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Abstract. The macroscopic model governing coupled electro-chemo-mechanical phenom-
ena in expansive clays is revisited within a rigorous homogenization procedure applied to
the microscopic governing equations which describe the local interaction between charged
clay particles and a binary monovalent aqueous electrolyte solution. The up-scaling of
the microscopic electro-hydro-dynamics leads to a two-scale approach wherein the macro-
scopic model appears governed by a fully coupled form of Onsager’s reciprocity relations,
mass conservation equations and a modified Terzaghi’s effective stress principle. In addi-
tion, the two-scale approach provides microscopic representations for the effective coeffi-
cients which are exploited herein to obtain further insight in the constitutive behavior of
the electrochemical parameters and the swelling pressure. Among other effects, we show
that these microscopic closure relations are mainly dictated by the spatial variability of a
microscale electric potential which satisfies a local version of the Poisson–Boltzmann prob-
lem in a periodic unit cell, The proposed framework allows to address various relevant
still open issues regarding the constitutive behavior of swelling systems, Among them we
give particular emphasis on the analysis of the influence of the fluctuation and distortion
of the electrical double layer upon the magnitude of the electrochemical coefficients and
the precise local conditions for the validity of the symmetry of Onsager’s relations.
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1. Introduction

Swelling porous media such as 2-1 lattice clays, hydrophilic polymers,
shales, corneal endothelium and connective biological tissues are ubiqui-
tous in almost all aspects of life. For example swelling clays play a criti-
cal role in the quality of fresh water and in the distribution of plants and
nutrients in the earth’s crust. The electro-chemical mechanisms of water
adsorption by smectites are of utmost importance in determining the abil-
ity of soils to transport and supply water. Clay swelling (or collapse) is of
widespread relevance in geotechnical and geoenvironmental fields. Owing
to the presence of binding agents for pollutants together with the low
hydraulic conductivity, plastic character and self-sealing capacity, benton-
itic clays have been suggested appropriate engineered barriers against envi-
ronmental pollution to prevent the migration of pollutants. Compacted soil
liners have been used as earthen barriers to prevent leakage of contami-
nated water from leachates to the subsurface environment. In the context
of petroleum technology swelling plays a crucial role in the stability of
boreholes drilled through clay-rich rocks such as shales. The ionic content
of the pore fluid affects the tendency of the shale to swell when brought
into contact with fresh water in particular using environmental acceptable
water-based drilling muds. Swelling is also a concern to the civil engi-
neer because volume changes in expansive clays may reduce the stability
of landslopes and can produce ground movement capable of causing severe
damage to foundations, highways and runways. Electrokinetic phenomena
near charged surfaces have other numerous technological applications such
as in the remediation of contaminated soils, in the design of artificial mem-
branes with high ion-exchange capacity, in filtration processes and in the
development of efficient drug delivery substrates. The physiological states
of soft connective tissues (articular cartilage and intervertebral disk) are
partially swollen and exhibit prestresses which play an important role in the
load bearing characteristics of articulating joints. As such, it is imperative
that any macroscopic model describing the complex electro-chemo-mechan-
ical interaction inherent to this type of system contains the appropriate
constitutive relations.

Expansive materials have in common a structure that can be loosely
identified as a mixture of macromolecules (polymers, clay particles, prote-
oglycans), whose characteristic length lies in the colloidal range (≈1 µm),
and a solvent (water, hydrocarbons). The solvent is either adsorbed to the
macromolecules in the form of an electrolyte solution with partially or
totally dissociated ionic species, or in bulk (free of any adsorptive force).
For simplicity we henceforth restrict our discussion to clay-water-electrolyte
systems. The reader will be aware, however, that the approach developed
herein can also be applied to most colloidal systems.
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The minerals of the smectite group are mostly colloidal aluminosili-
cates. A typical 2:1 smectite such as montmorillonite has a platy mor-
phology of extremely small size composed of two structural units; a sheet
of alumina octahedra sandwiched between two sheets of silica tetrahedra.
The result of this arrangement is a flat composite layer exhibiting tremen-
dous surface area with the flakes forming structural channels with a ten-
dency to bind water. Crystal imperfections and isomorphous substitutions
of higher valence ions with lower valence ions in the smectitic minerals
render a surface charge imbalance which is compensated by the adsorp-
tion of oppositely charged ions (counter-ions) forming the diffusive elec-
trical double layer (e.d.l.). In this picture, ion concentration gradients in
the counterion cloud and charge distribution in the liquid are ruled by the
electrochemical interactions with the static charges on the dielectric mineral
surfaces (Newman, 1973; Van Olphen, 1977; Hunter, 1981; Lyklema, 1993).
In addition, the imbalance of ions between the electrolyte solution and
the surrounding bulk fluid is primarily responsible for many macroscopi-
cally observed electrochemical and electrokinetic coupled phenomena such
as electro-osmosis, chemico-osmosis, streaming potentials, streaming cur-
rent, electromigration and electroviscous effects (see, e.g., Lyklema, 1993;
Mitchell, 1993).

The microscopic electro-chemical interactions in colloidal systems are
now well understood. For instance, electro-osmotic flows characterized by
fluid movement induced by an applied electric field are described by an
additional body force of Coulomb type in the Stokes equations of motion
(Eringen and Maugin, 1989). Streaming currents arise from the convective
transport of the counterion charge cloud induced by a pressure gradient
and can be described by further manipulating the Nernst–Planck equa-
tions governing the convective and diffusive (Fickian and electro-migration)
motion of the ions (see, e.g., Coelho et al., 1996). Streaming (electric)
potentials arise from the enforcement of the constraint of zero electric cur-
rent in an open-circuit (Gu et al., 1998). Electro-migration and electropho-
resis are the movement of the mobile ions and charged particles driven
by spatial variability of the macroscopic electric potential. To conserve
charge the electromigration movement occurs in the opposite direction of
the streaming current and can be described by a back (conduction) current
which acts to slow down the movement of the counter-ions of the diffuse
double layer. In the steady-state configuration characterized by an open-
circuit picture, the conduction current balances the streaming current and
leads to the condition of zero net current (Yang and Li, 1998). Owing to
the viscous drag interaction the reverse force exerted on the ions is trans-
ferred to the solvent molecules resulting in electroosmotic flow opposing
the pressure gradient driven flow. These two competing mechanisms result
in the appearance of the so-called electroviscous retardation effect which is
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manifested as an increase in the viscosity of the electrolyte solution (usually
termed apparent viscosity) compared to its classical bulk phase value when
nonionic species are suspended in the aqueous phase (see, e.g., Hunter,
1981; Ren et al., 2001).

The development of ionic atmospheres around the clay minerals also
leads to the appearance of electro-chemical stresses in the clay matrix
which are responsible for the expansion/shrinking of the clay lattice. When
water comes in contact with a mass of clay crystals, it penetrates between
the layers and forces them apart. When hydration progresses the crystals
may expand several times their original thickness. Derjaguin and cowork-
ers (1987) described the lyophilic interaction between fluid and substrate
in terms of a disjoining pressure, defined as an excess in the fluid pres-
sure normal to the solid surface relative to the surrounding bulk phase. For
long-range interactions, where hydration and steric effects are neglected,
swelling is dominated by electrostatic forces arising from the overlap-
ping between the ionic double layers (Derjaguin et al., 1987; Israelachvili,
1991; Mitchell, 1993). At the macroscale (the homogenized microscale)
this electro-chemical stress has been identified with the swelling pressure
(the averaged Derjaguin’s disjoining pressure) which has been experimen-
tally evaluated by measuring the overburden pressure excess that must
be applied to a well-ordered arrangement of parallel particles to prevent
further uptake of water (see Low, 1987).

At the microscale electro-chemical effects are governed by the electro-
hydrodynamics coupled with Nernst–Planck equations and the Poisson–
Boltzmann problem which govern the fluid movement, transport of mobile
charges and electric potential distribution in the electrolyte solution (see
Gross and Osterlé, 1968; Fair and Osterlé, 1971; Melcher, 1981; Sasidhar
and Ruckenstein, 1981, 1982; Sherwood, 1992; Macevoy and Avellaneda,
1997; Yang and Li, 1998; Revil, 1999). Boundary conditions on the par-
ticle–fluid interface couple the eletrochemical effects in the fluid with the
deformation and stress analysis in the solid phase. At the macroscale
the highly heterogeneous microstructural solid–fluid interactions are rep-
resented in an averaged fashion with the clay and adsorbed fluid treated
as overlaying continua forming the clay clusters or aggregates with aver-
aged properties defined at every point in the domain occupied by the mix-
ture (Bennethum et al., 2000; Bennethum and Cushman, 2002). Under
near-equilibrium conditions, the averaged fluid flow, overall flux of ions
and electric current are linearly coupled with the gradients of head, con-
centration and electric potential through Onsager’s reciprocity relations
(see, e.g., Lai et al.,1991; Yeung and Mitchell, 1993; Heidug and Wong,
1996; Huyghe and Janssen, 1997; Gu et al., 1998, 1998). The Onsager’s
coefficients reflect (in an averaged fashion) the microscopic electro-hydro-
chemical interactions in the electrolyte solution. The macroscopic reciprocity
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relations are coupled with a modified form of Terzaghi’s effective stress prin-
ciple which incorporates an extra component accounting for swelling. More
precisely, this principle states that, in addition to the well-known purely
mechanical stresses (contact stresses and pore pressure), an additional phys-
ico-chemical component containing the net repulsive (R) and attractive (A)
forces (commonly denoted by (R−A)) also plays a crucial role in the expan-
sion/shrinking of the clay matrix (see Lambe, 1960; Sridharan and Rao, 1973;
Hueckel, 1992). In the case where the repulsive force is ruled by electro-chem-
ical effects, R is nothing but the averaged counterpart of the electrostatic
component of Derjaguin’s disjoining pressure governing osmotic swelling (see
Achari et al., 1999).

Despite a large number of publications on the development of phe-
nomenological models for swelling media (see, e.g., Smiles and Rosenthal,
1968; Philip, 1969; Kim et al., 1992) and applications of Thermodynam-
ics of Irreversible Processes and Onsager’s reciprocity relations to the
macroscopic modelling of coupled electro-chemo-mechanical phenomena
(see, e.g., Lai et al., 1991; Yeung and Mitchell, 1993; Heidug and Wong,
1996; Huyghe and Janssen, 1997), still limited accomplishments have been
achieved toward the incorporation of the clay morphology and local e.d.l.
properties in the macroscopic model. As mixture theoretic approaches are
directly conducted at the macroscale, the complex microstructural solid–
fluid interactions are overlooked and the magnitude of the electrokinetic
coefficients is obtained based on experimental evidence or by solving
inverse problems through optimization processes. On the other hand it has
been advocated that the clay microstructure plays a paramount importance
in many macroscopic observed physico-chemical and electro-chemical phe-
nomena. For instance, it is well known that the swelling pressure is strongly
dictated by particle orientation and anisotropy (Anandarajah, 1997).

Historically, attempts at correlating the morphology of the medium with
the magnitude of the effective coefficients began by considering idealized
microstructures with the porous system composed by a bundle of cap-
illary tubes. In this context Gross and Osterlé (1968), Fair and Osterlé
(1971), Sherwood (1992) and Szymczyk et al. (1999) have established the
first correlations between the macroscopic Onsager’s coefficients and the
microscopic electro-hydrodynamics. In this over-simplified parallel particle
arrangement, local fluctuations in pressure and concentration in the direc-
tion orthogonal to the particle surface are neglected. Further, under equi-
librium conditions between the electrolyte solution and an outer saline
bath, Dormieux et al. (2003) established correlations between a macro-
scopic equilibrium thermodynamical approach and micromechanics aim-
ing at providing microscopic representations for the effective parameters
in general microgeometries. Still under thermodynamical equilibrium con-
straint, Murad and Moyne (2002) proposed a homogenization procedure
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based on two-scale asymptotic expansions to up-scale the micromechanical
picture of charged clay particles saturated by an electrolyte solution. The
up-scaling led to a modified form of Terzaghi’s decomposition containing
an additional swelling stress tensor term which incorporates the macro-
scopic effect of the disjoining forces. The microscopic representation of this
electro-chemical component includes a deviatoric part and suggests a ten-
sorial generalization of the swelling pressure. By solving numerically the
closure problem for constant salinity the constitutive dependence of the
swelling stress tensor on particle separation has been computed in a two-
dimensional periodic unit cell (see Murad and Moyne, 2002 for details).
Further, the homogenization technique has been generalized in Moyne and
Murad (2003) to accommodate local nonequilibrium macroscopic phenom-
ena related to fluid flow and ion transport in general microstructures.
Moreover in Moyne and Murad (2002) the technique proposed in Moyne
and Murad (2003) has been combined with a suitable decomposition of the
total electric potential leading to the appearance of the streaming poten-
tial (Sasidhar and Ruckenstein, 1981, 1982; Bike and Prieve, 1992). The
approach proposed in Moyne and Murad (2002) provided a more realis-
tic macroscopic picture of the swelling clay wherein phenomena such as
electro-osmosis and electro-migration naturally appear in the homogenized
forms of the convection-diffusion equations and Darcy’s law as compo-
nents driven by streaming potential gradients (see Moyne and Murad, 2002
for details).

In the homogenization technique proposed in Moyne and Murad (2002),
a small order of magnitude of the Péclet number was adopted. In addition,
the microscopic closure problems for the electro-chemo-mechanical effec-
tive parameters were solved for small electric potentials with the Poisson
Boltzmann problem replaced by its linearized Debye–Huckel approxima-
tion (Hunter, 1994; Van Olphen, 1997). Here we remove these restrictions.
We show that when adopting a more realistic higher order of magnitude
for the Péclet number, the homogenization technique is capable of cap-
turing important microscopic features inherent to the dynamical interac-
tions between the advection of the ions and charge cloud and incorporating
them in the closure relations for the effective Onsager’s parameters. These
features have been overlooked by the previous formulations and are mainly
related to perturbations in ion dispersivities and conductivities for fluid
flow induced by the distortion of the charge clouds along with their restor-
ing relaxation effect (see Sherwood, 1980). Our development shows that
these relaxation phenomena are essential features ruled by the magnitude
of the Péclet number which may play a paramount importance in the con-
stitutive behavior of the effective electro-chemical parameters.

In order to illustrate the importance of bridging electro-kinetic phe-
nomena at two different scales and to motivate the development of our
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two-scale formulation, below we highlight still unresolved issues associated
with the constitutive behavior of swelling systems Which will be addressed
herein.

(i) Influence of local fluctuations in the electro-chemical potential of the
ions on the symmetry of Onsager’s reciprocity relations. The Onsager’s
matrix is postulated to be symmetric provided a local reversibility assump-
tion is postulated (de Groot and Mazur, 1962; Prigogine, 1967). Hence, an
open question remains how to incorporate local nonequilibrium phenom-
ena, associated with fluctuations in the electro-chemical potential of the
ions, in the magnitude of Onsager’s coefficients.

