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Abstract. Based on the traditional formulation of heat transfer in porous media it is dem-
onstrated that Local Thermal Equilibrium (Lotheq) applies generally for any boundary
conditions that are a combination of constant temperature and insulation. The resulting

consequences are being analysed and discussed. Among these consequences it is shown that
the linear relationship between the average temperature difference of the two phases and the
heat transferred over the fluid-solid interface is inappropriate for use in connection with

conditions of Lack of Local Thermal Equilibrium (La Lotheq).

Key words: local thermal equilibrium, heat conduction, dual-phase-lagging, thermal waves,
hyperbolic heat conduction.

Nomenclature

Latin Symbols

êx unit vector in the x direction.
êy unit vector in the y direction.
êz unit vector in the z direction.

Fo Fourier number, equals aesq=L2.
Nd dual-phase-lagging mixed term dimensionless group, equals de=L2 ¼ aesT=L2.
Nb dual-phase-lagging bi-harmonic term dimensionless group, equals be=aeL

2.

h integral heat transfer coefficient for the heat conduction at the solid–fluid
interface (dimensional).

ks effective thermal conductivity of the solid phase, equals ð1� uÞ~ks (dimensional).
~ks thermal conductivity of the solid phase, (dimensional).
kf effective thermal conductivity of the fluid phase, equals u~ks (dimensional).
~kf thermal conductivity of the fluid phase, (dimensional).
L the length of the porous slab (dimensional).

q� heat flux vector (dimensional).
t� time (dimensional).
T temperature, (dimensional).

TC coldest wall temperature (dimensional).
TH hottest wall temperature (dimensional).
x� horizontal co-ordinate (dimensional).

x� spatial variables, equals ðx�; y�; z�Þ.
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Greek Symbols

ae effective thermal diffusivity, (dimensional).

be effective property coefficient to the dual-phase-lagging bi-harmonic term,
(dimensional).

cs solid phase effective heat capacity, equals ð1� uÞqscs (dimensional).

cf fluid phase effective heat capacity, equals uqfcp;f (dimensional).
de effective property coefficient to the dual-phase-lagging mixed term,

(dimensional).
h dimensionless temperature, equals ðT� � TCÞ=ðTH � TCÞ.
u porosity.
qs solid phase density.
qf fluid phase density.

sq time lag associated with the heat flux, (dimensional).
sT time lag associated with the temperature gradient, equals de=ae, (dimensional).

Subscripts

* corresponding to dimensional values.
s related to the solid phase.
f related to the fluid phase.

1. Introduction

The problem of heat transfer in a fluid saturated porous domain subject to
Lack of Local Thermal Equilibrium (La Lotheq) has been the subject of wide
interest due to its theoretical importance as well as its practical applications.
The industrial applications of porous materials show a dramatic growth,
which, for example, includes the recent interest in metal foams as well as the
investigation of bio-tissues. As a result of the growing interest in the latter, a
more accurate understanding of the heat transfer phenomena in porous
media continues to attract attention.

Applications of porous media heat transfer subject to La Lotheq were
undertaken among others by Nield (1998, 2002), Minkowycz et al. (1999),
Alazmi and Vafai (2002), Banu and Rees (2002), Baytas and Pop (2002), Kim
and Jang (2002), Nield et al. (2002), and Rees (2002).

In particular, Nield (1998) shows that for uniform thermal conductivities
the steady state conduction leads to Lotheq if the temperature or its normal
derivative on the boundary are identical for both phases. In addition Nield
(1998) expands the analysis to the forced convection problem between plane
parallel walls. It turns out that the significance of the La Lotheq in porous
media forced convection is controlled by a dimensionless group, the Nield
number, given by Ni ¼ ks=hl

2
c , where ks is the solid phase thermal conduc-

tivity, h is the fluid–solid heat transfer coefficient and lc is a characteristic
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length scale. The latter was further expressed by Nield (1998) explicitly in
terms of the Darcy number, the Nusselt number related to the fluid–solid
interface, porosity as well as the thermal conductivities and heat capacities of
both phases.

