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Abstract Diffusion is an important transport process in low permeability media,
which play an important role in contamination and remediation of natural envi-
ronments. The calculation of equivalent diffusion parameters has however not been
extensively explored. In this paper, expressions of the equivalent diffusion coefficient
and the equivalent diffusion accessible porosity normal to the layering in a layered
porous medium are derived based on analytical solutions of the diffusion equation.
The expressions show that the equivalent diffusion coefficient changes with time.
It is equal to the power average with p = —0.5 for small times and converges to
the harmonic average for large times. The equivalent diffusion accessible porosity
is the harmonic average of the porosities of the individual layers for all times. The
expressions are verified numerically for several test cases.
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List of symbols

C (kg/m?®)  solute concentration in the liquid phase.
D(m?/s) effective diffusion coefficient (as defined by Gillham et al. 1984).
Deq (m?/s)  equivalent diffusion coefficient.

L (m) layer thickness.

n(-) diffusion accessible porosity.

feq (-) equivalent diffusion accessible porosity.
R(-) retardation factor.
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t(s) time.
x (m) distance from the top of the first layer.
X power average with power = p.

1 Introduction

Transport by diffusion is defined as transport due to a concentration gradient of solute.
This transport mechanism is usually not modeled in aquifers since it is a much slower
process than transport by advection and dispersion. In media with a low hydrau-
lic conductivity, however, advection velocities may be very small, so that diffusion
may be the dominant transport mechanism under typically encountered conditions
of hydraulic gradient (Desaulniers et al. 1981; Johnson et al. 1989; Shackelford and
Daniel 1991). Such low permeability media have traditionally received less attention
in hydrogeological practice and research. Such media may however play an important
role in the contamination and remediation of natural environments. Aquitard con-
tamination can for example result in a tailing or rebound effect on the remediation
of an aquifer overlying the aquitard since contamination transport in aquitards is a
very slow process (Liu and Ball 1998). Low permeability media are also important as
host formations for disposal of municipal (e.g., Jang and Kim 2003), industrial (e.g.,
Navarro et al. 2000) and nuclear waste (e.g., Landais 2004).

Aslow permeability media receive increasing interest, extensive databases of diffu-
sion coefficients and diffusion accessible porosities are collected (e.g., Aertsens et al.
2004; Descostes et al. 2004; Patriarche et al. 2004; Van Loon et al. 2003). Figures 1 and
2 show examples of measured diffusion coefficients and diffusion accessible porosities
versus depth from two clay layers which are studied in the context of nuclear waste
disposal. As information about the spatial variability and heterogeneity of diffusion
parameters becomes available, questions arise about the appropriate average value
of the diffusion coefficient and the diffusion accessible porosity, representative for a
given volume of the medium. The aim is to assign a single effective or equivalent value
of the diffusion parameters to the medium, so that the total solute flux is equal to the
flux in the heterogeneous medium. This approach of equivalent diffusion parameters
is for example interesting when diffusion fluxes through a heterogeneous medium
should be calculated if the model grid scale is larger than the scale of heterogeneity
due to computation time issues. Equivalent diffusion parameters are also very use-
ful when the retention capacity of several potential waste disposal sites is compared
in preliminary site selection without sophisticated numerical models of the different
heterogeneous media. Insight in equivalent diffusion parameters is also very helpful
for the interpretation of diffusion tests in heterogeneous media.

A lot of research has been carried out about equivalent flow and transport param-
eters. The majority of this research focuses on equivalent values for hydraulic con-
ductivity. Renard and de Marsily (1997) presented a review of the many studies about
the equivalent permeability for steady-state, uniform and single-phase flow. Several
authors also investigated effective hydraulic conductivity for transient radial flow
(Barker and Herbert 1982; Butler 1988; Butler and McElwee 1990; Oliver 1990; Ind-
elman 2003). Relatively few studies have been carried out about other equivalent flow
and transport parameters than hydraulic conductivity. Gelhar and Axness (1983), Da-
gan (1982, 1984, 1987, 1988) and Neuman et al. (1987) employed different analytical
approaches to derive expressions for macrodispersivity coefficients which depend on
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Fig. 1 (a) Diffusion coefficient D [m2/s] and (b) diffusion accessible porosity n [-] of iodide in the
Boom Clay, Belgium (Aertsens et al. 2004)
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Fig. 2 (a) Diffusion coefficient D [m2/s] and (b) diffusion accessible porosity n [-] of iodide in the
Ieper Clay, Belgium (Van Marcke and Laenen 2005)

