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Abstract. We investigate wave propagation in elastic porous media which are saturated
by incompressible viscous Newtonian fluids when the porous media are in rotation with
respect to a Galilean frame. The model is obtained by upscaling the flow at the pore
scale. We use the method of multiple scale expansions which gives rigorously the mac-
roscopic behaviour without any prerequisite on the form of the macroscopic equations.
For Kibel numbers O(1), the acoustic filtration law resembles a Darcy’s law, but with a
conductivity which depends on the wave frequency and on the angular velocity. The bulk
momentum balance shows new inertial terms which account for the convective and Cori-
olis accelerations. Three dispersive waves are pointed out. An investigation in the inertial
flow regime shows that the two pseudo-dilatational waves have a cut-off frequency.

Key words: acoustics, rotating porous media, filtration law, wave propogation in porous
media, homogenisation.

Nomenclature
Roman Letters
a,ae elastic tensors.
A hermitian matrix.
Bαβ, α,β =1,2 dissipation/inertia tensors.
Ek Ekman number.
H resistivity tensor.
k wavenumber.
K conductivity tensor.
Ki Kibel number.
l characteristic size of the pores.
L macroscopic characteristic length.
p pressure.
P,Q,R dimensionless numbers.
Rt transient Reynolds number.
us wave solid displacement.
vf wave fluid velocity.

∗e-mail: jean-louis.auriault@hmg.inpg.fr



236 JEAN-LOUIS AURIAULT

V periodic cell.
Vp pore volume in the periodic cell.
Vs solid part of the periodic cell.
W1,W2 waves in the empty rotating porous matrix.
W ′

1,W
′
2,W

′
3 waves in the saturated rotating porous matrix.

x dimensionless macroscopic space variable.
X dimensional space variable.
y dimensionless microscopic space variable.

Greek Letters
ε small parameter of separation of scale.
� pore surface.
µ viscosity.
ω wave frequency.
� angular velocity vector.
φ porosity.
ρf , ρs fluid and solid densities, respectively.

1. Introduction

The aim of this paper is to investigate wave propagation in non-Galilean deform-
able porous matrices saturated by an incompressible viscous Newtonian fluid.
Acoustics in non-Galilean porous matrix is concerned with numerous practical
applications going from geological applications to industry. At our knowledge,
this problem has not received much attention until now. Existing works about
rotating porous media are concerned by the permanent flow law in rigid matri-
ces, Vadasz (1993, 1997), Auriault et al. (2000, 2002), Geindreau et al. (2004).
In these works, Darcy’s law is shown to be affected by the angular rotation �:
the conductivity becomes dependent on �.

The present work can be seen as an extension of Auriault (2004), where
wave propagation in rotating isotropic elastic solids was investigated. Two
dispersive waves W1 and W2, each of them being a combination of the clas-
sical dilatational and shear waves, were pointed out. Waves W1 and W2

tend to the dilatational and shear waves, respectively, as � tends to zero.
Wave W1 shows a cut-off frequency ω=�.

To obtain the wave propagation model, we use an upscaling technique,
i.e. the method of multiple scale expansions to determine the macroscopic
flow from its description at the pore scale. Heterogeneous system as for
example porous media may be modelled by an equivalent macroscopic con-
tinuous system if the condition of separation of scales is verified (Bensous-
san et al., 1978; Sanchez-Palencia, 1980)

ε = l

L
�1, (1)

where l and L are the characteristic lengths of the heterogeneities and of
the macroscopic sample or excitation, respectively. In the present case L
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can be assimilated to the wavelength. The macroscopic equivalent model
is obtained from the description at the heterogeneity scale by (Auriault,
1991): (i) assuming the medium to be periodic, without loss of generality;
(ii) writing the local description in a dimensionless form; (iii) evaluating
the dimensionless numbers with respect to the scale ratio ε; (iv) looking
for the unknown fields in the form of asymptotic expansions in powers
of ε; (v) solving the successive boundary-value problems that are obtained
after introducing these expansions in the local dimensionless description.
The macroscopic equivalent model is obtained from compatibility condi-
tions which are the necessary conditions for the existence of solutions to
the boundary-value problems. The main advantages of the method rely
upon the possibility of: (a) avoiding prerequisites at the macroscopic scale;
(b) modelling finite size macroscopic samples; (c) modelling macroscopi-
cally non-homogeneous media or phenomena; (d) modelling problems with
several separations of scales; (e) modelling several simultaneous phenom-
ena; (f) determining whether the system “medium+phenomena” is homog-
enisable or not; (g) providing the domains of validity of the macroscopic
models.

