S. no. T ac Rc

1.1 0.0 3.118 1753.6
1.2 1.0 3.119 1754.1
1.3 10.0 3.123 1758.5
1.4 100.0 3.161 1801.4
1.5 200.0 3.201 1848.1
1.6 500.0 3.313 1982.7
1.7 1000.0 3.473 2191.9
1.8 10000.0 4.766 4790.4
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Table 2 The results
correspond to N = 4

T = 100.0, ε = 0

S. no. Pl ac Rc

2.1 104 3.159 1757.9
2.2 1000.0 3.159 1757.9
2.3 100.0 3.159 1758.3
2.4 10.0 3.159 1762.3
2.5 1.0 3.161 1801.4
2.6 0.1 3.179 2193.0
2.7 0.01 3.236 6089.2
2.8 0.001 3.249 44383.8

x6, x7, x8, x9, x10, x11 and x12. The values of Rc have been calculated for the following
three cases: (a) when the walls’ temperature are modulated in phase i.e. φ = 0, (b)
when the walls’ temperature are modulated out of phase i.e. φ = π , and (c) when only
the bottom plate temperature in modulated, the upper plate is held at a fixed constant
temperature i.e. φ = i∞.

The variation of Rc with ω, for cases (a), (b) and (c), have been depicted in the
Figs. 1, 2 and 3, respectively, at different values of the Taylor number T, the other
parameters are Pl = 1.0, ε = 0.4, Pr = 1.0. From the Fig. 1, we observe that an increase
in the value of T increases the value of Rc, thus the effect of large values of the Taylor
number T is to stabilize the system, as convection starts at higher Rayleigh number.
Also this shows that rotation delays the onset of convection, thus stabilizing the sys-
tem in presence of modulation. Now to discuss the effect of modulation, we consider
a graph in Fig. 1 corresponding to a particular value of T (say T = 1.0). We find that
initially (for small ω) the effect of modulation is destabilizing, as the value of Rc is
smaller than the corresponding value 1754.1, in unmodulated case (Table 1). Modula-
tion effect is small for small values of ω, and becomes maximum (destabilizing) near
ω = 17. Modulation stabilizes the system at around ω = 60, and then its effect disap-
pears altogether when ω → ∞, which is clear from the graph, since Rc approached
the same value 1754.1, which is obtained in the unmodulated case (Table 1). In Figs.
2 and 3, we find the same qualitative effect of Taylor number T as obtained in Fig.
1. However, here the effect of modulation is greatest (stabilizing) near ω = 0 and
disappears altogether when the frequency ω becomes sufficiently large. For interme-
diate values of ω, the effect of modulation is found to be less stabilizing. To compare
the values of Rc for different cases, we have depicted the variation of Rc with ω at
T = 500.0 and 1000.0, in Figs. 4 and 5, respectively. From these figures, we find that
for some particular value of ω, the value of Rc in case (c) is smaller than the value of
Rc in case (b) but higher than the value of Rc in case (a), thus maximum stabilization
occurs in case (b) i.e. for out of phase modulation.

In Figs. 6–10, we have shown the variation of Rc with ω, for all the three cases,
at Pl = 1000.0, 10.0, 1.0, 0.1 and 0.01, respectively, the values of other parameters
are T = 100.0, ε = 0.4, Pr = 1.0. From Figs. 6–8, we observe that an increase in the
value of Pl decreases the value of Rc, thus the effect of large values of the porous
parameter Pl is to advance the onset of convection, as convection occurs at an early
point. However as the value of Pl becomes smaller, Rc increases, thus showing the
stabilizing effect on the system (Figs. 9, 10). In Fig. 6, for a particular graph (say for
Pl = 1000.0), we find that for small values of ω the effect of modulation is destabi-
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In Phase Temperature Modulation
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T=100.0
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Fig. 1 Variation of Rc with ω.ε = 0.4, Pr = 1.0, Pl = 1.0

