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Abstract. The linear stability theory is used to investigate analytically the effects of grav-
ity modulation on solutal convection in the mushy layer of solidifying binary alloys. The
gravitational field consists of a constant part and a sinusoidally varying part, which is
synonymous to a vertically oscillating mushy layer subjected to constant gravity. The lin-
ear stability results are presented for both the synchronous and subharmonic solutions.
It is demonstrated that up to the transition point between the synchronous and subhar-
monic regions, increasing the frequency of vibration rapidly stabilizes the solutal convec-
tion. Beyond the transition point, further increases in the frequency tend to destabilize
the solutal convection, but gradually. It is also demonstrated that the effect of increasing
the ratio of the Stefan number and the solid composition (ηo) is to destabilize the solutal
convection.

Key words: gravity modulation, mushy layer, binary alloy, solutal convection, Rayleigh
number.

Nomenclature
Latin symbols
b∗ vibration amplitude.
C dimensionless composition, equals, C∗ −Co/�C.
êx unit vector in the x-direction.
êy unit vector in the y-direction.
êz unit vector in the z-direction.
D solutal diffusivity.
Da Darcy number, equals �o∗/H∗.
Fr Froude number, equals λ2∗/(g∗H 3∗ ).
g∗ gravitational acceleration, 9.81 m /s2

hf s latent heat of solidification.
H∗ the height of the mushy layer.

∗Author for correspondence: e-mail: govenders65@nu.ac.za
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�0 characteristic permeability of mushy layer.
k thermal conductivity.
�∗ variable permeability of the mushy layer.
lλ∗ thermal diffusion length, equals λ∗/Vf ∗.
L∗ the length of the mushy layer.
Le Lewis number, equals λ∗/Df

p dimensionless reduced pressure.
Pr Prandtl number, equals ν∗/λ∗.
q specific heat per unit volume.
Ram porous media gravitational Rayleigh number, equals, �0βc∗g∗�C/ν∗Vf ∗.
s convection wavenumber.
St Stefan number, equals hf s/qs�T .

t∗ time.
T dimensionless temperature, equals, (T∗ −TL(Co))/�T .

u horizontal x component of the filtration velocity.
v horizontal y component of the filtration velocity.
w vertical z component of the filtration velocity.
V dimensionless filtration velocity vector, equals uêx +vêy +wêz.
Vf ∗ Front/solidification velocity.
X space vector, equals xêx +yêy + zêz.
x horizontal length coordinate.
y horizontal width coordinate.
z vertical coordinate.

Greek symbols
α parameter related to the wave number, equals s2/π2.
βT thermal expansion coefficient.
βc solutal expansion coefficient.
γ equals χo/π

2.
δ dimensionless depth of mushy layer, equals H∗/lλ∗ .
� equals, κFr�2.
�C characteristic composition difference, equals Co −CE .
�T characteristic temperature difference, equals TL(Co)−TE .
ϕ volume fraction of solid dendrites (solid fraction).
φ porosity, equals (1−ϕ).
κ b∗/H∗.
λ∗ effective thermal diffusivity.
µ∗ fluid dynamic viscosity.
ρ density.
σ Growth factor.
χo modified Darcy–Prandtl number, equals Pr(l2

κ∗�0).
χ equals δ2χo =Da/P r.
v∗ fluid kinematic viscosity.
�(φ) Retardability function, equals �0/�∗.
ηo equals 1+ S̃/Cs .
ω∗ vibration frequency.
ϑo mobility ratio, equals l2

k∗/�0.
� scaled vibration frequency, equals, δ2ω2∗λ∗/V 2

f ∗ .
� slope of liquidus line.
ζ composition ratio, equals (Cs −Co)/�C.
ξ scaled growth factor, equals σ/

√−a.
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Subscripts
* dimensional values.
B basic state.
c characteristic.
C classic.
cr critical values.
eff effective values.
E related to eutectic values.
l related to the liquid melt.
m related to the mushy layer parameters.
M modified.
o related to unmodulated quantities.
s related to the solid layer.

Superscripts
∼ scaled quantities.
∧ scaled quantities.