Tzou (1995, 1997) refers to experimental results in porous media heat
conduction identifying thermal oscillations and overshooting, and explains
them by applying the Dual-Phase-Lagging (DuPhlag) model. In particular
Minkowycz et al. (1999) link the La Lotheq model with the DuPhlag model
in a similar manner to Tzou (1995, 1997).

The present paper aims at demonstrating that, for a fluid saturated
porous medium subject to heat conduction (transient as well as steady
state) and any combination of imposed temperatures and insulation on the
boundary, the specific traditional form of representing the heat transferred
over the fluid–solid interface (at the macro-level) via a linear relationship
between the latter and the temperature difference of the two phases, that
is, Qsf ¼ hðTs � TfÞ, is inappropriate for use in connection with conditions
of La Lotheq because its application leads back to Lotheq conditions and
to a very particular case of identical effective thermal diffusivities for both
phases.

2. Governing Equations and General Solutions

Let us consider the heat conduction in a fluid saturated porous medium
domain D, having a boundary C of a general shape that is exposed partially
to different constant temperatures (C1 and C2) and partially to insulation
conditions (C3) (Figure 1). Heat conduction in porous media is governed at
the macro-level by the following equations that represent averages over each
phase within a Representative Elementary Volume (REV)

cs
@Ts

@t�
¼ ksr2

�Ts �Qsf ð1Þ

cf
@Tf

@t�
¼ kfr2

�Tf þQsf ð2Þ

where Qsf represents the heat transferred over the fluid–solid interface
within the REV, and where cs ¼ ð1� uÞqscs and cf ¼ uqf cp;f are the solid
phase and fluid phase effective heat capacities, respectively, u is the
porosity, ks ¼ ð1� uÞ~ks and kf ¼ u~kf are the effective thermal conductiv-
ities of the solid and fluid phases, respectively. When the assumption of
Lotheq applies, it implies that Ts � Tf and Equations (1) and (2) can be
added, cancelling the Qsf term, to produce one equation for heat con-
duction in porous media in the form
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ce
@T

@t�
¼ ker2

�T ð3Þ

where ce ¼ cs þ cf and ke ¼ ks þ kf. Otherwise, if the Lotheq assumption
does not apply, the traditional formulation of the heat transferred over the
fluid–solid interface (averaged over the REV) uses a linear relationship be-
tween Qsf and the average temperature difference between the phases in the
form

Qsf ¼ hðTs � TfÞ ð4Þ

where h > 0 is a macro-level integral heat transfer coefficient for the heat
conduction at the fluid–solid interface (averaged over the REV) that is as-
sumed independent of the phases temperatures. Substituting Equation (4)
into Equations (1) and (2) yields the traditional form of these equations
(Nield, 1998; Nield and Bejan, 1999)

cs
oTs

ot�
¼ ksr2

�Ts � hðTs � TfÞ ð5Þ

cf
oTf

ot�
¼ kfr2

�Tf þ hðTs � TfÞ ð6Þ

Equations (5) and (6) are linearly coupled. The result of resolving the cou-
pling between these equations as shown in the Appendix is represented by
two independent equations for each phase in the form

Figure 1. A fluid saturated porous domain subject to any combination of different
constant temperatures and insulation on its boundaries.
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sq
o2Ti

ot2�
þ oTi

ot�
¼ aer2

�Ti þ der2
�

oTi

ot�

� �
� ber4

�Ti 8i ¼ s; f ð7Þ

where the index i can be s, representing the solid phase, or f, standing for the
fluid phase and where the following notation was used

sq ¼
cscf

hðcs þ cfÞ
; ae ¼

ðks þ kfÞ
ðcs þ cfÞ

; de ¼
ðcskf þ cfksÞ
hðcs þ cfÞ

; be ¼
kskf

hðcs þ cfÞ
ð8Þ

Equation (7) is a linear equation that applies to each phase, while its
parameters are effective coefficients common for both phases. By imposing a
combination of Dirichlet (constant temperatures) and insulation boundary
conditions (a particular case of Neumann boundary conditions in the form of
a vanishing normal temperature gradient) expressed by