the mean flow gradient and the statistics of the log hydraulic conductivity field. Didier-
jean et al. (2004) studied the effective porosity and the effective dispersion coefficient
of a periodic stratified porous medium. Several authors studied effective sorption
parameters (Roberts et al. 1986; Cvetkovic and Shapiro 1990; Kabala and Sposito
1991; Chrysikopoulos et al. 1992; Hu et al. 1995; Ptak and Schmid 1996; Metzger et
al. 1996; Reichle et al. 1998). The discussion of the effective diffusion coefficient has
been limited to the steady-state case (Ozisik 1993), in which the same expressions
hold as for the mathematically similar processes of steady-state groundwater or heat
flow. The study of diffusion is however particularly interesting in the transient state,
since the spreading of a contaminant plume is inherently a transient phenomenon.
This paper investigates the calculation of the equivalent diffusion coefficient and
the equivalent diffusion accessible porosity of a layered porous medium in function of

@ Springer



424 Transp Porous Med (2007) 66:421-438

time. Equivalent properties of layered porous media are especially interesting since
several important low permeability layers show a distinct layering caused by their
geological deposition conditions, e.g., Boom Clay, Belgium (Aertsens et al. 2004),
Kimmeridge clay formation, UK (Chambers et al. 2000) and Opalinus Clay, Swit-
zerland (Van Loon et al. 2003). Section 2 describes the problem concept and the
governing equations. Section 3 recalls the expressions of the equivalent diffusion
coefficient and the equivalent diffusion accessible porosity in steady-state. Section 4
describes the derivation of expressions for equivalent diffusion parameters from the
transient solution of the diffusion equations. In Section 5, the expressions are verified
with numerical calculations. Section 6 summarizes the main conclusions of this study.

2 Problem formulation

The problem concept is based on the common situations of a landfill located on top
of a low permeability layer (Fig. 3a) or an underground nuclear waste disposal site
located in the middle of a low permeability formation (Fig. 3b). The size of the landfill
or the underground waste disposal site is assumed to be aerially large compared to the
thickness of the low permeability layer, so that only one-dimensional vertical diffusion
should be considered. The low permeability layer is a stratified medium composed of
a finite number of sublayers. Initially, a medium consisting of only two layers is consid-
ered, with layer 1 on top and layer 2 on the bottom. Layers 1 and 2 are assumed to be
individually homogeneous with respect to their diffusion parameters, but each with its
own constant effective diffusion coefficient D; and D (m?/s), its own constant retarda-
tion factor Ry and R; (-) and its own constant diffusion accessible porosity 1 and n (-).
The 1D vertical diffusion equations in the two layers are:

aCy 92C
RIW: 1@ 0<x<L1 t>0 (1)
R, _p, G L, t>0 ©)
_— = — <X < >
2 9t 2 8x2 1 2
(a) (b)

Fig. 3 Problem concept of (a) a landfill located on top of a layered low permeability medium and
(b) an underground nuclear waste disposal site located in the middle of a layered low permeability
formation
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where C; and C; are the solute concentration in the liquid phase (kg/m?) in the first
and second layer respectively, ¢ is time (s), x is distance from the top of the first layer
(m) and L and L; are the thicknesses of the layers (m). In the remainder of the
manuscript, it is assumed that no retardation occurs, i.e., R = Ry = 1.

The boundary concentration at the top of the two-layer medium (scenario of Fig.
3a) or at the source inside the medium (scenario of Fig. 3b) is prescribed and assumed
to be a known constant concentration Cy (kg/m?).

Cix=0,0=0Co 3)

This boundary condition is e.g. applied in high-level nuclear waste disposal in low
permeability media with radionuclide sources that remain for a large time period and
that can be modeled as constant concentration sources with a specified concentration
equal to the solubility limit (e.g., Mallants et al. 2001).