(ii) Role of the e.d.l. thickness in the magnitude of the Onsager’s
parameters. The magnitude of the conductivity for electro-osmotic flow
(electro-osmotic permeability) differs somewhat in the cases of microstruc-
ture characterized by thin e.d.l.s with large electrokinetic distance (the ratio
of the channel width to the e.d.l. thickness) and narrow channels when
the e.d.l.s overlap and span the entire micro-pore space. For thin e.d.l.s
the electro-osmotic permeability is solely dictated by the zeta potential
(the electric potential in the interface between the diffusion and compact
years of fixed and mobile charges) through the well-known Smoluchowski
model (see Newman, 1973; Hunter, 1981; Coelho et al., 1996; Shang, 1997).
In addition a secondary component arising from the interaction between
e.d.1.s in the case of small electrokinetic distances also plays an impor-
tant role in the magnitude of the electro-osmotic permeability (Hunter,
1981). Szymczyk et al. (1999) have proposed correction factors to extend
Smoluchowski’s model to incorporate this secondary effect. Hence, the rel-
ative roles of primary and secondary effects when considering random cell
geometries and their influence upon the magnitude on the electro-osmotic
permeability are crucial issues which need to be properly addressed.

(iii) Influence of the distortion of the e.d.l. on the macroscopic fluid move-
ment and ion transport. As mentioned before the distortion of the mobile
portion of the e.d.l. induced by the advection velocity of the electrolyte
solution and its capacity to restore its equilibrium configuration result in a
strong retardation drag force acting on the fluid flow and ion transport (see
Sherwood, 1980; Hinch and Sherwood, 1983). This ion relaxation effect
alters the diffusivity of the counterions, the conductivity for fluid flow and
the electrophoretic mobility of ionized macromolecules (Allison, 1996) and
needs to be accurately incorporated in the model.

(iv) Relation between microscopic Derjaguin’s disjoining pressure and mac-
roscopic Low’s swelling Pressure. The constitutive behavior of the electro-
chemical stresses induced in the solid phase has not been treated in an
unified manner. In particular, some discrepancies between the constitu-
tive relation of the swelling pressure and its microscale disjoining pressure
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counterpart (Derjaguin et al., 1987) have been observed. Although this
latter microscopic quantity includes both chemico-osmotic and Maxwell
stresses (Derjaguin et al., 1987; Dahnert and Huster, 1999), the dependence
of the swelling pressure on salt concentration has not incorporated similar
effects, being commonly identified with the macroscopic Donnan osmotic
pressure (see, e.g., Barbour and Fredlund, 1989). The same observation
also applies to the controversial aspects of the averaged stress partition-
ing mechanisms in the solid matrix within a modified form of Terzaghi’s
effective stress principle. Although the macroscopic repulsive force R in
the modified Terzaghi’s effective stress principle has been identified with
the averaged disjoining pressure calculated via e.d.l. theory (Achari et al.,
1999), a similar quantity, referred to as chemical-expansion stress, has
been thermodynamically introduced within the context of mixture theory
to describe the expansion of charged hydrated biological tissues (Gu et al.,
1988, 1988). Unlike the disjoining pressure, the constitutive law for the
chemical-expansion stress depends exponentially on ion concentration (Lai
et al., 1991). Hence one may observe that the constitutive response of the
extra electro-chemical component in Terzaghi’s decomposition remains con-
troversial.

(v) Role of the electro-chemical compressibility in mass conservation. In
a similar fashion to the Biot-Willis (1957) coupling parameter (α) which
incorporates the effect of rock compressibility in both Terzaghi’s principle
and overall mass balance, the role and constitutive behavior of the electro-
chemical compressibility parameter (see, e.g., Barbour and Fredlund, 1989;
Mitchell, 1993) along with its relation with the swelling/disjoining pressure
have not been addressed in a unified manner.

Other peculiar phenomena in swelling systems include polarization of
the e.d.l. (Rathore and Horvath, 1997; Lee et al., 2000) electro-osmosis
of second kind (Mishchuk, 1998), extended Nernst–Planck model for non-
ideal ionic solutions (Samson and Marchand, 1999), dynamic Stern layer
and surface conduction (Rubio-Hernndez et al., 1998; Sherwood et al.,
2000). Although the microscopic modeling of these phenomena have been
discussed in the literature, the development of an accurate up-scaling pro-
cedure to quantity macroscopically these effects remains an open issue.

The proper addressing of the aforementioned issues enhances the robust-
ness and accuracy of the two-scale model and provide a more realistic por-
trait of the swelling medium. The goal of this contribution is to accomplish
this task. To this end we adopt the homogenization procedure based on
asymptotic expansions but, unlike (Moyne and Murad, 2002) neither we
assume a small Péclet number nor make use of the Debye–Hueckel linear-
ized approximation to represent the nonlinear Poisson–Boltzmann problem.
A notable consequence of our up-scaling procedure are the new closure
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problems for the effective electro-chemical parameters which contain new
microscopic relaxation phenomena. The numerical solution of these clo-
sure problems provide further insight in the development of an accurate
theory of constitution of colloidal systems and are presented in a compan-
ion paper (Moyne and Murad (2006)) for a particular microstructure of the
clay.

An outline of the paper is as follows. In Section 2 we present the micro-
scopic model. In Section 3 we rephrase the micro-model in terms of alter-
native bulk variables, which are more appropriate for the enforcement of
boundary conditions. In Section 4 we present the homogenization proce-
dures for derivation of the macroscopic model along with the new closure
problems. Finally, in Section 5 we rephrase the macro-model in an alterna-
tive form based on Onsager’s reciprocity relations.

2. Microscopic Model

At the microscale we consider a two-phase system composed of colloi-
dal Na-montmorillonite particles uniformly charged on the surface satu-
rated by a continuum dielectric aqueous solution containing symmetric 1:1
completely dissociated monovalent electrolytes Na+ and Cl−. The solvent
is considered a dilute solution with the ions treated as point charges so
that hydration and steric effects associated with size effects are neglected.
Denoting �f and �s the microscopic domains occupied by the fluid and
solid and � the common interface, we present the coupled microscopic
model governing fluid flow, ion transport, electric potential distribution and
particle deformation.

2.1. electrostatics

Let {c+, c−} and {�,E} be the pairs of molar concentrations of
cations/anions and electric potential/electric field, respectively. In classical
electrostatics � and E are governed by the Poisson problem (see, e.g., Lan-
dau and Lifchitz, 1960)

ε̃ε̃0∇.E =q,
E =−∇�, in �f , (2.1)

where ε̃0 and ε̃ are the permittivity of the free space and the relative dielec-
tric constant of the solvent (assumed constant) and q is the net charge den-
sity. Denote F the Faraday constant and z the valence (z= z+ = −z− =
1 for symmetrical monovalent electrolytes) and define q by the product
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between the molar charge and the concentration difference between cations
and anions, i.e. q≡F(c+ − c−). Hence we have

��=− q

ε̃ε̃0
=− F

ε̃ε̃0
(c+ − c−). (2.2)

2.2. modified stokes problem

The appearance of the product between net charge density and electric
field gives rise to the electroosmotic movement of the aqueous electrolyte
solution. The electric field exerts a force on the charge cloud which is
transferred to the solvent molecules by viscous interactions leading to an
electrokinetic coupling between flow and charge transport. This effect is
modeled by an additional body force of Coulomb type qE in the fluid
(Eringen and Maugin, 1989; Lyk1ema, 1993). Thus, assuming the fluid
incompressible and Newtonian and neglecting gravity, the creeping viscous
flow of the electrolyte solution is governed by the modified Stokes problem

µf�v −∇p=−qE =q∇�, (2.3)

∇ · v =0, in �f , (2.4)

where µf , v and p are the viscosity, velocity and thermodynamic pressure of
the liquid. The above momentum balance can also be rephrased in terms of
the Cauchy stress tensor of the electrolyte solution σ f as

∇ ·σ f =0, in �f ,

σ f =−pI +2µf E(v)+τM, (2.5)

where I is the unit tensor, E(v) the symmetrical part of ∇v and τM the
Maxwell stress tensor (Landau and Lifchitz, 1960)

τM ≡ ε̃ε̃0

2
(2E ⊗E −E2I ) (2.6)

with ⊗ denoting the tensorial product between vectors. From (2.1) and
(2.6) one may easily note that ∇ ·τM =qE.

2.3. movement of the ions

Denoting t the characteristic time associated to the movement of the ionic
species and J+ and J− their molar fluxes, the mass conservations of
cations and anions read

∂c±
∂t

+∇ ·J± =0, in �f . (2.7)
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The notation ± aims at representing the two mass balances in a single set.
The constitutive relations for J± reflect their convective–diffusive nature
and are represented by the Nernst–Planck relations (Lyklema, 1993; Sam-
son et al., 1999). Denoting µ+ and µ− the molar electrochemical potentials
of cations and anions, under the dilute solution approximation, where the
activity coefficients of the ions are equal to the unity, they are given as (see
e.g., Callen, 1985; Lyklema 1993; Dormieux et al., 1995)

µ± ≡ µ̄± ±F�+RT log c±, (2.8)

where T is the absolute temperature, R the universal ideal gas constant
and µ̄± is the reference value for the chemical potential depending on T

and p. Assuming that the temperature is constant and neglecting the effect
of pressure on the magnitude of µ±, the reference quantities µ̄± are treated
as constants. Denoting D± the binary water–ions diffusion coefficients and
�̄=F�/RT the dimensionless electric potential, the Nernst–Planck equa-
tions read

J± = c±v − D±c±
RT

∇µ± = c±v −D±(∇c± ± c±∇�̄). (2.9)

In addition to the advection component induced by the fluid velocity, the
last two terms in the r.h.s. show ion diffusion governed by the sum of Fic-
kian and electromigration components which govern the movement of the
ions under concentration and electric potential gradients respectively. Using
(2.9) in (2.7) we obtain the modified convection–diffusion equations gov-
erning ion transport

∂c±
∂t

+∇ · (c±v)=∇ · [D±(∇c± ± c±∇�̄)] . (2.10)

2.4. deformation of solid particles

Assume that the clay particles are linear elastic and isotropic with Lamé
constants λs and µs. Denoting u and σ s the displacement and stress tensor
of the solid, the classical elasticity problem reads

∇ ·σ s =0, in �s, (2.11)

σ s =λs∇ ·uI +2µsE(u). (2.12)

2.5. charge conservation in the solid phase

To close the set of microscopic equations it remains to write mass con-
servations for the fixed charges in the solid–fluid interface �. To avoid
the complexities associated with surface-averaging interfacial balance equa-
tions (Gray and Hassanizadeh, 1989; Ochoa-Tapia et al., 1993), we assume
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that the electrical charges in the solid phase are volumetrically distributed
within a small layer in the vicinity of �. Charge transport in the solid
occurs solely due to the advection induced by the velocity ∂u/∂t . Whence,
denoting the concentrations and fluxes in the solid phase by the superscript
‘s’ we have

∂cs
±
∂t

+∇ ·J s
± =0 with J s

± = cs
±
∂u
∂t

in �s. (2.13)

2.6. boundary conditions

Denote n the unit normal exterior to �f and let σ <0 be the fixed surface
charge of the solid particles. Considering � an impervious solid–fluid inter-
face, together with the no-slip condition, continuity of the normal com-
ponent of the stress tensor and the relation between the electric field and
surface charge density we have the boundary conditions

D±
(∇c± ± c±∇�̄) ·n=0, v = ∂u

∂t
on �,

σ sn=σ fn, ε̃ε̃0E ·n=−σ, (2.14)

where σ and q are related through the overall electroneutrality condition
∫

�f

q d�f = ε̃ε̃0

∫

�f

∇ ·E d�f = ε̃ε̃0

∫

�

E ·nd�=−
∫

�

σ d�. (2.15)

The microscopic model consists in solving (2.2)–(2.4), (2.10) for the
unknowns {�, v, p, c±} in �f coupled with (2.11)–(2.13) for {u,σ , cs

±} in
�s along with boundary conditions (2.14) on � and initial conditions.
Finally, using (2.5) in (2.14)(c) one may note that swelling at the micro-
scale is incorporated in the traction boundary condition for the stress ten-
sor through the chemico and electro components in the fluid stress σ f . The
former is included in the thermodynamic pressure p, which incorporates
the Donnan osmotic pressure (see Section 4.1), whereas the latter is lumped
in the Maxwell stress tensor τM.

3. Alternative Microscale Bulk Formulation

As pointed out by Moyne and Murad (2002, 2003) the above microscopic
model is not formulated in a natural manner for application of a mac-
roscopization procedure. To illustrate this conjecture we simply recall the
classical e.d.l. properties when the electrolyte solution is at thermodynamic
equilibrium with an outer bulk fluid (Newman, 1973; Van Olphen, 1977;
Hunter, 1994). In this simple micromechanical picture, for a given bulk
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concentration of the non-ionic species in the outer fluid cb, the ion con-
centrations (c±) vary strongly across the micro-pore space according to
Boltzmann distributions resulting from the equality between the electro-
chemical potentials (Dormieux et al., 1995). In addition, the thermody-
namic pressure (p) is the sum of the pressure of the bulk fluid (pb) and
the Donnan osmotic pressure (π ), which for dilute solutions is classically
defined in terms of the Van’t Hoff relation (Huyghe, 1997). Further, under
flow conditions, the total electric potential (�) incorporates a component
purely associated with the e.d.l. (ϕ) and the so-called streaming potential
(ψb), which is a non-equilibrium quantity that develops in the bulk fluid in
order to fulfill the condition of zero electric current under the open-circuit
assumption (Yang and Li, 1998). Hence, c±, p and � are discontinuous
across the interface with an outer saline bath and therefore such vari-
ables do not play the role of primary unknowns controlled through inter-
face conditions. This suggests a change of primary variables by replacing
{�,p, c±} by their corresponding ‘bulk’ counterparts {ψb, pb, cb}, to whom
boundary conditions can naturally be enforced. It should be noted that
for thin double layers the bulk properties are nothing but the properties
away from the particle surface. Conversely, when the e.d.l.s span the entire
micropores, bulk properties become ‘hidden’ or ‘fictitious’ quantities (see
Moyne and Murad, 2002) and their pointwise characterization requires the
more elaborate analysis developed next.