Out of Phase Temperature Modulation

1754

1806

1858

1910

1962

2014

0 50 100 150 200
ω

R
c

T=1.0
T=100.0
T=200.0

Fig. 2 Variation of Rc with ω.ε = 0.4, Pr = 1.0, Pl = 1.0

lizing, as convection occurs at an earlier point than in the unmodulated case (see the
Table 2). For intermediate values of ω, Rc is minimum at ω = 17, thus the effect of
modulation is most destabilizing, the effect becomes stabilizing at around ω = 60, and
then reduces to zero when ω becomes very large. Figs. 7 and 8 show that for small and
intermediate values of ω, the effect of modulation is stabilizing and falls of to zero as
ω goes to infinity. However, the stabilization is found to be greatest near ω = 0, as the
value of Rc is highest here. In figures 9, 10, we compare the values of Rc for different
cases, at Pl = 0.1 and 0.01, respectively. For some particular value of ω, it is found
that the value of Rc in case (c) is smaller than the value of Rc in case (b) but higher
than the value of Rc in case (a), thus maximum stabilization occurs in case (b) i.e. for
out of phase modulation.
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Fig. 3 Variation of Rc with ω.ε = 0.4, Pr = 1.0, Pl = 1.0
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Fig. 4 Variation of Rc with ω.ε = 0.4, Pr = 1.0, Pl = 1.0, ac = 3.313

As we know that at high frequency modulation becomes very fast, therefore
temperature in the fluid layer is unaffected by the modulation except for a thin layer
(Venezian 1969), so that we find almost the same value of Rc as in the unmodulated
case (see the tables), for large value of ω. The convective waves propagation across
the porous layer is higher when the modulation is out of phase[case (b)], while it
is lower when only the lower wall temperature is modulated [case (c)] or when the
temperature modulation is in phase [case (a)], therefore convection occurs at higher
Rayleigh number in case (b) than in other two cases.

In Fig. 11 the variation of Rc with ω has been depicted, for out of phase modu-
lation at T = 100.0, Pl = 1.0, Pr = 1.0 and ε = 0.4, and the results are compared
corresponding to N = 4 and N = 6. It is found here that in all cases the error in the
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Fig. 5 Variation of Rc with ω.ε = 0.4, Pr = 1.0, Pl = 1.0, ac = 3.473
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Fig. 6 Variation of Rc with ω.ε = 0.4, Pr = 1.0, T = 100.0

results corresponding to N = 4 and N = 6 is less than 0.09%. This justifies the reason
of taking N = 4 in our calculations.

Now we calculate the value of RYL [which is Rc of Yih and Li (1972) in their Figs.
1, 2] and compare it with Yih–Li’s results. The value of RYL is the minimum value of
R as a function of the wave number a for fixed values of the other parameters. Here in
Fig. 12, we plot RYL with respect to ε for T = 100.0, Pl = 1.0, ω = 17, Pr = 1.0. Since
our thermal boundary conditions for case (b) are similar (but not exactly same) to
that of Yih and Li (1972) therefore the results have been obtained here only for case
(b) i.e. for out of phase modulation. In the graph, we find two types of curves; one
corresponding to synchronous and other corresponds to the subharmonic solution
(half-frequency). In the Fig. 12, S is for synchronous solutions and H is for subhar-
monic (half-frequency) solutions. Each of these two curves represents the minimum
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Fig. 8 Variation of Rc with ω. ε = 0.4, Pr = 1.0, T = 100.0

of the modes of solutions in terms of the values of RYL. Also in this figure, we have
shown the variation of Rc (Rayleigh number at neutral stability) with ε. For both
RYL and Rc, we get a combination of synchronous and subharmonic solutions. On
comparing the values of RYL and Rc, we find that RYL is smaller than Rc. Initially,
we find that the system becomes more and more stabilized as ε increases upto 0.758
and then less stabilized as ε increased further. On further increasing the value of ε,
we see that at around ε = 2.2 the system becomes destabilized. This destabilizing
effect of modulation may be due to the finite amplitude convection at higher ε. On
comparing the present values of RYL and Rc respectively with the Figs. 2 and 3 of
Yih and Li (1972), we find a very good agreement between them. Only difference
is that in the present results the values of the Rayleigh numbers are slightly greater
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Fig. 9 Variation of Rc with ω. ε = 0.4, Pr = 1.0, T = 100.0, ac = 3.179
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Fig. 10 Variation of Rc with ω. ε = 0.4, Pr = 1.0, T = 100.0, ac = 3.236

than those of Yih and Li (1972), which is obvious due to the effects of rotation and
porous medium. We expect qualitatively same behaviour of the Rayleigh numbers
in other two cases(a) and (c) also, with slight difference that in case (a) the effect of
modulation on the system would be destabilizing from the very beginning.

