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Abstract. We investigate the convection amplitude in an infinite porous layer subjected
to a vibration body force that is collinear with the gravitational acceleration. The anal-
ysis shows that increasing the vibration frequency causes the convection amplitude to
approach zero, i.e., increasing the vibration frequency stabilizes the convection.
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Nomenclature
Latin Symbols
g∗ acceleration due to gravity.
Fr Froude number.
H ∗ height of the mushy layer.
Da Darcy number, k∗

0/H
∗2.

êz unit vector in the z-direction.
kc characteristic permeability.
L length of the mushy layer.
p reduced pressure.
Pr Prandtl number, ν∗/κ∗.
R rescaled Rayleigh number, Ra/π2.
Ra Rayleigh number, β∗�TCg∗kc∗H∗/ν∗λ∗.
sx x-component of wavenumber.
sy y-component of wavenumber.
t time.
T dimensionless temperature, (T ∗ −TL)/(TL−TE).
u horizontal x-component of the filtration velocity.
V dimensionless filtration velocity vector, uêx +vêy +wêz.
v horizontal y-component of filtration velocity.
w vertical component of filtration velocity.
X space vector, xêx +yêy + zêz.
x horizontal length co-ordinate.
y horizontal width co-ordinate.
z vertical co-ordinate.
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Greek Symbols
α scaled wavenumber, s2/π2.
β solutal expansion coefficient.
δ vibration amplitude, κFr	2.
ε convection amplitude.
φ porosity.
κ vibration amplitude, b∗/H ∗.
λ thermal diffusivity.
µ dynamic viscosity of the fluid.
ν kinematic viscosity.
ρ fluid density.
	 vibration frequency.

Superscripts

* dimensional quantities.

Subscripts

0 simplified parameters.
B basic flow quantities.
c characteristic values.
cr critical values.

1. Introduction

Over the past years, interest in fundamental studies of thermal convection
in porous media has significantly increased due to its presence in diverse
engineering applications. In general buoyancy induced flows in porous
media plays an important role in engineering applications. To choose one
engineering application, let us consider binary alloy solidification as an
example. In the solidification of binary alloys, one finds the presence of
three distinct layers viz., the solid layer, the melt layer and the mushy
layer, which is sandwiched between the solid and melt regions. The mushy
layer may be thought of as a two-phase zone/reactive porous medium that
serves to smear the concentration gradient between the solid and melt
regions. Experimental studies by Sample and Sarazin (1984) and Sarazin
and Hellawell (1998) reveal important information on mechanism for chan-
nel formation. It is also demonstrated that the dynamics occurring in the
mushy layer are critical to the quality of the final product. Amberg and
Homsy (1993), Anderson and Worster (1995) and Worster (1992) provide
an excellent numerical analysis of the effects of gravity on solidification,
whilst Govender and Vadasz (2002a, b) and Govender (2003) extend their
work by proposing rotation as a means of stabilising convection.

Lately Govender (2004) has shown that vibration stabilises convection
in a passive porous layer. The objective of the current work is to perform
a weak non-linear analysis in order to study the effects of vibration on the
convection amplitude, relative to the case of no vibration.



CONVECTION IN A GRAVITY MODULATED POROUS LAYER 35

2. Problem Formulation

Govender (2004) presented a detailed formulation of the continuity, energy
and Darcy equations (extended to include vibration) for porous media. As
the derivation will not be repeated here, readers are referred there for a
detailed analysis. The dimensionless governing equations are presented as
follows:

∇ ·V =0, (1)(
1
V a

∂

∂t
+1

)
V =−∇p−Ra[1+ δ sin(	t)]T êz, (2)

∂T

∂t
+V ·∇T =∇2T . (3)

The symbols V, T and p represent the dimensionless filtration velocity vec-
tor, temperature and reduced pressure, respectively, and êz is a unit vec-
tor in the z-direction. In Equation (2), 	 is the scaled frequency, defined
as 	=ω∗H 2

∗ /λ∗, whilst the non-dimensional amplitude δ is defined as δ=
κFr	2, where κ = b∗/H∗ and Fr is the modified Froude number defined
as Fr = λ2

∗/
(
g∗H 3

∗
)
. The parameter Va is the Vadasz number, as pointed

out by Straughan (2000), and includes the Prandtl and Darcy numbers as
well as the porosity of the porous domain and is defined as V a=φP r/Da,
where Pr=ν∗/λ∗is the Prandtl number, Da=kc∗/H 2