Ts ¼ Tf ¼ T1 on C1

Ts ¼ Tf ¼ T2 on C2 ð9Þ
r�Tf � ên ¼ r�Ts � ên ¼ 0 on C3

where ên is a unit vector normal to the boundary C, and assuming identical
initial conditions for both phases in the form

ðTsÞt�¼0 ¼ ðTfÞt�¼0 ¼ To at t� ¼ 0 ð10Þ

leads to the following boundary and initial conditions that are applicable to
Equation (7)

Ti ¼ T1 and o2Ti=on
2 ¼ 0 8i ¼ s,f on C1

Ti ¼ T2 and o2Ti=o n
2 ¼ 0 8i ¼ s,f on C2 ð11Þ

oTi=on ¼ 0 and o3Ti=on
3 ¼ 0 8i ¼ s,f on C3

ðTiÞt�¼0 ¼ To and ðoTi=ot�Þt�¼0 ¼ _To 8i ¼ s,f at t� ¼ 0 ð12Þ

Equation (7) that is identical for both phases, shares common parameters for
both phases, solved subject to identical boundary and initial conditions for
each phase, produces therefore a solution that is identical for both phases,
that is,

Tsðt�; x�Þ ¼ Tfðt�;x�Þ 8ðt� � 0; x� 2 DÞ ð13Þ

where x� ¼ ðx�; y�; z�Þ represents the spatial variables. Equation (13) is
identified as the requirement for Lotheq in porous media conduction
causing the heat transfer at the fluid–solid interface hðTs � TfÞ to vanish. It
was obtained accurately from the original system of Equations (5) and (6)
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subject to the specified boundary conditions, and other than that, no other
imposed restrictions. It is therefore quite general. This result is quite
astonishing and intriguing because it suggests that Lotheq exists naturally in
any porous domain subject to heat conduction and a combination of constant
temperature and insulation boundary conditions. However, this latter con-
clusion is not absolute but rather qualified and needs further investigation.
Substituting Equation (13) into Equations (5) and (6) yields

oTs

ot
¼ asr2Ts ð14Þ

oTf

ot
¼ afr2Tf ð15Þ

where as ¼ ks=cs and af ¼ kf=cf. The solution to Equations (14) and (15)
subject to the same boundary and initial conditions as indicated in Equations
(9) and (10) has to be identical to the corresponding solutions to Equation (7)
subject to the equivalent boundary and initial conditions (11) and (12),
respectively. This might be possible given the fact that Equation (7) has
effective parameters that are different from the phase parameters that appear
in Equations (11) and (12). The latter will be tested in Section 3 for a specific
application of the general results that are presented here. Nevertheless, a
further and more far reaching conclusion can be made by realising from (13)
that Equations (14) and (15) are expected to produce an identical solution
Tsðt; xÞ ¼ Tfðt; xÞðt � 0; x 2 DÞ despite the fact that in general their respective
thermal diffusivities may vary substantially. The latter cannot be accom-
plished unless as ¼ af, leading to the inevitable conclusion that consistency
requires the effective thermal diffusivities of both phases to be identical. The
latter condition was not explicitly imposed a priori, nor implied in any of the
subsequent derivations. Nevertheless, it was obtained as a result that is linked
to the consequences of Equation (13). Along the way the only assumption
made is represented by Equation(4) indicating that a linear relationship exists
between the temperature difference of the two phases and the macro-level heat
transferred over the fluid–solid interface within the REV. It was this specific
representation that allowed the specific uncoupling of the equations leading to
the result presented in Equation (13). It is inevitable to conclude that appli-
cation of Equation (4) implicitly assumes that as ¼ af, and is inappropriate to
use it in connection with conditions of La Lotheq because its application leads
directly to Equation (13) that represents the Lotheq conditions.

