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Abstract. In Part I Moyne and Murad [Transport in Porous Media 62, (2006), 333–380]
a two-scale model of coupled electro-chemo-mechanical phenomena in swelling porous
media was derived by a formal asymptotic homogenization analysis. The microscopic por-
trait of the model consists of a two-phase system composed of an electrolyte solution and
colloidal clay particles. The movement of the liquid at the microscale is ruled by the mod-
ified Stokes problem; the advection, diffusion and electro-migration of monovalent ions
Na+ and Cl− are governed by the Nernst–Planck equations and the local electric poten-
tial distribution is dictated by the Poisson problem. The microscopic governing equations
in the fluid domain are coupled with the elasticity problem for the clay particles through
boundary conditions on the solid–fluid interface. The up-scaling procedure led to a mac-
roscopic model based on Onsager’s reciprocity relations coupled with a modified form of
Terzaghi’s effective stress principle including an additional swelling stress component. A
notable consequence of the two-scale framework are the new closure problems derived
for the macroscopic electro-chemo-mechanical parameters. Such local representation bridge
the gap between the macroscopic Thermodynamics of Irreversible Processes and micro-
scopic Electro-Hydrodynamics by establishing a direct correlation between the magnitude
of the effective properties and the electrical double layer potential, whose local distribu-
tion is governed by a microscale Poisson–Boltzmann equation. The purpose of this paper
is to validate computationally the two-scale model and to introduce new concepts inher-
ent to the problem considering a particular form of microstructure wherein the clay fabric
is composed of parallel particles of face-to-face contact. By discretizing the local Pois-
son–Boltzmann equation and solving numerically the closure problems, the constitutive
behavior of the diffusion coefficients of cations and anions, chemico-osmotic and elec-
tro-osmotic conductivities in Darcy’s law, Onsager’s parameters, swelling pressure, electro-
chemical compressibility, surface tension, primary/secondary electroviscous effects and the
reflection coefficient are computed for a range particle distances and sat concentrations.
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1. Introduction

In a companion paper (Moyne and Murad, 2006), the authors proposed
a two-scale model to describe coupled electro-chemo-mechanical phenom-
ena in expansive porous media. The model was derived within the frame-
work of homogenization (Bensoussan et al., 1978; Sanchez-Palencia, 1980;
Auriault, 1991) applied to up-scale the microscopic governing equations
which consist of the elasticity problem for the clay particles coupled
through boundary conditions with the electro-hydrodynamics, Nernst–
Planck relations and Poisson problem governing the fluid movement,
transport of mobile charges and electric potential distribution in the elec-
trolyte solution occupying the micro-pores. (Landau and Lifshitz, 1960;
Eringen and Maugin (1989); Samson and Marchand, 1999).

By defining the perturbation parameter ε of the homogenization proce-
dure as the ratio between the microscopic scale (of the order of the Debye’s
length) and the macroscopic characteristic scale (of the order of magnitude
of the size of the clay aggregates), unlike earlier work developed by the
authors (Moyne and Murad, 2002, 2003); the up-scaling procedure adopted
in Moyne and Murad (2006) considered the macroscopic Péclet number
of O(1). This higher-order estimate combined with the asymptotic expan-
sion technique led to a more realistic macroscopic picture of the swelling
medium wherein new small-scale features, such as the influence of local dis-
tortion and relaxation of the charge cloud upon the magnitude of ion dis-
persivities and fluid conductivities in Darcy’s law have been captured by the
homogenized model.

In the macroscopic governing equations the Darcy’s seepage velocity,
total flux of species and electric current appear linearly related to the gradi-
ents of pressure, concentration and macroscopic electric potential through
Onsager’s reciprocity relations. This system is coupled with mass conser-
vations for the fluid and species and with a modified form of Terzaghi’s
decomposition including an additional swelling stress tensor component
(Sridharan and Rao, 1973; Hueckel, 1992; Murad and Cushman, 2000). In
addition, local closure problems posed on a periodic unit cell are obtained
for the electro-chemo-mechanical parameters. Such closure relations pro-
vide further insight in the physics underlying each effective coefficient by
establishing a direct correlation with the microscopic electric double layer
potential satisfying a local version of the Poisson–Boltzmann problem.
In addition, other relevant information in the closure relations appears
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incorporated in the additional nonequilibrium characteristic functions asso-
ciated with tortuosity and distortion of the charge cloud induced by the
advection. Finally, the closure problems are also capable of establishing the
microscopic conditions for the symmetry of Onsager’s matrix (see Moyne
and Murad, 2006 for details).

The purpose of this article is twofold: to validate computationally the
two-scale model proposed in Moyne and Murad (2006) and to introduce
other relevant concepts inherent to the problem for a particular clay mor-
phology. To this end we discretize the closure problems considering a strat-
ified microstructure where the compacted swelling medium is composed of
parallel particles of face-to-face contact. In this arrangement the local Pois-
son–Boltzmann equation reduces to a one-dimensional non-linear problem
in the direction normal to the clay surface which is solved using a suit-
able change of variables in conjunction with an iterative numerical integra-
tion of elliptic integrals (Derjaguin et al., 1987). The solution leads to the
numerical profile of the microscale electric potential parametrized by salin-
ity and distance between two parallel particles. We then make use of this
discrete electrical double layer potential distribution to compute the chem-
ico-osmotic and electro-osmotic velocity profiles. The transversal averaging
of these local distributions (normally to the solid wall) yields the con-
stitutive dependence of the diagonal components of the chemico-osmotic
and electro-osmotic permeabilities (in the axial direction parallel to the
particle surface) on salinity and particle distance. In addition, by solving
numerically the other closure problems we compute the constitutive behav-
ior of the macroscopic diffusion coefficients of cations and anions, swelling
pressure, electro-chemical compressibility and Onsager’s coefficients, also
parametrized by salinity and particle distance. The two-scale computations
presented herein aim at providing a first attempt at understanding the
complex features underlying the constitutive nature of the electro-chemo-
mechanical coefficients in swelling systems.

We also proceed beyond the two-scale computations for the effective
coefficients defined in Moyne and Murad (2006) by further introducing
other macroscopic concepts restricted to microgeometries composed of par-
allel particles. By noting that at equilibrium the stress state in the fluid is
anisotropic in addition to the excess in pressure normal to the particle sur-
face, quantified by the disjoining pressure (Derjaguin and Churaev, 1978),
we also introduce the interfacial and surface tensions of the electrolyte
solution by averaging the excess of the component of the fluid stress tensor
tangential to the particles relative to the normal and bulk phase pressures.
We show that these components arise from the sum of the Donnan-osmotic
pressure and Maxwell components of the fluid stress tensor. By establishing
a microscopic representation for these quantities, we compute their depen-
dence on salinity and particle distance and show that their magnitude is
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much higher than the swelling pressure, though they have no effect on
swelling since their action is to compress the liquid in the direction parallel
to the clay surface.

The consequences of the two-scale model are also exploited under
some particular macroscopic constraints. More precisely we analyze the
performance of the formulation under the open-circuit condition which is
characterized by the absence of a macroscopic electric current (Gu et al.,
1998). Under this constraint the macroscale electric potential reduces to the
so-called streaming potential, whose spatial variability opposes the pressure-
driven flow, acting to slow down the counter-ions of the diffuse double layer
and to reduce the mobility of the water molecules to fulfill the condition
of zero net current (see Yang and Li, 1998 for details). By making use of
this constraint we eliminate the streaming potential gradient in Onsager’s
relation for the electric current and rewrite the other reciprocity relations
in terms of pressure and concentration gradients. In this scenario we intro-
duce the membrane potential in the sense of Gu et al. (1998) as the total
driving force for fluid flow and the so-called primary/secondary electro-vis-
cous effects as a measure of the increase of the apparent viscosity of the
fluid owing to the electro osmotic flow induced by the streaming potential
gradient in the opposite direction of the hydraulic gradient. By establishing
a closure problem for this quantity its constitutive dependence on salinity
and particle distance is computed. Furthermore, still under the open-circuit
assumption, we consider the movement of the water as a solvent and intro-
duce the notion of reflection coefficient. Classically such concept was firstly
introduced to quantify the nonideal behavior of semi-permeable membranes
to the passage of nonionic species. Owing to the larger size of the solute mol-
ecules, the ideal behavior of a semi-permeable membrane, to which an uni-
tary reflection coefficient is associated, occurs when the membrane is totally
impervious to the passage of solutes and the movement of the solution is that
of the solvent driven by its chemical-potential gradient. The partial mobility
of solutes tends to deviate the membrane from its ideal behavior reducing
the magnitude of the reflection coefficient to values less than unity. As the
movement of charged species is constrained owing to their electro-chemi-
co interactions with the clay, a proper characterization of reflection coeffi-
cient in this scenario becomes a relevant issue (see, e.g., Kemper and Schaik,
1966). Indeed, the reader shall be aware that this parameter has a totally
different physical meaning compared to the case of larger size nonionic spe-
cies. Likewise the other parameters, by establishing a proper definition for
this quantity within the open-circuit assumption we derive its microscopic
representation and discretize the local closure problem to obtain numeri-
cally the constitutive dependence of this parameter on salinity and particle
distance.
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Although the two-scale computations performed herein are restricted
to a particular form of microstructure they provide guidance for a fur-
ther development of an accurate constitutive theory of swelling porous
media with random microgeometries capable of capturing the correct phys-
ics and particular assumptions underlying the characterization of each elec-
tro-chemo-mechanical parameter.

A brief outline of the paper is as follows: In Section 2 we review the
main aspects of the two-scale model. In Section 3 we rephrase the clo-
sure problems for stratified microstructures and further manipulate them.
In addition, we make use of the open circuit assumption and formally
introduce the electroviscous effect and reflection coefficient. In Section 4
we present the discretization technique of the Poisson–Boltzmann equation
and compute the solution of the closure problems. Finally, numerical sim-
ulations depict the behavior of the effective coefficients as a function of
salinity and particle distance.

2. Review of the Homogenized Results

Let � be a macroscopic domain occupied by a mixture of uniformly neg-
atively charged clay particles saturated by a dielectric aqueous solution
with binary monovalent completely dissociated electrolytes Na+ and Cl−.
The aqueous phase is considered a dilute solution with the ions treated as
point charges at infinite dilution such that steric and hydration effects are
neglected. For each macroscopic location x ∈�, the microscopic behavior
of the swelling medium is represented by a continuous distribution of local
problems posed in a periodic cell Y =Yf ∩Ys with prescribed geometry and
boundary ∂Yfs (here the subscripts f and s denote the sub-domains occu-
pied by the fluid and solid). The solution of the closure problems in each
cell represents the influence of the microstructure near each macroscopic
location x.