In the notation that follows, a bulk variable is denoted by the subscript
‘b’ to distinguish from the corresponding quantity inherent to the electro-
lyte solution. In order to define pointwisely local bulk properties to the
domain �f occupied by the electrolyte solution, we follow Newman (1973)
who characterizes a bulk medium by the absence of a net charge density
(qb ≡F(cb+ − cb−)= 0) or by the equality in concentrations (cb+ = cb−)=
cb). This characterization is equivalent to fulfilling the electroneutrality
condition (2.15) pointwisely rather than globally. We then adapt Newman’s
conjecture to our microscopic picture by defining a fictitious bulk solu-
tion in �f as a medium satisfying the electroneutrality condition locally
with suspended species at local thermodynamical equilibrium with cations
and anions. As addressed before, rather than treated as a neutral fluid,
the enforcement of the electroneutrality condition pointwisely under the
open-circuit condition is tied up to the appearance in the bulk medium of
the streaming potential component of � (Sasidhar and Ruckenstein, 1981,
1982; Bike and Prieve, 1992; Yang and Li, 1998). Thus, to define math-
ematically thermodynamic porperties associated with fictitious bulk solu-
tion we begin by making use of the decomposition proposed in Sasidhar
and Ruckenstein (1981, 1982) and Bike and Prieve (1992) which splits the
contributions to the electric potentital � purely arising from the e.d.l. and
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those induced by non-equilibrium fluid flow giving rise to the streaming
potential. Therefore, we begin by decomposing � in the form:

�=ϕ+ψb. (3.1)

As mentioned before, to characterize ϕ and ψb, the former aims at rep-
resenting a potential which varies across the pore domain, purely related
to double layer effects, whereas the latter component is selected to play
a similar role of the streaming potential under the open-circuit assump-
tion. We then define the electrochemical potential of the species in the bulk
fluid (µb±) by setting cb+ = cb− = cb and �=ψb in definition (2.8) for µ±
which leads to µb± ≡ µ̄± ±Fψb +RT log cb. This local characterization is
based on neglecting the e.d.l. potential ϕ and the net charge density qb

in a bulk fluid (recall that cb+ = cb−). Further, the condition of thermody-
namical equilibrium between the species in the electrolyte solution and in
the apparent bulk fluid is governed by the equality between the chemical
potentials µb± ≡µ±. Introducing the dimensionless potentials ϕ̄ ≡ Fϕ/RT

and ψ̄b ≡Fψb/RT and using (2.8) this yields

µb± ≡ µ̄± ±Fψb +RT log cb =µ± = µ̄± ±F�+RT log c±

in which when combined with (3.1) leads to the following generalized
Boltzmann distributions:

c± = cb exp(∓�̄± ψ̄b)= cb exp(∓ϕ̄), (3.2)

q=F(c+ − c−)=−2Fcb sinh ϕ̄. (3.3)

Thus, given c± and ϕ̄ one may envisage (3.2) as a local characterization of
cb. Using (3.1) and (3.3) in (2.2) results in the following alternative form
of the Poisson problem:

�(ϕ̄+ ψ̄b)=− Fq

RT ε̃ε̃0
= 2F 2cb

RT ε̃ε̃0
sinh ϕ̄, (3.4)

E =−RT
F
(∇ϕ̄+ ψ̄b). (3.5)

It should be noted that in the particular case of absence of fluid flow
and ion transport, when the electrolyte solution is at equilibrium which
an outer saline bath of concentration ceq, the classical Poisson–Boltzmann
equation is recovered from our results by simply setting ψ̄b = constant,
�̄= ϕ̄ and cb = ceq.

We now rephrase the convection–diffusion equations in terms of the
unknowns cb and ψ̄b associated with the apparent bulk fluid. Using (3.2)
and (3.1) in (2.10) we have

∂

∂t
(exp(∓ϕ̄)cb)+∇· (exp(∓ϕ̄)cbv)=∇· [D± exp(∓ϕ̄)(∇cb ± cb∇ψ̄b)]. (3.6)
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It should be noted that the replacement of the unknowns {c+, c−} by
{cb, ψ̄b} results in the appearance of the additional ion-exchange capacity
terms (exp(∓ϕ̄)) in the convection–diffusion equations. Such coefficient is
much larger for the counterions owing to their higher storage capacity in
the e.d.l. (recall that ϕ̄ <0).

We now proceed by characterizing the local bulk fluid pressure pb. To
this end we adopt an entirely analogous procedure to the one used to
define cb. Likewise c± and �̄, at equilibrium, the thermodynamic pressure
p varies across the fluid domain as it incorporates the contributions of
the bulk phase pressure of the outer solution pb and the Donnan osmotic
pressure π , which for dilute solutions is classically defined in terms of the
Van’t Hoff relation π = RT (c+ + c− − 2cb) (Donnan, 1924; Huyghe and
Janssen, 1997). Thus, a decomposition similar to (3.1) can be adopted for
p and interpreted as a pointwise characterization for pb in �f . We then
consider the case of thermodynamic equilibrium where v =0 and ψb = cte.
Using (3.1) we rewrite (2.3) as ∇p = −q∇� = −q∇(ϕ + ψb) = −q∇ϕ =
−∇(∫ ϕ0 q(ϕ)dϕ). This suggests that the body force in the r.h.s. plays the role
of an osmotic pressure which raises the magnitude of p compared to its
bulk phase value pb. Hence, we define the local apparent bulk phase pres-
sure as pb ≡p+∫ ϕ0 qdϕ. We then show that the above definition is equiva-
lent to subtracting the osmotic pressure π from p. In fact, using (3.2) and
(3.3) in the above definition gives

pb ≡p+
∫ ϕ

0
q dϕ=p−2Fcb

∫ ϕ

0
sinh ϕ̄ dϕ

=p−2RT cb(cosh ϕ̄−1)=p−RT (c+ + c− −2cb)=p−π, (3.7)

which shows the desired result. Thus, likewise the bulk concentration cb,
the reference unknown pb plays the role of the pressure of a bulk fluid con-
structed locally at equilibrium with the electrolyte solution (this pressure
has been also termed solvent pressure by Sasidhar and Ruckenstein, 1982).
Further using (3.7) in (2.5) the Cauchy stress tensor of the fluid is given by

σ f =−(pb +2RT cb(cos h ϕ̄−1))I +τM +2µf E(v).
Finally, using (3.1), (3.3) and (3.7), in terms of the driving forces

{∇pb,∇cb,∇ψ̄b} reflecting the hydraulic, chemico-osmotic and electro-
osmotic components of the flow, the modified Stokes problem (2.3) can be
rewritten as

µf�v −∇pb −2RT (cosh ϕ̄−1)∇cb

=2RT cb sinh ϕ̄∇ϕ̄+ qRT

F
∇(ϕ̄+ ψ̄b)

=2RT cb sinh ϕ̄∇ϕ̄−2RT cb sinh ϕ̄∇(ϕ̄+ ψ̄b)

=−2RT cb sinh ϕ̄∇ψ̄b. (3.8)
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Note that, in a similar fashion to (3.6), when rephrasing the Stokes prob-
lem in terms of bulk quantities, additional coefficients containing the e.d.l.
potential ϕ̄ appear incorporating the interaction between the chemico-
osmotic and electro-osmotic components of the flow and the charge cloud.

Finally, denoting δij the Kronecker delta symbol and cs the fourth-order
elastic modulus tensor of the solid phase with components cijkl =λsδ

ij δkl +
µs(δ

ikδjl+δilδjk), by rephrasing the boundary conditions in (2.14) in terms
of bulk variables gives

D± exp(∓ϕ̄)(∇cb ± cb∇ψ̄b) ·n=0, ∇(ϕ̄+ ψ̄b) ·n= σF

ε̃ε̃0RT
, on �,

[−(pb +2RT cb(cosh ϕ̄−1))I +τM +2µf E(v)]n= csE(u)n,

where (3.5) has been used. Our alternative microscopic bulk formulation is
now well posed. In �f it consists of solving Equations (2.4), (3.4), (3.6) (for
+ and −) and (3.8) for the unknowns {v, pb, ϕ̄, ψ̄b, cb}. After solving for
these quantities, the ‘true’ variables of the electrolyte solution {�,c+, c−, p}
can be computed within a post-processing using (3.1), (3.2) and (3.7).

4. Homogenization

In this section we make use of the homogenization technique to derive
effective equations governing macroscopic coupled electro-chemo-mechani-
cal phenomena. Following the usual procedure described in, e.g.,
Sanchez–Palencia (1980), two characteristic length scales are introduced;
a microscopic scale associated with the dimensions of the cell (l) and a
macroscopic length scale (L) characteristic of the dimensions of the clay
aggregates. A perturbation parameter ε is defined by the ratio �/L. By
invoking the scale separation assumption, � is considered small compared
to L so that ε�1. The ε-model consists of properly scaled equations posed
in the macroscopic domain �ε , considered the union of nonoverlapping
disjoint fluid and solid subdomains �εf and �εs , along with scaled boundary
conditions on the common interface �ε . The fluid and solid subdomains
are given by the union of adjacent cell domains Y εf and Y εs , respectively,
whereas the interface �ε is given by the union of solid–fluid boundaries
within each cell ∂Y efs. Each Y ε is congruent to a standard unitary closed
set Y which characterizes the period of the microstructure. Within this ref-
erence unit cell, Ys and Yf designate the disjoint open sets occupied by the
clay particles and electrolyte respectively whereas the common boundary is
denoted by ∂Yfs. Our starting point, ε=1, corresponds to our microscopic
model. The basic problem is to investigate the asymptotics of the solution
as ε→ 0 and obtain the homogenized limit as the scale of the inhomoge-
neity decays.
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In our subsequent analysis we also make use of the classical
spatial and time averaging theorems (Whitaker, 1999; Slattery, 1999).
Designate 〈·〉ε ≡|Y ε|−1

∫
Y εα

·dYα(α= f , s) the volume average operator over
the α-portion of the cell Y ε . Further, denote f ε and gε general scalar and
vectorial functions defined in Y εf and let the interfacial velocity be given by
∂uε/∂t . Using the no-slip condition (2.14)(b) we have

〈
∂f ε

∂t

〉

ε

= ∂〈f ε〉ε
∂t

− 1
|Y ε|

∫

∂Y εfs

f ε
∂uε

∂t
·n d�= ∂〈f ε〉ε

∂t
− 1

|Y ε|
∫

∂Y εfs

f εvε ·n d�,

〈∇ ·gε〉ε = ∇ · 〈gε〉ε + 1
|Y ε|

∫

∂Y εfs

gε ·n d�.
(4.1)

4.1. scaling analysis of the microscopic model

Following the procedure proposed by Auriault (1991), begin by estimat-
ing the dimensionless quantities which characterize the local description.
To this end we normalize the unknowns with respect to their reference val-
ues denoted herein by the subscript ‘ref’. To estimate the order of magni-
tude of the dimensionless numbers involved we begin by selecting the ref-
erence characteristic length �ref of the order of the macroscopic medium,
i.e. �ref ≡L such that the macroscopic length L is used to normalize the
spatial differential operators. The microscopic length � associated with
the dimensions of the cell is selected as a typical length scale to which
e.d.l. effects become pronounced. We then choose � = 2�ref

D where �ref
D ≡

(ε̃ε̃0RT/2F 2cref )
1/2 is the Debye’s length (Van Olphen, 1977; Hunter, 1981).

In parallel particle arrangements, typical of classical e.d.l. theory, �ref
D is

commonly interpreted as half of the particle distance where swelling due to
the overlapping between the e.d.l.s becomes meaningful. Further, the time
scale is normalized with respect to tref =L2/D±.

Dividing each variable by the corresponding reference value defines a
dimensionless quantity which is denoted by the superscript * (e.g. p∗ ≡
p/pref ). Denoting �ref the reference value for ϕ and ψb also define �̄ref ≡
F�ref/RT . By rephrasing the governing equations in the fluid domain
along with the boundary conditions in terms of dimensionless unknowns
we obtain

�∗∗(ϕ∗ +ψ∗
b )=

c∗b
NL

sinh (�̄refϕ
∗), E∗ =−EL∇∗(ϕ∗ +ψ∗

b ), in �f ,

Q−1
L �∗∗v∗ =∇∗p∗

b +M1
[(

cosh
(
�̄refϕ

∗)−1
)∇∗c∗b − c∗bsinh

(
�̄refϕ

∗) �̄ref∇∗ψ∗
b

]
,

∂

∂t∗
[
exp

(∓�̄refϕ
∗) c∗b

]+PeL∇∗ · [exp
(∓�̄refϕ

∗) c∗bv∗]

=∇∗ · [exp
(∓�̄refϕ

∗) (∇∗c∗b ± c∗b∇∗
(
�̄refψ

∗
b

))]
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and

BL∇∗(ϕ∗ +ψ∗
b ) ·n=1, v∗ =UL

∂u∗

∂t
,

(∇∗c∗b ± c∗b�̄ref ∇∗ψ∗
b

) ·n=0,

−
{[
p∗

b +M1
(
cosh

(
�̄refϕ

∗)−1
)]

I +0.5M2τ
∗
M +2Q−1

L E∗(v∗)
}

n=M3E∗(u∗)n, on �,

where the superscript * denotes spatial derivative with respect to a dimen-
sionless coordinate (z∗ =z/L). Further, denoting CEref = ε̃ε̃0E

2
ref the reference

value for the Maxwell stress tensor, the above dimensionless quantities are
defined as

NL = �̄ref

(
�ref

D

L

)2

, EL = �ref

ErefL
, QL = prefL

µfvref
, M1 = 2RT cref

pref
,

P eL = vrefL

D±
, BL = ε̃ε̃0�ref

Lσ
, UL = urefD±

vrefL2
, M2 = CEref

pref
, M3 = csuref

prefL
.

To establish the order of magnitude of the above numbers in powers of
ε we begin by estimating the classical number QL which quantifies the
ratio between a macroscopic pressure gradient and viscous forces in the
Stokes problem (Auriault, 1990). To this end we choose the order of
magnitude of the reference velocity vref and pressure pref based on clas-
sical dimensional analysis of Darcy’s law which shows vref = �2pref/µfL

(Auriault, 1991). This yields QL =O(ε−2). The parameter PeL is the clas-
sical macroscopic Péclet number which measures the ratio between con-
vective and diffusive effects. Here, unlike Moyne and Murad (2002), we
consider the case where macroscopic convective and diffusive effects are
of the same order of magnitude such that PeL = O(1). The choice of
the reference electric field Eref is based on boundary condition (2.14)(d)
which suggests Eref ≡ σ/ε̃ε̃0 and implies BL = EL. As the characteristic
length for electrical effects to become pronnounced is the Debye’s length,
we entail the reference values for the electric potential and electric field
in the form �ref = �ref

D Eref . This yields BL = EL = �ref
D /L = O(ε),�ref =

�ref
D σ/(ε̃ε̃0) and �̄ref =F�ref

D σ/(ε̃ε̃0RT ). To fulfill the electroneutrality con-
dition (2.15) ion concentrations vary over a distance of O(�ref

D ) from the
particle surface to counterbalance the surface charge σ . Whence we choose
the reference concentration cref = σ/2F�ref

D (the factor 1/2 is simply a con-
venience) which yields �̄ref = 2F 2cref�

ref2

D /(ε̃ε̃0RT ). Recalling the definition
(�ref

D )
2 = ε̃ε̃0RT/2F 2cref , we then obtain �̄ref = 1,�ref = RT/F,Eref = RT/

(F�ref
D ) and NL = (�ref

D /L)
2 = O(ε2). The reference pressure pref is selected

of the same order of the osmotic pressure, pref = 2RT cref , so that M1 = 1
and M2 = ε̃ε̃0E

2
ref/2RT cref =F�ref

D Eref/RT =F�ref/RT = �̄ref = 1. Denoting
cijkl the components of the fourth-order elastic tensor cs and c̄= max cijkl

we choose uref = O(L) and σsref ≡ c̄uref/L of the same order of pref such
that M3 =O(1). Finally, since UL =uref/(P eLL) using the estimates for the
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Péclet number we have UL = O(1). To summarize, we have M1 =M2 = 1
along with the estimates

NL =O(ε2), EL =O(ε), QL =O(ε−2), P eL =O(1)
BL =O(ε), UL =O(1), M3 =O(1). (4.2)

In addition, the Hartmann number H , introduced by Sherwood (1980), is
defined as

H ≡ ε̃ε̃0�
2
ref

D ±µf
=M1NLPeL

Q−1
L

= NLPeL

Q−1
L

=O(1). (4.3)

From (4.3) one may observe that H governs the ratio between the prod-
uct NLPeL which quantifies the perturbation in the electrical forces act-
ing in the liquid induced by the distortion of the charge cloud due to
advection and the number Q−1

L , which measures the intensity of the vis-
cous forces to restore equilibrium (Sherwood, 1980). When the Hartmann
number is small, as in the cases of high viscosity, small Péclet number,
or low electric potentials, typical of the Debye–Hueckel approximation of
Poisson–Boltzmann (|ϕ| � 25 mV), the ionic atmosphere around the clay
particles restores instantaneously to its equilibrium configuration and the
above non-equilibrium relaxation phenomena is neglected (see Sherwood,
1980 for details). As we shall illustrate in our subsequent development, the
estimates PeL and H of O(1) adopted herein are capable of capturing the
influence of the distortion of the charge cloud on the macroscopic forms
of Darcy’s law and modified convection–diffusion governing ion transport.