At the interface between the two layers, continuity of concentration and mass flux
are imposed.

Cix=L1,0)=Cy(x = Ly,0) 4)
oC aC
n1Dq -t =nyD» 2 %)
a'x X=L1 a‘x X=L]

The boundary concentration at the bottom of the two-layer medium is prescribed
and assumed to be zero. This is a common boundary condition on aquitard—aquifer
interfaces in diffusion dominated problems, since it is assumed that solutes reaching
the aquifer are immediately flushed away by advection.

CGx=L1+L2)=0 (6)
The initial concentrations of the contaminant in layers 1 and 2 are assumed to be zero.

Ci(x,t=0)=0 (7

Co)(x,t =0)=0 8)

The equivalence condition is that the flux leaving at the bottom of the equivalent
medium should be equal to the flux leaving at the bottom of the two-layer medium.
The equivalent diffusion coefficient and the equivalent diffusion accessible porosity
are defined by imposing that the flux at x = L + L, in the equivalent medium with
an equivalent diffusion coefficient Deq (m?/s) and an equivalent diffusion accessible
porosity neq (-) should be equal to the flux at x = L 4 L in the two-layer medium.

Feq (L1 + L2) = F12 (L1 + L) )
D C (x,1) — Dy G (x,1) (10)
— HegDeg 00 - o2, h
P oy x=L,+L> 0X  |y=r, 41,

where C is the solute concentration in the liquid phase (kg/m?) in the one-layer equiv-
alent medium. Equation (10) shows that the equivalent diffusion coefficient and the
equivalent diffusion accessible porosity can be dependent on time.
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3 Steady state solution

In this section, the steady state solution of the problem is discussed. This solution is
reached in the asymptotic limit. In steady state, concentration varies linearly in each
layer (Ozisik 1993). The two-layer solution is given by:

n>D>Cy
C=Cy— x 0<x<L
! 0 niD1Ly +nyDo Ly =5 ="
DiC (11)
n 10
G = Li+L;—x) Li<x<L
2= DiLy + DL, AT sy sl
The spatial concentration distribution in the equivalent medium is given by:
x
C:Co(l—i)OExg(L + L) 12
(L1 + L2) ! (12)

The equivalent diffusion coefficient and diffusion accessible porosity in steady state,
can be found by imposing that the fluxes at x = L + L, must be equal:
d C2 oC n1D1 C(J CO
Dy—— = negDeq— D = NeqDeq——
M Ty T DLyt mDaLy N L+ Ly

nDiny Dy (L1 + L)
niD1Ly +nyDr 14 (13)

& neqDeq =

This shows that 7eqDeq is the weighted harmonic mean of 71D and n,D>, as pre-
viously reported by Ash et al. (1963), Barrie et al. (1963) and Barrer (1968). This
result is identical to the equation for effective hydraulic conductivity in layered media
with flow perpendicular to the stratification. This is logical since Fick’s law describing
diffusion is analogous to Darcy’s law. This result also holds for stratified media with
more than two layers, since the derivations can easily be extended. Equation (13) also
shows that there is no unique solution for neq and Dcq since this is a single equation
with two unknowns. For every value of neq, Deq can be determined so that neqDeq is
the weighted harmonic mean of ny D and ny D, and vice versa.

4 Transient solution

There is no general simple analytical solution to the formulated two-layer transient
problem. There is however such a solution available for a slightly different problem,
in which layer 2 is a semi-infinite layer with a contaminant flux assumed to be zero at
infinite depth.

9y

. =0 (14)

xX=+00

For short times, the solution to this semi-infinite problem is equal to the solution to
the earlier formulated finite problem. This is true since, for short times, the contam-
inant plume is very small compared to the layer thickness. In that case, it makes no
difference whether the boundary condition is applied at a finite or infinite distance.
This is illustrated in Fig. 4 that shows a comparison between the analytical solution
to the semi-infinite problem (Luikov 1968; Liu and Ball 1998) and the numerical
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Fig. 4 Comparison of the finite numerical solution and the semi-infinite analytical solution for diffu-
sion in a two-layer medium with n = 0.3, Dy = 3e — 10m?%/s, Dy = le — 10m?%/s, L] = L, =25m

solution for the finite problem for an example with realistic parameter input values.
No difference is observed between the two solutions for times smaller than 10'2s
(i.e. more than 30,000 years). It can therefore be assumed that equivalent parameter
expressions derived from the semi-infinite analytical solution also hold for the finite
problem for short times.