2.1. summary of the two-scale formulation

We consider a thermodynamic process of the swelling medium character-
ized by a macroscopic time scale t . The system is assumed to exhibit the
scale-separation property so that we can assign a perturbation parame-
ter ε = �/L� 1 with � and L denoting the microscopic and macroscopic
scales. The former scale is assumed of the order of the Debye’s length (Van
Olphen, 1977; Hunter, 1981) whereas the latter of the same magnitude of
the clay aggregates.

Following the notation of Moyne and Murad (2006) {ej}, (j = 1,2,3)
denotes an orthonormal basis and I designates the identity tensor represented
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in components as δijei ⊗ ej (sum on i, j with δij and ⊗ denoting the
Kronecker delta symbol and the tensorial product between vectors. We also
adopt the notation II for the fourth-order unit tensor with components
δijδkl and A : B to represent the classical inner product between tensors
(AijB ij). The pair {∇x,∇y} denotes the spatial gradient with respect to the
macroscopic and microscopic coordinates x and y respectively. To simplify
the notation and avoid the proliferation of symbols, we omit the super-
script “0” adopted in Moyne and Murad (2006) to represent the O(ε0)

component of the asymptotic expansion of each unknown.
Neglecting, gravity, convective, inertial effects and considering that the

solid matrix undergoes small deformations with respect to an initial con-
tact stress free configuration, the two-scale model derived in Moyne and
Murad (2004, submitted) consists in finding the following variables (func-
tions of (x, t)): the macroscopic overall stress tensor σ T ; the displacement
of the solid particles u; the macroscopic deformation of the solid matrix
Ex(u); the Biot’s (1941) elastic contact stress σ e; the reference bulk pressure
pb of the fluid; the Darcy’s velocity vD; the bulk concentration cb; the mac-
roscopic dimensionless electric potential ψ̄b; the fluxes of cations/anions J±
and the porosity nf satisfying
Overall Momentum Balance

∇x ·σ T =0.

Modified Terzaghi’s Decomposition

σ T =−αpb+σ e −�.
Linear Elastic Constitutive Law for the Contact Stresses

σ e −CsEx(u).
Small Strain Assumption

Ex(u)= 1
2

(∇xu+ (∇xu)T
)
.

Modified Darcy’s Law

vD =−KP∇xpb−KC∇xcb −KE∇xψ̄b. (2.1)

Overall Mass Balance

∇x · vD +α :
∂

∂t
Ex(u)=β ∂pb

∂t
+ ∂γπ

∂t
.

Mass Balance of the Charged Species

∂

∂t
(nfG±cb)+∇x ·J± =0. (2.2)
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Nernst–Planck Relations

J± = cbG±v± −nf

(
D

c
±∇xcb ±D

e
±cb∇xψ̄b +D

p
±∇xpb

)
. (2.3)

Mass Balance of the Fluid Phase

∂nf

∂t
+∇x · vD +nf∇x · ∂u

∂t
=0 in �.

In the above set of effective coefficients the pair {Cs,α} denotes the elastic
modulus of the clay matrix and a tensorial generalization of the Biot–Wil-
lis parameter; {KP,KC,KE} are the hydraulic, chemico-osmotic and elec-
tro-osmotic conductivities in Darcy’s law; β and γπ are the mechanical
and electro-chemical compressibilities of the clay; D

I

±(I = p, c, e) designate
the diffusivities of the ions with respect to unitary gradients in bulk pres-
sure, concentration and electric potential; G± are the cation/anion exchange
capacities with the electrical double layer; v± the averaged advection veloc-
ities of the ions and � a macroscopic stress tensor which governs the
electro-chemical interaction between the electrolyte solution and the mac-
romolecules.

To depict the closure problems for the effective coefficients we begin
by presenting the notation adopted herein. Denote ns = 1 − nf the vol-
ume fraction of the solid phase, 〈·〉 ≡ |Y |−1

∫
Yα

dY the average operator
over Y and 〈·〉α ≡|Yα|−1

∫
Yα

dYα(α= f , s) the intrinsic volume average oper-
ator over the α-portion of the unit cell Y so that 〈·〉 = nα〈·〉α. The set of
microscopic properties {F,T ,R, cs, ε̃0, ε̃,D±,µf }, designates Faraday’s con-
stant, absolute temperature (assumed constant), universal ideal gas con-
stant, fourth-order elastic modulus of the particles, permittivity of the free
space, relative dielectric constant of the solvent, binary water-ions diffu-
sion coefficients and fluid viscosity, respectively. We also introduce the De-
bye’s length �D ≡ (ε̃ε̃0RT/2F 2cb)

1/2 which refers to as the characteristic
length scale where the effects of the electrical double layer (e, d, l) become
pronounced. For microscopically isotropic particles the components of the
fourth-order elastic modulus of the solid admit the well-known represen-
tation cijkl =λsδ

ij δkl +µs
(
δikδjl + δilδjk) with {λs,µs}, denoting the pair of

microscopic Lamé constants of the particles.
Our set of primary microscopic unknowns is

{
ϕ̄,E, π, τM,�d, v,p,

σ f ,uπ
}

which denote a dimensionless e.d.l. potential relative to ψ̄b (denoted
herein as an e.d.l. potential), electric field, osmotic pressure, Maxwell stress
tensor, disjoining stress, local fluid velocity, thermodynamic pressure, stress
tensor of the electrolyte solution and fluctuating displacement of the clay
particles induced by electro-chemical effects. The relations between these
microscopic variables are Moyne and Murad (2006)
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�d =πI−τM , π =2RT cb(cosh ϕ̄−1),

τM = ε̃ε̃0

2
(2E⊗E−E2I),

v− ∂u
∂t

=−κp∇xpb −κc∇xcb −κe∇xψ̄b, (2.4)

σ f =−pI+τM =−(pb +π)I+τM =−pbI−�d,

where {κp,κc,κe} is a set of characteristic velocity profiles induced by uni-
tary hydraulic, chemico-osmotic and electro-osmotic gradients. Denoting
Ey(u) = 1/2(∇yu + (∇yu)T ), the unknowns {ϕ̄,E,uπ } satisfy the Poisson–
Boltzmann and elasticity problems with Neumann boundary conditions

�yyϕ̄= (�2
D)

−1 sinh ϕ̄
E=−RT F−1∇yϕ̄ in Yf

ε̃ε̃0E ·n=−σ on ∂Yfs

∣∣∣∣
∇y · (csEy(uπ))=0 in Ys,

(csEy(uπ))n=−�dn on ∂Yfs,
(2.5)

with σ <0 denoting the fixed surface charge and n the unit normal exterior
to Yf . The effective coefficients admit the following microscopic representa-
tions

�=〈�d〉+ns�S, �S =−〈csEy(uπ)〉s, Cs =〈cs(II+Ey(ξ))〉,
α =nf I−〈csEy(ζ )〉=nf I−〈∇y · ξ〉, β=〈∇y · ζ 〉,
KP =〈κp〉, KC =〈κc〉, KE =〈κe〉, (2.6)

D
I

± =D±
〈
exp(∓ϕ̄)

(
I+∇yf

± + cb∇yh
±
I

)〉f
,

D
p
± =D±cb

〈
exp(∓ϕ̄)∇yh

±
p

〉f
, I= c, e,

γπ =〈∇y ·uπ 〉, G±v± =〈exp(∓ϕ̄)v〉, G± =〈exp(∓ϕ̄)〉f .

Here ξ denotes a, third-order characteristic tensor and {ζ , f ±} a pair of
vectorial characteristic functions satisfying the canonical cell problems

∇y · (csEy(ξ))=0 in Ys, ∇y · (csEy(ζ ))=0 in Ys,

(csEy(ξ))n=−csIIn on ∂Yf s, (csEy(ζ ))n=−In on ∂Yfs
(2.7)

and

∇y ·
(
D± exp(∓ϕ̄)∇yf

±)=±ID± exp(±ϕ̄)∇yϕ̄ in Yf ,

∇yf
± ·n=∓In on ∂Yfs.

(2.8)

In addition, κI and h±
I (I = p, c, e) denote other characteristic functions

associated with the fluid flow, whose vectorial and scalar components κ
j
I

and h
±j
I (j = 1,2,3), together with the pressures g

j
I satisfy the extended

Stokes problems
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µf�yyκ
j
p −∇yg

j
p −A∇yh

+j
p −B∇yh

−j
p =−ej in Yf ,

∇y ·κ j
p =0, j=1,2,3,

∇y ·
[
D± exp(∓ϕ̄)∇yh

±j
p

]
±κ

j
p · (exp(∓ϕ̄)∇yϕ̄=0,

κ
j
p =0; ∇yh

±j
p ·n=0 on ∂Yfs

(2.9)

and

µf�yyκ
j
c −∇yg

j
c −A∇yh

+j
c −B∇yh

−j
c =−Fej in Yf ,

∇y ·κ j
c =0, j=1,2,3,

∇y ·
[
D± exp(∓ϕ̄)∇yh

±j
c

]
±κ

j
c · (exp(∓ϕ̄)∇yϕ̄=0,

κ
j
c =0, ∇yh

±j
c ·n=0 on ∂Yfs

(2.10)

along with

µf�yyκ
j
e −∇yg

j
e −A∇yh

+j
e −B∇yh

−j
e =−Gej in Yf ,

∇y ·κ j
e =0, j=1,2,3,

∇y ·
[
D± exp(∓ϕ̄)∇yh

±j
e

]
±κ

j
e · (exp(∓ϕ̄)∇yϕ̄=0,

κ
j
e =0; ∇yh

±j
e ·n=0 on ∂Yfs,

(2.11)

where

F=RT
[
2(cosh ϕ̄−1)I+ (exp(−ϕ̄)−1)∇yf

+ + (exp(+ϕ̄)−1)∇yf
−]
,

G=RT cb

[
−2 sinh ϕ̄I− (exp(−ϕ̄)−1)∇yf

+ − (exp(+ϕ̄)−1)∇yf
−]
, (2.12)

A=RT cb [exp(−ϕ̄)−1] , B=RT cb [exp(+ϕ̄)−1] .

The coefficients {ξ , ζ } in (2.7) are purely geometrical quantities only
depending on cell morphology whereas the functions

{
f
±
,κI ,h

±
I

}
(I =

p, c, e) in (2.8)–(2.11) are strongly dictated by the e.d.l. potential ϕ̄, solu-
tion of the Poisson–Boltzmann problem (2.5)(a) and consequently depend
on the bulk concentration cb, through the definition of the Debye’s length
�D. It should be noted that the dependence of f

±
on cb is inherent to

charged species and does not appear in the homogenization of convection-
diffusion equations of nonionic species for the Peclet number of O(1) (see
Auriault and Adler, 1995).