In addition, the following result applies for ae, if as ¼ af ¼ a is substituted
in Equation (8)

ae ¼ as ¼ af ¼ a ð16Þ
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3. Application to Heat Conduction in a Porous Slab

The problem of one-dimensional heat conduction in a fluid saturated porous
slab as presented in Figure 2 is considered in order to establish whether
Equation (7) can produce solutions that are identical to the solutions to
Equations (14) and (15). The condition that as ¼ af ¼ ae ¼ a, which was
obtained in the previous section, is explicitly enforced when using Equations
(7), (14), and (15). For the convenience of the solution, the equations are
presented in the following dimensionless form by using L to scale the inde-
pendent length variable x�, that is, x ¼ x�=L, L

2=ae to scale the time, that is,
t ¼ t�ae=L2, and introducing the dimensionless temperature, h ¼ hs ¼ hf,
defined in the form h ¼ ðT� TCÞ=ðTH � TCÞ leading to

Fo
o2h
ot2
þ oh

ot
¼ r2hþNdr2 oh

ot

� �
�Nbr4h ð17Þ

where the Fourier number, Fo, and two additional dimensionless groups arise

Fo ¼ aesq
L2

;Nd ¼
de
L2
¼ aesT

L2
;Nb ¼

be

aeL2
ð18Þ

Figure 2. A fluid saturated porous slab subject to different constant temperatures on its
walls.
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The dimensionless form of Equation (14) or (15) is

oh
ot
¼ r2h ð19Þ

for both the solid and the fluid phases because of assuming as ¼ af ¼ ae ¼ a
as indicated above. For the one dimensional slab considered here and pre-
sented in Figure 2, Equations (17) and (19) become

Fo
o2h
ot2
þ oh

ot
¼ o2h

ox2
þNd

o3h
otox2

�Nb
o4h
ox4

ð20Þ

oh
ot
¼ o2h

ox2
ð21Þ

and their corresponding boundary and initial conditions are

x ¼ 0 : h ¼ 0 and o2h=ox2 ¼ 0; x ¼ 1 : h ¼ 1 and o2h=ox2 ¼ 0 ð22Þ
t ¼ 0 : h ¼ ho ¼ const: and _h ¼ _ho ¼ 0 ð23Þ

The second boundary conditions of o2h=ox2 ¼ 0 at x ¼ 0 and x ¼ 1 was
obtained as a result of realising that imposing the constant temperature on
the walls applies equally well to the solid as well as fluid phases. Therefore at
x� ¼ 0 one obtains Ts ¼ Tf ¼ TC ¼ const: and at x� ¼ L it produces
Ts ¼ Tf ¼ TH ¼ const. As a result, on these boundaries Ts ¼ Tf and
oTs=ot� ¼ oTf=ot� ¼ 0 which upon substitution into the one dimensional
version of Equations (5) and (6) yields o2Ts=ox

2
� ¼ o2Tf=ox

2
� ¼ 0 at x� ¼ 0

and at x� ¼ L. The dimensionless version of the latter is o2h=ox2 ¼ 0 at x ¼ 0
and x ¼ 1 as indicated in Equation (22). Similarly, for constant initial con-
ditions that are identical for both phases, that is, ðTsÞt�¼0 ¼ ðTfÞt�¼0
¼ To ¼ const:, the different terms in Equations (5) and (6) are as follows:
ðo2Ts=ox

2
�Þt�¼0 ¼ ðo

2Tf=ox
2
�Þt�¼0 ¼ 0, hðTs � TfÞt�¼0 ¼ 0 leading to

ðoTs=ot�Þt�¼0 ¼ ðoTf=ot�Þt�¼0 ¼ 0. The dimensionless version of the latter is
oh=ot ¼ _h ¼ _ho ¼ 0 at t ¼ 0 as indicated in Equation (23). Substituting the
condition as ¼ af ¼ ae ¼ a into the definitions (8) yield

de ¼
2acscf

hðcs þ cfÞ
¼ 2asq; be ¼

cscf a2

hðcs þ cfÞ
¼ a2sq ð24Þ

leading upon substitution into Equation (18)