The analytical solution to this semi-infinite problem with initial conditions (7) and
(8) and boundary conditions (3) and (14) is given by (Luikov 1968; Liu and Ball 1998):

+00
Cr =G> 6k [erfc (m KLy +x)) ~berfe (m (k+2) Ly - x>)]

0 2Dt 2Dt
(15)
+o0 JR1/D1@k+1)Li+/Ry/D3 (x — Ly)
Cr(x.t)y=(1-0)Co | > 0Ferfe
pa 21t
(16)
D>R; — ni/D1R
where § — na+/DaR; — ni/DiR; (17)

nav/DaRo + ni/D1Ry

If both layers have the same property (§ = 0), then the solution becomes the well-
known one-layer solution:

[ Rx2 [! 1 Rx?
C (x, t) = CQ 47D A m exXp (—m) dr (18)

For mathematical simplicity, we first investigate the equivalent diffusion coefficient
assuming that the diffusion accessible porosities of both layers are equal and the
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equivalent diffusion accessible porosity assuming that the diffusion coefficients of
both layers are equal. Secondly, we investigate if the expressions obtained with these
simplified assumptions also hold in the case where both the diffusion coefficient and
the diffusion accessible porosity are variable and possibly correlated.

Inserting Eq. (16) and the one-layer analytical solution in the definition of equiva-
lent diffusion coefficient (10) assuming that the diffusion accessible porosities of both
layers are equal, gives:

nCo/Deq (L1 +L2)’
Jai F

4Dyt

1/Dy 2k + 1)Ly +/1/D2L, (19)

2Vt

nf(l—G)C zek

The infinite sum in the right-hand term converges relatively fast (Liu and Ball 1998).
The condition that must be satisfied for convergence with only one term is that the
second term is much smaller in absolute value than the first term, or if

217 /D5 —
i, Lila ’1 D2 —vD (20)
Dyt v D1D>t

For short times and if Dy and D, are not too dlfferent, this condition is usually
satisfied. For example, if D, is three times larger than D; (D; = 10~ "m?/s and
Dy =3 x 10719m?/s) and if L; = L, = 25m, the left hand side of Eq. (20) is more
than ten times larger than the right hand side of the equation for times smaller than
38,000 years. If condition (20) is satisfied, the expression for D¢q becomes:

\/D>ex _(L1+L2)2 _ 2JD1D; oo | — Li/Di+ Ly /D> ’ (1)
W\ 4Dt )T D+ VD T NG

If L = Ly = L, the expression for Deq becomes:

L2\ 2JDiD; L/VDi+L/yD3 Y
Joaen(-55) = Ty v ‘( 2 ) e

The solution to this equation is:

2yDiD; \’
Deq = (L2122 (23)
D1+ /D3

The equivalent diffusion coefficient of two layers with the same thickness for short
times is thus the power average with p = —0.5 of the diffusion coefficients of the two
layers for the considered set of boundary conditions. The power average of a set of n

sample measurements X1, X2, ..., X}, is defined as (Jensen 1998):

1
_ 1< p

i=1 (24)

X :exp{[Zln(X;)]/n} p=0
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For the special cases where p = —1, 0 or 1, the power average is the harmonic,
geometric or arithmetic mean respectively.

Inserting the analytical solution of the semi-infinite problem in the definition of
equivalent diffusion accessible porosity (10) assuming that the diffusion coefficients
of both layers are equal, gives:

neqC()\/B ool — (L1 + Ly)?
Jrt P 4Dt

25
_ 2mny «F Z(”z—m) exp _((2k+1)L1+L2)2 @3)
ny +no f ny + ny 24/ Dt
The infinite sum in the right-hand term converges relatively fast (Liu and Ball 1998).