The cation and anion concentrations c+ and c− are related to the
bulk concentration cb and the relative e.d.l. potential through the gen-
eralized Boltzmann distributions c± = cb exp(∓ϕ̄). This implies the net
charge density given by q = F(c+ − c−) = −2Fcb sinh ϕ̄ and its macro-
scopic counterpart q∗ ≡〈q〉=F(c+ −c−)=−2Fcb〈sinh ϕ̄〉. Further, denoting
〈σ 〉fs =|∂Yfs|−1

∫
∂Yfs
σdY the interfacial averaging of the surface charge and
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nfs = |∂Yfs|/|Y | the surface volume fraction, the compatibility condition
between the Neumann boundary condition and the source term in the Pois-
son–Boltzmann problem (2.5)(a) leads to the electroneutrality condition

1
|Y |

∫

∂Yfs

σd�=nfs〈σ 〉fs = ε̃ε̃0RT

F |Y |
∫

∂Yfs

∇yϕ̄ ·n d�= ε̃ε̃0RT

F |Y |
∫

Yf

�yyϕ̄dY

=2Fcb〈sinh ϕ̄〉=−q∗. (2.13)

The above system is supplemented by macroscopic initial and boundary
conditions on the macroscopic boundary of the swelling medium. Finally,
we remark that the set of variables {pb, cb, ψ̄b}, whose gradients are the
driving forces for fluid flow, are associated with an apparent bulk fluid
characterized by the absence of a net charge density and the fulfillment of
the electroneutrality pointwisely. In the fictitious liquid the suspended spe-
cies at hidden concentration cb+ = cb− = cb are constructed at local equi-
librium with the ions such that their electro-chemical potential are equal.
After solving for these variables and for the local e.d.l. potential ϕ̄, the
intrinsic averaging of the ion concentrations, total dimensionless electric
potential and fluid pressure, 〈c±〉f , 〈�̄〉f , 〈p〉f can be computed in a post-
processing approach using the relations (see Moyne and Murad (2006) for
details)

〈c±〉f=cb〈exp (∓ϕ̄)〉f , 〈�̄〉f =〈ϕ̄〉f + ψ̄b,

〈p〉f=〈pb+π〉f=pb +2RT cb(〈cosh ϕ̄〉f −1)=pb +RT (〈c+ + c−〉f −2cb).

2.2. summary of the alternative formulation based on onsager’s
reciprocity relations

The two-scale formulation can also be rephrased in terms of alternative
variables, which naturally embed the macroscopic model in the frame-
work of the Thermodynamics of Irreversible Processes and Onsager’s rec-
iprocity relations. To this end we begin by replacing the dimensionless
potential ψ̄b by the electric potential ψb = RT ψ̄b/F and concentration
cb by the bulk chemical potential of the species (or the Nernst poten-
tial) µb = RT ln cb). Associated with the thermodynamic driving forces
{∇pb,∇µb,∇ψb} we define the conjugated fluxes consisting of the total flux
of species relative to the advection induced by the Darcy’s velocity Jc, the
electric current Ie, the overall and excess electrical capacities {Gc,Gs}, the
overall and relative advection velocities {vc, vs} and the overall and excess
diffusion coefficients {DI

∗,�
I
∗}. We then have the definitions
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Jc ≡J++J−−nfGccb
∂u
∂t

−2cbvD, Ie ≡F(J+−J−)−nfGscb
∂u
∂t
,

Gc ≡G++G− =2〈coshϕ̄〉f , Gs ≡G+−G− =−2〈sinhϕ̄〉f , (2.14)

Gcvch≡G+

(
v+−nf ∂u

∂t

)
+G−

(
v−−nf ∂u

∂t

)
=2

〈
coshϕ̄

(
v− ∂u

∂t

)〉
;

Gsvsh≡G+

(
v+−nf ∂u

∂t

)
−G−

(
v−−nf ∂u

∂t

)
.

By adding and subtracting the mass balances in (2.2) over cations and
anions and using the last step in (2.13) we obtain the Overall mass conser-
vation of the species and electric charge

∂

∂t
(nfGccb)+∇x ·

(
2cbvD +nfGccb

∂u
∂t

)
=−∇x ·Jd,

F
∂

∂t
(nfGscb)= ∂q∗

∂t
=−∇ ·

(
Ie +FnfGscb

∂u
∂t

)
. (2.15)

The constitutive laws for {Jc,Je} are obtained by further manipulating the
Nernst–Planck relations (2.3) yielding

Jc =cb(Gcvc −2vD)−nf (D
c
∗∇xcb +�e

∗cb∇xψb +D
p

∗∇xpb), (2.16)

Ie =FcbGsvs −nfF(�
c
∗∇xcb +D

e
∗cb∇xψb +�p

∗∇xpb), (2.17)

where using the microscopic representation for Gcvc and Gsvs in (2.14) and
the local decomposition for v in (2.4) give

Gcvc =−2〈coshϕκp〉∇pb −2〈coshϕκc〉∇cb −2〈coshϕκe〉∇ψb, (2.18)

Gsvs =2〈sinhϕκp〉∇pb +2〈sinhϕκc〉∇cb +2〈sinhϕκe〉∇ψb. (2.19)

Thus, combining (2.16) and (2.17) with Darcy’s law (2.1) and also mak-
ing use of (2.18) and (2.19) we obtain the fluxes {vD,Jc, Ie} conjugated
(in the thermodynamical sense) with the driving forces {∇xpb,∇xµb,∇xψb}
through Onsager’s reciprocity relations

vD =−LPP∇xpb −LPCRT∇x ln cb −LPE∇xψb,

Jc =−LCP∇xpb −LCCRT∇x ln cb −LCE∇xψb,

Ie =−LEP∇xpb −LECRT∇x ln cb −LEE∇xψb (2.20)

with the Onsager’s coefficients LIJ(I, J = P,C,E) microscopically repre-
sented as
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LPP =KP, LPC = cbKC

RT
, LPE = FKE

RT
,

LCP =(
2cb〈κp(coshϕ−1)〉+nf D

p
∗
)
,

LCC = cb

RT

(
2cb〈κc(coshϕ−1)〉+nf D

c
∗
)
,

LCE=Fcb

RT

(
2〈κe(coshϕ−1)〉+nf�

e
∗
)
, LEP=F (−2cb〈κpsinhϕ〉+nf�

p
∗
)
,

LEC=Fcb

RT

(−2cb〈κc sinhϕ〉+nf�
c
∗
)
, LEE=F

2cb

RT

(−2〈κesinhϕ〉+nf D
e
∗
)
.

(2.21)

Finally an alternative form of the eletroneutrality condition can be derived.
Using (2.13) in (2.15) we obtain

∂

∂t
(nfs〈σ 〉fs)−∇x ·

(
Ie +nfGscb

∂u
∂t

)
=0

in which when combined with (2.13), the definition for Gs in (2.14) and
the conservation of charge in the solid phase (see Gray and Hassanizadeh,
1989; Hassanizadeh and Gray, 1990)

∂

∂t

(
nfs〈σ 〉fs)+∇x

(
nfs〈σ 〉fs ∂u

∂t

)
=0

furnish

∇x.

(
Ie + (FnfGscb +nfs〈σ 〉fs)

∂u
∂t

)
=∇x.Ie =0. (2.22)

The above form of the electroneutrality condition shows conservation of the
net charge flux in a reference frame moving together with the solid phase.

Our alternative two-scale model can be stated in the following manner:
Find the Macroscopic unknowns {σ T ,u, nf , pb, cb,ψb, vD,Jc, Ie} satisfying

∇x.σ T =0,

σ T =−αpb +CsEx(u)−�,
∇x.vD +α :

∂

∂t
Ex(u)=β ∂pb

∂t
+ ∂γπ

∂t
,

∂nf

∂t
+∇x.vD +nf∇x.

∂u
∂t

=0,
⎧
⎨

⎩

∂

∂t
(nfGccb)+∇x.(2cbvD +nfGccb

∂u
∂t

+Jd)=0,

∇x.Ie =0 in �,

vD =−LPP∇xpb −LPCRT∇x ln cb −LPE∇xψb,

Jc =−LCP∇xpb −LCCRT∇x ln cb −LCE∇xψb,

Ie =−LEP∇xpb −LECRT∇x ln cb −LEE∇xψb,
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Figure 1. Unit cell geometry of two parallel clay particles in a highly compacted
clay.

where the parameters {α,Cs,�, β, γπ } and {Gc,Gs} admit the microscopic
representations in (2.6) and (2.14) and the Onsager’s coefficients LIJ (I, J =
P,C,E} are microscopically represented by (2.21).

3. Application to Stratified Microstructures

We shall henceforth discuss the application of the two-scale formulation to
the case of highly compacted clays with microstructure composed of paral-
lel particles of face-to-face contact (Figure 1). We concentrate our discus-
sion on a single unit cell (x = cte) where we associate a local rectangular
coordinate system y = {x, y} with an orthogonal basis {e1, e2} of unitary
vectors parallel and normal to the particle surface. In this microscopic pic-
ture, the flow of the electrolyte solution and transport of the ions take
place in the axial x-direction (parallel to e1) whereas the e.d.l. potential ϕ
varies in the y-direction normal to the particle surface (parallel to e2). As
we shall illustrate next, in this particular arrangement the complexity inher-
ent to the closure problems is somewhat reduced.