1. Introduction

Alloyed components are widely used in demanding and critical applications,
such as turbine blades, and a consistent internal structure is paramount to
the performance and integrity of the component. The internal structure of
an alloy traces back to its solidification from the liquid melt phase. Alloys
are susceptible to the formation of vertical channels of a composition
different to the surrounding solid known as freckles. Copey et al. (1970)
initially proposed the origin of the freckles and many experiments includ-
ing those in ammonium chloride by Chen and Chen (1991), and Tait and
Jaupart (1992) investigated various modes of convection and the relation to
freckle formation. Fowler (1985) proposed a model for the mushy layer and
analysed it for the limiting case when the mushy layer behaved like a non-
reacting porous layer. Amberg and Homsey (1993) conducted a weak non-
linear analysis of convection in a mushy layer. Amberg and Homsey (1993)
differed from Fowler (1985) in that the mushy layer was now decoupled
from the liquid melt and the solid layer and perturbations were used to re-
introduce the effects of permeability to develop a less limiting case. Ander-
son and Worster (1995, 1996) extended the model of Amberg and Homsey
(1993), adopting large Stefan number scaling and observed another oscilla-
tory mode of convection different to the double diffusive mode observed by
Chen et al. (1994). A mushy layer, including rotational effects, for a Stefan
number of O(1) was investigated by Govender and Vadasz (2002). It was
observed that rotation stabilizes solutal convection in the mushy layer.

Recently, Govender (2004a) analysed the stability of free convection in
a vertically modulated porous layer subjected to constant vertical strat-
ification, i.e. modulated Rayleigh–Benard convection and thereafter went
on to further analyse, Govender (2004b), the actual transition point from
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synchronous to subharmonic solutions. The objective of the current work
is to analyse the stability of solutal convection in a mushy layer during the
solidification of binary alloys subject to a similar vertical stratification.

2. Problem Formulation

A binary alloy melt, cooled from below, subject to vibration parallel to the
gravitational field in the vertical direction, is presented in Figure 1. The
solidification process results in three distinct regions forming viz. the solid
region, of a temperature below the eutectic temperature TE, a liquid melt
region, with a temperature above the liquidus temperature TL(Co) and a
mushy layer sandwiched between the solid layer and the liquid melt.

The composition at the mush-liquid interface is Co and the composi-
tion at the mush-solid interface is CE. We propose that the mush-liquid
interface and the mush-solid interface advances at a constant speed Vf ∗
implying that the binary alloy is directionally cast and the mushy layer is
of constant height H∗ and width L∗, similar to the model of Amberg and
Homsey (1993) and Govender and Vadasz (2002).

This results in the mushy layer having rigid and isothermal upper
and lower boundary conditions where the vertical components of veloc-
ity is zero, physically isolating and dynamically decoupling the mushy layer
from the solid region below and the liquid melt above. Subject to these

g*

T=TL(Co)

z* = 0

z* = H*

x*

z*

x* = 0

T 8,Co

Solid Layer

Mushy Layer

Liquid Melt

)( *** tSinb

Vf*

x* = L*

w

Figure 1. A schematic of the proposed problem showing the imposed boundary con-
ditions.
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conditions, and performing a transformation for the translating frame of
reference (for solidification), the following dimensional set of governing
equations for continuity, energy, solute and Darcy, are proposed

∇∗ ·V ∗ =0, (1)

q

(
∂

∂t∗
−Vf ∗

∂

∂z∗

)
T∗ +qf V ∗ ·∇∗T∗

=∇∗ · (km∇∗T∗)+hf s

(
∂

∂t∗
−Vf ∗

∂

∂z∗

)
ϕ, (2)

(1−ϕ)

(
∂

∂t∗
−Vf ∗

∂

∂z∗

)
C∗ +V ∗ ·∇T

=∇∗ · (Dm∇∗ ·T∗)+ (C∗ −CS)

(
∂

∂t∗
−Vf ∗

∂

∂z∗

)
ϕ, (3)

1
(1−ϕ)

(
∂

∂t∗
−Vf ∗

∂

∂z∗

)
V ∗ + µ∗

�∗

1
ρ∗

V ∗

= −1
ρ∗

∇∗p∗ +ρ∗(g∗ +b∗ω∗Sin(ω∗t∗))êg. (4)