One term is sufficient if the second term is much smaller in absolute value than the
first term, or if

ny —nq
ny +nq

(26)

2L3 + LyLo
D 2|

For small times and if n; and n; are not too different, this condition is usually sat-
isfied. For example, if ny is four times larger than ny (n; = 0.1 and np = 0.4), if
D =2 x10"""m?/s and if L; = L, = 25m, the left hand side of Eq. (26) is more
than 10 times larger than the right hand side of the equation for times smaller than
57,000 years. If condition (26) is satisfied, the expression for neq becomes:

(27)

The equivalent diffusion accessible porosity is then the harmonic mean of n; and ny.

Expressions (23) and (27) respectively give the equivalent diffusion coefficients if
the diffusion accessible porosities of both layers are equal and the equivalent diffusion
accessible porosity if the diffusion coefficients of both layers are equal. In the second
part of this paragraph, we investigate the more realistic case where both the diffusion
coefficient and the diffusion accessible porosity are variable and possibly correlated.

Inserting the analytical solution of the semi-infinite problem in the definition of the
equivalent diffusion coefficient and the equivalent diffusion accessible porosity (10),
gives:

Neq Coy/ Deq exp (_ L1+ L2)2)

Jrt 4Dcqt
G ( 2n112/D1 D3 )f(nz./D —nh/Dl)k
~ mt \no/Dy + /Dy = \12v/ D2 +n1y/Dy
1/D1(2k+1)L1+ 1/D2L2
exp

2Vt
(28)
The infinite sum in the right-hand term converges relatively fast (Liu and Ball 1998).

One term is sufficient if the second term is much smaller in absolute value than the
first term, or if
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212 /Dy + L1L, //D1D; nov/D3 — ni/Dy
> |In|————— (29)
t no/Do + ni/Djq

For short times, if D1 and D, are not too different and if n; and n; are not too differ-
ent, this condition is usually satisfied. For example, if D, is three times larger than
Dy (D; = 1071%m?/s and D> = 3 x 10719m?/s), if n, is four times larger than n;
(ny = 0.1 and np = 0.4) and if L; = Ly = 25m, the left hand side of Eq. (29) is more
than 10 times larger than the right hand side of the equation for times smaller than
175,000 years. If Eq. (29) is satisfied, the expression for Deq and neq becomes:

I (L1 + L»)?
Neqy/ Deq €Xp (— T@qt

2nina/D1D> \/ 1/DlLl + 1/DZLZ (30)
= ———— X —
n2+/D2 + ni+/Dy P 24t
If L1 = Ly = L, the expression for Deq and neq becomes:
Jpaen (L) = 2n/DiD: VDL YD\
n exp | — = exp | —
cd eq &P Deqt HZJﬁZ + nlm P 2\/2

This equation has no unique solution for neq and Deq since this is a single equation
with two unknowns. For every value of neq, Deq can be determined so that Eq. (31)
is satisfied, and vice versa. Moreover, the solutions for n¢q and Deq to this equation
can generally not be expressed analytically. One particular solution to this equation
is especially interesting since it can be expressed analytically. If D¢q is chosen to be
equal to the power average with p = —0.5 of the diffusion coefficients of the two
layers, solution of Eq. (31) gives the following expression for rneq:

S niny («/D1 + «/Dz) _ «/Dz/(»\/Dl + \/Dz) + »\/Dl/(\/Dl + +/D>)
“4T Dy +mDs ny ny
so that neq is equal to the harmonic mean of the diffusion accessible porosities of the

two layers weighted with the square root of the diffusion coefficient of the other layer
divided by the sum of the square roots of the diffusion coefficients of the two layers.

-1
(32)

5 Numerical verification

In this section, these analytical results are verified with a numerical model. Initially,
the results for the equivalent diffusion coefficient and the diffusion accessible porosity
are tested in cases where either the diffusion coefficient or the diffusion accessible
porosity is constant. Secondly, the analytical solutions are also numerically verified for
the more realistic case where both the diffusion coefficient and the diffusion acces-
sible porosity are variable and possibly correlated. The analytical solutions are in
both cases verified in a two-layer medium with equal layer thicknesses and in strat-
ified media with more than two layers or with layers with unequal thicknesses. All
calculated examples have a realistic variability of D and n that corresponds to the
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natural variability of diffusion parameters observed in low permeability media (e.g.,
Shackelford and Daniel 1991; Aertsens et al. 2004; Patriarche et al. 2004).