Fo ¼ asq
L2

; Nd ¼
de
L2
¼ 2asq

L2
¼ 2Fo; Nb ¼

a2sq
aL2
¼ asq

L2
¼ Fo ð25Þ

This result of Nd ¼ 2Fo and Nb ¼ Fo is an immediate consequence of
imposing the condition as ¼ af ¼ ae ¼ a, and is actually the dimensionless
equivalent of the latter.
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4. Analytical Solution

The solution to Equation (20) is separated into steady state hss and transient
htr parts in the form h ¼ hss þ htr. The steady state is the linear solution
hss ¼ x which satisfies the boundary conditions Equation (22). The transient
solution htr has to fulfil the equation

Fo
o2htr
ot2
þ ohtr

ot
¼ o2htr

ox2
þNd

o3htr
otox2

�Nb
o4htr
ox4

ð26Þ

and the following boundary and initial conditions

x ¼ 0 : htr ¼ 0 and o2htr=ox
2 ¼ 0; x ¼ 1 : htr ¼ 0 and o2htr=ox

2 ¼ 0

ð27Þ
t ¼ 0 : htr ¼ ðho � xÞ and _htr ¼ _ho ¼ 0 ð28Þ

The solution is obtained by separation of variables in the form of two
equations for htr ¼ /nðtÞunðxÞ presented in the form

d2/n

dt2
þ cf;n

d/n

dt
þ x2

n/n ¼ 0 ð29Þ

d2un
dx2
þ jnun ¼ 0 ð30Þ

The solution of Equation (30) subject to the homogeneous boundary con-
ditions un ¼ 0 at x ¼ 0 and at x ¼ 1 is un ¼ a1 sinðnpxÞ and the resulting
eigenvalues are jn ¼ np 8n ¼ 1; 2; 3; . . . . As a result, the coefficients cf;n and
x2

n in Equation (29) are being defined in the form

cf;n ¼ Fo�1ð1þNdn
2p2Þ; x2

n ¼ Fo�1n2p2ð1þ n2p2NbÞ ð31Þ

By imposing the condition Nd ¼ 2Fo and Nb ¼ Fo which is an immediate
consequence of requiring as ¼ af ¼ ae ¼ a yields the following definitions

cf;n ¼ Fo�1ð1þ 2Fon2p2Þ ¼ Fo�1 þ 2n2p2;

x2
n ¼ Fo�1n2p2ð1þ n2p2FoÞ ¼ Fo�1n2p2 þ n4p4 ð32Þ

Equation (29) represents a linear damped oscillator. Its eigenvalues are

k1n ¼ �
cf;n
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

c2f;n

s" #
ð33Þ

k2n ¼ �
cf;n
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

x2
n

c2f;n

s" #
ð34Þ
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For conditions consistent with Equation (31) it is simple to show that
4x2

n=c
2
f;n<1 8n ¼ 1; 2; 3 . . . leading to real eigenvalues for all values of n.

The latter result means that the solution is always overdamped, that is, it has
the form

h ¼ xþ
X1
n¼1
ðA1ne

k1nt þ A2ne
k2ntÞ sinðnpxÞ ð35Þ

By using the initial conditions specified in Equation (28) with ho ¼ 0,
representing a step temperature change of the hot wall at x ¼ 1 (to T ¼ TH or
h ¼ 1), from an initial uniform temperature in the slab T ¼ TC (or, h ¼ 0)
and _ho ¼ 0 one obtains the following expressions for the coefficients A1n and
A2n