In Section 2, we investigate the wave propagation model in an empty
elastic porous medium. The influence of the angular rotation � is measured
by the Kibel number Ki = ω/�. The study is conducted with Ki = O(1).
The macroscopic model is as in Auriault (2004), with the elastic ten-
sor being now the effective elastic tensor. Wave W1 shows a cut-off fre-
quency ω = �. The acoustic flow law in a rigid rotating porous medium
is addressed in Section 3. The obtained model is an extension of both
the Biot’s acoustic flow law (Biot, 1956a,b) and the permanent flow law
in a rotating porous medium, Auriault et al. (2000, 2002): the conductiv-
ity depends on ω and �. The model for saturated elastic porous media
is presented in Section 4. The structure of the model is similar to Biot’s
model, (Biot, 1956a,b), with new inertial terms due to � �= 0 in the bulk
momentum balance and an �-dependent conductivity. Finally, Section 5 is
devoted to the study of wave propagation at high frequency, i.e. in the iner-
tial regime of the flow law. In this case an analytical investigation is possi-
ble. We show that three dispersive waves W ′

1,W
′
2 and W ′

3 are present, which
are combinations of Biot’s waves P1, P2 and S. Waves W ′

1,W
′
2 and W ′

3 tend
to waves P1, P2 and S, respectively, as � goes to zero. Waves W ′

1 and W ′
2

show a cut-off frequency ω=�.

2. Acoustics of an Empty Rotating Porous Medium

The considered porous medium is spatially periodic and consists of repeated
unit cells (parallelepipeds), see Figure 1. There are two characteristic length
scales in this problem: the characteristic microscopic length scale l of the
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Figure 1. A period of the porous medium.

pores and of the unit cell, and the macroscopic length scale L that may
be represented by the wavelength. Moreover we assume that the two length
scales l and L are well separated

l

L
= ε �1 (2)

The unit cell is denoted by V and is bounded by ∂V , the pore and the
solid parts of the unit cell is denoted by Vp and Vs , respectively, and the
fluid–solid interface inside the unit cell is �. The porous medium is rotat-
ing with respect to an inertial frame. To fix the ideas the porous medium is
placed in the basket of a centrifuge of radius r which rotates at a constant
angular velocity �=�e�,�= constant, see Figure 2.

2.1. local description

For the sake of simplicity we consider that the material constituting the
porous matrix is isotropic elastic. Relatively to the moving porous matrix
frame, the momentum balance for the porous medium is

Figure 2. The rotating porous medium.
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µs
XUs + (λs +µs)∇X(∇X ·Us)=ρs(γr +γe +γc) in Vs, (3)

where Us is the displacement vector relative to the rotating frame, ρs is
the density and λs and µs are the Lamé coefficients. The physical space
variable is denoted X = (X1,X2,X3). Accelerations γr, γe and γc are the
acceleration relative to the matrix frame, the convective and the Coriolis
accelerations, respectively:

γr = ∂2Us

∂t2
, (4)

γe =γ (O)+�× (�×OM), (5)

γc =2�× ∂Us

∂t
, (6)

where O is a fixed point in the investigated period and M is a current point
in Vs . Equation (3) is completed by the stress free condition on �

σ s ·N = (λs∇X ·Us +2µseX(Us)) ·N =0 (7)

Due to the linearity of Equations (3) and (7), the displacement Us can be
decomposed into a permanent displacement up caused by the convective
and the Coriolis accelerations γe and γc and the wave displacement us

Us =up +us, (8)

where us verifies

µs
Xus + (λs +µs)∇x(∇X ·us)

=ρs

(
∂2us

∂t2
+�× (�×us)+2�× ∂us

∂t

)
in Vs, (9)

= (λs∇X ·us +2µseX(us)) ·N =0 on �. (10)

2.2. dimensionless local description

The description (9–10) is driven by two dimensionless numbers. We use l

as the characteristic length. These numbers are

Ql =
|ρs

∂2us

∂t2 |
|µs
Xus + (λs +µs)∇X(∇X ·us)|

=O
(

ρsω
2l2

λs +2µs

)
=O

(
l2

L2

)
=O (

ε2) , (11)

and the Kibel number Ki which appears in two ratios

|ρs
∂2us

∂t2 |
|2ρs�× ∂us

∂t
| =O

( ω

2�

)
=O

(
Ki

2

)
, (12)
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and

|2ρs�× ∂us

∂t
|

|ρs�× (�×us)| =O
(

2ω

�

)
=O(2Ki), (13)

where ω is the wave pulsation. To account for Coriolis effects, we will
assume Ki =O(1). Smaller value Ki = (O(εp),p >0 are not investigated in
the paper. For higher values Ki = (O(εp),p < 0, Coriolis effects are negli-
gible, and we recover the classical equation for elastic wave propagation in
a Galilean frame. Finally, the dimensionless local description is in the fol-
lowing form, where all quantities are now dimensionless

µs
yus + (λs +µs)∇y(∇y ·us)

= ε2ρs

(
∂2us

∂t2
+�× (�×us)+2�× ∂us

∂t

)
in Vs, (14)

= (λs∇y ·us +2µsey(us)) ·N =0 on �, (15)

where y =X/l.