The numerical model is a model of 50m x 1m x 1m with cell dimensions of
1m x 1m x 1 m. A constant arbitrary concentration equal to 1 is prescribed at x = 0
and a constant zero concentration is prescribed at x = 50 m. The other model bound-
aries are no flux boundaries. The total runtime is 5 x 103 s and the time step size is
1 x 10'%s. The effect of time step and grid cell size was examined and it was shown
that smaller time steps and cell dimensions do not lead to different results. This model
is run with FRAC3DVS, a finite element simulator for three-dimensional groundwa-
ter flow and solute transport in porous, discretely fractured porous or dual-porosity
formations (Therrien et al. 1996, Therrien et al. 2003). For different cases, equiva-
lent diffusion coefficients and diffusion accessible porosities are calculated by inverse
modeling at different times. The equivalent diffusion coefficient and diffusion acces-
sible porosity of a one-layer medium are iteratively adapted until the output flux of
the equivalent one-layer medium differs at most 0.1% from the output flux of the
considered multi-layer medium.

Initially, the results for the equivalent diffusion coefficient are tested for a two-layer
medium with equal layer thicknesses L1 = L, = 25 m. The diffusion accessible poros-
ity is set to 0.3 and the diffusion coefficients of the two layers are 3 x 10719 m?/s and
1x 10719 m?/s respectively. The theoretical analysis of the previous sections has shown
that in that case Dq goes from the power mean with p = —0.5 for small times to the
harmonic mean as ¢ increases. The equivalent diffusion coefficient of this two-layer
medium is calculated by inverse modeling at different times. The equivalent diffusion
coefficient was calculated more frequently for small times since it displays more rapid
change in time for these small times (Fig. 5). It is confirmed from these results that
the calculated equivalent diffusion coefficient is the power mean with p = —0.5 for
small times, and decreases to the harmonic mean as ¢ increases, as predicted by the
analytical solutions.

The results for the equivalent diffusion accessible porosity are also tested in a two-
layer medium with equal layer thicknesses L1 = Ly = 25 m. The diffusion coefficient
is set to 1.6 x 10719 m?/s and the diffusion accessible porosities of the two layers are
0.4 and 0.1 respectively. The theoretical analysis of the previous sections has shown
that in that case the equivalent diffusion accessible porosity neq is equal to the har-
monic mean for small and large times. The equivalent diffusion accessible porosity
of this two-layer medium is calculated by inverse modeling at different times. This
calculation confirmed that the calculated equivalent diffusion accessible porosity is
the harmonic mean for all times, as predicted by the analytical solutions.

Next, it is checked whether the equations for the equivalent diffusion coefficient
also apply for stratified media with more than two layers. Transport by diffusion is
modeled through a 10-layer medium. Each layer has a different diffusion coefficient
between 5 x 10~ m?/s and 3 x 10~'"m?/s. The diffusion accessible porosity is set
to 0.3. The equivalent diffusion coefficient of this 10-layer medium is calculated by
inverse modeling at different times (Fig. 6). It can be observed that D.q decreases
similarly in function of time as in the case of a two-layer medium. For large times, Deq
converges to the harmonic average of the diffusion coefficients of the 10 layers. For
small times, Deq approaches a value slightly larger than the power mean withp = —0.5.
The largest p-value is approximately equal to —0.47. This slightly larger equivalent
diffusion coefficient can be explained by the dependence of transient diffusion on the
order of the layers (Barrie et al. 1963). For very small times, the diffusion coefficient
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Fig.5 Equivalent diffusion coefficient Deq (a) and power average exponent p (b) in function of time
for a two-layer medium with n = 0.3, Dj = 3e — 10m?%/s, Dy = le — 10m?%/s, L = L, =25m

of the first layer plays a relatively larger role compared to diffusion coefficients of
the other layers. In this example, the first layer has the largest diffusion coefficient of
all 10 layers and therefore the equivalent diffusion coefficient for very small times is
slightly larger than the power mean with p = —0.5. This effect is however very small,
partially caused by the limited, but realistic, variability of the diffusion coefficient.