Making use of the estimates (4.2), the alternative bulk formulation of
Section 3 is rephrased below with a εn factor to indicate the order of mag-
nitude of each term. We then have in �f

ε2�(ϕ̄+ ψ̄b)= 2F 2cb

RT ε̃ε̃0
sinh ϕ̄, E =−εRT

F
∇(ϕ̄+ ψ̄b), c± = cb exp(∓ϕ̄),

π =2RT cb(cosh ϕ̄−1), ∇ ·σ f =0,

σ f =−(pb +π)I + ε̃ε̃0

2
(2E ⊗E −E2I )+2ε2µf E(v),

∇ · v =0, ε2µf�v =∇pb +2RT (cosh ϕ̄−1)∇cb −2RT cb sinh ϕ̄∇ψ̄b,
∂

∂t
(exp(∓ϕ̄)cb)+∇ · (exp(∓ϕ̄)cbv)=∇ · [D± exp(∓ϕ̄)(∇cb ± cb∇ψ̄b)

]

=∇ · [D± exp(∓(ϕ̄+ ψ̄b))∇(cb exp(±ψ̄b))
]
,

(4.4)

whereas in �s

∇ ·σ s =0, σ s = csE(u),
∂cs

±
∂t

+∇ ·
(
cs
±
∂u
∂t

)
=0. (4.5)
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and on the fluid–solid interface �

εRT

F
∇(ϕ̄+ ψ̄b) ·n= σ

ε̃ε̃0
, v = ∂u

∂t
, −D± exp(∓ϕ̄)(∇cb ± cb∇ψ̄b) ·n=0,

σ f n = [−(pb +2RT cb(cosh ϕ̄−1))I+ ε̃ε̃0

2
(2E ⊗E −E2I )+2ε2µf E(v)]n=σ sn

= csε(u)n.

Finally we also consider the scaling analysis of the averaging relations
(4.1). Designating 〈·〉 ≡ |Y |−1

∫
Yα

·dYα(α = f,s) the volume average operator
over the α-portion of the unit cell Y and recalling that the ratio between
volume and area of the periodic cell scales with O(ε3)/O(ε2), we have
|Y ε|/|∂Y εfs| of O(ε) which implies

〈
∂f

∂t

〉
= ∂〈f 〉

∂t
− 1
ε|Y |

∫

∂Yfs

f v ·n d�, (4.6)

〈∇ ·g〉=∇ · 〈g〉+ 1
ε|Y |

∫

∂Yfs

g ·n d�. (4.7)

4.2. matched asymptotic expansions

In the formal homogenization process based on asymptotic developments
we consider each point described by two coordinates. The macroscopic
position vector x, which describes the location in the macroscopic domain
�, and the microscopic coordinate y, of the same order of magni-
tude of the Debye’s length (lD), which locates a point in Y . Up to a
translation, x and y are related by x = εy. Following the usual frame-
work, consider each unknown depending on both coordinates in the
form f = f (x,y) and postulate two-scale asymptotic expansions in terms
of the small parameter ε for the set θε of unknowns {u,σ s, c

s
±} and

{�̄, ϕ̄, ψ̄b,E, c±, cb,µ±,µb±, π,σ f , pb, v, τM} in the form:

θε(x,y)= θ0(x,y)+ εθ2(x, y)+ ε2θ2(x, y)+· · ·
with the coefficients θ i , spatially periodic in y over the unit cell Y =Yf ∪Ys.
By the chain rule the operator ∂/∂x is replaced by ∂/∂x + ε−1∂/∂y with ∂x
and ∂y denoting the gradients with respect to x and y. The perturbation
approach consists in inserting the ansatz in the above microscopic model
and solve the initial/boundary-value problems which arise at the successive
orders of ε. For the fluid in Yf we have

ε̃ε̃0�yy(ϕ̄
0 + ψ̄0

b)=
2F 2c0

b

RT
sinh ϕ̄0, E0 =−RT

F
∇y(ϕ̄

0 + ψ̄0
b),

c0
± = c0

b exp(∓ϕ̄0), (4.8)
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µ0
± = µ̄± +RT (±ψ̄0

b + log c0
b), µ1

± = RT

c0
b

(±c0
bψ̄

1
b + c1

b),

�̄0 = ϕ̄0 + ψ̄0
b, (4.9)

∇y · v0 =0, ∇x · v0 +∇y · v1 =0, (4.10)

∇y ·σ 0
f =0, ∇x ·σ 0

f +∇y ·σ 1
f =0, σ 0

f =−(p0
b +π0)I +τ 0

M, (4.11)

p0 =p0
b +π0, π0 =2RT c0

b(cosh ϕ̄0 −1),

τ 0
M = ε̃ε̃0

2

(
2E0 ⊗E0 − (E0)2I

)
, (4.12)

∇yp
0
b +2RT (cosh ϕ̄0 −1)∇yc

0
b −2RT c0

b sinh ϕ̄0∇yψ̄
0
b =0, (4.13)

µf�yyv0 =∇xp
0
b +∇yp

1
b +2RT (cosh ϕ̄0 −1)(∇xc

0
b +∇yc

1
b)−

−2RT c0
b sinh ϕ̄0(∇xψ̄

0
b +∇yψ̄

1
b), (4.14)

∇y · [D± exp(∓ϕ̄0)(∇yc
0
b ± c0

b∇yψ̄
0
b)]

=∇y · [D± exp(∓(ϕ̄0 + ψ̄0
b))∇y(c

0
b exp(±ψ̄0

b))]=0, (4.15)

∇y · [exp(∓ϕ̄0)c0
bv0]=∇y · [D± exp(∓ϕ̄0)(∇xc

0
b ± c0

b∇xψ̄
0
b +

+∇yc
1
b ± c0

b∇yψ̄
1
b)], (4.16)

∂

∂t
[c0

b exp(∓ϕ̄0)]+∇x · [c0
b exp(∓ϕ̄0)v0]+

+∇y · [exp (∓ϕ̄0)(c1
bv0 ∓ c0

bϕ̄
1v0 + c0

bv1)]

=∇x · [D± exp(∓ϕ̄0)(∇yc
1
b ± c0

b∇yψ̄
1
b +∇xc

0
b ± c0

b∇xψ̄
0
b)]+

+∇y · {D± exp(∓ϕ̄0)[∇yc
2
b +∇xc

1
b ± c0

b(∇yψ̄
2
b +∇xψ̄

1
b)±

±c1
b(∇yψ̄

1
b +∇xψ̄

0
b)∓ ϕ̄1(∇yc

1
b +∇xc

0
b ± c0

b(∇yψ̄
1
b +∇xψ̄

0
b))]}.

(4.17)
For the clay particles in Ys we have

∇y · (csEy(u0))=0, ∇y · [cs(Ey(u1)+Ex(u0)]=0, (4.18)

∇x ·σ 0
s +∇y ·σ 1

s =0, σ 0
s = cs(Ex(u0)+Ey(u1)), (4.19)

∂cs0
±
∂t

+∇x ·
(
cs0
±
∂u0

∂t

)
+∇y ·

(
cs1
±
∂u0

∂t
+ cs0

±
∂u1

∂t

)
=0 (4.20)

and the parametrized boundary conditions on ∂Yfs read as
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∇y(ϕ̄
0 + ψ̄0

b) ·n= σF

ε̃ε̃0RT
, v0 = ∂u0

∂t
, v1 = ∂u1

∂t
, (4.21)

cs(Ey(u0))n=0, σ 1
sn=σ 1

f n, (4.22)

(−(p0
b +2RT c0

b(cosh ϕ̄0 −1))I +τ 0
M)n= cs(Ex(u0)+Ey(u1))n, (4.23)

D± exp(∓(ϕ̄0 + ψ̄0
b))∇y(c

0
b exp(±ψ̄0

b)) ·n=0, (4.24)

−D± exp(∓ϕ̄0)[∇xc
0
b ± c0

b∇xψ̄
0
b +∇yc

1
b ± c0

b∇yψ̄
1
b ] ·n=0, (4.25)

−D± exp(∓ϕ̄0)[∇yc
2
b +∇xc

1
b ± c0

b(∇yψ̄
2
b +∇xψ̄

1
b)± c1

b(∇yψ̄
1
b +∇xψ̄

0
b)∓

∓ϕ̄1(∇yc
1
b +∇xc

0
b ± c0

b(∇yψ̄
1
b +∇xψ̄

0
b))] ·n=0. (4.26)

Finally considering the perturbation expansions of (4.6) and (4.7) and
noting that ∇y · 〈g1〉=0 we have

〈
∂f

∂t

〉
= ∂〈f 0〉

∂t
− 1

|Y |
∫

∂Yfs

(ε−1f 0v0 +f 1v0 +f 0v1) ·n d�+O(ε), (4.27)

〈∇ ·g〉=∇x · 〈g0〉+ 1
|Y |

∫

∂Yfs

(ε−1g0 +g1) ·nd�+O(ε). (4.28)

By choosing g=f v so that g0 =f 0v0 and g1 =f 1v0 +f 0v1, after adding
(4.27) and (4.28) we have the expansion

〈
∂f

∂t
+∇ · (f v)

〉
= ∂〈f 0〉

∂t
+∇x · 〈f 0v0〉+O(ε). (4.29)

At O(ε0) Equations (4.28) and (4.29) can be written as

〈∇x ·g0〉+ 〈∇y ·g1〉=∇x · 〈g0〉+ 1
|Y |

∫

∂Yfs

g1 ·nd�, (4.30)
〈
∂f 0

∂t

〉
+ 〈∇x · (f 0v0)

〉+ 〈∇y · (f 1v0 +f 0v1)
〉= ∂〈f 0〉

∂t
∇x · 〈f 0v0〉 . (4.31)

4.2.1. Nonoscillatory Variables

We begin by collecting our set of ‘slow’ variables which are independent
of the fast coordinate y. Begin by noting that variables such as u0 and
c0

b exp(±ψ̄0
b) satisfy the Neumann problems given by (4.18)(a) and (4.15)

together with the boundary conditions (4.22)(a) and (4.24) whose solu-
tion are the rigid motions u0(x,y, t)= u0(x, t) and c0

b exp(±ψ̄0
b) (x,y, t)=

c0
b exp(±ψ̄0

b)(x, t). Further, taking the product of this last result for cations
and anions furnish c0

b(x,y, t)=c0
b(x, t) and ψ̄0

b(x,y, t)= ψ̄0
b(x, t). Using this
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result in (4.9)(a) give µ0
±(x,y, t)=µ0

±(x, t). Finally using these results in
(4.13) also implies ∇yp

0
b =0 and p0

b(x,y, t)=p0
b(x, t). Therefore, our set of

‘slow’ variables is {u0, c0
b, ψ̄

0
b,µ

0
±, p

0
b}.

4.2.2. Local Poisson–Boltzmann

Since ψ̄0
b is independent of the fast coordinate y, from(4.8)(b), we have

E0 =−RT F−1∇yϕ̄
0 and the Poisson equation (4.8)(a) along with boundary

condition (4.21)(a) lead to the local Poisson–Boltzmann problem for ϕ̄0

�yyϕ̄
0 = 1

(l0D)
2

sinh ϕ̄0 in Yf , (4.32)

∇yϕ̄
0 ·n= Fσ

RT ε̃ε̃0
on ∂Yf

with l0D ≡ (ε̃ε̃0RT/2F 2c0
b)

1/2 denoting the zeroth-order Debye’s length.
Defining the averaged charge density q0

∗ = F 〈c0
+ − c0

−〉, by averaging the
Boltzmann distributions (4.8)(c) we obtain q0

∗ =−2Fc0
b〈sinh ϕ̄0〉. Moreover,

the local version of the electroneutrality condition (2.15) reads

q0
∗ =−2Fc0

b

|Y |
∫

Yf

sinh ϕ̄0 dY =− 1
|Y |

∫

∂Yfs

σ d�. (4.33)

An important consequence of (4.32) is the extension of the Poisson–
Boltzmann problem to the nonequilibrium case provided �̄0 is replaced by
the relative potential ϕ̄0. Thus, the spatial distribution ψ̄0

b (x, t) assigns refer-
ence values for the electric potential to which the excess ϕ̄0 = �̄0 − ψ̄0

b plays
the role of a potential purely associated with e.d.l. effects. Whence, the influ-
ence of nonequilibrium effects upon the e.d.l. (e.g., distortion induced by con-
vection effects (Sherwood,1980; Hinch and Sherwood, 1983)) tends to decay
as ε→ 0 and consequently, at O(ε0) the potential ϕ̄0 behaves as a classical
e.d.l. potential. Another essential feature underlying (4.32) is the fact that the
Poisson–Boltzmann problem does not survive at the macroscale. This arises
from the scaling factor ε2 in the Poisson problem (4.4)(a) which ‘shrinks’
the homogenized equation as ε→ 0. Thus, ϕ̄0 and E0 are highly oscillatory
quantities which depend strongly on y. Notably this fact is consistent with
the e.d.l. results at equilibrium where these quantities vary across the pore
fluid domain (Newman, 1973; Van Olphen, 1977; Hunter, 1994).