2.3. macroscopic modelling

The two characteristic lengths introduce two dimensionless space variables,
i.e. the macroscopic dimensionless space variable x = X/L and the local
dimensionless space variable y=X/l, where X is the physical space variable.
The displacement us is looked for in the form of the asymptotic expansion

us =u(0)(x,y, t)+ εu(1)(x,y, t)+ ε2u(2)(x,y, t)+· · · , (16)

where the different terms in the asymptotic expansion are V -periodic in
y. Introducing this expansion into Equations (14 and 15) and extract-
ing like power terms in ε yield different boundary value problems to be
investigated. By comparing the set (14 and 15) with the similar problem
in non-rotating porous media, see e.g. (Auriault, 1997), it results that the
difference concerns the three last terms in the right hand member of Equa-
tion (14). Since these terms are O(ε2), it is easy to check by following the
route in (Auriault, 1997) that the first term u(0) verifies the dimensionless
macroscopic relation

∇x · (aeex(u(0)))=ρe
s

(
∂2u(0)

∂t2
+�× (�×u(0))+2�× ∂u(0)

∂t

)
, (17)

where u(0) is independent of the local space variable y, which means that
the displacement is a rigid displacement at the pore scale and at the first
order of approximation. Tensor ae is the effective elastic tensor determined
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as in the static case, ρe
s =<ρs > is the effective density, i.e. the volume aver-

age of the density ρs , and ex is now the macroscopic deformation tensor.
Finally the dimensionless macroscopic wave behaviour is in the form

∇x · (aeex(us))=ρe
s

(
∂2us

∂t2
+�× (�×us)+2�× ∂us

∂t

)
+O(ε). (18)

The above macroscopic model (18) is similar to the wave model for non-
porous rotating elastic media, (Auriault, 2004). Let us recall the main fea-
tures about wave propagation in rotating isotropic elastic media.

2.4. waves in rotating isotropic elastic media

Consider an isotropic medium and waves at constant frequency ω. The
vibrational displacement us verifies at the first order of approximation the
wave equation

µe
s
xus + (λe

s +µe
s)gradxdivxus =ρe

s

[−ω2us +�× (�×us)+2�× iωus

]
,

(19)

where λe
s and µe

s are the effective Lamé coefficients and i2 = −1. Equa-
tion (19) is an approximation: for simplicity the term O(ε) in (18) has been
suppressed. Let (e1, e2, e3) be the rotating orthonormal basis with �=�e3.
A perturbation us that is colinear to � is not affected by Coriolis acceler-
ation. Therefore, we limit the analysis to wave displacements in the plane
(e1, e2). By applying successively the divergence and the curl operators to
Equation (19), and after introducing e=divxus and w =∇x ×us =w3e3, we
obtain two coupled wave equations for e and w3:

(
λe

s +2µe
s

)

xe=−ρe

s

[(
ω2 +�2) e+2iω�w3

]
, (20)

µe
s
xw3 =−ρe

s

[(
ω2 +�2)w3 −2iω�e

]
. (21)

Therefore, in contrast to wave propagation in an inertial medium, dilata-
tional and shear waves do not propagate separately. The coupling appears
in the right hand member which introduces a tensorial density ρe

s A with

A =

1+ (�/ω)2 2i �

ω
0

−2i �
ω

1+ (�/ω)2 0
0 0 1


 . (22)

Matrix A is hermitian, tA= Ã (its transpose equals its complex conjugate).
Therefore, it has two real eigenvalues σ1 = (1 −�/ω)2 and σ2 = (1 +�/ω)2.
Remark that σ1 cancels out for �=ω. When � cancels out, we recover the
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uncoupled wave equations for propagation in an inertial isotropic elastic
medium. Consider waves that propagate in the direction e1 of the form

e=A1 exp[ikx1], w3 =A2 exp[ikx1]. (23)

Introducing these expressions into relations (20) and (21) gives two equa-
tions for the amplitudes A1 and A2:

(λe
s +2µe

s)k
2A1 =ρe

s (ω
2 +�2)A1 +2iρe

s �ωA2, (24)

µe
sk

2A2 =ρe
s (ω

2 +�2)A2 −2iρe
s �ωA1. (25)

The existence of non trivial solutions for A1 and A2 yields the dispersion
equation

µe
s(λ

e
s +2µe

s)k
4 −ρe

s (ω
2 +�2)(λe

s +3µe
s)k

2 +ρe2
s (ω2 −�2)2 =0. (26)

Equation (26) admits two body waves W1 and W2 of wavenumbers k1 and
k2, respectively. We have


k 1

2




2

= ρe
s ω

2(λe
s +3µe

s)

2µe
s(λ

e
s +2µe

s)

(
1+ �2

ω2

)(
1∓

√
1− 4µe

s(λ
e
s +2µe

s)

(λe
s +3µe

s)
2

(
ω2 −�2

ω2 +�2
)2

)
.