3.1. reduced closure problems

Hereafter we represent the aforementioned closure problems in the rectan-
gular coordinate system of Figure 1. Begin by denoting the scalar trans-
versal component of the local electric field by E, and also designate
κI (I = p, c, e) the axial components of the characteristic velocities κ j

I with
j = 1, and v the axial component of the liquid velocity v. By invoking
(2.4) and (2.5)(a), the reduced two-dimensional representations of the fluid
stress σ f , Maxwell stress τM and disjoining tensor �d, along with the
uni-dimensional representations of E and v read as

E=−RT
F

∂ϕ

dy
, (3.1)

v=−κp
∂pb

∂x
−κc

∂cb

∂x
−κe

∂ψ̄b

∂x
, (3.2)
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τM= ε̃ε̃0

2

(
E2e2 ⊗ e2 −E2e1 ⊗ e1) ,

σ f=−pte1 ⊗ e1 −pne2 ⊗ e2, (3.3)

�d=�de
2 ⊗ e2 +

(
π + ε̃ε̃0

2
E2
)

e1 ⊗ e1

=�de
2 ⊗ e2 + (

�d + ε̃ε̃0E
2) e1 ⊗ e1,

where the component �d ≡�de
2 ·e2 normal to the surface denotes the dis-

joining pressure in the sense of Derjaguin et al. (1987) and pn and pt are
the normal and tangential components of σ f given by

�d =π − ε̃ε̃0

2
E2 =2RT cb(cosh ϕ̄−1)− ε̃ε̃0

2
E2, (3.4)

pn =pb +�d, pt =pb +�d + ε̃ε̃E2. (3.5)

Since the stress state in the electrolyte solution is anisotropic one may
introduce the deviatoric part of σ f . Using (3.5) in (3.3) the two-dimen-
sional representation for this quantity reads as

S≡σ f − 1
2 trσ f I=σ f + 1

2(pt +pn)I=σ f +
(
pd +�d + ε̃ε̃0

2
E2
)

I

=− ε̃ε̃0

2
E2e1 ⊗ e1 + ε̃ε̃0

2
E2e2 ⊗ e2 = ε̃ε̃0E

2

2
(e2 ⊗ e2 − e1 ⊗ e1). (3.6)

We now consider the local e.d.l. potential distribution. To this end we
note that the periodicity in the x-direction together with the fact that σ
is constant allow to reduce the Poisson Boltzmann equation (2.5) (a) to a
one-dimensional problem in the transversal direction. We then have

ε̃0ε̃
d2
ϕ̄

dy2
= 2F 2cb

RT
sinh ϕ̄, E=−RT

F

dϕ̄
dy
,

dϕ̄
dy

=0 at y=0,

E=− σ

ε̃ε̃0
at y=H,

(3.7)

which leads to the reduced distribution ϕ̄= ϕ̄(y) parametrized by the pair
{cb,H }.

Now consider the reduced version of the closure problems (2.7)–(2.11).
Begin by replacing ∇yϕ̄ by its nonzero component (dϕ̄/dy)e2 and denote
f

±
j the component of f

±
obtained by replacing I by ej in (2.8). The clo-

sure problems for {f ±
1 , f

±
2 } are given by
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∂

∂x

(
D± exp(±ϕ̄)∂f ±

1

∂x

)
+ ∂

∂y

(
D± exp(±ϕ̄)∂f ±

1

∂y

)

=±e1D± · exp(±ϕ̄) ∂ϕ̄
∂y

e2,

∂f ±
1

∂y
=−e1 ·n=−e1 · e2 at y=H

(3.8)

and

∂

∂x

(
D± exp(±ϕ̄)∂f ±

2

∂x

)
+ ∂

∂y

(
D± exp(±ϕ̄)∂f ±

2

∂y

)

=±D±e2 · exp(±ϕ̄) ∂ϕ̄
∂y

e2,

∂f ±
2

∂y
=−e2 ·n=−e2 · e2 =−1 at y=H.

(3.9)

Likewise, the notation κI adopted for the axial conductivities, in what fol-
lows we denote {gI , h±

I } the component j = 1 of {gj
I , h

±j
I }(I = p, c, e) in

(2.9)–(2.11). Thus, in terms of {κp, gp, h
±
p } the closure problem (2.9) can be

rephrased as

µf
∂2κp

∂y2
− ∂gp

∂x
−A∂h

+
p

∂x
−B ∂h

−
p

∂x
=−1,

−∂gp

∂y
−A∂h

+
p

∂y
−B ∂h

−
p

∂y
=0,

∂κp

∂x
=0,

∂

∂x

(

D± exp(∓ϕ̄)∂h
±
p

∂x

)

+ ∂

∂y

(

D± exp(∓ϕ̄)∂h
±
p

∂y

)

=∓κpe
1 · exp(∓ϕ̄) ∂ϕ̄

∂y
e2,

κp =0,
∂h±

p

∂y
=0 at y=H,

(3.10)

whereas the axial components of the chemico-osmotic and electro-osmotic
permeabilities are governed by
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µf
∂2κc

∂y2
− ∂gc

∂x
−A∂h

+
c

∂x
−B ∂h

−
c

∂x
=−F 1,

−∂gc

∂y
−A∂h

+
c

∂y
−B ∂h

−
c

∂y
=−F 2,

∂κc

∂x
=0,

∂

∂x

(
D±exp(∓ϕ̄)∂h

±
c

∂x

)
+ ∂

∂y

(
D±exp(∓ϕ̄)∂h

±
c

∂y

)
=∓κce

1 ·exp(∓ϕ̄)∂ϕ̄
∂y

e2,

κc =0,
∂h±

c

∂y
=0 at y=H

(3.11)

and

µf
∂2κe

∂y2
− ∂ge

∂x
−A∂h

+
e

∂x
−B ∂h

−
e

∂x
=−G1,

−∂ge

∂y
−A∂h

+
e

∂y
−B ∂h

−
e

∂y
=−G2,

∂κe

∂x
=0,

∂

∂x

(
D±exp(∓ϕ̄)∂h

±
e

∂x

)
+ ∂

∂y

(
D±exp(∓ϕ̄)∂h

±
e

∂y

)

=∓κee
1 ·exp(∓ϕ̄)∂ϕ̄

∂y
e2,

κe =0,
∂h±

e

∂y
=0 at y=H,

(3.12)

where from (2.12) the scalars {F 1,F 2,G1,G2} are given as

F 1 =RT
(

2(cosh ϕ̄−1)+ (exp(−ϕ̄)−1)
∂f +

1

∂x
+ (exp(+ϕ̄)−1)

∂f −
1

∂x

)
,

F 2 =RT
(
(exp(−ϕ̄)−1)

∂f +
2

∂x
+ (exp(+ϕ̄)−1)

∂f −
2

∂x

)
,

G1 =RT cb

(
−2 sinh ϕ̄+ (exp(−ϕ̄)−1)

∂f +
1

∂x
− (exp(ϕ̄)−1)

∂f −
1

∂x

)
,

G2 =RT cb

(
(exp(−ϕ̄)−1)

∂f +
2

∂x
− (exp(ϕ̄)−1)

∂f −
2

∂x

)
.

(3.13)

The closure problems (2.7) for {ξ , ζ } are classical mechanical problems
which also appear in the homogenization of Biot’s theory of poroelasticity
(Auriault and Sanchez-Palencia, 1977; Auriault, 1990; Terada et al., 1998;
Lydzba and Shao, 2000). For parallel particles, the traction boundary con-
ditions only act in the direction normal to the clay surface and therefore



A TWO-SCALE MODEL: II 29

the only relevant component of {ξ , ζuπ } is the one normal to the clay sur-
face denoted herein by {ξ, ζuπ }. Thus, invoking the periodicity, dropping
the derivatives with respect to x and denoting cs =λs +2µs the scalar elas-
tic, modulus of the isotropic particles, the one-dimensional versions of (2.7)
and 2.5(b) read as

∣∣
∣∣
∣
∣

cs
d2
ζ

dy2 =0

cs
dζ
dy =−1 at y=±H,

∣∣
∣
∣∣
∣

cs
d2
ξ

dy2 =0
dξ
dy =−1 at y=±H,

⎧
⎨

⎩
cs

d2
uπ

dy2 =0

cs
duπ
dy =−�d at y=±H,

(3.14)

Finally, denoting {�,�S,Cs, α} the components of the coefficients {�,�S,

Cs,α} normal to the clay surface and {KI,Di
±, v±}, (I =P,C,E and i = p,

c, e) the axial component of {KI ,D
I

±, v±}, from (2.6) the representations of
these reduced quantities and of the compressibilities {β, γπ } are given by

�=〈�d〉+ns�S, �S =−cs

〈
duπ
dy

〉s

, Cs =cs

〈(
1+ ∂ξ

∂y

)〉
, α=nf −

〈
∂ξ

∂y

〉
,

DI
± =D±

〈
exp(±ϕ̄)

(
1+ ∂f ±

1

∂x
+cb ∂h

±
I

∂x

)〉f

I=c,e, D
p
± =D±

〈

exp(±ϕ̄) ∂h
±
p

∂x

〉f

,

β=
〈
∂ζ

dy

〉
, γπ =

〈
duπ
dy

〉
, G±v± =〈vexp(∓ϕ̄)〉, KI =〈κi〉, I=P,C,E i=p,c,e.

(3.15)

3.2. further manipulations in the reduced closure problems

We now proceed by establishing direct correlations between the magnitude
of the effective electro-chemo-mechanical coefficients and the local distribu-
tion of the e.d.l. potential ϕ̄= ϕ̄(y). This is accomplished by further manip-
ulating the aforementioned reduced closure problems. In the subsequent
development, such correlations are exploited to compute the constitutive
dependence of the effective parameters on concentration cb and particle
separation H .

3.2.1. Poroelastic Coefficients

We begin by analyzing the mechanical parameters {α, ξ, ζ, β} which also
appear in the classical micromechanical derivation of poroelasticity (Auri-
ault, 1990; Terada et al., 1998; Lydzba and Shao, 2000). From (3.14)(a)(b)
we obtain ∂ξ/∂y = cs∂ζ/∂y = −1 which yields after averaging cs〈dζ/dy〉 =
〈dξ/dy〉=−ns. Using this result in (3.15) we get α=nf +ns =1, β=−ns/cs

and Cs = 0. Hence, as expected for a parallel particle arrangement, typi-
cal of Low’s experiment (Low, 1987), the component of the contact elas-
tic stress σe normal to the clay surface vanishes and the compression load
is solely sustained by the electro-chemical component �. In addition, the
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mechanical compressibility β is nothing but the inverse of the microscopic
bulk modulus of the particles. Finally, one may note that as the transver-
sal elastic modulus Cs vanishes, the closure relation for α is consistent with
its classical representation α = 1 −Cs/cs = 1 proposed by Biot and Willis
(1957).

3.2.2. Local Electrostatics

Now consider the local distributions in the y-direction of the e.d.l. poten-
tial ϕ̄ and normal electric field E. The solution of the one-dimensional
Poisson–Boltzmann problem (3.7) can be represented in terms of the elec-
tric potential in the line of symmetry ϕ̄(y=0)= ϕ̄0. By multiplying (3.7) by
dϕ̄/dy and integrating from 0 to y we obtain

ε̃ε̃0

2

(
dϕ̄
dy

)2

= 2F 2cb

RT

∫ ϕ̄

ϕ̄0

sinh ϕ̄dϕ̄= 2F 2cb

RT
(cosh ϕ̄− cosh ϕ̄0), (3.16)

which yields

E=−RT
F

dϕ̄
dy

=2

√
RT cb

ε̃ε̃0
(cosh ϕ̄− cosh ϕ̄0),

ϕ̄= ϕ̄0 −2F
∫ y

0

√
cb

ε̃ε̃0RT
(cosh ϕ̄− cosh ϕ̄0)dy. (3.17)

The above result leads to a non-linear equation for ϕ̄ which can be solved
adopting a numerical iterative integration scheme (see further, Section 4).