In Equations (1–4), V ∗ is the filtration velocity in the mush, T∗ is the
dimensional temperature, ϕ is the solid fraction, C∗ is the composition,
p∗ is the reduced pressure, and êg is the unit vector in the direction of
gravity. In Equation (4), b∗ and ω∗ refers to the amplitude and frequency
of the imposed vibration. The specific heat per unit volume (q) and the
mush thermal conductivity (km) of the mushy layer are given as qeff =ϕqs +
(1 − ϕ)ql and keff = ϕks + (1 − ϕ)kl, respectively. Taking qs ≈ ql and ks ≈ kl

yields q = qs = ql and km = ks = kl. The linear liquidus relation is defined
as T = (T∗ −TL(Co)) /�T and C = (C∗ −Co) /�C where �T =TL(Co)−TE,
�C = Co − CE, �T = ��C. The Boussinesq approximation is made and
consists of setting ρ∗ =ρo∗ except in buoyancy terms emanating from body
forces in the Darcy equation. The Boussinesq approximation and linear
liquidus relation allow us to define a linear density ρl to composition C∗
relation in a similar fashion to Govender and Vadasz (2002) with ρl =
ρo∗(1 − βT ∗(T∗ − TE) + βC∗(C∗ − Co)). Note that βC∗ � βT ∗ as density is a
stronger function of composition than temperature and the density equa-
tion can simplify to ρl −ρo∗ =ρo∗βC∗(C∗ −Co). This allows us to focus on
solutal effects on convection without greatly sacrificing accuracy. The linear
liquidus relation gives C∗ −Co =T �C further simplifying the density equa-
tion to ρl − ρo∗ = ρo∗βC∗T �C. The scaling variables V ∗, λ∗/Vf ∗, λ∗/V 2

f ∗,
and λ∗µ∗/�0 are used to non-dimensionlise the filtration velocity, length,
time and pressure components, respectively, and the following system of
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dimensionless governing equations result,

∇ ·V =0, (5)(
∂

∂t
− ∂

∂z

)
(T −Stϕ)+V ·∇T =∇2T , (6)

(
∂

∂t
− ∂

∂z

)
((1−ϕ)T −ςϕ)+V ·∇T = 1

Le
∇ ((1−ϕ)∇T ) , (7)

1
(1−ϕ)χo

(
∂

∂t
− ∂

∂z

)
V +�(ϕ)V =−∇p −Ram [1+�sin(�t)]T êz. (8)

A number of dimensionless parameters emanate from the dimensionless
analysis. In Equation (6), St is the Stefan number, and represents the ratio
of the latent heat (hf s) to heat content or internal energy, and is defined
as St = hf s/

(
qeff �T

)
. One also observe the Lewis number, Le, in Equa-

tion (7), which represents the ratio of thermal to solutal diffusivity and is
defined as Le = λ∗/Df . The effective thermal diffusivity λ∗ is defined as
the ratio of the thermal conductivity and the specific heat per unit vol-
ume λ∗ = keff /qeff . The composition ratio ς , in Equation (7), relates the
differences in the characteristic compositions of the liquid and solid phases
with the varying composition of the liquid within the mushy layer, and is
defined as ς = (Cs −Co)/(Co −CE). In the case of solidifying binary alloys,
the Lewis number, Le, usually assumes large values thereby resulting in
the right hand side of Equation (7) becoming negligible. Equation (7) may
therefore be reduced to,(

∂

∂t
− ∂

∂z

)
((1−ϕ)T −ςϕ)+V ·∇T =0, (9)

for large Lewis numbers. In Equation (8), the modified Darcy-Prandtl num-
ber (defined as χo = Prϑo), relevant to solidification-type problems, nor-
mally assumes small values for binary alloy mixtures, see Vadasz (1998)
and is thereby resulting in the retention of the time derivative in the Darcy
equation. The mushy layer Rayleigh number Ram is defined as Ram =
�0βc∗g∗�C/ν∗Vf ∗. Note that µ∗ refers to the dynamic viscosity, ρ∗ is the
density, and g∗ is the gravitational acceleration.