(27)

Waves W1 and W2 are dispersive waves. As � goes to zero, we recover the
classical non-dispersive elastic waves, the dilatational wave and the shear
wave of speed cd and cs , respectively:

lim
�→0

k2
1 =k2

d = ρe
s ω

2

λe
s +2µe

s

, cd =
√

λe
s +2µe

s

ρe
s

, (28)

lim
�→0

k2
2 =k2

s = ρe
s ω

2

µe
s

, cs =
√

µe
s

ρe
s

. (29)

The group velocity is defined by c
gr
1 = ∂ω/∂k. Typical dimensionless group

velocities c
gr∗
1 = c

gr
1 /cd and c

gr∗
2 = c

gr
2 /cs of waves W1 and W2, respectively,

are shown versus the Kibel number Ki in Figures 3 and 4 for different val-
ues of the Poisson’s ratio η. Wave W1 shows a cut-off frequency ω=� for
ω <�, the group velocity is negative and wave W1 do not propagate. The
corresponding wavenumber k1 cancels out for ω=�. As ω→�, the phase
velocity c

ph
1 of wave W1 goes to ∞.
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Figure 3. Dimensionless group velocity of wave W1 versus the Kibel number Ki for
different values of the Poisson’s ratio η.
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Figure 4. Dimensionless group velocity of wave W2 versus the Kibel number Ki for
different values of the Poisson’s ratio η.

3. Generalised Acoustical Seepage Law in Rotating Rigid Porous Media

Consider now the small perturbation of an incompressible liquid flowing
through a rigid porous medium which is placed in the basket of a cen-
trifuge at constant angular velocity �. The porous medium is shown in
Figures 1 and 2. The problem shows again two well separated character-
istic length scales: the characteristic microscopic length scale l of the pores
and of the unit cell, and the macroscopic length scale L that may be rep-
resented by the macroscopic pressure drop scale, with l/L= ε �1.
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3.1. local description

We assume the perturbation small enough so as to neglect non-linear
terms. Relatively to the moving porous matrix frame, the momentum bal-
ance for the incompressible viscous Newtonian liquid is

µf 
XVf −∇Xpf =ρf (γr +γe +γc) in Vp, (30)

where Vf is the fluid velocity vector relative to the matrix frame, pf is the
pressure, ρf is the density and µf is the viscosity. Gravitational accelera-
tion is included in the pressure term. Accelerations γr, γe and γc are the
acceleration relative to the matrix frame, the convective and the Coriolis
accelerations, respectively:

γr = ∂Vf

∂t
, (31)

γe =γ (O)+�× (�×OM), (32)

γc =2�×Vf . (33)

Equation (30) is completed by the incompressibility condition and the
adherence condition on �

∇X ·Vf =0 in Vp, (34)

Vf =0 on �. (35)

Due to the linearity of Equations (30–35), the velocity Vf and the pressure
pf can be decomposed into a permanent velocity vp and a permanent pres-
sure pp caused by the convective and the Coriolis accelerations γe and γc

and the acoustic wave velocity vf and pressure p

Vf = vp + vf , pf =pp +p. (36)

The quasi-static flow vp is described at the macroscopic level by a gener-
alized Darcy’s law which was investigated in (Auriault et al., 2000, 2002).
The acoustic velocity vf and pressure p verify

µf 
Xvf −∇Xp =ρf

(
∂vf

∂t
+�× (�×uf )+2�× vf

)
in Vp, (37)

∇X · vf =0 in Vp, (38)

vf =0 on �, (39)

where uf is the displacement of the fluid wave perturbation.
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3.2. dimensionless local description

As in part 1, we use the local length scale of a pore l as the character-
istic length scale for the variations of the differential operators. The per-
turbation is caused by a macroscopic perturbation O(p/L) of the gradient
of pressure which is equilibrated by the viscous forces O(µf vf / l2) and the
transient inertia forces O(ρf ωvf )

p

L
=O

(µf vf

l2

)
=O(ρf ωvf ), (40)

where ω is the wave pulsation. Therefore, we have the two following esti-
mations of dimensionless numbers

Pl = |∇Xp|
|µf 
Xvf | =O

(
pl

µf vf

)
=O(ε−1), (41)

and the local transient Reynold’s number is evaluated as

Rtl =
|ρf

∂vf

∂t
|

|µf 
Xvf | =O
(

ρf ωl2

µf

)
=O(1). (42)

For consistency, we adopt the same estimation of the Kibel number as in
part 2

Ki = ω

�
=O(1). (43)

Notice that the related local Ekman number Ekl is also O(1)

Ekl = |µf 
Xvf |
|2ρf �× vf | =O

(
µf

2ρf �l2

)
=O

(
Ki

2Rtl

)
=O(1). (44)

Finally, the dimensionless local description, where for the sake of simplicity
notations are kept unchanged, is in the form

µf 
yvf − ε−1∇yp =ρf

(
∂vf

∂t
+�× (�×uf )+2�× vf

)
in Vp, (45)

∇y · vf =0 in Vp, (46)

vf =0 on �, (47)