In what follows we proceed by further manipulating the subsequent clo-
sure problems. Begin by noting that under the orthogonality condition
between e1 and e2, the r.h.s. of (3.8) vanishes. Together with the periodic-
ity conditions this leads to a homogeneous Neumann problem whose solu-
tion is f ±

1 = f ±
1 (t) within each cell. By the same arguments, on the right

hand side of the third equations in (3.10)–(3.12) vanish. Together with the
periodicity this also yields h±

i =h±
i (t) (i = p, c, e). Finally, again using the

periodicity, from (3.9) we have, f ±
2 =f ±

2 (y, t).

3.2.3. Hydraulic Conductivity

Using the above simplifications, the problem (3.10) left for {κp, gp} reduces
to

µf
∂2κp

∂y2
− ∂gp

∂x
=−1,

∂gp

∂y
=0,

∂κp

∂x
=0,

κp =0, at y=±H
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in which together with the periodicity implies gp = cte and the classical
parabolic profile κp =κp(y), satisfying

µf
d2
κp

dy2
=−1. (3.18)

Denoting 2δ the thickness of each clay particle, in the stratified arrange-
ment, the porosity is given by nf =H/(δ+H). Defining the hydraulic con-
ductivity KP by the transversal averaging of the local parabolic velocity
profile κp, we have

KP =〈κp〉= nf

H

∫ H

0
κpdy= nfH

2

3µf
= H 3

3(δ+H)µf
.

The above result shows that for parallel particles KP remains a purely
geometric quantity only influenced by fluid viscosity and particle distance
and thickness. The reader shall be aware that this result is restricted to par-
allel particles. Local variations in h±

p and ϕ̄ in non-parallel particle arrange-
ments entail a more general constitutive dependence of KP on the e.d.l.
properties and salinity.

3.2.4. Electro-Osmotic Permeability

Using the fact that f ±
1 and f ±

2 are independent of x in (3.13) we obtain
G2 = 0 and G1 = −2RT cb sinh ϕ̄. Thus, from (3.12), in a similar fashion
to KP, the axial component of the electro-osmotic permeability, KE is the
transversal averaging of the velocity profile satisfying the local problem

µf
d2
κe

dy2
=2RT cb sinh ϕ̄.

Hence, unlike KP, the magnitude of KE is strongly dictated by the local
distribution ϕ̄= ϕ̄(y). Combining the above result with the Poisson–Boltz-
mann problem (3.7) gives

µf
d2
κe

dy2
= ε̃ε̃0R

2T 2

F 2

d2
ϕ̄

dy2
. (3.19)

After integration, making use of the symmetry at y=0 and the no-slip
condition at y=H implies

µf
dκe

dy
(y)= ε̃ε̃0R

2T 2

F 2

dϕ̄
dy
(y), κe(y)= ε̃ε̃0R

2T 2

µfF 2
(ϕ̄(y)− ϕ̄(H)).
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Hence, defining the dimensionless zeta potential ζ̄ = ϕ̄(H), after averaging
we obtain

KE = nf

H

∫ H

0
κedy= nf ε̃ε̃0R

2T 2

F 2Hµf

∫ H

0
(ϕ̄(y)− ϕ̄(H))dy

= nf ε̃ε̃0R
2T 2

µfF 2

(〈ϕ̄〉f − ζ̄ ) . (3.20)

When the thickness of the e.d.l. is small compared to the interlayer spac-
ing H , the Helmholtz–Smoluchowski model can be recovered from (3.20).
Under this assumption the first term involving 〈ϕ̄〉f is small compared to
the magnitude of the ζ̄ -potential. This approximation yields

KE =−nf ε̃ε̃0ζRT

Fµf
, (3.21)

where ζ ≡RT ζ̄/F . The above result which is nothing but the Smoluchow-
ski’s formula for thin e.d.l.s (Hunter, 1981; Coelho et al., 1996; Shang,
1997). We remark that the appearance of the extra factor RT/F is a con-
sequence of adopting ∇ψ̄b as a driving force in (3.2) (rather than ∇ψ̄b).

From (3.20) one may extract relevant information on the sources of elec-
tro-osmosis. The Smoluchowski term is a primary component which relates
the electro-osmotic permeability with the ζ -potential at the surface. This
term dominates the magnitude of KE for large particle distances (H �
�D). The secondary contribution involving 〈ϕ̄〉f arises from the overlapping
between the e.d.l.s and becomes relevant when H =O(�D). This component
acts to decrease the electro-osmotic permeability and has been incorporated
in Smolucbowski’s formula by means of a correction factor (see Hunter,
1981; Szymczyk et al., 1999).

3.2.5. Chemico-osmotic Permeability

Under the same previous assumptions, from (3.13) we have F 2 = 0 and
F 1 =2RT (cosh ϕ̄−1). This implies that the axial component of the chem-
ico-osmotic permeability is the averaging of the characteristic function κc

satisfying

µf
d2
κc

dy2
=−2RT (cosh ϕ̄−1). (3.22)

Likewise the Smoluchowski’s asymptotic regime governing the electro-
osmotic permeability for large particle distances, we can obtain the limit
model of thin e.d.l.s for the chemico-osmotic permeability. To this end we
use instead a coordinate y ′ = y −H such at y ′ = 0 at the particle surface.
In addition, under the assumption �D <<H , electrical effects are absent
away from the particle surface. This enforces the conditions ϕ̄=dϕ̄/dy ′ =0
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as y ′ →∞. Thus, integrating (3.22) from y ′ to ∞ and using the thin e.d.l.
assumption we get

µf
dκc

dy ′ =2RT
∫ ∞

y ′
(cosh ϕ̄−1)dy ′ (3.23)

where the right-hand side can be rewritten using the identity

2(cosh ϕ̄−1)=4 sinh2 ϕ̄

2
= 16 tanh2

ϕ̄/4
(

1− tanh2
ϕ̄/4

)2 . (3.24)

Using Poisson–Boltzmann one can relate tanh(ϕ̄/4) to the dimensionless
zeta potential ζ̄ ≡ ϕ̄(H). To this end we multiply (3.7) by 2 dϕ̄/dy ′ to
obtain

d
dy ′

(
dϕ̄
dy ′

)2

= 2

�2
D

d
dy ′ cosh ϕ̄. (3.25)

Integrating (3.25) from ∞ to y ′ and using (3.24) gives
(

dϕ̄
dy ′

)2

= 2

�2
D

(cosh ϕ̄−1)= 4

�2
D

sinh2
(
ϕ̄

2

)
.

Hence we have

dϕ̄
dy ′ =− 2

�D
sinh

(
ϕ̄

2

)
→ dϕ̄

sinh(ϕ̄/2)
=− 2

�D
dy ′. (3.26)

To integrate the above result we adopt the following change of variables

w= tanh
(
ϕ̄

4

)
dw= 1

4 (1−w2)dϕ̄, sinh
(
ϕ̄

2

)
= 2w

1−w2
. (3.27)

Using (3.27) in (3.26)(b) we get

dw
w

=−dy ′

�D
(3.28)

which gives after integrating from 0 to y ′

ln
[

tanh (ϕ̄/4)

tanh (ζ̄ /4)

]
=− y ′

�D
.

Whence

tanh
(
ϕ̄

4

)
= tanh

(
ζ̄

4

)
exp

(
− y ′

�D

)
.
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Denoting A= tanh(ζ̄ /4), using the above result in (3.24) we get

2(cosh ϕ̄−1)= 16A2 exp(−2y ′/�D)

[1−A2 exp(−2y ′/�D)]2
. (3.29)

Denoting u=A2 exp(−2y ′/�D) with du=−(2u/�D)dy ′, integrating (3.29) we
obtain

2
∫ ∞

y ′
(cosh ϕ̄−1)dy ′ =8�D

∫ u

0

du
(1−u2)

= 8�Du

1−u .

Using the above result in (3.23) yields

µf
dκc

dy ′ = 8RT �DA
2 exp(−2y ′/�D)

1−A2 exp(−2y ′/�D)
.

in which after integrating from 0 to y ′ and using the nonslip condition at
the wall yields

κc(y
′)= 8RT �D

µf

∫ y ′

0

A2 exp(−2y ′/�D)

1−A2 exp(−2y ′/�D)
dy ′ =−4RT �2

D

µf

∫ u

A2

du
1−u

= 4RT �2
D

µf
[ln(1−u)]uA2

= 4RT �2
D

µf
ln

[
1− tanh2

(ζ̄ /4) exp(−2y ′/�D)

1− tanh2
(ζ̄ /4)

]

.

In a similar fashion to KE, the above result shows the magnitude of KC

given by the sum of two contributions: one solely dictated by the ζ̄ -
potential, playing a similar role of the Smoluchowski’s component of KE,
which dominates the behavior of KC for H >>�D, and a secondary e.d.l
component, strongly dependent on the Debye’s length, which becomes pro-
nounced when H = O(�D). In the asymptotic regime of thin e.d.l.s the
primary component of κc is independent of y ′ and therefore equal to its
averaged value KC. We then have the asymptotic result

KC=−4RT �2
D

µf
ln
(

1−tanh2
(
ζ̄

4

))
=8RT �2

D

µf
ln
(

cosh
(
ζ̄

4

))
for �D �H.

(3.30)

The above formula is consistent with the results obtained by Derjaguin
et al. (1961) and Prieve et al. (1984) relating fluid velocity with the ζ̄ -
potential considering flow near an infinite surface charged particle with
thin e.d.l.s.



A TWO-SCALE MODEL: II 35

3.2.6. Local Velocity Profile

Taking the second derivative with respect to y in the decomposition (3.2)
for the axial velocity and using the reduced closure problems (3.18), (3.22)
and (3.19) for {κp,κc,κe} we obtain

µf
d2
v

dy2
= dpb

dx
+2RT (cosh ϕ̄−1)

dcb

dx
− ε̃ε̃0R

2T 2

F 2

d2
ϕ̄

dy2

dψ̄b

dx
.