In Equation (8), the retardability function, as proposed by Nield (1999),
is defined as �(ϕ)=�0/�∗ (where �0 is the characteristic permeability and
�∗ is the permeability of the mushy layer), and the dimensional amplitude
� is defined as �= (κ ·FrM) ·�2 (where κ = b∗/H∗ and �= (δ2ω∗λ∗)/V 2

f ∗).
The modified Froude number, FrM , proposed by Govender for solidifying
binary alloy systems is given as FrM = λ∗/

(
H 3

∗ g∗
)= FrCδ2, where FrC is

the classic Froude Number, FrC =Vf ∗/ (H∗g∗) defined in terms of the front
velocity, gravitational acceleration and the mushy layer height. For a binary
alloy system such as brass (70% Copper–30% Zinc), the thermal diffusivity
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is λ∗ =34.2 ×10−6m2/s, whilst for a ammonium salt–water system (NH4Cl–
H2O), the thermal diffusivity is of the order λ∗ = 0.147 × 10−6m2/s. If the
mushy layer height is taken to be H∗ =5 mm, the modified Froude numbers
for the alloy system and the salt-water system may be approximated to be
FrM,Brass = 0.000954, and FrM,Salt−Water = 1.762 × 10−8. Using the relation-
ship between the classic and modified Froude numbers one may evaluate the
solidification front velocities for the alloy and salt–water system (for δ =0.1)
to be Vf ∗,Brass = 0.0684 cm/s and Vf ∗,Salt−Water = 6.44 × 10−4 cm/s. It should
be pointed out that Chen et al. (1994), in their lab experiments, found the
solidification front velocity to be of the order O

(
10−4

)
cm/s, which is in full

agreement with the velocity magnitude calculated using the two definitions
of the Froude number proposed. For κ ≈4, the grouping (κ ·FrM) defined in
the � term above may be calculated for a binary alloy system (Brass), and
for the salt–water system (NH4Cl–H2O) to be (κ ·FrM)Brass = 3.82 × 10−3

and (κ ·FrM)Salt−Water = 7.05 × 10−8. So depending on the type of medium
being solidified the parameter grouping (κ ·FrM) could assume values in the
region, (κ ·FrM) ∈ [10−3,10−8

]
. In the current study we analyse solidifying

systems for small Prandtl numbers (or small to moderate γ values) for the
parameter grouping (κ ·FrM) of the order (κ ·FrM)=O

(
10−3

)
. The Prandtl

number is defined as the ratio of the kinematic viscosity ν∗ to the thermal
diffusivity and is defined as Pr =ν∗/λ∗. The dimensionless depth of the layer
δ is the ratio of the height of the mushy layer H∗ to the thermal diffusive
length lλ∗ and is defined as δ =H∗/lλ∗.

Following Anderson and Worster (1996) and Govender and Vadasz
(2002), we may scale the dependent variables as in terms of the mushy layer
depth δ as follows,

X = δX̃, t = δ2 t̃ , R2 = δRam, p =Rp̃, V = R

δ
Ṽ . (10)

Applying the scalings in Equation (10) to Equations (5–6) and Equations
(8–9) we obtain the following scaled system of governing equations,

∇̃ · Ṽ =0 (11)(
∂

∂t̃
− δ

∂

∂z̃

)
(T −Stϕ)+RṼ · ∇̃T =∇̃2T (12)

(
∂

∂t̃
− δ

∂

∂z̃

)
((1−ϕ)T −ςϕ)+RṼ · ∇̃T =0 (13)

1
(1−ϕ)χ

(
∂

∂t̃
− δ

∂

∂z̃

)
Ṽ +�(ϕ)Ṽ =−∇̃p̃ +R

[
1+�Sin(�t̃)

]
T êg (14)

where χ =δ2χo =Da/P r. When the composition of the melt is close to that
of the eutectic composition (Co − CE 	 1), a large concentration ratio, ς
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is obtained. For this so-called near eutectic limit the concentration ratio
may be defined as ς =Cs/δ, where CS is the solid concentration and δ 	1.
Worster (1992) showed that for large concentration ratios ς , the permeabil-
ity of the mushy layer is uniform/homogenous, and for this reason we set
�(ϕ)= 1, in the current analysis. We follow Anderson and Worster (1996)
and define a large Stefan number, St , according to St = S̃/δ.