In Fig. 13, we consider the variation of the corresponding value of aYL with ε.
We observe that initially for synchronous solutions the value of aYL decreases upto
ε = 0.758, and then there is a jump for subharmonic solutions as the value of ε
becomes slightly greater 0.758. Same jump behaviour is found every time whenever
there is a change from one type of solution to other type.

Also we have checked the variation of RYL with ω and found that for all the cases
(a), (b) and (c), there exists only synchronous solution, while Yih and Li (1972) in
their Fig. 1 find a combination of both synchronous and subharmonic solutions. This
difference may be due to two possible reasons: one, since during calculations we find
that the variation in the value of aYL is not much different from ac (wave number at
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Fig. 12 Variation of RYL and Rc with ε. ω = 17.0, Pr = 1.0, Pl = 1.0, T = 100.0. Solid lines represent
to Rc, dotted lines represent to RYL

neutral stability), therefore the value of RYL is very close to Rc and so only one solu-
tion (as in Figs. 1–11); second, the present thermal boundary conditions are different
from theirs. Since the variation in RYL with ω is found to be very close to that of Rc
(Figs. 1–11) therefore we do not find appropriate to depict it here again.

Figure 14 shows the variation of Rc with the Prandtl number Pr, for case (c) at
T = 100.0, 150.0 and 200.0, respectively, the values of other parameters are Pl = 1.0,
ε = 0.4, ω = 50.0. From the figure one can see that the maximum stabilization of
the system occurs at around Pr = 1.0, and the same behaviour is expected in other
two cases (a) and (b) also, therefore we have considered Pr = 1.0 in all our above
calculations.
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5 Conclusion

The problem of linear stability of fluid convection has been investigated in a sparsely
packed rotating porous medium subject to time periodic heating of the rigid bound-
aries, and three types of modulation effects have been considered. The solution is
obtained under the assumptions that disturbances are infinitesimal, and the ampli-
tude of the applied temperature field is small. The following conclusions are drawn:

1. In case of in phase modulation, initially for small ω, the effect of modulation is
destabilizing, it becomes most destabilizing at aroundω = 17, the effect decreases
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for intermediate values of ω, becomes stabilizing on further increasing the value
of ω, and finally disappears as ω becomes very large.

2. In case of out of modulation or when only the lower wall temperature is modu-
lated, we find that the effect of modulation is most stabilizing nearω = 0, becomes
less stabilizing for intermediate values of ω, and finally disappears as ω goes to
infinity.

3. The effect of increasing porous parameter Pl is to decrease the value of the critical
Rayleigh number Rc. Thus, the effect of increasing permeability is to advance the
onset of convection in the presence of thermal modulation.

4. The Brinkman’s model serves to bridge the gap between the viscous fluid limit
and the Darcy limit in the sense that when P−1

l → 0 (high permeability) we get
the results of viscous fluid layer, and when Pl → 0 (low permeability) we find
Darcy limit results.

5. It is found that the effect of increasing the value of Taylor number is to delay
the onset of convection, thus making the system more stabilizing. This confirms
the well-established fact that the effect of rotation is to stabilize the system. This
is because, in the presence of the Coriolis force, the disturbance in the fluid will
not be able to move up or down as easily as without rotation. When T = 0.0, we
obtain Rc = 1753.6 (Table 1), which is exactly the same as obtained by Bhadauria
(2006b) in his study of non-rotating porous convection.

6. On calculating the variation of RYL and Rc with respect to ε, the amplitude of
modulation, it was found that the solution consists of two regions; one corre-
sponding to synchronous and the other one corresponding to the subharmonic.
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