3.3. macroscopic modelling

The next step is to introduce multiple scale coordinates x and y, and to
look for the velocity vf and the pressure p in the form of asymptotic
expansions of powers of ε
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vf = v(0)(x,y, t)+ εv(1)(x,y, t)+ ε2v(2)(x,y, t)+· · · , (48)

p =p(0)(x,y, t)+ εp(1)(x,y, t)+ ε(2)p2(x,y, t)+· · · , (49)

where the different terms in the asymptotic expansion are V -periodic in y.
Substituting these expansions in the set (45)–(47) gives, by identification of
the like powers of ε, successive boundary value problems to be investigated.
The lowest order approximation of the pressure verifies

∇yp
(0) =0, p(0) =p(0)(x, t). (50)

Consider waves at constant pulsation ω. The first order approximation of
the velocity v(0) and the second order approximation of the pressure p(1)

are determined by the following set

µf 
yv(0) −∇xp
(0) −∇yp

(1)

=ρf

(
iωv(0) +�×

(
�× v(0)

iω

)
+2�× v(0)

)
in Vp, (51)

∇y · v(0) =0 in Vp, (52)

v(0) =0 on �. (53)

The set (51)–(53) can be investigated as in Levy (1979), where � = 0. We
first remark that Equation (51) shows a tensorial density ρf A where the
hermitian matrix A is defined in (22). Let us consider the Hilbert space V
of all V -periodic irrotational complex vectors satisfying the boundary con-
dition (53), with the scalar product (this is a consequence of the hermitian
character of A)

(u, v)V =
∫

Vp

(
µf

∂vk

∂yj

+ ∂ṽk

∂yj

+ρf ujAjkṽk

)
dVp, ‖u‖2

V = (u,u)V , (54)

where ṽk is the complex conjugate of vk. Multiplying (51) by test function
ũ of V , and integrating by parts on Vp yields the weak formulation

∀u ∈V,

∫
Vp

(
µf

∂v
(0)
k

∂yj

∂ṽk

∂yj

+ iωρf ũkAkjv
(0)
j

)
dVp =

∫
Vp

∂p(0)

∂xk

ũkdVp. (55)

The existence and uniqueness of v(0) follows from the Lax-Milgram
lemma. It appears that the velocity v(0) is a linear vectorial function of the
macroscopic gradient of pressure ∇xp

(0)

v(0) =−k(y,ω,�)∇xp
(0), (56)

where the tensor field k depends on ω and �.
Consider now the volume balance (46). It gives at the second order

∇y · v(1) +∇x · v(0) in Vp. (57)
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By integrating over Vp, we obtain

∇x · 〈v(0)〉=0, 〈v(0)〉=−K(ω,�)∇xp
0,

〈v(0)〉= 1
V

∫
Vp

v(0)dVp, K = 1
V

∫
Vp

kdVp. (58)

Finally, the dimensionless macroscopic behaviour is at the first order of
approximation in the form

∇x · 〈vf 〉=O(ε), 〈vf 〉=−K(ω,�)∇xp +O(ε). (59)

Remarks are as follows
– The filtration tensor K depends on both the wave pulsation ω and the

rotational velocity �. It is generally not symmetric.
– Model (59) is an approximation since vf = v(0) +O(ε).
– Model (59) is valid in the range ε�Ekl �ε−1, ε�Ki �ε−1 which can

be quite large if the separation of scales is good.
– Consider a porous medium which is macroscopically isotropic, of con-

ductivity K(ω,0) in absence of rotation. When submitted to a rotation
of axis X3, tensor K takes the following form in the frame (X1,X2,X3).

K =

K11(ω,�) −K21(ω,�) 0

K21(ω,�) K11(ω,�) 0
0 0 K(ω,0)


 . (60)

Equation (592) is a momentum balance which can be rewritten in the form

∇xp =−H(ω,�)〈vf 〉+O(ε), (61)

where the complex valued tensor H =H1 + iH2 =K−1. Its real part H1 is a
dissipation density whereas its imaginary part H2 is an inertial density. Two
flow regimes can be distinguished. For ω < ωc = µf /ρf l2, viscous effects
dominate and for ω>ωc, inertial effects are preponderent. An approxima-
tion of H for the inertial regime can be easily obtained by neglecting the
viscous term in (51)

−∇xp
(0) −∇yp

(1) =ρf

(
iωv(0) +�×

(
�× v(0)

iω

)
+2�× v(0)

)
. (62)

After volume averaging this equation becomes

−∇xφp(0) =ρf

(
iω〈v(0)〉+�×

(
�× 〈v(0)〉

iω

)
+2�×〈v(0)〉

)
, (63)

which yields

H = iωρf

φ
A, (64)

where A is defined in (22).
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Figure 5. Flat pore.