The results for the equivalent diffusion accessible porosity are also tested in a
10-layer medium. Each layer has a different diffusion accessible porosity between
0.25 and 0.35. The diffusion coefficient is set to 1.6 x 1071° m?/s. The equivalent diffu-
sion accessible porosity of this 10-layer medium is calculated by inverse modeling
at different times. The calculated equivalent diffusion accessible porosity is close to
the harmonic average for all times. For very small times, the calculated equivalent
diffusion accessible porosity is 1% larger than the harmonic average.

Next, it is checked whether the equations for the equivalent diffusion coefficient
also apply for stratified media with layers of unequal thickness. The diffusion acces-
sible porosity is set to 0.3, layer 1 and 2 are 20 and 30 m thick respectively and the
diffusion coefficients of the two layers are 3 x 1071 m?/s and 10~19 m?/s respectively.
The equivalent diffusion coefficient of this two-layer medium is calculated by inverse
modeling at different times (Fig. 7). As before, the calculated equivalent diffusion
coefficient converges to the weighted harmonic average of the two diffusion coeffi-
cients. For small times, the calculated equivalent diffusion coefficient is about 7%
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larger than the weighted power average with p = —0.5. The power average exponent
p is close to —0.4 instead of —0.5 for small time. This shows that in stratified media
with layers of unequal thickness, the equivalent diffusion coefficient is not exactly
equal to the weighted harmonic average of the two diffusion coefficients but can be
closely approximated by it.

The results for the equivalent diffusion accessible porosity are also tested in a
two-layer medium with layers of unequal thickness. The diffusion coefficient is set to
1.6 x 10~ m?/s, layer 1 and 2 are 20 and 30 m thick respectively and the diffusion
accessible porosities of the two layers are 0.35 and 0.25 respectively. The equivalent
diffusion accessible porosity of this two-layer medium is calculated by inverse model-
ing at different times. The equivalent diffusion accessible porosity is for all times very
close to the harmonic average. For very small times, it is about 3% larger than the
harmonic average.

The analytical solutions for the diffusion coefficient and the diffusion accessible
porosity are also tested in media where both diffusion parameters are variable. The
theoretical analysis of the previous sections has shown that in that case there is no
unique solution for neq and Deq since the equivalence condition results in a single
equation with two unknowns. Two particular solutions are verified numerically: the
solution for small times where Deq is chosen to be equal to the power average with
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Fig. 6 Equivalent diffusion coefficient Deq (a) and power average exponent p (b) in function of time
for a 10-layer medium with n = 0.3, D; between Se-11 and 3e-10 mz/s, Li=5m
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p = —0.5 of the diffusion coefficients of the two layers and neq is given by Eq. (32)
and the solution for large times where neq is chosen to be equal to the harmonic mean
of the porosities of the individual layers and D is calculated by Eq. (13).

The analytical solutions for the equivalent diffusion coefficient and the equivalent
diffusion accessible porosity are first tested for a two-layer medium with equal layer
thicknesses L; = L, = 25 m, diffusion coefficients of 3 x 10719 m?/s and 1 x 10719 m?/s
and diffusion accessible porosities of 0.4 and 0.1. The flux leaving at the bottom of
the two-layer medium and the equivalent medium are calculated numerically for the
small time solution (Eq. (31)) and the large time solution (Eq. (13)). For small times
(t = 1 x 10'25), there is a difference of 0.22% between the flux in the two-layer
medium and the flux in the equivalent medium with equivalent properties given by
the small time solution. For large times (t > 2 x 10'3s), there is difference smaller
than 0.02% between the flux in the two-layer medium and the flux in the equivalent
medium with equivalent properties given by the large time solution. The analytical
solutions are thus very good approximations for the equivalent diffusion coefficient
and diffusion accessible porosity in a two-layer medium with equal layer thicknesses
with variable D and n.