If we admit that the electrical charges in the solid phase are equivalent
to the surface charge σ , by defining the averaged net density in solid phase
as qs0

∗ =F(〈cs0
+ − cs0

− 〉) we have

qs0
∗ = F

|Y |
∫

Ys

(cs0
+ − cs0

− )dY =− 1
|Y |

∫

∂Yfs

σ d�. (4.34)
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4.2.3. Closure Relations for c1
b and ψ̄1

b

To derive the homogenized forms of the convection–diffusion equations
governing ion transport and Darcy’s law for the fluid, we begin by invoking
the closure problems (4.16) and (4.25). Using (4.10) (a) and recalling that
c0

b and ψ̄0
b are independent of y we have the local problems for {c1

b, ψ̄
1
b}

∇y · [D± exp(∓ϕ̄0)(∇xc
0
b ± c0

b∇xψ̄
0
b +∇yc

1
b ± c0

b∇yψ̄
1
b)
]

=∓c0
b exp(∓ϕ̄0)v0 ·∇yϕ̄

0, in Yf (4.35)

−D± exp(∓ϕ̄0)[∇xc
0
b ± c0

b∇xψ̄
0
b +∇yc

1
b ± c0

b∇yψ̄
1
b ] ·n=0, on ∂Yfs.

As the solution of the above Neumann problem is given up to a rigid motion
ĉ±(x, t), to maintain the periodicity and ensure the compatibility condition,
we rephrase it in a translated frame y ′ linked to the solid, i.e. y ′ =y −u0(x, t)

so that ∇yc
1
b =∇y ′c1

b and the r.h.s. of (4.35) is replaced by ∓c0
b exp(∓ϕ̄0)(v0 −

∂u0/∂t) ·∇yϕ̄
0 =±c0

b∇y · (exp(∓ϕ̄0)(v0 −∂u0/∂t)) (using the incompressibility
condition (4.10(a)). Note that, by invoking the divergence theorem and the
nonslip condition (4.21)(b) the average of this latter term vanishes and thus
the compatibility condition is fulfilled. As we shall illustrate next, the above
change of frame does not alter the closure problems for the effective param-
eters as they appear influenced by ∇yc

1
b rather than c1

b.
By a classical superposition argument, the solution of (4.35) can be

represented as

c1
b ± c0

bψ̄
1
b =χ±c0

b +f ± (∇xc
0
b ± c0

b∇xψ̄
0
b

)+ ĉ±(x, t), (4.36)

where χ± and f ± are auxiliary scalar and vectorial Y -periodical functions
satisfying the cell problems

∇y · [D± exp(∓ϕ̄0)∇yχ
±]=∓ exp(∓ϕ̄0)

(
v0 − ∂u0

∂t

)
·∇yϕ̄

0 in Yf , (4.37)

−D± exp(∓ϕ̄0)∇yχ
± ·n=0 on ∂Yfs

and

∇y · [D± exp(∓ϕ̄0)(∇yf
± + I )]=0 in Yf , (4.38)

−D± exp(∓ϕ̄0)(I +∇yf
±) ·n=0 on ∂Yfs.

When comparing the above closure problems with the ones derived
in the homogenization of convection–diffusion equations of nonionic spe-
cies (Auriault and Adler, 1995) and those obtained by Moyne and Murad
(2002) adopting the lower order estimate Pe=O(ε), one may observe two
essential differences. The local cell problems (4.38) for f ± are essentially
the same of the ones derived in Auriault and Adler (1995) with the excep-
tion of the appearance of the capacity coefficients (exp(±ϕ̄0)). Since the
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Poisson–Boltzmann equation (4.32) entails the dependence of ϕ̄0 on salin-
ity through the Debye’s length, this yields an extra dependence of f ± on c0

b
for ionic species. In addition, the cell problems (4.37) for χ± are new and
represent and O(Pe)-fluctuation of the ion atmosphere due to convection
effects. We remark that (4.37) has also been postulated by Sherwood (1980)
(considering the Hartmann number of O(1)) who introduced the relaxation
potentials χ± to account for this nonequilibrium effect.

Finally by adding and subtracting (4.36) over cations and anions we
obtain the closure relations for c1

b and ψ̄1
b

2c1
b = (χ+ +χ−)c0

b + (f + +f −)∇xc
0
b + (f + −f −)c0

b∇xψ̄
0
b +g(x, t),

(4.39)

2c0
bψ̄

1
b = (χ+ −χ−)c0

b + (f + −f −)∇xc
0
b + (f + +f −)c0

b∇xψ̄
0
b +h(x, t).

(4.40)

4.2.4. Darcy’s Law

To derive macroscopic Darcy’s law governing the motion of the elec-
trolyte solution we use the closure relations (4.39) and (4.40) in the
zeroth-order Stokes problem (4.14). Together with the incompressibility
condition (4.10)(a), (4.37) and boundary conditions (4.21)(b) we obtain the
following extended Stokes problem formulated in terms of {v0, p1

b, χ
±}:

µf�yyv0 −∇yp
1
b −A∇yχ

+ −B∇yχ
− =∇xp

0
b +F∇xc

0
b +G∇xψ̄

0
b, (4.41)

∇y · v0 =0 in Yf ,

∇y · [D± exp
(∓ϕ̄0)∇yχ

±]=∓ exp
(∓ϕ̄0)

(
v0 − ∂u0

∂t

)
·∇yϕ̄

0,

∇yχ
± ·n=0, v0 = ∂u0

∂t
on ∂Yfs

with

F =RT
[
2
(

cosh ϕ̄0 −1
)

I +
(

exp(−ϕ̄0)−1
)

∇yf
+ +

(
exp(+ϕ̄0)−1

)
∇yf

−
]
,

(4.42)

G=RT c0
b

[
−2 sinh ϕ̄0I +

(
exp(−ϕ̄0)−1

)
∇yf

+ −
(

exp(+ϕ̄0)−1
)

∇yf
−
]
,

(4.43)

A=RT c0
b

(
exp(−ϕ̄0)−1

)
, B=RT c0

b

(
exp(+ϕ̄0)−1

)
.

The above problem contains new relevant physical information which can
be explored to obtain further insight in the still open issues regarding the
magnitude of the macroscopic conductivities. The source terms in the r.h.s.
show that in addition to a bulk phase pressure gradient, flow is also induced
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by gradients in concentration (chemico-osmotic effect) and macroscale elec-
tric potential (electro-osmotic effect). This result reproduces the well-known
mechanisms driving flow of electrolyte solutions in microchannels composed
of parallel walls (see Gross and Osterlé, 1968; Fair and Osterlé, 1991; Sher-
wood, 1992; Szymczyk et al., 1999). Moreover, one may note the appearance
of the gradient of the characteristic relaxation potentials χ± which incor-
porates the interaction force between fluid motion and the distortion of the
charge cloud (Sherwood, 1980) when (v0 − ∂u/∂t) is not orthogonal to ∇yϕ̄

0

(as one may observe from the r.h.s. of (4.37)). This dynamical effect, param-
etrized by O(P e), plays the role of an additional electro-chemical drag force
acting in the fluid, when the e.d.l restores its equilibrium configuration after
being perturbed by the fluid velocity. It should be noted that in the particular
case of parallel particles, the e.d.l.s develop normal to the clay surface and
orthogonal to the fluid velocity. This implies that the r.h.s. of (4.37) vanishes
leading to ∇yχ

± =0 and consequently to a classical Stokes problem in terms
of {v0, p1

b} with flow driven by {∇xp
0
b,∇xc

0
b,∇xψ̄

0
b}. Moreover, by invoking

Moyne and Murad (2002) the reader may verify that the same simplification
is verified adopting the lower order estimate Pe= O(ε). Thus, the appear-
ance of the dynamical drag force involving the relaxation functions ∇yχ

± is
tied up directly to the estimate Pe= O(1) combined with microgeometries
composed of nonparallel particles.

To derive Darcy’s law from the above Stokes problem we decompose the
velocity, pressure fluctuation and relaxation potentials into their hydraulic,
chemico-osmotic and electro-osmotic components

v0 = v0
p + v0

c + v0
e , p1

b =p1
p +p1

c +p1
e , χ± =χ±

p +χ±
c +χ±

e .

The four unknowns {v0
p, p

1
p, χ

±
p } satisfy the local modified Stokes prob-

lem only driven by a pressure gradient

µf�yyv0
p −∇yp

1
p −A∇yχ

+
p −B∇yχ

−
p =∇xp

0
b,

∇y · v0
p =0 in Yf ,

∇y · [D± exp
(∓ϕ̄0)∇yχ

±
p ]±

(
v0

p − ∂u0

∂t

)
· exp

(∓ϕ̄0)∇yϕ̄
0 =0,

v0
p = ∂u0

∂t
, ∇yχ

±
p ·n=0 on ∂Yfs,

whereas the chemico and electro-osmotic components satisfy

µf�yyv0
c −∇yp

1
c −A∇yχ

+
c −B∇yχ

−
c =F∇xc

0
b,

∇y · v0
c =0 in Yf ,

∇y · [D± exp
(∓ϕ̄0)∇yχ

±
c ] ± v0

c · exp
(∓ϕ̄0)∇yϕ̄

0 =0,

v0
c =0, ∇yχ

±
c ·n=0 on ∂Yfs
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and

µf�yyv0
e −∇yp

1
e −A∇yχ

+
e −B∇yχ

−
e =G∇xψ̄

0
b,

∇y · v0
e =0 in Yf ,

∇y · [D± exp
(∓ϕ̄0)∇yχ

±
e ]± v0

e · exp
(∓ϕ̄0)∇yϕ̄

0 =0,

v0
e =0, ∇yχ

±
e ·n=0 on ∂Yfs.

Denoting {ej }(j = 1,2,3) an orthonormal basis, define the set of peri-
odic characteristic tensorial functions {κp,κc,κe} and vectorial quan-
tities {gp,gc,ge,h

±
p ,h

±
c ,h

±
e } with components {κjp,κjc ,κje } (vectors) and

{gjp, gjc , gje , h±j
p , h

±j
c , h

±j
e } (scalars) satisfying the following canonical problems:

µf�yyκ
j
p −∇yg

j
p −A∇yh

+j
p −B∇yh

−j
p =−ej ,

∇y ·κjp =0 in Yf , j =1,2,3, (4.44)

∇y · [D± exp
(∓ϕ̄0)∇yh

±j
p ]±κjp · exp

(∓ϕ̄0)∇yϕ̄
0 =0,

κjp =0, ∇yh
±j
p ·n=0 on ∂Yfs

along with

µf�yyκ
j
c −∇yg

j
c −A∇yh

+j
c −B∇yh

−j
c =−Fej ,

∇y ·κjc =0 in Yf , j =1,2,3, (4.45)

∇y · [D± exp
(∓ϕ̄0)∇yh

±j
c ]±κjc · exp

(∓ϕ̄0)∇yϕ̄
0 =0,

κjc =0, ∇yh
±j
c ·n=0 on ∂Yfs

and

µf�yyκ
j
e −∇yg

j
e −A∇yh

+j
e −B∇yh

−j
e =−Gej ,

∇y ·κje =0 in Yf , j =1,2,3, (4.46)

∇y · [D± exp
(∓ϕ̄0)∇yh

±j
e ]±κje · exp

(∓ϕ̄0)∇yϕ̄
0 =0,

κje =0, ∇yh
±j
e ·n=0 on ∂Yfs.

Thus, exploiting the linearity between the above local problems we arrive
at the decompositions

v0
p − ∂u0

∂t
=−κp∇xp

0
b, v0

c =−κc∇xc
0
b, v0

e =−κe∇xψ̄
0
b,

p1
p =gp ·∇xp

0
b, p1

c =gc ·∇xc
0
b, p1

e =ge ·∇xψ̄
0
b, (4.47)

χ±
p =h±

p ·∇xp
0
b, χ±

c =h±
c ·∇xc

0
b, χ±

e =h±
e ·∇xψ̄

0
b .

Combining the above result for v0
i (i= p, c, e) with the decomposition v0 =

v0
p + v0

c + v0
e we obtain

v0 − ∂u0

∂t
=−κp∇xp

0
b −κc∇xc

0
b −κe∇xψ̄

0
b . (4.48)
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By averaging (4.47) we also have
〈
v0

p − ∂u0

∂t

〉
=−KP∇xp

0
b, with KP ≡〈κp〉

〈v0
c〉=−KC∇xc

0
b, with KC ≡〈κc〉, (4.49)

〈v0
e〉=−KE∇xψ̄

0
b, with KE ≡〈κe〉.

Defining the Darcian velocity v0
D ≡ 〈v0 − ∂u0/∂t〉 we have from (4.48) and

(4.49)

v0
D =−KP∇xp

0
b −KC∇xc

0
b −KE∇xψ̄

0
b . (4.50)

The above result resembles in form Darcy’s law derived in Gu
et al. (1998) and Huyghe and Janssen (1997), within the context of the
Thermodynamics of Irreversible Processes, and Moyne and Murad (2002)
within the framework of homogenization adopting the estimate Pe=O(ε).
Nevertheless, by invoking the new closure problems (4.44)–(4.46), one
may observe crucial differences in the interpretation of the conductivities
appearing in (4.50). For example, the first term in the r.h.s. of Darcy’s law
quantifies the hydraulic component of the flow driven by the bulk phase
pressure gradient. However, in contrast to the classical viscous and geo-
metric interpretation of hydraulic conductivity, the coefficient KP in (4.50)
also incorporates the additional electrical drag induced by the distortion of
the e.d.l. appearing quantified by the terms involving the relaxation poten-
tials h±j

p in (4.44). Hence, we envisage KP as a generalized tensor which
incorporates the classical viscous drag with the solid particles and an elec-
tro-viscous effect associated with the perturbations in the fluid flow due to
the fluctuation of the charge cloud.

The two other driving forces in the r.h.s. of (4.50) are nothing but the
chemico-osmotic and electro-osmotic components of the flow driven by
concentration and electric potential gradients (Lai et al., 1991; Huyghe and
Janssen, 1997; Gu et al., 1998). In a similar fashion to KP, the magni-
tude of the chemico-osmotic and electro-osmotic permeabilities KC and KE

are strongly influenced by the relaxation potentials h±
c and h±

e associated
with the deformation of the ion atmosphere. The reader shall verify that
such perturbation disappears under the assumption PeL � O(ε) (Moyne
and Murad, 2002).

Finally we remark the information concerning the influence of the
fluctuating concentration c1

b (through the characteristic functions χ± and
f ± in (4.36)) on the magnitude of the conductivities in Darcy’s law. In
particular, from (4.42) and (4.43), one may note that the functions F and
G are hierarchically governed by leading components associated with the
distribution of the electric potential across the pore space (first terms in
the r.h.s. of (4.42) and (4.43)) and additional fluctuating contributions due
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to the gradient of the characteristic functions f ±. The reader may ver-
ify invoking Moyne and Murad (2002, 2006) that for parallel particles the
contribution of ∇yf

± and ∇yχ
± to the axial velocity and permeabilities

in (4.41)–(4.43) vanish and consequently the closure problems (4.44)–(4.46)
reduce to classical Stokes type problems with F and G solely given by the
first term in the r.h.s of (4.42) and (4.43).