The above modified Stokes problem shows the local axial velocity as
a superposition of characteristic hydraulic, chemico-osmotic and electro-
osmotic profiles with the corresponding driving forces appearing on the
right-hand side.

3.2.7. Diffusion Coefficients

Using the simplifications for f±1 and h±
I (I = p, c, e) in (3.15), the represen-

tations of the axial diffusion coefficients reduce to

D
p
± =0 and Dc

± =De
± =D± =D±〈exp(∓ϕ̄)〉f . (3.31)

Using the above results and the representation in (3.15) for v± in (2.2) and
(2.3) the axial movement of the ions is governed by the one-dimensional
Nernst–Planck equation

∂

∂t

(
nf 〈exp(∓ϕ̄)〉fcb

)+ ∂

∂x
(〈exp(∓ϕ̄)v〉cb)

= ∂

∂x

(
nfD± exp(∓ϕ̄)

(
∂cb

∂x
± cb

∂ψ̄b

∂x

))
.

3.2.8. Disjoining and Deviatoric Stresses

Using (3.16) in (3.4) the microscopic disjoining pressure can be represented
as

�d =2RT cb(cosh ϕ̄−1)− ε̃ε̃0R
2T 2

2F 2

(
dϕ̄
dy

)2

=2RT cb(cosh ϕ̄0 −1). (3.32)

The above result is consistent with the e.d.l. theory and shows �d con-
stant in the micro-pore space, given only in terms of the potential ϕ̄0 in the
middle of the interlayer spacing. Further, from (3.6) and (3.17) (a), the de-
viatoric component of the stress tensor in the fluid is represented as S =
S11e

1 ⊗ e1 +S22e
2 ⊗ e2 with

S11 =−S22 = ε̃ε̃0E
2

2
=2RT cb(cosh ϕ̄0 − cosh ϕ̄).
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Note that, as the deviatoric stresses are purely related to the Maxwell stress
tensor, in the line of symmetry y=0 where E and τM vanish we also have
S11 =S22 =0.

In addition to the excess in the normal pressure relative to the bulk
phase pressure, quantified by the disjoining pressure, (�d = pn − pb), the
appearance of a equilibrium deviatoric stress in the liquid gives rise to the
excess in the tangential pressure component relative to both normal and
bulk phase pressures. The constitutive relations for these quantities follow
from (3.5), (3.16) and (3.32) and are given by

pt −pn = ε̃ε̃0E
2 = ε̃ε̃0R

2T 2

F 2

(
dϕ̄
dy

)2

=4RT cb(cosh ϕ̄− cosh ϕ̄0), (3.33)

pt −pb =�d + ε̃ε̃0E
2 =2RT cb(2 cosh ϕ̄− cosh ϕ̄0 −1). (3.34)

3.2.9. Swelling Pressure

To compute the macroscopic electro-chemical components � and �S act-
ing normal to the particle surface we begin by combining the solution
of (3.14)(c) with the representation for �S in (3.15) which gives �S =
−cs〈duπ/dy〉s =〈�d〉s. Recalling from (3.32) that �d does not vary with y,
we have �S =�d. Moreover combining this result with (3.15) we obtain

�=〈�d〉+ns�S =nf�d +ns�S =�S(nf +ns)=�S.

The component �S acting normal to the clay surface has been commonly
referred to as the swelling pressure in the sense of Low (1987). In the paral-
lel particle arrangement �s has been identified with the pressure that must
be applied to the clay to keep the layers from moving apart. The equality
�d =�s reproduces Derjaguin’s conjecture (Derjaguin et al., 1987) which
states that the swelling pressure is nothing but the averaged disjoining pres-
sure. We remark that the validity of this result is restricted to microgeom-
etries of parallel particles.

3.2.10. Surface and Liquid Tensions

Following the generalized Baker’s formula for thin liquid films, the liquid
tension γfs and the surface tension σfs are defined by the transversal aver-
ages of the excess quantities given in (3.33) and (3.34) (see, e.g., Toshev and
Ivanov, 1975; Derjaguin and Churaev, 1978; Babak, 1998). We then have

γfs ≡−
∫ H

−H
(pt −pn)dy=−2

∫ H

0
(pt −pn)dy

=−8RT cb

∫ H

0
(cosh ϕ̄− cosh ϕ̄0)dy,
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σfs ≡−
∫ H

0
(pt −pb)dh=−

∫ H

0
(ε̃ε̃0E

2 +�d)

=−2RT cb

∫ H

0
(2 cosh ϕ̄− cosh ϕ̄0 −1)dy.

Unlike the swelling pressure, γfs and σfs are not effective quantities as
both act compressing the fluid tangentially to the solid surface and conse-
quently do not induce any expansion or shrinking in the clay lattice. The
relation between these quantities and the disjoining pressure is given by

γfs ≡−2
∫ H

0
(pt −pn)dy=−2

∫ H

0
(pt −pb)dy+2

∫ H

0
(pn −pb)dy

=2σfs +2
∫ H

0
�ddy=2σfs +2�dH,

where we have used the independence of �d with y. The above result is
consistent with Toshev and Ivanov (1975) and Babak (1998).

3.2.11. Electro-Chemical Compressibility

Using the relations csduπ/dy=−�d and (3.32) in the representation of the
electro-chemical compressibility γπ in (3.15) we obtain

γπ =ns

〈
duπ
dy

〉s

=−ns�d

cs
=−2RT nscb

cs
(cosh ϕ̄0 −1), (3.35)

which shows that γπ quantifies the deformation of the solid phase induced
by the disjoining pressure owing to particle compressibility.

Finally, recalling the result β = −ns/cs (Section 3.2.1), for microscopi-
cally incompressible particles. we have cs →∞ which implies β=γπ =0.

3.2.12. Onsager’s Coefficients

We now consider the microscopic reduced representations of the Onsag-
er’s parameters. Begin by invoking definitions in (2.14) for the overall and
excess quantities and denote {DI

∗,�
I
∗} the axial components of {DI

∗,�
I
∗}(I=

p, c, e). Using (3.31) we have the representations

Dp
∗ =0, Dc

∗ =De
∗ =D∗ =D+〈exp(−ϕ̄)〉f +D−〈exp(−ϕ̄)〉f , (3.36)

and

�p
∗ =0, �c

∗ =�e
∗ =�∗ =D+〈exp(−ϕ̄)〉f +D−〈exp(−ϕ̄)〉f .

We adopt the notation LIJ (without boldface) to represent the scalar
axial component of the Onsager’s coefficient obtained by replacing {κI ,
D
I

∗,�
I
∗}(I=p, c, e) by their corresponding axial components {κI ,DI

∗,�
I
∗} in
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(2.21). Denoting {vD, Jc, Ie} the axial components of {vD,Jc, Ie}, the one-
dimensional version of (2.20) reads

vD =−LPP
dpb

dx
−LPC

RT

cb

dcb

dx
−LPE

dψb

dx
,

Jc =−LCP
dpb

dx
−LCC

RT

cb

dcb

dx
−LCE

dψb

dx
,

Ie =−LEP
dpb

dx
−LEC

RT

cb

dcb

∂x
−LEE

dψb

dx
(3.37)

with axial components of LIJ in (2.21) given by

LPP =KP, LPC = cbKC

RT
, LPE = FKE

RT
,

LCP =2cb〈κp(cosh ϕ̄−1)〉, LCC = cb

RT
(2cb〈κc(cosh ϕ̄−1)〉+nfD∗),

LCE = Fcb

RT
(2〈κe(cosh ϕ̄−1)〉+nf�∗), LEP =−2Fcb〈κp sinh ϕ̄〉 (3.38)

LEC = Fcb

RT
(−2cb〈κc sinh ϕ̄〉+nf�∗), LEE=F

2cb

RT
(−2〈κe sinh ϕ̄〉+nfD∗).

It should be noted the symmetry of Onsager’s matrix LIJ =LJI, (I, J =
P,C,E) can be verified using the procedure presented by Moyne and
Murad (2006) (Section 5.3).

3.3. the open-circuit assumption

We now proceed by reproducing other related phenomena from our two-
scale formulation and establishing the appropriate scenario for introduc-
ing new concepts inherent to the problem. Our subsequent development
aims at deriving the microscopic representations of the primary/second-
ary electro-viscous effects (Hunter, 1981; Szymczyk et al., 1999) and of
the reflection coefficient discussed in the introduction. We show that these
concepts are tied up directly to the absence of an electric current in a
confined medium such that no swelling occurs in the transversal direc-
tion (u =0). The one-dimensional version of the electroneutrality condition
(2.22) reduces to

dIe

dx
=0,→ Ie = cte.

In the open-circuit assumption, macroscopic boundary conditions charac-
terizing the absence of an electric current are enforced. This constraint
leads to the condition Ie =cte=0 which reduces the one-dimensional (axial)
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form of Onsager’s relations (3.37) to the form

vD =−LPP
dpb

dx
−LPC

RT

cb

dcb

dx
−LPE

dψb

dx
, (3.39)

Jc =−LCP
dpb

dx
−LCC

RT

cb

dcb

dx
−LCE

dψb

dx
,

0=−LEP
dpb

dx
−LEC

RT

cb

dcb

dx
−LEE

dψb

dx
. (3.40)

Hence, eliminating dψb/dx from (3.40), substituting in the relations for
vD and Jc and making use of the symmetry of LIJ we obtain

vD =−L∗
PP

dpb

dx
−L∗

PC
RT

cb

dcb

dx
, (3.41)

Jc =−L∗
PC

dpb

dx
−L∗

CC
RT

cb

dcb

dx
, (3.42)

where the new coefficients are given by

L∗
PP =

(
LPP − L2

EP

LEE

)
, L∗

PC =
(
LPC − LEPLEC

LEE

)
, (3.43)

L∗
CP =

(
LCP − LCELEP

LEE

)
, L∗

CC =
(

LCC − L2
CE

LEE

)

and the symmetry property LIJ =LJI has been used. The microscopic repre-
sentations for L∗

IJ(I, J=C,P) can easily be derived by combining the above
result with (3.38). Equations (3.42) are consistent with the results of Gu
et al., 1998 and show that under the open-circuit assumption Darcy’s law
and the overall flux of the ions can be represented in terms of pressure and
concentration gradients.

An essential feature inherent to the above result is the phenomenon of
anomalous (reverse) osmosis. In contrast to the osmotic effect where sol-
vent moves toward the regions of high concentration, in the anomalous
case fluid flows in the opposite direction (Gu et al., 1998). Such phenom-
enon occurs whenever L∗

PC > 0 → LPCLEE >LEPLEC. This corresponds to
the case wherein the chemico-osmotic dominates the electro-osmotic com-
ponent under a constant bulk phase pressure.