The analytical solutions for the equivalent diffusion coefficient and the equivalent
diffusion accessible porosity are also tested for a two-layer medium with unequal layer
thicknesses (L; = 20m and L, = 30m), diffusion coefficients of 3 x 1071 m?/s and
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Fig.7 Equivalent diffusion coefficient Deq (a) and power average exponent p (b) in function of time
for a two-layer medium with n = 0.3, D1 = 3e — 10 mz/s, Dy =1e—-10 mz/s, L1 =20m,Ly; =30m
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1 x 107 m?/s and diffusion accessible porosities of 0.35 and 0.25. The flux leaving
at the bottom of the two-layer medium and the equivalent medium are calculated
numerically for the small time solution and the large time solution. For small times
(t = 1x10'%s), there is a difference of 0.07% between the flux in the two-layer medium
and the flux in the equivalent medium with equivalent properties given by the small
time solution. For large times (¢ > 2 x 1013s), there is difference smaller than 0.01%
between the flux in the two-layer medium and the flux in the equivalent medium
with equivalent properties given by the large time solution. The analytical solutions
are thus also very good approximations for the equivalent diffusion coefficient and
diffusion accessible porosity in a two-layer medium with unequal layer thicknesses
with variable D and n.

The analytical solutions for the equivalent diffusion coefficient and the equivalent
diffusion accessible porosity are finally also tested for a ten-layer medium. Each layer
has a different diffusion coefficient between 5 x 10~ m?/s and 3 x 1071 m?/s and a
different diffusion accessible porosity between 0.25 and 0.35. The flux leaving at the
bottom of the 10-layer medium and the equivalent medium are calculated numerically
for the small time solution and the large time solution. For small times (t = 1 x 10'2s),
there is a difference of 0.27% between the flux in the 10-layer medium and the flux in
the equivalent medium with equivalent properties given by the small time solution.
For large times (¢ > 2 x 1013s), there is difference smaller than 0.01% between the
flux in the two-layer medium and the flux in the equivalent medium with equivalent
properties given by the large time solution. The analytical solutions are thus also very
good approximations for the equivalent diffusion coefficient and diffusion accessible
porosity in a medium with more than ten layers and with variable D and n.

These examples show that the analytical solutions are good approximations for
the equivalent diffusion coefficient and diffusion accessible porosity under differ-
ent conditions. The expressions are tested for media with two or more layers, with
equal and unequal layer thicknesses and with one or two variable diffusion param-
eters. All calculated examples have a realistic variability of D and n that corre-
sponds to the natural variability of diffusion parameters observed in low perme-
ability media. The good agreement between the calculated fluxes in the hetero-
geneous media and the calculated fluxes in the equivalent homogeneous media
shows that the natural variability of D and n is usually small enough to fulfill
condition (29).

6 Conclusions

Expressions for the equivalent diffusion coefficient and the equivalent diffusion acces-
sible porosity in a stratified medium have been derived. The expressions assume one-
dimensional diffusion normal to the layering and prescribed constant concentration
boundary conditions at the top and bottom of the layered medium. Two media are
considered equivalent if the diffusion fluxes leaving the bottom of the medium are
equal. The expressions show that the equivalent diffusion coefficient changes with
time. If diffusion accessible porosity is assumed constant, the equivalent diffusion
coefficient is equal to the power average with p = —0.5 for short times and converges
to the harmonic average for long times. If diffusion coefficient is assumed constant, the
equivalent diffusion accessible porosity is the harmonic average of the porosities of
the individual layers for all times. If both the diffusion coefficient and the porosity are
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variable, there is no unique solution for n¢q and D since the equivalence condition
results in a single equation with two unknowns. For small times, one particular solu-
tion is interesting since it can be expressed analytically, i.e., the solution where Deg is
chosen to be equal to the power average with p = —0.5 of the diffusion coefficients of
the two layers and nq is the harmonic mean of the diffusion accessible porosities of
the two layers weighted with the square root of the diffusion coefficient of the other
layer divided by the sum of the square roots of the diffusion coefficients of the two
layers. For long times, 71eq Deq is the weighted harmonic mean of the products of # and
D of the individual layers.

The expressions were verified numerically for several test cases in which the vari-
ability of D and n was not too large. The numerical results agreed well with analytically
derived expressions. It should be noted that the values of the equivalent diffusion
coefficient and the equivalent diffusion accessible porosity may be different for other
boundary conditions. The effect of boundary conditions on these equivalent diffusion
parameters is an interesting subject for further research.
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