4.2.5. Macroscopic Movement of the Ions

We now proceed by deriving the homogenized form of the modified con-
vection–diffusion equation. Integrating (4.17) over Y , using (4.31) for the
l.h.s. with the choices

f 0 = c0
b exp(∓ϕ̄0), f 1 = exp(∓ϕ̄0)(c1

b ∓ c0
bϕ̄

1),

we obtain at O(ε0)

〈
∂

∂t

(
c0

b exp(±ϕ̄0)
)〉+ 〈∇x · (c0

b exp(±ϕ̄0)v0)〉+
+ 〈∇y · [exp

(∓ϕ̄0) (c1
bv0 ∓ c0

bϕ̄
1v0 + c0

bv1)]〉

= ∂

∂t

〈
c0

b exp(±ϕ̄0)
〉+∇x · 〈c0

b exp(±ϕ̄0)v0〉 . (4.51)

Further by averaging the r.h.s. of (4.17), using (4.30) with the choices

g0 =D± exp
(∓ϕ̄0) (∇yc

1
b ± c0

b∇yψ̄
1
b +∇xc

0
b ± c0

b∇xψ̄
0
b

)

and

g1 =D± exp
(∓ϕ̄0) [∇yc

2
b +∇xc

1
b ± c0

b

(∇yψ̄
2
b +∇xψ̄

1
b

)± c1
b

(∇yψ̄
1
b+∇xψ̄

0
b

)±
±ϕ̄1 (∇yc

1
b +∇xc

0
b ± c0

b

(∇yψ̄
1
b +∇xψ̄

0
b

))]

and using the boundary condition (4.26) we obtain

∇x ·
[
D±
〈
exp(∓ϕ̄0)

(
∇yc

1
b ± c0

b∇yψ̄
1
b +∇xc

0
b ± c0

b∇xψ̄
0
b

)〉]
+

+
〈
∇y ·

[
D± exp(∓ϕ̄0)

(
∇yc

2
b +∇xc

1
b ± c0

b

(
∇yψ̄

2
b +∇xψ̄

1
b

)
±

±c1
b

(
∇yψ̄

1
b +∇xψ̄

0
b

))
± ϕ̄1

(
∇yc

1
b +∇xc

0
b ± c0

b

(
∇yψ̄

1
b +∇xψ̄

1
b

))]〉

=∇x ·
[
D±
〈
exp(∓ϕ̄0)

(
∇yc

1
b ± c0

b∇yψ̄
1
b

)〉
+

+D±
〈
exp(∓ϕ̄0)

〉(
∇xc

0
b±c0

b∇xψ̄
0
b

)]
. (4.52)
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Thus, equating (4.51) and (4.52) gives

∂

∂t

(〈
exp(∓ϕ̄0)

〉
c0

b

)+∇x · (〈exp(∓ϕ̄0)v0〉 c0
b

)

=∇x · [D±
〈
exp(∓ϕ̄0)

(∇yc
1
b ± c0

b∇yψ̄
1
b

)〉 +
+D±

〈
exp(∓ϕ̄0)

〉 (∇xc
0
b ± c0

b∇xψ̄
0
b

)]
.

Hence, denoting 〈.〉α ≡|Yα|−1
∫
Yα

·dYα(α= f , s) the intrinsic volume aver-
age operator over the α-portion of the unit cell and nα ≡|Yα|/|Y |(α= f , s)
the volume fraction of the α-phase, using the closure relations (4.36) for
c1

b ± c0
bψ

1
b we obtain

∂

∂t

(
nf
〈
exp(∓ϕ̄0)

〉f
c0

b

)
+∇x ·

(
nf
〈
exp(∓ϕ̄0)(v0 −D±∇yχ

±)
〉f
c0

b

)

=∇x ·
[
nfD±

〈
exp(∓ϕ̄0)(I +∇yf

±)
〉f (∇xc

0
b ± c0

b∇xψ̄
0
b

)]
.

Finally making use of the decomposition χ± = χ±
p + χ±

c + χ±
e and the

closure relations for χ±
i (i=p, c, e) in (4.47) in the above result we obtain

∂

∂t

(
nfG±c0

b

)+∇x ·J 0
± =0

with J 0
± ≡G±c0

bv0
± −nf

(
Dc

±∇xc
0
b ±De

±c
0
b∇xψ̄

0
b +D

p
±∇xp

0
b

)
(4.53)

denoting the homogenized flux of cations and anions and

G± = 〈exp
(∓ϕ̄0)〉f , G±v0

± = 〈exp
(∓ϕ̄0) v0〉 , D

p
± =D±

〈
exp

(∓ϕ̄0)∇yh
±
p

〉f
,

DI
± =D±

〈
exp

(∓ϕ̄0) (I +∇yf
± + c0

b∇yh
±
I

)〉f
, I = c, e. (4.54)

Equation (4.53) is our homogenized form of the Nernst–Planck equa-
tion governing the macroscopic movement of the charged species. When
comparing this form and the local cell representations (4.54) with the cor-
responding well-known results for nonionic species (e.g. Auriault and Adler,
1995) one may observe some essential differences. We remark particularly
the appearance of the up-scaled coefficients G± which incorporate the aver-
aged storage capacity owing to the ion exchange capacity with the e.d.l.;
the convection of the ions induced by the averaged velocities v0

± which dif-
fer from 〈v0〉 due to the disturbance in the advection caused by the charge
cloud; and the strong dependence of the diffusion coefficients DI

±(I =
p, c, e) on the relative electrical potential ϕ̄0 and consequently on concen-
trations through the local Poisson–Boltzmann problem (4.32). In addition,
the influence of the local fluctuation in concentration c1

b on the diffusivities
appears manifested through the characteristic functions f ± (which also
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appear in the case of nonionic species (Auriault and Adler, 1995) and h±
I .

The effect of this latter O(P e)-function is restricted to ionic species and is
tied up to the perturbations in the diffusivities caused by the fluctuations
in the charge cloud induced by advection effects.

Finally, adopting an entirely analogous procedure in the macroscopiza-
tion of the purely advection equation (4.20) governing ion movement in the
solid phase, we obtain a result similar to (4.53). In terms of the averaged
concentrations 〈cs0

± 〉 (rather than writing in terms of bulk concentrations)
we obtain, after dropping the diffusive component of the flux

∂

∂t
〈cs0

± 〉+∇x · 〈J s0
±〉=0 with J s0

± = cs0
±
∂u0

∂t
. (4.55)

4.2.6. Modified Terzaghi’s Decomposition

To derive the modified Terzaghi’s effective principle we average the fluid
and solid momentum balances (4.11)(b) and (4.19)(a). Using the divergence
theorem, boundary condition (4.22)(b) and the periodicity we obtain the
overall momentum balance

∇x ·σ 0
T =0, where σ 0

T ≡〈σ 0
f 〉+〈σ 0

s 〉 (4.56)

is the overall stress tensor of the mixture. The modified Terzaghi’s effective
stress principle can be obtained by considering the homogenized constitu-
tive laws for 〈σ 0

f 〉 and 〈σ 0
s 〉. To this end we rephrase the Neumann problem

(4.18)(b) and (4.23) for u1 as

∇y · (csEy(u1))=0 in Ys (4.57)

− [p0
b(x, t)I +�0

d(x,y, t)
]
n= cs[Ex(u0(x, t))+Ey(u1)]n on ∂Yfs,

where �0
d is a disjoining stress tensor which incorporates the Donnan

osmotic pressure π0 and Maxwell stresses τ 0
M

�0
d =π0I −τ 0

M =2RT c0
b(cos h ϕ̄0 −1)I −τ 0

M. (4.58)

Equations (4.57) and (4.58) provide relevant information on the local stress
analysis of charged particles. When comparing the closure problem (4.57)
for u1 with the similar Neumann problem which appears in the homog-
enization derivation of Biot’s equations of poroelasticity (see, e.g., Auria-
ult and Sanchez–Palencia, 1977; Auriault, 1990; Terada et al., 1998), the
novelty is the appearance of the disjoining tensor �0

d which incorporates
the influence of electro-chemical effects on the traction boundary condi-
tion. We remark that for parallel particles, the component of �0

d normal
to the clay surface is nothing but the electrostatic component of the dis-
joining pressure (Derjaguin et al., 1987; Dahnert and Huster, 1999). For a
more detailed discussion on this issue (see Moyne and Murad 2002, 2003).
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By linearity we have

u1(x,y, t)= ζ (y)p0
b(x, t)+ ξ(y)Ex(u0(x, t))+u1

π(x,y, t)+ û(x, t). (4.59)

The canonical cell problems for the third-order tensor ξ and the vector ζ

are classical (Auriault 1990; Terada et al., 1998; Lydzba and Shao, 2000).

∇y · (csEy(ξ))=0 in Ys, ∇y · (csEy(ζ ))=0 in Ys,

(csEy(ξ))n=−csIIn on ∂Yfs, (csEy(ζ ))n=−In on ∂Yfs

where II denotes the unity fourth-order tensor with components δij δkl.
The novelty in (4.59) is the appearance of the electro-chemical component
u1
π which corresponds to the particle displacement component due to the

traction induced by the disjoining tensor �0
d

∇y · (csEy
(
u1
π

))=0 in Ys,

(csEy(u1
π))n=−�0

dn on ∂Yfs. (4.60)

Denoting Cs ≡〈cs(II +Ey(ξ)) the macroscopic elastic modulus (fourth-rank
tensor), by averaging the constitutive equation (4.19)(b) for σ 0

s and using
(4.59) we obtain

〈
σ 0

s

〉=CsEx
(
u0)+〈csEx(ζ )〉p0

b +〈csEy(u1
π)〉. (4.61)

By averaging the constitutive equation for σ 0
f (4.11)(c) and using (4.58) we

get
〈
σ 0

f

〉= −nfp
0
bI − 〈

�0
d

〉
. Using this result in definition (4.56) along with

(4.61) we obtain

σ 0
T =−αp0

b +CsEx(u0)−�0, (4.62)

where α ≡ nfI − 〈csEy(ζ )〉 is the Biot–Willis coefficient (Biot and Willis,
1957) and

�0 = 〈�0
d

〉+ns�
0
S with �0

S ≡−〈csEy(u1
π)
〉s

(4.63)

with ns = 1 − nf the volume fraction of the solid (recall that 〈·〉 = ns〈·〉s).
Equation (4.62) reproduces the modified form of Terzaghi’s decomposition
derived in Murad and Moyne (2002) and Moyne and Murad (2002) under
the assumption Pe= O(ε). This suggests that the closure relation for �0

S is
independent of the estimate adopted for the Péclet number. Thus, in addition
to the pore pressure p0

b and contact stresses CsEx(u0), the above result shows
the appearance of the electro-chemical tensor �0 incorporating the influence
of electro-chemical effects upon the overall stresses of the clay clusters σ 0

T.
From (4.63) this quantity is decomposed into the averaged counterpart of �0

d
(which from (4.58) is the sum of chemico-osmotic and Maxwell stresses) and the
additional component �0

S, which consists of electro-chemical stresses in the
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solid particles owing to the traction boundary condition induced by �0
d in

(4.60). Since �0
S represents a stress acting effectively in the solid phase, it

may be viewed as the electro-chemical component directly responsible for the
expansion of the aggregates. Whence, following the terminology of Moyne and
Murad (2002) and Murad and Moyne (2000), we refer to this quantity as a
swelling stress tensor which plays the role of a tensorial generalization of Low’s
swelling pressure to incorporate deviatoric effects. Likewise the other effective
electro-chemical parameters, �0

S depends in a non-linear fashion on c0
b and on

cell microgeometry (see Murad and Moyne, 2002).
The above modified Terzaghi’s decomposition resembles in form some

heuristic effective stress principles for clays (see, e.g., Lambe, 1960; Sridharan
and Rao, 1973). Historically, physicochemical forces have heuristically been
modeled at the macroscale through the addition of a term to Terzaghi’s prin-
ciple which measures the effect of net repulsive (RI ) and attractive (AI )
forces between particles. This stress is commonly denoted by (R−A)I (see
Sridharan and Rao, 1973). The electro-static component of R has been con-
troversially associated with different macroscopic quantities. Barbour and
Fredlund (1989) and Mitchell (1993) have identified it with the averaged Don-
nan osmotic pressure whereas Achari et al. (1999) have postulated the equal-
ity between R and the averaged disjoining pressure calculated via classical
Gouy–Chapmann e.d.l. theory in a parallel particle arrangement (see New-
man, 1973; Van Olphen, 1979; Hunter, 1994). Moreover, within the frame-
work of mixture theory, a similar form of (4.62) has been postulated to
describe the mechanics of charged hydrated biological tissues. Likewise, an
extra physico-chemical component, referred to as chemical-expansion stress
(Tc), is thermodynamically introduced and included in the original form of
Terzaghi’s principle (see, e.g., Lai et al., 1991). The mixture theory approach
suggests a constitutive law for the chemical-expansion stress depending expo-
nentially on ion concentration (Lai et al., 1991). The microscopic representa-
tion (4.63) consists of a first rational attempt to overcome the discrepancies
between the different macroscopic versions of the constitutive law for �0

S.
By solving numerically the local cell problems (4.63) and (4.60) in random
cell geometries one may accurately derive the constitutive behavior of the
swelling stress tensor. Finally, it should be noted that for microstructural
arrangements composed of parallel particles, �0

S reduces to a scalar compo-
nent normal to the clay surface. Such component has been identified with
Low’s swelling pressure (Low, 1987), given by the averaging of the disjoining
pressure (see Moyne and Murad, 2002, 2006).

4.2.7. Overall Mass Balance

We now derive the overall macroscopic mass balance. By averaging (4.10)(b),
using boundary condition (4.21)(c) together with the closure equation
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(4.59) and the divergence theorem we get

〈∇x · v0〉=− 〈∇y · v1〉=− 1
|Y |

∫

�

v1 ·nd�=− 1
|Y |

∫

�

∂u1

∂t
·nd�

=
〈
∇y · ∂u1

∂t

〉
=〈∇y · ξ〉 :

∂

∂t
Ex(u0)+〈∇y · ζ 〉∂p

0
b

∂t
+
〈
∇y · ∂u1

π

∂t

〉

with A : B denoting the classical inner product between tensors (AijBij ). By
rewriting the above result in terms of the Darcian velocity v0

D we obtain

∇x · v0
D +α∗ :

∂

∂t
Ex(u0)=β ∂p

0
b

∂t
+ ∂γπ

∂t
,

where α∗ ≡ nfI − 〈∇y · ξ〉, β ≡ 〈∇y · ζ 〉, and γπ = 〈∇y · u1
π 〉. Using the anal-

ysis presented in Auriault (1997) one can show the classical relation α∗ ≡
nfI −〈csEy(ζ )〉=α a commonly adopted in Biot’s theory of poroelasticity.
In addition to the mechanical compressibilities α and β which appear in
the theory of poroelasticity, one may also observe the appearance of the
extra electro-chemical component ∂γπ/∂t quantifying the microscopic com-
pressibility of the particles under the traction induced by the disjoining ten-
sor �0

d in (4.60). This electro-chemical component has been introduced in
the context of equilibrium thermodynamics by Mitchell (1993) and Bar-
bour and Fredlund (1989). Unlike the mechanical coefficients α and β, the
electro-chemical compressibility exhibits nonlinear dependence on c0

b. The
reader may verify that the case of microscopically incompressible particles
we have α=1 and β=γπ =0.