3.4. plane fissures

Consider a porous system which is composed of plane fissures of thick-
ness h and parallel to plane (X1,X2) and the rotation �e3, see Figure 5.
Consider a macroscopic gradient of pressure ∇xp

(0) =G1e1 in the e1 direc-
tion. Due to the particular boundary value problem at stake, velocity
v(0) = (v1(y3), v2(y3),0) verifies

µf

d2
v1

dy2
3

−G1 = iωρf

((
1+

(
�

ω

)2
)

v1 +2i
�

ω
v2

)
, (65)

µf

d2
v2

dy2
3

= iωρf

(
−2i

�

ω
v1 +

(
1+

(
�

ω

)2
)

v2

)
, (66)

v(0)

(
±h

2

)
=0 (67)

When �=0, the solution is (Auriault et al., 1985)

v1 =−k(ω)G1, v2 =0, (68)

which yields the conductivity tensor

K(�=0)=

K(ω) 0 0

0 K(ω) 0
0 0 0


 , (69)

K(ω)= φ

iωρf

(
1− 2 tanh(h(iω/ν)1/2/2)

h(iω/ν)1/2

)
, (70)
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where φ is the porosity and ν = µf /ρf . When � �= 0, it is convenient to
rewrite system (65)–(66) in the principal axis of matrix A

e′
1 = 1√

2
(e1 + ie2), e′

2 = 1√
2
(e1 − ie2), e′

3 = e3, (71)

v′
1 = 1√

2
(v1 − iv2), v′

2 = 1√
2
(v1 + iv2), v′

3 =0. (72)

That gives

µf

d2
v′

1

dy2
3

− G1√
2

= iωρf

(
1− �

ω

)2

v′
1, (73)

µf

d2
v′

2

dy2
3

− G1√
2

= iωρf

(
1+ �

ω

)2

v′
2, (74)

v′
(

±h

2

)
=0. (75)

Equations for v′
1 and v′

2 are uncoupled. By analogy with (68), we obtain

〈v′
1〉=−

K
(
ω
(
1− �

ω

)2
)

√
2

G1, 〈v′
2〉=−

K
(
ω
(
1+ �

ω

)2
)

√
2

G1. (76)

Finally, by returning to axes (e1, e2, e3), we obtain

K11(ω,�)= 1
2

(
K

(
ω

(
1− �

ω

)2
)

+K

(
ω

(
1+ �

ω

)2
))

, (77)

K21(ω,�)= i

2

(
K

(
ω

(
1− �

ω

)2
)

−K

(
ω

(
1+ �

ω

)2
))

. (78)

Due to the isotropy in plane (X1,X2), the permeability tensor is the form

K =

K11(ω,�) −K21(ω,�) 0

K21(ω,�) K11(ω,�) 0
0 0 0


 . (79)
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Figure 6. Dimensionless real part of H11 versus dimensionless frequency ω∗ for
different rotations �.
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Figure 7. Dimensionless imaginary part of H11/ω versus dimensionless frequency ω∗

for different rotations �∗.

Real and imaginary parts of the components of H(ω,�)=K−1 are given in
Figures 6–9. The dimensionless quantities in use in these Figures are

�∗ = h2ρf

4µf

�, ω∗ = h2ρf

4µf

ω, Re(H ∗
11)=K(0)Re(H11), (80)

Re(H ∗
12)=K(0)Re(H12), K(0)= φh2

12µ
, (81)

Im
(

H ∗
11

ω∗

)
= φ

ρf

Im
(

H11

ω

)
, Im

(
H ∗

12

ω∗

)
= φ

ρf

Im
(

H12

ω

)
. (82)
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Figure 8. Dimensionless real part of −H12 versus dimensionless frequency ω∗ for
different rotations �∗.

5 10 15 20 25 30

0.2

0.4

0.6

Im(H*12 / ω∗)

Ω∗=

20

5
2

0

Figure 9. Dimensionless imaginary part of H12/ω versus dimensionless frequency ω∗

for different rotations �∗.

4. Acoustics of Saturated Rotating Elastic Porous Media

We now investigate the macroscopic behaviour of an elastic porous media
saturated by an incompressible Newtonian liquid under an acoustic excita-
tion, when the system is submitted to a constant angular velocity �.

4.1. pore scale description

The pore scale description is given by (9) for the solid matrix and (37)–(38)
for the liquid, with the continuity of the normal stress and of the displace-
ment on the pore surface �
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µs
Xus + (λs +µs)∇X(∇X ·us)

=ρs

(
∂2us

∂t2
+�× (�×us)+2�× ∂us

∂t

)
in Vs, (83)

µf 
Xvf −∇Xp =ρf

(
∂vf

∂t
+�× (�×uf )+2�× vf

)
in Vp, (84)

∇X · vf =0 in Vp, (85)

(λs∇X ·us +2µseX(us)) ·N = (−pI +2µf eX(vf )) ·N on �, (86)

uf =us on �, (87)