∗ is the Darcy number,
φ is the porosity and ν∗ stands for the kinematic viscosity of the fluid. It is
only through this combined dimensionless group that the Prandtl number
affects the flow in the porous media, see Vadasz (1998) for a full discussion
on the numerical values that Pr can assume in a typical porous medium. In
Equation (2) one also observes the Rayleigh number, Ra; defined as Ra=
β∗�TCg∗kc∗H∗/ν∗λ∗. As all boundaries are rigid, the solution must follow
the impermeability conditions there, i.e., V · ên=0 on the boundaries, where
ên is a unit vector normal to the boundary. The temperature boundary con-
ditions are: T =1 at z=0, T =0 at z=1 and ∇T · ên=0 on all other walls
representing the insulation condition on these walls. The partial differential
equations (1)–(3) forms a non-linear coupled system which together with
the corresponding boundary conditions accepts a basic motionless solution
with a parabolic pressure distribution. The solutions for the basic temper-
ature and flow field is given as, TB =1− z and V B =0.

3. Weak Non-Linear Analysis

The objective of the weak non-linear analysis is to provide quantitative
results regarding the amplitude of convection. For subsequent steps it
is convenient to use the definition of the stream function in the form
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u= ∂ψ/∂z; w = −∂ψ/∂x, and present Equations (1)–(3) in terms of the
stream function and temperature as follows for slow time scale variations,(

1
V a

∂

∂t
+1

)
∇2ψ+Ra(1+ δ sin(	t))

∂T

∂x
=0, (4)

∂T

∂t
+ ∂ψ

∂z

∂T

∂x
− ∂ψ

∂x

∂T

∂z
=∇2T , (5)

where the definition of the Laplacian operator is given as ∇2 = ∂2/∂x2 +
∂2/∂z2. The stream function, temperature and amplitude δ may be expanded
in terms of a small parameter ε, defined as ε= [Ra/Racr −1]1/2,as follows:

[ψ,T ]= [ψB,TB ]+ ε[ψ1, T1]+ ε2[ψ2, T2]+ ε3[ψ3, T3]+O(ε4), (6)

δ= δ0 + εδ1 + ε2δ2 + . (7)

The expansion (7) is consistent with the basic solution (TB = 1 − z and
V B = 0) provided that δ0 vanishes at the lowest order. In addition, unless
δ1 vanishes, the equations obtained at order ε and ε2 present a singular-
ity in the solution. These observations indicate that the effects of vibra-
tion should be introduced at the lowest possible order, i.e., δ≈ε2δ1, thereby
enabling consistency. By using the definition for ε given above, the Rayleigh
number may be expanded as Ra=Racr(1+ε2), where Racr =4π2 is the crit-
ical Rayleigh number for a porous layer heated from below and subjected
to gravity only. In addition we allow time variations only at the slow time
scale τ =ε2t in order to prevent exponential growth and reaching finite val-
ues for the amplitude at the steady state. Substituting the expansion (6), as
well as the slow time scale, just defined, into the system (4)–(5) and equat-
ing like powers of ε produces a hierarchy of linear partial differential equa-
tions to each order:(

ε2

V a

∂

∂τ
+1

)
∇2ψmRacr(1+ δ sin(	0τ))

∂Tm

∂x
=Hm, (8)

ε2 ∂Tm

∂τ
+ ∂ψm

∂z

∂Tm

∂x
− ∂ψm

∂x

∂Tm

∂z
−∇2Tm =Jm, (9)

where 	0 =	/ε2 represents the large frequency scaling. To order, ε,H1 =
J1 =0 and the solution at order ε is given by

ψ1 =A1 sin(sx) sin(πz), T1 =B1 cos(sx) sin(πz). (10)

The relationship between the amplitudes is obtained by substituting Equa-
tion (10) in the system (8)–(9) and is found to be

A1 =−π (α+1)√
α

B1. (11)
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The amplitude A1 remains undetermined at this stage, and will be deter-
mined from a solvability condition of the order O(ε3) equations at order
ε3. The critical Rayleigh number and wavenumber to the leading order are
found to be Rcr = 4 and αcr = 1. The governing equations to order ε2 are
given as,

∇2ψ2 +Racr
∂T2

∂x̄
=0, ∇2T2 − ∂ψ2

∂x
= ∂ψ1

∂z

∂T1

∂x
− ∂ψ1

∂x

∂T1

∂z
, (12)

and the solutions to this order are given as,

ψ2 =A2 sin(sx) sin(πz), T2 =B2 cos(sx) sin(πz)+B0,2 sin(2πz),

B0,2 =√
αB1A1/8. (13)

The equations to order ε3 yields a solvability condition which constrains
the amplitude of the solution at order ε and enables its determination. The
solvability condition is obtained by decoupling the governing equation at
order ε3 to yield a single non-homogenous partial differential equation for
T3 with corresponding forcing functions which include the O(ε), and O(ε2)

solutions as follows,

∇4T3 +Racr
∂2T3

∂x2
= ∂H3

∂x
+∇2J3, (14)

where

H3 =−
(
Racr(t)