4.2.8. Mass Balance of the Fluid Phase

To close the system it remains to derive a mass balance for the fluid phase
to compute the porosity nf . To this end we set f 0 =1 and f 1 =0 in (4.31)
and make use of (4.10)(b) to obtain

∂nf

∂t
+∇x · 〈v0〉=0.

By rewriting the above result in terms of the Darcy velocity v0
D = 〈

v0 −
∂u0/∂t

〉
and neglecting the convective effects induced by ∂u0(x, t)/∂t we

obtain, at O(ε0)

∂nf

∂t
+∇x · v0

D +nf∇x · ∂u0

∂t
=0.

4.3. summary of the two-scale model

Let {ζ , ξ} be the set of aforementioned coefficients depending only on cell
geometry. Further let {f ±,κp,κc,κe,h

±
p ,h

±
c ,h

±
e } be the set of characteristic
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functions depending on both microgeometry and c0
b(x, t). The two-scale

model consists in finding the macroscopic variables {σ 0
T,u

0, p0
b, v0

D, c
0
b, ψ̄

0
b,

J 0
±, nf } satisfying

∇x ·σ 0
T =0,

σ 0
T =−αp0

b +CsEx(u0)−�0,

v0
D =−KP∇xp

0
b −KC∇xc

0
b −KE∇xψ̄

0
b,

∇x · v0
D +α :

∂

∂t
Ex(u0)=β ∂p

0
b

∂t
+ ∂γπ

∂t
,

∂

∂t

(
nfG±c0

b

)+∇x ·J 0
± =0,

J 0
± =G±c0

bv0
± −nf

(
Dc

±∇xc
0
b ±De

±c
0
b∇xψ̄

0
b +D

p
±∇xp

0
b

)
,

∂nf

∂t
+∇x · v0

D +nf∇x · ∂u0

∂t
=0 in �,

where the components
{
α,Cs,�

0,KP,KC,KE, β, γπ ,D
p
±,D

c
±,D

e
±,G±, v0

±
}

admit the following microscopic representations in the unit cell Y :

�0 =〈�0
d〉+ns�

0
S, �0

S =− 〈csEy
(
u1
π

)〉s
, Cs =〈cs(II +Ey(ξ))〉,

α =nfI −〈csEy(ζ )〉=nfI −〈∇y · ξ〉, β≡〈∇y · ζ 〉,
KP =〈κp〉, KC =〈κc〉, KE =〈κe〉, γπ =〈∇y ·u1

π 〉,
DI

± =D±
〈
exp (∓ϕ̄0)

(
I +∇yf

± + c0
b∇yh

±
I

)〉f
, I = c, e, (4.64)

D
p
± =D±

〈
exp(∓ϕ̄0)∇yh

±
p

〉f
, G± = 〈exp(∓ϕ̄0)

〉f
, G±v0

± = 〈exp
(∓ϕ̄0) v0〉

with the set of local variables {�0
d, ϕ̄

0,E0,u1
π } given as

�0
d =π0I−τ 0

M, π0 =2RT c0
b(cosh ϕ̄0−1), τ 0

M = ε̃ε̃0

2

(
2E0 ⊗E0−(E0)2I

)
,

v0 − ∂u0

∂t
=−κp∇xp

0
b −κc∇xc

0
b −κe∇xψ̄

0
b

and

ε̃ε̃0�yyϕ̄
0 = 2F 2c0

b
RT

sinh ϕ̄0
∣∣ ∇y · (csEy(u1

π))=0 in Ys,

E0 =−RT F−1∇yϕ̄
0 in Yf

∣∣ (csEy(u1
π))n=�0

dn on ∂Yfs.

ε̃ε̃0E
0 ·n=−σ on ∂Yfs

The above system is supplemented by initial and boundary conditions
on the macroscopic boundary of the swelling medium. Finally, after solving
for {c0

b, p
0
b, ψ̄

0
b, ϕ̄

0}, the averaged ion concentrations, fluid thermodynamic
pressure and total electric potential can be recovered within a post-pro-
cessing approach considering the averaged forms of (4.8)(c), (4.9)(c) and
(4.12)(a). We then have
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〈c0
±〉f = c0

b

〈
exp

(∓ϕ̄0)〉f ,
〈
p0〉f =p0

b +2RT c0
b

(〈cosh ϕ̄0〉f −1),
〈
φ̄0〉f = 〈ϕ̄0〉f + ψ̄0

b .

5. Alternative Formulation: Onsager’s Reciprocity Relations

The two-scale model can also be rephrased in a more appropriate formula-
tion resembling in form the macroscopic model derived within the frame-
work of the Thermodynamics of irreversible Processes based on Onsager’s
reciprocity relations (de Groot and Mazur, 1962; Prigogine, 1967). To this
end we proceed by rewriting the homogenized convection-diffusion equa-
tions (4.53) in terms of the total flux of species J 0, the electric current I 0

e
and the averaged net charge density q0

∗ given by

J 0 +nfGcc
0
b
∂u0

∂t
≡J 0

+ +J 0
−; I 0

e +FnfGsc
0
b
∂u0

∂t
≡F(J 0

+ −J 0
−);

q0
∗ =−2Fc0

b

〈
sinh ϕ̄0〉 ,

where (4.33) has been used. By adding and subtracting (4.53) over cations
and anions we obtain

∂

∂t

(
nfGcc

0
b

)=−∇x ·
(
nfGcc

0
b
∂u0

∂t
+J 0,

)

F
∂

∂t

(
nfGsc

0
b

)= ∂q0
∗

∂t
=−∇ ·

(
FnfGsc

0
b
∂u0

∂t
+ I 0

e

)
. (5.1)

with

J 0 ≡Gcc
0
bv0

c −nf
(
Dc

∗∇xc
0
b +�e

∗c
0
b∇xψ̄

0
b +Dp

∗∇xp
0
b

)
,

I 0
e ≡FGsc

0
bv0

s −nfF
(
�c

∗∇xc
0
b +De

∗c
0
b∇xψ̄

0
b +�p

∗∇xp
0
b

)
(5.2)

and the set of overall electric capacities and diffusion coefficients given as

Gc =G+ +G− =2〈cosh ϕ̄0〉f ; Gs =G+ −G− =−2〈sinh ϕ̄0〉f ; (5.3)

Gcv0
ch =G+

(
v0
+ −nf

∂u0

∂t

)
+G−

(
v0
− −nf

∂u0

∂t

)
=2

〈
cosh ϕ̄0

(
v0 − ∂u0

∂t

)〉
;

Gsv0
sh =G+

(
v0
+ −nf

∂u0

∂t

)
−G−

(
v0
− −nf

∂u0

∂t

)
=−2

〈
sinh ϕ̄0

(
v0 − ∂u0

∂t

)〉
;

(5.4)

DI
∗ =DI

+ +DI
−, �I

∗ =DI
+ −DI

−, I =p, c, e. (5.5)

In order to embed the constitutive relations for {v0
D,J

0
c, I

0
e} in the

framework of Onsager’s reciprocity relations, we remove the purely advec-
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tive component of nonionic species 2c0
bv0

D from J 0 and define the diffusive
flux J 0

c in the sense of Onsager in the form

J 0
c ≡J 0 −2c0

bv0
D = c0

b

(
Gcv0

c −2
〈
v0〉)−nf

(
Dc

∗∇xc
0
b +�e

∗c
0
b∇xψ̄

0
b +Dp

∗∇xp
0
b

)
.

(5.6)

Unlike J 0, the flux J 0
c only incorporates the fluctuation in the advec-

tion velocity (Gcv0
c − 2v0

D) resulting from the interaction with the e.d.l.
In the absence of e.d.l. effects (sinh ϕ̄ = 0, cosh ϕ̄1 = 1,Gs = 0,Gc = 2, v0

c =
〈v0 − ∂u0/∂t〉 = v0

D), the advective parts of J 0
c and I 0

e vanish and the con-
stitutive laws of these fluxes become purely diffusive.

Using (4.50), (4.48) and (5.4) in (5.2) and (5.6) we have

J 0
c =− (2c0

b

〈
κp(cosh ϕ̄0 −1)

〉+nfD
p
∗
)∇xp

0
b − (2c0

b

〈
κc(cosh ϕ̄0 −1)

〉+
+nfD

c
∗
)∇xc

0
b − c0

b

(
2
〈
κe(cosh ϕ̄0 −1)

〉+nf�
e
∗
)∇xψ̄

0
b , (5.7)

I 0
e =−F (−2c0

b

〈
κp sinh ϕ̄0〉+nf�

p
∗
)∇xp

0
b −F (−2c0

b

〈
κc sinh ϕ̄0〉+nf�

c
∗
)∇xc

0
b −

−F (2c0
b

〈
κe sinh ϕ̄0〉+nfD

e
∗
)∇xψ̄

0
b . (5.8)

Hence, replacing ∇xψ̄
0
b by ∇xψ

0
b and ∇xc

0
b by ∇xµ

0
b =RT∇x ln c0

b (com-
monly referred to as gradient of the Nernst potential Gu et al., 1998) from
(4.50), (5.7) and (5.8) the three fluxes {v0

D,J
0
c, I

0
e} appear conjugated (in the

thermodynamical sense) with the three driving forces {∇xp
0
b,∇xµ

0
b,∇xψ

0
b}

in the form:
⎛

⎝
v0

D
J 0

c
I 0

e

⎞

⎠=−
⎛

⎝
LPP LPC LPE

LCP LCC LCE

LEP LEC LEE

⎞

⎠

⎛

⎝
∇xp

0
b

RT∇x ln c0
b∇xψ

0
b

⎞

⎠

with

LPP =KP, LPC = c0
bKC

RT
, LPE

FKE

RT
, (5.9)

LCP =
(

2c0
b

〈
κp(cosh ϕ̄0 −1)

〉
+nf D

p
∗
)
, LCC = c0

b

RT

(
2c0

b

〈
κc(cosh ϕ̄0 −1)

〉
+nf D

c
∗
)
,

LCE = Fc0
b

RT

(
2
〈
κe(cosh ϕ̄0 −1)

〉
+nf �

e
∗
)
, LEP =F

(
−2c0

b

〈
κp sinh ϕ̄0

〉
+nf �

p
∗
)
,

LEC = Fc0
b

RT

(
−2c0

b

〈
κc sinh ϕ̄0

〉
+nf �

c
∗
)
, LEE = F 2c0

b

RT

(
−2

〈
κe sinh ϕ̄0

〉
+nf D

e
∗
)
.

The above equations are nothing but Onsager’s reciprocity relations. The
coefficients LEE and LEP are commonly referred to as the electric conduc-
tivity in Ohm’s law and the streaming current parameter which reflects elec-
tric current driven by hydraulic gradients (Lyklema, 1993). By establishing
a direct correlation between the magnitude of the Onsager’s coefficients and
the microscopic electro-chemical behavior of the electrolyte solution, the
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closure problems in (5.9) bridge the gap between the macroscopic Thermo-
dynamics of Irreversible Processes and microscopic Colloid Science of elec-
trolyte solutions.

5.1. alternative form of the electroneutrality condition

By rephrasing the purely advective transport equation of the species
in the solid phase (4.55) in terms of the averaged net charge density
qs0

∗ ≡F 〈cs0
+−cs0

− 〉 we obtain

∂qs0
∗
∂t

+∇x ·
(
qs0

∗
∂u0

∂t

)
=0.

Defining the surface averaging 〈σ 〉fs ≡|∂Yfs|−1
∫
∂Y fs

σ d� and the surface vol-
ume fraction nfs = |∂Yfs|/|Y |, by combining the above result with (4.34)
gives

∂

∂t

(
nfs〈σ 〉fs)+∇x ·

(
nfs〈σ 〉fs ∂u0

∂t

)
=0. (5.10)

The above result is nothing but the macroscopic conservation of the
fixed charges in the solid–fluid interface (see Gray and Hassanizadeh
(1989), Hassanizadeh and Gray (1990) for derivation within a surface aver-
aging procedure). Finally, using (5.4) and the electroneutrality condition
(4.33) to replace the term nfs〈σ 〉fs in (5.10), along with the definition of the
capacity Gs, we arrive at

∂

∂t

(
nfGsc

0
b

)+∇x ·
(
nfGsc

0
b
∂u0

∂t

)
=0

in which when combined with the conservation of charge (5.1) gives

∇x · I0
e =0.

5.2. summary of the alternative formulation based on onsager’s
reciprocity relations

The alternative two-scale model consists in finding the macroscopic vari-
ables {σ 0

T,u
0, p0

b, c
0
b,ψ

0
b, v

0
D,J

0
c, I

0
e, nf } satisfying

∇x ·σ 0
T =0,

σ 0
T =−αp0

b +CsEx(u0)−�0,

∇x · v0
D +α :

∂

∂t
Ex(u0)=β ∂p

0
b

∂t
+ ∂γπ

∂t
,
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∂nf

∂t
+∇x.v0

D +nf∇x.
∂u0

∂t
=0,

∂

∂t
(nfGcc

0
b)+∇x ·

(
2c0

bv0
D +nfGcc

0
b
∂u0

∂t
+J 0

c

)
=0,

∇x · I 0
e =0, in �,

v0
D =−LPP∇xp

0
b −RTLPC∇x ln c0

b −LPE∇xψ
0
b,

J 0
c =−LCP∇xp

0
b −RTLCC∇x ln c0

b −LCE∇xψ
0
b,

I 0
e =−LEP∇xp

0
b −RTLEC∇x ln c0

b −LEE∇xψ
0
b

with the coefficients {α,Cs,�
0, β, γπ } admitting the aforementioned micro-

scopic representations (4.64), the electric capacities {Gc,Gs} given by
(5.3)(a) and (5.4)(a) and the Onsager’s coefficients LIJ (I, J = P, C, E}
microscopically represented by the set of equations in (5.9).

5.3. remarks on the symmetry of onsager’s relations

The microscopic representations (5.9) for the Onsager’s parameters can be
further exploited to establish the precise microscopic conditions for the
validity of the symmetry of the matrix LIJ . In what follows we show that
if the electro-chemical potentials of the ions do not fluctuate in the microp-
ores, (∇yµ

1
± =0), then the Onsager’s matrix is symmetric. To show this con-

jecture we use this assumption in (4.9)(b) and in the closure relation (4.36).
For c0

b = c0
b(x, t) and ψ̄0

b = ψ̄0
b(x, t) this yields

0= cb

RT
∇yµ

1
± =∇yc

1
b± c0

b∇yψ̄
1
b = c0

b∇yχ
±+(∇xc

0
b± c0

b∇xψ̄
0
b(x, t))∇yf

±.