4.2. dimensionless pore scale descrition

We use the estimations that were adopted in parts 2 and 3

Ql =
|ρs

∂2us

∂t2 |
|µs
Xus + (λs +µs)∇X(∇X ·us)| =O(ε2), (88)

|ρs
∂2us

∂t2 |
|2ρs�× ∂us

∂t
| =O

(
|2ρs�× ∂us

∂t
|

|ρs�× (�×us)|

)
=O(1), (89)

Pl = |∇Xp|
|µf 
Xvf | =O(ε−1), (90)

Rtl =
|ρf

∂vf

∂t
|

|µf 
Xvf | =O(1), Ki = ω

�
=O(1). (91)

We also assume that macroscopic stresses and displacements of the solid
and the liquid are of similar orders of magnitude

|σ s |L
|σ f |L =O(1),

|us |
|uf | =O(1). (92)

In absence of medium rotation, �= 0, estimations (89) and (91)2 become
unnecessary and we recover estimations that yield to the two-phase Biot’s
acoustics behaviour (Biot, 1956a,b, 1962). In presence of a medium rota-
tion, the dimensionless pore scale description takes the form (notations are
leaved unchanged)
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µs
yus + (λs +µs)∇y(∇y ·us)

= ε2ρs

(
∂2us

∂t2
+�× (�×us)+2�× ∂us

∂t

)
in Vs, (93)

µf 
yvf − ε−1∇yp =ρf

(
∂vf

∂t
+�× (�×uf )+2�× vf

)
in Vp, (94)

∇y · vf =0 in Vp, (95)(
λs∇y ·us +2µse(us)

) ·N =−(−pI +2εµf ey(vf )) ·N on �, (96)

uf =us on �. (97)

4.3. macroscopic modelling

The displacement us , the velocity vf and the pressure p are looked for in
the form of the asymptotic expansion

us =u(0)(x,y, t)+ εu(1)(x,y, t)+ ε2u(2)(x,y, t)+· · · , (98)

vf = v(0)(x,y, t)+ εv(1)(x,y, t)+ ε2u(2)(x,y, t)+· · · , (99)

p =p(0)(x,y, t)+ εp(1)(x,y, t)+ ε(2)p2(x,y, t)+· · · , (100)

where the different terms in the asymptotic expansion are V -periodic in y.
The process is quite similar to those described in different works (Levy,
1979; Auriault, 1980; Burridge and Keller, 1981; Auriault, 1997), where the
two-phase Biot model is demonstrated by upscaling. It is easy to show, by
following the homogenisation process in these papers (see particularly Auri-
ault (1997)) and the results in parts 2 and 3, that the first order approxi-
mation of the dimensionless macroscopic monochromatic behaviour verifies
the following set

∇x · (aeex(us)−αp)=−ω2q +�× (�×q)+2�× iωq)+O(ε), (101)

q =ρe
s us +ρf 〈uf 〉, (102)

∇x · (〈vf 〉−niωus)=−αiω e(us)−βiω p +O(ε), (103)

〈vf 〉−φiωus =−K(ω,�)(∇xp−ρf ω2us−�×(�×us)−2�×iωus))+O(ε).

(104)

The left hand side of momentum balance (101) is as in Biot’s model and
it introduces the Biot’s second order tensor α and the total stress σ t =
aeex(us) − α p. The right hand member is an inertial term similar to the
inertial term in (18). It comprises inertia of both solid and liquid as in
Biot’s model, but with complementary terms due to the angular velocity �.
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The volume balance (103) is not modified by the presence of � �=0. Finally,
the generalized Darcy’s law (104) is as in Biot’s model, with added inertial
terms related to �. Tensor K is the generalised conductivity tensor defined
in part 3. Remark that the divergence operator in (103) kills the antisym-
metric part of tensor K in homogeneous media. Of course, letting � = 0
yields the Biot’s model. As it is shown below, we recover a Biot’s model
where the conductivity now depends on the angular velocity � and where
the fluid and the solid densities ρe

s and ρf are replaced by tensorial densi-
ties ρe

s A and ρf A, respectively.
To obtain a more symmetric Biot type description, let us introduce par-

tial stresses −φpI and σ S of the fluid and the solid

σ t
ij =ae

ijklexkl(us)−αij p =σsij −φpIij

and the averaged displacement ūf of the fluid

〈vf 〉=φiωūf .

Let us also introduce the inverse H of K:

Hij =H1ij + iH2ij = (Kij )
−1.

Equation (104) can now be put in the form (for simplicity, all the approx-
imations O(ε) are omitted)

−∂φp

∂xi

=φ2Hij iω(ūfj −usj )−φω2ρf usi .

By subtracting member to member the above equality from Equation (101)
yields

∂σsij

∂xj

=−φ2H1ij iω(ūfj −usj )− (ρe
s −φρf )Aijω

2usj −φρf Aijω
2ūfj .

On the other hand, the mass balance (103) writes

p =−αijβ
−1exij (us)−φβ−1 ∂

∂xi

(ūfi −usi).