3. Linear Stability Analysis

To establish the basic flow we need to analyse the equation set correspond-
ing to the motionless state where the flow velocity is zero, and the temper-
ature and solid fraction is horizontally uniform. Using an expansion in δ

where the basic state has expansions:

[TB,V B,ϕB,pB ]= [TBO,V BO,ϕBO,pBO ]+ δ [TB1,V B1, ϕB1, pB1]

+δ2 [TB2,V B2, ϕB2, pB2] , (15)

and a motionless state associated with basic flow implies that, V B = 0,
∂T /∂t̃ = 0, ∂T /∂x̃ = 0, ∂T /∂ỹ = 0, ∂ϕ/∂t̃ = 0, ∂ϕ/∂x̃ = 0 and ∂ϕ/∂ỹ = 0.
Substituting Equation (15) in Equations (11–14) yields the motionless basic
state solution for the temperature and solid fraction to each order of δ sub-
ject to the boundary conditions: z̃=0, TB =−1 and z̃=1, TB =0, ϕB =0,

TB =TB0 +δTB1 =(z̃−1)+δ

(
−(1+ S̃/Cs)

2
z̃2 + 2+(1+ S̃/Cs)

2
z̃−1

)
, (16)

ϕB =δϕB1 +δ2ϕB2 =(z̃−1)+δ

(
1− z̃

Cs

)
+δ2

(
1
Cs

(
1
2

(
2
Cs

+
(

1+ S̃/Cs

))
z̃2

−
(

1+ (1+ S̃/Cs)

2
+ 2

Cs

)
z̃+1+ 1

Cs

))
. (17)

It can be observed from Equation (17) that to O
(
δ0
)
, ϕB0 = 0. This result

clearly shows that for δ	1, a small amount of solid is formed for the near
eutectic approximation. To analyse the stability of the basic state solution
(16, 17) we apply small perturbations about of the form,

[T ,V , ϕ,p]= [TB,0, ϕB,pB ]+ ε [T1,V 1, ϕ1, p1]+ ε2 [T2,V 2, ϕ2, p2] , (18)

where ε 		 1, as required by the linear theory. For the particular case
when δ = O(ε), we note that the basic state solution, Equation (15), now
interacts with the perturbed terms in Equation (18). As a result Equation
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(18) may be re-written as follows for the case δ =O(ε),

[T ,V , ϕ,p]= [TB0,0,0, pB0]

+ε [(T1 +TB1) , (V 1 +V B1) , (ϕ1 +ϕB1) , (p1 +pB1)]

+ε2 [(T2 +TB2) , (V 2 +V B2) , (ϕ2 +ϕB2) , (p2 +pB2)] . (19)

Solving the Equation set (11–14) for the perturbation definition proposed
in Equation (19) to O(ε) yields

∂T1

∂t
+Rw1 −1= 1

ηo

∇2T1, (20)

[
1
χ

∂

∂t
+1

]
V1 =−∇p1 −R [1+� sin(�t)]T1êz =0, (21)

where ηo =1+ S̃/Cs.

Following Govender (2004a), we apply the curl operator twice on
Eq.(21) in order to eliminate the pressure term, and only consider the z-
component of the result as follows,[

1
χ

∂

∂t
+1

]
∇2w1 +R [1+� sin(�t)]∇2

HT1 =0, (22)

where ∇2
H ≡∂2/∂x2 +∂2/∂y2 and w1 is the perturbation to the vertical com-

ponent of the filtration velocity. Equations (20) and (22) may be decoupled
by eliminating w1 providing a single equation for the temperature pertur-
bation T1 in the form,[

1
χ

∂

∂t
+1

]
∇2
[

∂

∂t
− 1

ηo

∇2
]

T1 −R2 [1+�sin(�t)]∇2
HT1 =0 (23)

Assuming an expansion into the normal modes in the x- and y-directions,
and a time dependent amplitude θ(t) similar to that of Govender (2004a),
we obtain