(5.11)

We shall henceforth denote L∗
IJ (I, J = P, C, E) the set of reduced

Onsager’s parameters which satisfy the microscopic representations (5.9) in
conjunction with the local equilibrium constraint (5.11). To exploit fur-
ther consequences begin by noting that since c0

b and ∇xc
0
b ± c0

b∇xψ̄
0
b may

vary independently, (5.11) is only fulfilled under the condition ∇yχ
± =

∇yf
± =0. In addition, by invoking the last equation in (4.47) we also have

∇yh
±
i = 0 (i = p, c, e). Using this latter result in (4.64), (5.5), (4.42) and

(4.43) implies that the coefficients D
p
± and �

p
± vanish and the other ten-

sors F ,G,DI
±,D

I
∗ and �I

∗(I=C, E) reduce to multiples of the identity, F =
F∗I ,G=G∗I , DI

± =DI
±I ,DI

∗ =DI
∗I and �I

∗ =�I
∗ with

F∗ =2RT (cosh ϕ̄0 −1), G∗ =−2RT c0
b sinh ϕ̄0 (5.12)

and
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Dc
± =De

± =D± =D±〈exp(∓ϕ̄0)〉,
Dc

∗ =De
∗ =D∗ =D+〈exp(−ϕ̄0)〉+D−〈exp(ϕ̄0)〉,

�c
∗ =�e

∗ =�∗ =D+〈exp(−ϕ̄0)〉−D−〈exp(ϕ̄0)〉. (5.13)

In addition, using the simplifications h
±j
i = h

±j
i (x, t) and (5.12) in

(4.44)–(4.46) lead to classical Stokes-type problems (resembling in form
the one derived in Moyne and Murad (2002), formulated in terms of the
reduced unknowns {κjp∗,κ

j
c∗,κ

j
e∗} and {gjp∗, g

j
c∗, g

j
e∗} We then have

µf�yyκ
j
p∗ −∇yg

j
p∗ =−ej ,

∇y ·κjp∗ =0, j =1,2,3, (5.14)

κjp∗ =0 on ∂Yfs

and

µf�yyκ
j
c∗ −∇yg

j
c∗ =−F∗ej

∇y ·κjc∗ =0
κ
j
c∗ =0 on ∂Yfs

∣∣∣∣∣∣∣

µf�yyκ
j
e∗ −∇yg

j
e∗ =−G∗ej ,

∇y ·κje∗ =0, j =1,2,3,
κ
j
e∗ =0 on ∂Yfs.

(5.15)

For j = 1,2,3, define the reduced tensorial functions κ∗
i = κ

∗j
i (i = p, c, e)

and the averaged reduced permeabilities K∗
P =〈κp∗〉, K∗

C =〈κc∗〉 and K∗
E =

〈κe∗〉. Using (5.13) for the diffusivities, the micromechanical representations
(5.9) for the reduced Onsager’s coefficients L∗

IJ can be rewritten in the sim-
plified form

L∗
PP =K∗

P, L∗
PC = c0

bK
∗
C

RT
, L∗

PE = FKE∗
RT

, (5.16)

L∗
CP =2c0

b〈κp∗(cosh ϕ̄0 −1)〉, L∗
CC = c0

b

RT

(
2c0

b〈κc∗(cosh ϕ̄0 −1)〉,+nfD∗I
)
,

L∗
CE = Fc0

b

RT

(
2〈κe∗(cosh ϕ̄0 −1)〉+nf�∗I

)
, L∗

EP =−2Fc0
b〈κp∗ sinh ϕ̄0〉,

L∗
EC = Fc0

b

RT

(−2c0
b〈κc∗ sinh ϕ̄0〉+nf�∗I

)
, L∗

EE = F 2c0
b

RT

(−2〈κe∗ sinh ϕ̄0〉+nfD∗I
)
.

In what follows we begin by showing symmetry of the off-diagonal com-
ponents L∗

IJ = L∗
JI, I = J. The same arguments of the proof are furthermore

adopted to show symmetry of the tensorial components in the diagonal of L∗
IJ .

5.3.1. Relation Between L∗
PE and L∗

EP

We begin by showing the equality between the reduced electro-osmotic
permeability L∗

PE and the streaming current parameter L∗
EP. To this end

we make use of the usual tensor representation in tensorial products
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of the orthonormal basis κ∗ = ∑3
i=1

∑3
j=1 = κ

ij
∗ ei ⊗ ej with components

κ
ij
∗ = ei ·κj∗ =κ∗ej · ei . We then have from the microscopic representation of

L∗
EP in (5.16) along with (5.12)(b) and (5.15)(b)

L∗
EP =−2Fc0

b〈κp∗ sinh ϕ̄0〉= F

RT
〈G∗Iκp∗〉= F

RT

3∑

i=1

3∑

j=1

〈G∗κ ijp∗〉ei ⊗ ej

= F

RT

3∑

i=1

3∑

j=1

〈G∗ei ·κjp∗〉ei ⊗ ej

= F

RT

3∑

i=1

3∑

j=1

〈
(−µf�yyκ

i
e∗ +∇yg

i
e∗) ·κjp∗

〉
ei ⊗ ej . (5.17)

Using the incompressibility and the nonslip conditions in (5.14) along
with the periodicity, the coefficients in the last term of the r.h.s. of (5.17)
vanish. In fact we have

〈∇yg
i
e∗ ·κjp∗〉=

1
|Y |

∫

Yf

∇yg
i
e∗ ·κjp∗dY = 1

|Y |
∫

Yf

∇y ·(gie∗ ·κjp∗)dY

= 1
|Y |

∫

∂Yf

gie∗κ
j
p∗ ·nd�=0 i,j=1,2,3.

Further, denoting L∗ij
EP the components of L∗

EP, using Green’s theorem and
the above result in (5.17) we obtain for i, j =1,2,3

L
∗ij
EP =−Fµf

RT

〈
�yyκ

i
e∗ ·κ ip∗

〉

=− Fµf

RT |Y |
∫

∂Yfs

∇yκ
i
e∗n ·κ j

p∗ d�+ Fµf

RT

〈
∇yκ

i
e∗ ·∇yκ

j
p∗
〉
, (5.18)

where the first term in the r.h.s. vanishes due to the nonslip condition.
Hence, again integrating by parts, using the incompressibility and non-slip
conditions for κ

j
e∗ along with (5.14) we obtain

L
∗ij
EP= Fµf

RT
〈∇yκ

i
e∗ ·∇yκ

j
p∗〉=−Fµf

RT
〈�yyκ

j
p∗ ·κ ie∗〉= F

RT
〈(ej −∇yg

j
p∗) ·κ ie∗〉

= F

RT
〈ej ·κ ie∗ −∇y · (gjp∗κ

i
e∗)〉= F

RT
〈ej ·κ ie∗〉= F

RT
〈κjie∗〉=L∗ji

PE , i, j =1,2,3,

which shows the desired result.

5.3.2. Relation between L∗
CP and L∗

PC

The proof of the equality between the other Onsager’s parameters follows
an entirely analogous procedure. To show the relation between L∗

CP and
L∗

PC we have
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L∗
CP =2c0

b

〈
κp∗(cosh ϕ̄0 −1)

〉= cb
0

RT

〈
F∗Iκp∗

〉= c0
b

RT

3∑

i=1

3∑

j=1

〈
F∗κ ijp∗

〉
ei ⊗ ej

= c0
b

RT

3∑

i=1

3∑

j=1

〈
F∗ei ·κjp∗

〉

= c0
b

RT

3∑

i=1

3∑

j=1

〈
(−µf�yyκ

i
c∗ +∇yg

i
c∗) ·κjp∗

〉
ei ⊗ ej . (5.19)

By the same aforementioned arguments the coefficients in the last term of
the r.h.s. vanish. We then obtain for each component i, j =1,2,3

L
∗ij
CP=−c

0
bµf

RT

〈
�yyκ

i
c∗ ·κjp∗

〉

=− c0
bµf

RT |Y |
∫

∂Yfs

∇yκ
i
c∗n ·κjp∗ d�+ c0

bµf

RT

〈∇yκ
i
c∗ ·∇yκ

j
p∗
〉
. (5.20)

Hence, in a analogous manner we obtain

L
∗ij
CP = c0

bµf

RT

〈
∇yκ

i
c∗ ·∇yκ

j
p∗
〉

=−c
0
bµf

RT

〈
�yyκ

j
p∗ ·κ ic∗

〉
= c0

b

RT

〈
(ej −∇yg

j
p∗) ·κ ic∗

〉

= c0
b

RT

〈
ej ·κ ic∗

〉
= c0

b

RT

〈
κjic∗
〉
=L∗ji

PC , i, j =1,2,3,

which shows the conjecture.

5.3.3. Relation between L∗
CE and L∗

EC

Likewise, to show the equality between L∗
CE and L∗

EC we have

L∗
CE − nfFc

0
b�∗

RT
I= 2Fc0

b

RT

〈
κe∗(cosh ϕ̄0 −1)

〉= Fc0
b

R2T 2

〈
F∗Iκe∗

〉

= Fc0
b

R2T 2

3∑

i=1

3∑

j=1

〈
F∗κije∗

〉
ei ⊗ ej

= Fc0
b

R2T 2

3∑

i=1

3∑

j=1

〈
F∗ei ·κje∗

〉

= Fc0
b

R2T 2

3∑

i=1

3∑

j=1

〈
(−µf�yyκ

i
c∗ +∇yg

i
c∗) ·κje∗

〉
ei ⊗ ej .
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Hence, for I =∑3
i=1

∑3
j=1 = δijei ⊗ ej , we have for each component

L
∗ij
CE − nfFc

0
b�∗

RT
δij =−Fc

0
bµf

R2T 2

〈
�yyκ

i
c∗ ·κje∗

〉=− Fc0
bµf

R2T 2|Y |
∫

δyfs

∇yκ
i
c∗n ·κje∗ d�+

+ Fc0
bµf

R2T 2

〈∇yκ
i
c∗ ·∇yκ

j
e∗
〉
, i, j =1,2,3.

Hence, in a similar fashion we obtain

L
∗ij
CE − nfFc

0
b�∗

RT
δij = Fc0

bµf

R2T 2
〈∇yκ

i
c∗ ·∇yκ

j
e∗〉=−Fc

0
bµf

R2T 2

〈
�yyκ

j
e∗ ·κ ic∗

〉

= Fc0
b

R2T 2

〈
(G∗ej −∇yg

j
e∗) ·κ ic∗

〉= Fc0
b

R2T 2

〈
Gej ·κ ic∗

〉

=−2F(c0
b)

2

RT

〈
sinh ϕ̄0 ·κjic∗

〉=L∗ji
EC − nfFc

0
b�∗

RT
δji, i, j =1,2,3,

which completes the proof for the off-diagonal components of LIJ.

5.3.4. Symmetry of L∗
IJ for I =J

The complete the proof it remains to show symmetry for the reduced com-
ponents in the main diagonal {L∗

PP,L
∗
CC,L

∗
EE}. To this end be begin by

noting from (5.16) that the symmetry of the hydraulic conductivity K∗
P

implies in the same property of L∗
PP. To show the same result for L∗

CC
we also invoke its microscopic represntation in (5.16) and make use of
the same arguments in (5.19) and (5.20) (with κp∗ replaced by κc∗) to
obtain

L∗
CC − c0

bnfD∗
RT

I= 2(c0
b)

2

RT

〈
κc∗(cosh ϕ̄0 −1)

〉

= (c0
b)

2

R2T 2

3∑

i=1

3∑

j=1

〈
(−µf�yyκ

i
c∗ +∇yg

i
c∗) ·κjc∗

〉
ei ⊗ ej

and

L
∗ij
CC − c0

bnfD∗
RT

δij= (c0
b)

2µf

R2T 2
〈∇yκ

i
c∗ ·∇yκ

j
c∗〉

= (c0
b)

2µf

R2T 2
〈∇yκ

j
c∗ ·∇yκ

i
c∗〉=L∗ji

CC − c0
bnfD∗
RT

δij

as expected. Finally, the symmetry of L∗
EE follows using the same argu-

ments. We then have in an analogous fashion using (5.16) and replacing κp∗
by κe∗ in (5.17) and (5.18)
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L∗
EE − F 2c0

bnfD∗
RT

I=−2F 2c0
b

RT
〈κe∗ sinh ϕ̄0〉

= F 2

R2T 2

3∑

i=1

3∑

j=1

〈(−µf�yyκ
i
e∗ +∇yg

i
e∗) ·κje∗〉ei ⊗ ej

and

L
∗ij
EE − F 2c0

bnfD∗
RT

δij= F 2µf

R2T 2
〈∇yκ

i
e∗ ·∇yκ

j
e∗〉

= F 2µf

R2T 2
〈∇yκ

j
e∗ ·∇yκ

i
e∗〉=L∗ji

EE − F 2c0
bnfD∗
RT

δij .

The proof is now complete.

5.3.5. Symmetry, Local Equilibrium and Microstructure

The relation between the symmetry of Onsager’s matrix and the condition
of local equilibrium (5.11) validates the conjecture proposed by Prigogine
(1967) who postulated a similar claim within the context of the Thermo-
dynamics of Irreversible Processes. Furthermore, an open issue addressed
herein is the strong correlation between (5.11) and the clay morphology.
As we shall illustrate in the companion paper (Moyne and Murad, 2006)
the condition of local equilibrium is fulfilled for microstructures composed
of parallel particles of face-to-face contact. In this type of microgeometry,
local fluctuations in the electro-chemical potential could only occur in the
direction normal to the clay surface. However when the particles are paral-
lel such fluctuations vanish and the effective parameters are solely dictated
by the local Poisson–Boltzmann profile of the e.d.l. potential.

6. Conclusion

In this article we have proposed a two-scale model for expansive clays.
The model was derived within the framework of homogenization in the
up-scaling of the pore-scale description consisting of elastic macromol-
ecules coupled with the electro-hydrodynamics, Nernst–Planck relations
and the Poisson–Boltzmann problem governing the fluid movement, ion
transport and local electrostatics in the electrolyte solution. After estab-
lishing the proper order of magnitude of the dimensionless quantities
involved, application of a formal matched asymptotic expansion technique
led to a macroscopic model wherein effective electro-chemo-mechanical
parameters appear strongly related to the response of the microstructure.
The homogenized model consists of Onsager’s reciprocity relations cou-
pled with mass and charge conservations and with a modified form of
Terzaghi’s decomposition incorporating an additional swelling stress tensor
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component. Among other effects, the magnitude of the effective parameters
appears strongly dictated by the microscopic variability of the e.d.l. poten-
tial satisfying a local version of the Poisson–Boltzman problem.

The essential feature underlying the two-scale approach proposed herein
are the form of the local closure problems obtained for the effective coeffi-
cients which can be exploited to obtain further insight in the somewhat
obscure constitutive theory of swelling systems. Here such closure relations
were used to obtain precise local conditions for the validity of the sym-
metry of Onsager’s reciprocity relations. Further work is in progress to
extend the model to swelling clays characterized by two levels of poros-
ity including the inter-phase mass transfer between micro- and macro-pores
and toward more realistic elasto-plastic constitutive relations of the solid
matrix (Loret et al., 2002, Murad and Cushman, 1997, 2000).
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