Finally, with the Biot’s notations (Biot, 1956a,b) and returning to time
derivatives when possible for a better lecture, the monochromatic behaviour
of the solid–fluid system is in the following form

∂

∂xj

〈σsij 〉=B11ij üsj +B12ij
¨̄ufj , (105)

∂

∂xj

(−φp)=B21ij üsj +B22ij
¨̄ufj , (106)
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〈σsij 〉=πijkhexkh(us)+Qijθ, −φp =Qjkexjk(us)+Rθ,

where π ,Q,R and θ are given by

πijkh =ae
ijkh +β−1(αij −φIij )(αkh −φIkh),

Qij =φβ−1(αij −φIij ), R =φ2β−1, θ = ∂ūf i

∂xi

and where the tensors Bαβ, α,β =1,2, are defined by

B11ij = (ρe
s −ρe

f )Aij − iφ2ω−1Hij =ρe
s Aij −B12ij ,

B12ij =B21ij =ρe
f Aij + iφ2ω−1Hij ,

B22ij =−iφ2ω−1Hij ,

where ρe
f =φρf .

5. High Frequency Wave Propagation in Rotating Saturated Elastic
Porous Media

Investigating wave propagation is much more intricate than in the classi-
cal Biot’s case (Biot, 1956a,b). Corresponding to the three uncoupled Biot
waves (two dilatational waves P1 and P2 and one rotational wave S), we
obtain three coupled dispersive dilatational–rotational waves. These three
waves, W ′

1, W ′
2 and W ′

3 , tend to waves P1, P2 and S, respectively, when
� goes to 0. However, dispersion is introduced now by both the frequency
dependence (ω �=0) and the angular velocity (� �=0). To get an insight into
these waves, consider the inertial regime where H ≈ iωρf φ−1A. Tensors Bαβ

reduce to

B11ij =ρe
s Aij , B12ij =B21ij =0, B22ij =ρe

f Aij .

As in parts 2 and 3, we consider an angular velocity � = �e3 and dis-
placements in the plane (e1, e2). The porous medium is isotropic. We suc-
cessively apply the divergence and the rotational operators to Equations
(105) and (106) and we note es =divxus, ef =divxuf ,ws =∇x ×us =wse3 and
wf =∇x ×uf =wf e3. We obtain

(λe
s +2µe

s)
xes +Q
xef =−ρe
s [(ω2 +�2)es +2iω�ws ], (107)

Q
xes +R
xef =−ρe
f [(ω2 +�2)ef +2iω�wf ], (108)

µe
s
xws =−ρe

s [(ω2 +�2)ws −2iω�es ], (109)

0=−ρe
f [(ω2 +�2)wf −2iω�ef ]. (110)
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After introducing the value of wf from (110), Equation (108) becomes

Q
xes +R
xef =−ρe
f (ω2 −�2)ef . (111)

Equations (107), (109) and (111) show three coupled dilatational–rotational
waves. We look for es, ef and ws in the form

es =A1 exp[ikx1], ef =A2 exp[ikx1], ws =A3 exp[ikx1]. (112)

Introducing these expressions into relations (107), (111) and (109) gives
three equations for the amplitudes A1, A2 and A3:

(λe
s +2µe

s)k
2A1 +Qk2A2 =ρe

s (ω
2 +�2)A1 +2iρe

s �ωA3, (113)

Qk2A1 +Rk2A2 +Rk2A2 =ρe
f (ω2 −�2)A2, (114)

µe
sk

2A3 =ρe
s (ω

2 +�2)A3 −2iρe
s �ωA1. (115)

The existence of non trivial solutions for A1,A2 and A3 yields the disper-
sion equation

a1k
6 +a2k

4 +a3k
2 +a4 =0,

with

a1 = (λe
s +2µe

s)µ
eR −Q2µe

s,

a2 = (Q2 − (λe
s +3µe

s)R)ρe
s (ω

2 +�2)− (λe
s +2µe

s)µ
e
sρ

e
f (ω2 −�2),

a3 = (λe
s +3µe

s)(ω
4 −�4)ρe

s ρ
e
f +Rρe2

s (ω2 −�2)3,

a4 =−ρe
s ρ

e2
f (ω2 −�2)3.

Coefficients a3 and a4 cancel out for ω = �. Then two among the three
waves W ′

1,W
′
2 and W ′

3 show a cut-off frequency at ω = �. When ω = �

Equation (111) gives


xef =−Q

R

xes.

Introducing this result into (107) yields (116), which together with (109)
gives the system(

λe
s +2µe

s − Q2

R

)

xes =−ρe

s [
(
ω2 +�2) es +2iω�w3], (116)

µe
s
xws =−ρe

s [
(
ω2 +�2)ws −2iω�es ]. (117)

System (116) and (117) is similar to system (20) and (21) for the empty
porous matrix, after replacing λe

s by λe
s − Q2/R. That shows that wave

W ′
3 has no cut-off frequency at ω = �. Finally waves W ′

1 and W ′
2 are the

two waves with a cut-off frequency at ω=�: they do not propagate when
ω<�.
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