T1 = θ(t)ei(sxx+syy) sin(πz)+ c.c. (24)

where again c.c. represents the complex conjugate terms and s2 = s2
x + s2

y .
Substituting Equations (24) into (23) yields,

d2θ

dt2
+2p

dθ

dt
−F(α)γ

[
(R̂ − R̂o)+ R̂�Sin(�t)

]
θ =0 (25)

where α = s2/π2, γ = χ/π2, R̂ = R̃2, R̃ = R/π2, R̂o = R̃2
o , R̃o = Ro/π

2,
Ro is the un-modulated Rayleigh number defined as R̃o = π2(α +1)2ηoα,
2p = π2 [(α +1) ηo +γ ] and F(α) = π6α/(α + 1). Using the transformation
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t = (π/2 − 2τ)/�, Equation (25) may be cast, as indicated by McLachlan
(1964), into the canonical form of the Mathieu equation:

d2X

dτ 2
+ [a +2qcos(2τ)]X =0 (26)

The solution to Equation (26) follows the form G(τ)= e−στχ(τ ) where
G(τ) is a periodic function with a period of π or 2π and σ is a charac-
teristic exponent which is a complex number, and is a function of a and
q, respectively (See Govender (2004a)). In this paper the definitions for a,
q and σ are obtained upon transforming Equation (25) into the canonical
form of Mathieu’s equation, and are defined as,

2√−a
= �[

F(α)γ (R̂ −η)
]1/2 , (27)

1
2
q =F(α)γ R̂κF r, (28)

σ =−2p

�
(29)

η=− R̂oηo

4γ (α +1)

[
α +1
ηo

−γ

]2

(30)

When σ = 0, the solution to Equation (26) is defined in terms of Mathieu
functions, ce and df (where e = 1,2,3, . . . ,E and f = 1,2,3, . . . , F ), such
that for each Mathieu function, ce and df , there exists a relation between
a and q. This relationship is shown by Govender (2004b) for the Mathieu
function do, c1 and d1. One would observe alternating stable and unsta-
ble zones if various Mathieu functions, ce and df , are plotted on the same
set of axes. In the stable regions of Mathieu’s equation, σ is complex with
a negative real part. Since σ is a function of a and q, which are depen-
dent on γ , R̂, α, � and �, the stability of the mushy layer is also seen
to depend on these variables as well. In addition there are solutions to
Equation (26) for a > 0 and a < 0; also, q may be replaced by −q with
no effect on the solution. In this study for a solidifying binary alloy the
numerical values for “a” are less than zero and are defined by Equation
(27). We also propose the following definition for the modified characteris-
tic exponent, ξ =σ/

√−a. A chart of 1/2q versus 2/
√−a for various values

of ξ is shown in Figure 2 for small values of q, see McLachlan (1964). We
may now present a relation for the characteristic Rayleigh number in terms
of the newly defined parameter ξ , by substituting ξ =σ/

√−a in Equation
(27), and rearranging to yield,

R̂ = R̂o −η

ξ 2
+η. (31)
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Figure 2. Stability chart for Mathieu equation presented as 1/2q versus 2/

√−a, for
various values of the modified exponent ξ .

Figure 2 together with Equations (27–30) and (31) may be used to eval-
uate the critical Rayleigh number and wavenumbers in terms of the fre-
quency, �, the parameter κFr and γ . We proceed, in a similar fashion
to Govender (2004a), by first evaluating the characteristic Raleigh number
versus the frequency for selected values of the wavenumber according to
the following method: (a) select a value of ξ , (b) evaluate R̂ using Equa-
tion (36), (c) compute the value for 1/2q using Equation (35), (d) read
2/