Furthermore, if we solve for the pressure gradient in (3.40) and combine
with Darcy’s law (3.39) we obtain

vD =−L∗∗
PC
RT

cb

dcb

dx
−L∗∗

PE
dψb

dx
(3.44)

with

L∗∗
PC =

(
LPC − LPPLEC

LEP

)
, L∗∗

PE =
(
LPE − LPPLEE

LEP

)
.
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On the right-hand side of (3.41) and (3.44) represents the gradient of the
membrane potential which measures the total driving force for fluid flow in
the absence of electric current (see Gu et al., 1998). These equations consist
of two alternative ways of representing this overall driving force in terms of
the gradient of the primary unknowns.

3.3.1. Primary/Secondary Electro-Viscous Effect

The open-circuit constraint can be further explored to introduce the so-
called electroviscous effect EV . Classically EV is envisaged as an increase
in the apparent viscosity of the electrolyte solution (compared with its bulk
counterpart value µf ) owing to the counter electro-osmotic flow induced by
the streaming potential gradient. This fluid movement opposing the pres-
sure gradient driven flow develops to fulfill the condition of zero electric
current (Yang and Li, 1998). As the viscosity is lumped in the hydraulic
conductivity, we define the electroviscous effect by the ratio L∗

PP/LPP. Such
definition aims at quantifying the relative decrease in the hydraulic conduc-
tivity due to the back electro-osmotic flow. We then have from (3.43) and
(3.38)

EV = L∗
PP

LPP
=1− L2

PE

LPPLEE
=1− K2

E

RTKP cb(nfD∗ −2〈κe sinh ϕ̄〉) . (3.45)

The above result furnishes a precise microscopic representation for EV (0<
EV < 1) which will be further exploited numerically. Likewise the electro-
osmotic and chemico-osmotic permeabilities, EV incorporates the contribu-
tion of the primary effect mainly dictated by the magnitude of the ζ -potential
and the secondary component due to the overlapping between the e.d.l.s
(Szymczyk et al., 1999; Hunter, 1981).

In the asymptotic thin e.d.l. regime ϕ̄ decays sharply from ζ̄ at the par-
ticle surface to zero within a thin boundary layer. Together with (3.21) this
leads to the approximation

〈exp(ϕ̄)〉f≈〈exp(−ϕ̄)〉f ≈1, and 2〈κe sinh ϕ̄〉)
≈−2nf ε̃ε̃0ζRT

Fµf
〈sinh ϕ̄〉≈0 for �D �H.

Using the above approximation in (3.36) gives

nfD∗ ≈nf (D+ +D−) for �D �H

in which when combined with (3.45) along with (3.21) yields
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EV =1− K2
E

RTKPcbnf (D+ +D−)

=1− nf ε̃
2ε̃2

0ζ
2RT

F 2µ2
fKPcb(D+ +D−)

for �D �H.

3.4. reflection coefficient

The well-known concept of reflection coefficient ω has been historically
introduced to quantify the nonideal behavior of semi-permeable mem-
branes. According to the classical definition, an ideal membrane totally
impervious to the passage of solutes owing to their larger size and open
to the movement of the solvent is characterized by ω = 1. The partial
mobility of solutes in a nonideal semi-permeable medium is quantified by
a ω< 1. Here, unlike the nonionic case ruled by size effects, charged sol-
utes are treated as point charges and the constraints imposed on their
movement arise from the chemico and electro-osmotic interactions with the
clay particles. Therefore, a comprehensive definition for the reflection coeffi-
cient for point charged species requires the correct understanding of the
physics underlying such concept, totally different of the nonionic case. To
introduce ω we begin by considering the movement of the water as a sol-
vent with a given molar concentration cbw and driven by its bulk chemical
potential µbw. Following Callen (1985), for ideal solutions we adopt instead
the representation for the chemical potential in terms of the molar frac-
tion of the bulk water xw ≡ cbw/(cbw + 2cb) (recall that 2cb = cb+ + cb− in
the apparent bulk fluid). We then have

µbw≡ µ̄bw+ 1
cbw

(pb −p�)+RT ln xw, (3.46)

where µ̄bw, is the chemical potential of pure water at temperature T and
reference pressure p�. In the dilute solution approximation, the solvent
concentration is equal to that of pure water cbw= c̄bw, assumed constant. In
addition, since solute concentrations are assumed small in dilute solutions,
the term involving ln xw in the above expression can be linearized around
cb =0 yielding

ln xw= ln
(

1− 2cb

cbw+2cb

)
≈−2cb

cbw
+O(cb)

2 ≈−2cb

c̄bw
+O(cb)

2.

Thus, using the above approximation in (3.46) gives

µbw= µ̄bw+ 1
c̄bw

(pb −p� −2RT cb). (3.47)



42 CHRISTIAN MOYNE AND MÁRCIO A. MURAD

To introduce the reflection coefficient we define the permeabilities

K∗
P ≡L∗

PP and K∗
C ≡ RTL∗

PC

cb
(3.48)

and rephrase the one-dimensional form of Darcy’s law (3.41) in the form

vD =−K∗
P

dpb

dx
−K∗

C

dcb

dx
. (3.49)

In the case of a perfect solute barrier, Darcy’s seepage velocity coincides
with the velocity of the solvent driven by dµbw/dx. This ideal situation
can be reproduced by setting K∗

C =−2RTK∗
P in (3.49) and using (3.47) to

obtain

vD =−K∗
P

(
dpb

dx
−2RT

dcb

dx

)
=−c̄bwK

∗
P

dµbw

dx
(for a perfect membrane).

(3.50)

The comparison between (3.50) and (3.49) together with (3.48) and
(3.43) suggest the following definition for the reflection coefficient

ω=− 1
2RT

K∗
C

K∗
P

=− 1
2cb

L∗
PC

L∗
PP

=− 1
2cb

(
LPCLEE −LEPLEC

LPPLEE −L2
EP

)
,

where on the right-hand side can be computed from the microscopic rep-
resentations (3.38). Thus, using the above definition in (3.49), Darcy’s law
can be rewritten in terms of ω in the form

vD =−K∗
P

(
dpb

dx
−2ωRT

dcb

dx

)
,

which is consistent with the classical way of envisaging the role of the
reflection coefficient in Darcy’s law. Our two-scale formulation is capable
of providing as microscopic representation for ω under the open-circuit
assumption.

4. Computational Results

We now consider the numerical solution of the closure problems and the
development of the constitutive dependence of the effective coefficients on
salinity and particle distance. Since the magnitude of the effective param-
eters is tied-up directly to the local e.d.l. potential, we then begin by dis-
cretizing the Poisson–Boltzmann problem.
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4.1. numerical solution of poisson–boltzmann

In order to derive the numerical solution of the one-dimensional Poisson–
Boltzmann problem (2.5) (a), we rephrase this equation in terms of the
dimensionless transversal coordinate ȳ=y/�D. This yields

d2
ϕ̄

dȳ2
= sinh(ϕ̄), (4.1)

dϕ̄
dȳ

=0 at ȳ=0, (4.2)

dϕ̄
dȳ

= σ√
2ε̃ε̃0RT cb

at ȳ= H

�D
. (4.3)

By rewriting (3.16) in terms of ȳ we obtain

dϕ̄
dȳ

=−
√

2(cosh ϕ̄− cosh ϕ̄0) or dȳ=− dϕ̄
√

2(cosh ϕ̄− cosh ϕ̄0)
. (4.4)

To solve (4.4) we adopt the following changes of variables (see Derjaguin
et al., 1987)

sin α= 1
cosh(ϕ̄0/2)

with cot α= sinh(ϕ̄0/2) 0 � α � π

2
,

cos θ = sinh(ϕ̄0/2)
sinh(ϕ̄/2)

0 � θ � π

2
. (4.5)

Making use of the identity

cosh ϕ̄=2 cosh2
(ϕ̄/2)−1=2 sinh2

(ϕ̄/2)+1 (4.6)

we obtain

2(cosh ϕ̄− cosh ϕ̄0)=4
(

sinh2
(ϕ̄/2)− sinh2

(ϕ̄0/2)
)

=4 sinh2
(
ϕ̄0

2

)(
1

cos2 θ
−1

)

=4 sinh2
(
ϕ̄0

2

)
sin2

θ

cos2 θ
=4

cos2 α sin2
θ

sin2
α cos2 θ

. (4.7)

By differentiating (4.5)(c), we also have

d

(
sinh

( ϕ̄
2

))
= 1

2
cosh

(
ϕ̄

2

)
dϕ̄=d

(
sinh(ϕ̄0/2)

cos θ

)
= sinh

(
ϕ̄0

2

)
sin θ dθ
cos2 θ

.

Combining the above result with (4.5) we obtain

cosh(ϕ̄/2)=
√

1+ sinh2
(ϕ̄/2)=

√

1+ sinh2
(ϕ̄0/2)

cos2 θ
=
√

1+ cos2 α

sin2
α cos2 θ

.

(4.8)
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Using (4.5)(b), and (4.7) and (4.8) in (4.4)(b) we obtain

dȳ=− dϕ̄
√

2(cosh ϕ̄− cosh ϕ̄0)
= 2 sinh(ϕ̄0/2) sin θdθ
√

2(cosh ϕ̄− cosh ϕ̄0)(cosh(ϕ̄/2) cos2 θ

=2 sinh(ϕ̄0/2)
sin θ dθ

cos2 θ

√
1+ cos2 α

sin2
α cos2 θ

cos θ
2 sinh(ϕ̄0/2) sin θ

= dθ
√

cos2 θ + cos2 α

sin2
α

= dθ
√

1− sin2
θ + 1

sin2
α

−1
,

which implies

dȳ= sin α dθ
√

1− sin2
α sin2

θ
.