∂T1

∂x
+ 1
V a

∂∇2ψ1

∂τ

)
,

J3 = ∂T1

∂τ
+ ∂ψ1

∂z

∂T2

∂x
+ ∂ψ2

∂z

∂T1

∂x
− ∂ψ1

∂x

∂T2

∂z
− ∂ψ2

∂x

∂T1

∂z
. (15)

Setting the coefficients of the secular terms in Equation (14) to zero, yields
the following Ginzburg–Landau equation for the leading order O(ε) ampli-
tude,

dB
dt

=µ0(1+ δ1 sin(	t))B−χB3, (16)

where B= εB1. The following notation is used in Equation (16),

µ0 =χξ, χ = π4γ (α+1)2

4(α+1+γ ), ξ = 4Rcrα

π2(α+1)3
ε2. (17)

Equation (16) is in the form of Bernoulli’s differential equation and the
solution to this type of equation is of the form,

B= exp[µ0(t− δ1/	 cos(	t))]
[2χ

∫
exp[µ0(t− δ1/	 cos(	t))]dt+C1]

, (18)
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where B(0)= b0 and C1 is an integration constant. When δ2 → 0, the ana-
lytical solution to Equation (18) is given as,

B= b0ξ
1/2eµ0t

[ξ −b2
0(1− e2µ0t )]1/2

. (19)

When t → ∞, the classic steady state solution is found to be B = 0 or
B=b0/|b0|ξ 1/2. If δ2 �=0, we observe that the integral in Equation (18) can-
not be evaluated to obtain a closed form solution, and it is for this reason
that we resort to a numerical solution of Equation (18) by adopting the
Runge–Kutta method. Figure 1 shows the numerical versus analytical solu-
tion, of amplitude B versus time, for Equation (18) for δ2 = 0 (no vibra-
tion). The results are shown for large Vadasz numbers (i.e., γ → ∞) and
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Figure 1. Convection amplitude B versus time for both the numerical and analytical
solution for δ2 =0.
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at an initial amplitude b0 = 0.1, at the critical conditions, i.e., Rcr = 4 and
αcr = 1. The results are presented at a time step of 0.079, which will be
retained for simulations corresponding to δ2 �= 0 in the subsequent figures.
Figure 1 clearly shows that there is an excellent agreement between the
numerical and analytical solutions for the case of no vibration. Figure 2
shows the amplitude B versus time for 	=0,100 and 250. It can be clearly
seen that increasing the frequency from 	= 0 to 100 reduces the convec-
tion amplitude B. For 	= 250, it can be observed that for t >≈ 7.5, the
conduction solution (B=0) is stable. Figure 3 shows the amplitude B ver-
sus time for 	= 0,300 and 350. It can be seen for 	= 300 that beyond
t≈20 the conduction solution is stable, whilst for 	=350, the conduction
solution sets in as the stable mode as early as t ≈ 2.5. Figure 4 shows the
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Figure 2. Convection amplitude B versus time for 	=0,100 and 250.
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Figure 3. Convection amplitude B versus time for 	=0,300 and 350.

amplitude B versus time for 	= 0,370 and 450. Figure 4 shows that the
conduction solution is stable beyond t ≈ 5 for 	= 370 and 450. Further
simulations were performed for 	=500,750,1500 and 3000, and it was dis-
covered that the basic solution (B = 0) is the only possible solution. The
results depicted in Figures 2–4 clearly indicate that increasing the vibration
frequency stabilizes the convection by causing the convection amplitude to
approach zero. These findings have important industrial applications in the
solidification of binary alloys say where solutal convection may be sup-
pressed using vibration. It is quite well documented that due to sharp con-
centration difference between the liquid melt and solid regions, a mushy
layer forms in order to smear out the concentration gradient. The dynamics
occurring within the mushy layer has an important effect on the ultimate
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Figure 4. Convection amplitude B versus time for 	=0,370 and 450.

quality of the final ingot and it is widely known that the presence of solu-
tal convection in mushy layers results in the formation of channels, which
appear as freckles in cross-section. Vibration can be easily used as an agi-
tation technique in the continuous casting process, whilst the ingot is still
in the semi-solid phase, in order to suppress the effects of solutal convec-
tion thereby producing a better quality alloy. The linear stability and weak
non-linear analysis of solutal convection in mushy layers is a topic that is
currently under investigation by the author.

4. Conclusion

Analytical results are presented for convection in a porous layer sub-
jected to vibration and heated from below. A weak non-linear analysis was
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performed for an extended Darcy formulation and the numerical results
revealed that increasing the frequency of vibration causes the amplitude of
convection to approach zero, i.e., vibration stabilises the convection.
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