√−a from Figure 2, and (e) evaluate the frequency from Equation (32).
The results of the process outlined in steps 1 to 5 above are depicted in
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Figure 3 for parameter values γ = O(1.5) and (κF r) = O(10−3). In
Figure 3, for any selected wavenumber, it is noted that the stable zone is
below the curve whilst the unstable zone is above the curve. An example
of the location of the unstable and stable regions is shown in Figure 3 for
α = 1.5. Using the results in Figure 3 we may evaluate the critical wave
number and Rayleigh number for numerous values of wave number α

across a bandwidth of frequencies.
The effect of the important ratio S̃/Cs (embodied in the term ηo) on the

critical Rayleigh number and frequency is shown in Figure 4 for selected
ηo values, viz. ηo =1,1.5, and 2 at γ =O(1.5) and (κF r)=O(10−3). It can
be observed from Figure 4 that as ηo increases from 1 to 2 the convection
becomes destabilised across the indicated bandwidth of frequencies. The
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Figure 3. Characteristic Rayleigh number versus the scaled vibration frequency for
selected values of wavenumber.
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Figure 4. Critical Rayleigh number versus the scaled vibration frequency for various
values of the parameter ηo at γ =O(1.5) and (κF r)=O(10−3).

setting ηo =1 corresponds to the case when the Stefan number equals zero
(i.e. there is no solidification), whilst ηo = 2 corresponds to the case S̃ =
O (Cs) (or St =O(ς)). Calculations were performed for numerous values of
ηo and it was found that beyond ηo = 10 no solutions are found to exist.
The results in general follow similar trends to that generated by Govender



196 S. K. PILLAY AND S. GOVENDER

(2004b), but the transition points �1,t,�2,t,�3,t (from synchronous to sub-
harmonic solutions for each ηo value) occur at significantly lower frequen-
cies. In addition the stabilising effect of vibration occurs over a bandwidth
of lower frequency values in comparison to that of the passive porous layer
investigated by Govender (2004a). This is a welcomed result as high fre-
quency vibration will initiate macro-segregation in the solidifying alloy and
defeat the objective of using vibration to stabilise the solutal convection.
Bearing in mind that for solidification to occur we require that ηo >1, it is
quite clear from the curves presented in Figure 4 that the process of solid-
ification (i.e. increasing Stefan number) destabilises the convection.

The results shown in Figure 4 may be used by a plant metallurgical
engineer to control suppress the onset of solutal convection using vibra-
tion. Worster (1992) showed that the onset of solutal convection results in
the creation of freckles/channels in the final solidified ingot, which has a
negative impact on the mechanical strength of any object produced from
the ingot. For this reason it is critical that solutal convection is suppressed
or negated altogether during the solidification process. If during the casting
process the characteristic Rayleigh number is Rc,f ixed ≈ 6.5 for a particu-
lar composition (as indicated on Figure 4), for γ = O(1.5) and (κF r) =
O(10−3), then one may observe that for, say ηo = 2, the critical Rayleigh
number for the onset of solutal convection has been exceeded for � = 0.
In order to suppress the solutal mode of convection for the given parame-
ter settings, the metallurgical engineer would have to ensure that the vibra-
tion frequency of the crucible containing the solidifying system is greater
than �≈75. If the system being cast exhibits a Darcy–Prandtl number (γ )
other than γ =O(1.5), then the curves provided in Figure 4 will have to be
re-generated and re-analysed as mentioned above for the selected γ value.
Incidentally the effect of increasing the γ value for any selected value of ηo

is to destabilise the solutal convection corresponding to the subharmonic
region, and to stabilise the convection in the synchronous region. It must
be borne in mind that for binary alloy solidification, one is concerned with
using low frequency vibration to prevent undesired effects such as macro-
segregation. For this reason it is anticipated that the region of synchronous
solutions will be sufficient for use in casting applications.

4. Conclusion

The current study investigates the effect of gravity modulation on the sta-
bility of solutal convection in the mushy layer of a solidifying binary alloy.
A linear stability analysis is performed with the aid of the Mathieu sta-
bility charts and the results of the study shows that low amplitude grav-
ity modulation stabilizes the solutal convection. It was also discovered that
stabilizing effect of vibration on solutal convection occurs at relatively low



STABILITY OF SOLUTAL CONVECTION 197

frequencies, and it was also discovered that increasing the ratio of Stefan
number to solid composition tends to destabilize the solutal convection. It
was also demonstrated that the effect of increasing the Darcy–Prandtl num-
ber is to stabilise the convection in the subharmonic region and destabilize
the convection in the synchronous region.
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