Integrating the above result and noting from (4.5)(c) that θ = 0 at ȳ = 0
yields

ȳ=
∫ θ

0

sin α dθ
√

1− sin2
α sin2

θ
. (4.9)

We now turn to the task of rephrasing boundary condition (4.3). From
(4.4)(a) to (4.7) we have

dϕ̄
dȳ

=−
√

2(cosh ϕ̄− cosh ϕ̄0)=−2
cos α sin θ
sin α cos θ

in which when combined with (4.3) gives

−σ√
2ε̃ε̃0RT cb

=2
cos α sin θ1

sin α cos θ1
at ȳ=H/LD, (4.10)

where θ = θ1, when ȳ =H/�D. The problem given by (4.9) and boundary
condition (4.10), formulated in terms of the unknowns α and θ1 can be
rewritten as

H

�D
=
∫ θ1

0

sin α dθ
√

1− sin2
α sin2

θ
(4.11)

tan θ1 = −σ
2Fcb�D

tan α. (4.12)

For each pair {cb,H }, we compute the Debye’s length through its defi-
nition. Given �D and H , Equations (4.11) and (4.12) define a nonlinear
system in terms of {α, θ1} which can easily be solved within any iterative
integration scheme. After computing α we make use of (4.5)(a) and com-
pute ϕ̄0. Then we proceed by incrementing (4.9) from ȳ= 0 to H/�D and
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also using (4.5) (c) compute the local distributions θ = θ(ȳ) and ϕ̄= ϕ̄(ȳ)
parametrized by {cb,H }. Further, using the numerical distribution of the
e.d.l. potential in (3.19) and (3.22) furnishes the discrete electroosmotic and
chemico-osmotic characteristic velocity profiles {κc, κe}. Finally by averag-
ing the local distributions in the transversal direction yields the constitutive
dependence of the effective electro-chemical parameters on {cb,H }. In par-
ticular the above change of variables furnish a straightforward relation for
the disjoining/swelling pressure (recall that �d =�S for parallel particles) in
terms of {cb, α}. In fact using (4.6) in (3.32) gives

�d =2cbRT (cosh ϕ̄0 −1)=4cbRT sinh2
(
ϕ̄0

2

)

in which when combined with (4.5) (b) gives

�d = 4RT cb

tan2 α
.

4.2. numerical simulations

In what follows we present the numerical behavior of the local e.d.l. poten-
tial and velocity profiles along with the constitutive behavior of the effec-
tive coefficients. In the simulations we adopt σ =−0.2 cm−2. Denoting y∗ =
y/H and Ē≡FEH/RT a dimensionless electric field, the plots ϕ̄= ϕ̄(y∗)
and Ē = Ē(y∗) are depicted in Figure 2 for two values of cb and H/�D.
The ticks in the left and right margins show the range of values of ϕ̄ and
Ē, respectively. As expected, in the line of symmetry (y= 0), ϕ̄ attains its
maximum value and decreases negatively in a symmetric fashion toward
the location of the particles y∗ =±1. Owing to symmetry, the electric field
vanishes at y∗ =0 and behaves in a skew symmetric fashion with y∗.

In Figure 3 we depict the local behavior of the normalized (unitary aver-
aged) characteristic velocity profiles κ∗

i = κi/KI (i = p, c, e and I =P,C,E)
for two values of H/�D and cb. The hydraulic characteristic function κ∗

p is
nothing but the classical parabolic profile whereas κ∗

c and κ∗
e are strongly

influenced by the interaction with the e.d.l.’s. For small electrokinetic dis-
tances (H/�D =1), when the overlapping between the e.d.l.’s is pronounced,
the chemical osmosis and electro-osmosis velocity profiles resemble each
other but somewhat differ from the parabolic (Figure 3(a)). For large
distances (H/�D = 10) both chemico-osmotic and Smoluchowski electro-
osmotic profile dictated by the ζ̄ -potential at the surface, exhibit steeper
gradient near the walls and a flat profile in the center of the micro-pore.
In this regime both profiles can simply be modeled by a ‘slip’ in the veloc-
ity near the wall as depicted in Figure 3(b).

Figures 4–6 display the macroscopic conductivities {KP,KC,KE} in
Darcy’s law obtained by averaging the corresponding velocity profiles
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Figure 2. Local electric potential and electric field distributions: (a) H/LD =0.1 and
cb =2.32×10−4 mol/l; (b) H/LD =1.0 and cb =2.32×10−2 mol/l.

{κp, κc, κe}. As expected, the magnitude of KP is solely dictated by particle
distance H . On the other hand KC and KE decrease with the salinity owing
to the interaction of the local velocity profiles with the e.d.l.s. The asymp-
totic range H →∞ of thin e.d.l.s corresponds to the highest values of KE

and KC, solely dictated by the ζ -potential according to (3.21) and (3.30).
Figure 7 shows the behavior of the averaged diffusion coefficient D± =

Dc
± =De

± =〈D± exp(±ϕ̄)〉f (recall that Dp
± =0 in the stratified arrangement).

Since ϕ̄ < 0, the effect of the e.d.l. is to magnify and reduce the diffusivi-
ties of the counter-ions and co-ions, respectively. The disparity between D+
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Figure 3. Normalized velocity profiles: (a) H/�D = 1 and cb = 2.32 × 10−2 mol/l; (b)
H/�D =10 and cb =2.32 mol/l.

and D− increases as the e.d.l. effects are amplified with the decrease in cb

and H .
Figure 8 shows the disjoining pressure plots typical of a Gouy–Chapman

scenario (Hunter, 1994; Van Olphen, 1977; Lyklema, 1993). As is easily
seen the magnitude of �d reduces with the increase in cb and H . In addi-
tion, from (3.35) one may note that the same plot scaled by ns/cs also
describes the constitutive behavior of the electro-chemical compressibility
γπ . A similar behavior is also verified for the surface tension of the elec-
trolyte solution σfs as depicted in Figure 9, though one may observe that
for high salinities (cb ≈1 mol/l), σfs does not vary with H .
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Figure 4. Behavior of the hydraulic conductivity KP (or the Onsager’s coefficient
LPP) with cb for H =1,2 and 4 nm.

Figure 5. Behavior of the chemico-osmotic permeability KC with cb for H =
1,2,4 nm and ∞

Figures 10–13 display the behavior of the Onsager’s coefficients
{LPC,LCE,LCC,LEE} as a function of cb and H . By invoking the symmetry,
from (3.38) the plots of KP and KE also describe LPP and LPE = LEP,
respectively. The behavior of the off-diagonal coefficients {LPC,LCE} resem-
ble each other, showing a similar decrease with cb and H as depicted
in Figures 10 and 11. Nevertheless the electro-migration component LCE
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Figure 6. Behavior of the electro-osmotic permeability KE (or the Onsager’s coeffi-
cient LPE) with cb for H =1,2 and 4 nm.

Figure 7. Behavior of the diffusivities D± =Dc
± =De

± with cb for H =1,2 and 4 nm.

exhibits a steeper gradient for high cb. The diagonal Onsager’s coefficients
are displayed in Figures 12 and 13. By invoking the microscopic represen-
tation of {LCC,LEE} in (3.38) one may note that for high cb, where the
contribution from the e.d.l. potential becomes weaker, the magnitude of
the Onsager’s parameters is mainly dictated by the term involving the sum
of cation and anion diffusivities D∗. Recalling the numerical behavior of
the diffusivities in Figure 7, as cb increases, the magnitude of {LCC,LEE}
becomes dominated by the grow of D−. This leads to an asymptotic
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Figure 8. Behavior of the disjoining pressure �d with cb for H =1,2 and 4 nm.

Figure 9. Behavior of the surface tension σfs with cb for H =1,2 and 4 nm.

behavior of diffusivity grow with concentration, typical of nonionic species,
as one may observe in Figures 12 and 13.

In Figure 14 we display the numerical behavior of the electroviscous
effect EV . For large particle distances (H > 4 nm) EV becomes dictated
by the primary effect, solely given by the magnitude of the ζ̄ -potential.
As H decreases, the secondary effect due to the overlapping of the e.d.l.s
becomes more pronounced leading to a magnification of EV , as one
may verify in the other curves. In addition, one may also observe that
for H fixed, EV remains constant for a considerable range (cb < 5 ×
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Figure 10. Behavior of the Onsager’s coefficient LPC with cb for H =1,2 and 4 nm.

Figure 11. Behavior of the Onsager’s coefficient LCE with cb for H =1,2 and 4 nm.

10−2 mol/l). Conversely, in the other range EV exhibits high decrease with
salinity. Finally, Figure 15 shows the numerical behavior of the reflection
coefficient ω. For low cb(< 10−3mol/l), where e.d.l. effects are relevant,
the strong binding of the ions restrict their movement and therefore the
clay behaves as a quasi-perfect membrane with ω≈ 1 independent of cb.
As e.d.l. effects become weaker with the grow in cb the magnitude of ω
decreases. For high salt concentration (cb > 5 × 10−1mol/l) and H > 2 nm
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Figure 12. Behavior of the Onsager’s coefficient LCC with cb for H =1,2 and 4 nm.

Figure 13. Behavior of the Onsager’s coefficient LEE with cb for H =1,2 and 4 nm.

one may observe negative values of the reflection coefficient corresponding
to the reverse osmosis phenomenon associated with flow from high to low
concentrations. The numerical behavior obtained herein resembles in form
the experimental result reported in Barbour and Fredlund (1989).
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Figure 14. Behavior of the electro-viscous effect EV with cb for H =1,2 and 4 nm.

Figure 15. Behavior of the reflection coefficient ω with cb for H =1,2 and 4 nm

5. Conclusion

In this article we validated computationally the two-scale model for swell-
ing compacted clays proposed in Moyne and Murad (2006) and estab-
lished the proper scenario for introducing the new concepts of interfacial
tension of the electrolyte solution, primary/secondary electroviscous effects
and reflection coefficient. By considering the clay microstructure composed
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of parallel particles of face-to-face contact the local closure problems were
numerically solved and the constitutive behavior of the effective electro-
chemo-mechanical coefficients derived in Moyne and Murad (2006) and
the new quantities introduced herein were computed for different values of
salinity and particle separation.

The computational results obtained herein show a strong dependence
of the effective electrochemo-mechanical coefficient on the local Poisson–
Boltzmann distribution of the microscale e.d.l. potential. Such correlation
provides a first attempt at bridging the gap between the numerical constit-
utive behavior of the effective electro-chemo-mechanical coefficients and the
microstructural behavior of swelling colloids.

Further work is required to incorporate tortuosity effects by solving the
general form of the closure problem in nonparallel particle arrangements.
In this more complex microscopic portrait of the swelling medium, addi-
tional effects must be incorporated in the macroscopic model through the
local gradients of the purely mechanical characteristic functions {ζ ξ} and
of the electro-chemical functions {f ±

, h±
I }(I = p, c, e) which capture the

dynamical interaction with the fluctuation of the electrical double layers.
This will be further investigated.

Finally we remark that though the tangential interfacial tension of the
liquid has no effect in disjoining the solid matrix in the parallel particle
arrangement, this quantity may play an important role in swelling when
considering random cell geometries. The relative roles of the swelling pres-
sure and interfacial tension in disordered microstructures will also be sub-
ject of future work.
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