A1n ¼
2ð�1Þnk2n
ðk2n � k1nÞnp

ð36Þ

A2n ¼
�2ð�1Þnk1n
ðk2n � k1nÞnp

ð37Þ

5. Results and Discussion

The solution (35) was evaluated for two different values of Fo number and is
presented in Figures 3 and 4. The results corresponding to Fo ¼ 10,
Nd ¼ 2Fo ¼ 20 and Nb ¼ Fo ¼ 10 are presented in Figure 3 showing a typical
Fourier diffusion solution. Similarly, the results corresponding to Fo ¼ 100,
Nd ¼ 2Fo ¼ 200 and Nb ¼ Fo ¼ 100 are presented in Figure 4 showing
similar Fourier diffusion results. In order to compare the two results that
belong to different values of the parameters the difference between the two
was evaluated showing that its absolute value is less than 10�3. It seems
compelling to explain this similar behavior. To do so, we use Equation (21)
and evaluate the following terms

Fo
o2h
ot2
¼ Fo

o

ot

oh
ot

� �
¼

Eq: ð21Þ
Fo

o

ot

o2h
ox2

� �
ð38Þ

Nb
o4h
ox4
¼ Nb

o2

ox2
o2h
ox2

� �
¼ Nb

o2

ox2
oh
ot

� �
¼

Eq: ð21Þ
Nb

o

ot

o2h
ox2

� �
ð39Þ

Substituting (38) and (39) into Equation (20) yields

Fo
o

ot

o2h
ox2

� �
þNb

o

ot

o2h
ox2

� �
�Nd

o

ot

o2h
o x2

� �
þ oh

ot
� o2h

o x2
¼ 0 ð40Þ
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Figure 3. The temperature solution of Equation (26) in a porous slab as a function of
x ¼ x�=L for different values of time, and corresponding to Fo ¼ 10, Nd ¼ 20 and

Nb ¼ 10, and the following initial conditions ho ¼ 0 and _ho ¼ 0.
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Figure 4. The temperature solution of Equation (26) in a porous slab as a function of
x ¼ x�=L for different values of time, and corresponding to Fo ¼ 100, Nd ¼ 200 and
Nb ¼ 100, and the following initial conditions ho ¼ 0 and _ho ¼ 0.
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which leads to

ðFoþNb �NdÞ
o

ot

o2h
ox2

� �
þ oh

ot
� o2h

ox2
¼ 0 ð41Þ

The term in the parentheses ðFoþNb �NdÞ can be evaluated subject to the
condition that Nd ¼ 2Fo and Nb ¼ Fo which is an immediate consequence of
imposing as ¼ af ¼ ae ¼ a. The result of enforcing the latter condition leads to
ðFoþNb �NdÞ ¼ 0which, upon substitution intoEquation (41), produces the
Fourier diffusion equation oh=ot� o2h=ox2 ¼ 0, explaining the results pre-
sented in Figures 3 and 4.

6. Conclusions

The conditions for Lotheq in porous media conduction are shown to apply
generally for any boundary conditions that are a combination of constant
temperature and insulation, based on the traditional formulation of heat
transfer in porous media. Among the resulting consequences of the latter it is
shown that the linear relationship between the average temperature difference
of the two phases and the heat transferred over the fluid-solid interface is
inappropriate for use in connection with conditions of La Lotheq.

Appendix

The objective of this Appendix is to show the derivation of Equation (7) from
Equations (5) and (6), in the form

cs
oTs

ot�
¼ ksr2

�Ts � hðTs � TfÞ ðA.1Þ

cf
oTf

ot�
¼ kfr2

�Tf þ hðTs � TfÞ ðA:2Þ

The diffusion terms in these equations are a result of replacing the �r� � q�s
and �r� � q�f terms by using Fourier’s Law in the form q�s ¼ �ksr�Ts and
q�f ¼ �kfr�Tf to yield the Laplacian terms. When the Lotheq assumption is
not valid, conditions appropriate for the case when the temperature differ-
ence between the two phases is not small, the two Equations (A.1) and (A.2)
are coupled and need to be solved simultaneously. There are two ways to
resolve the coupling between these equations. The first way is in isolating Tf

in Equation (A.1) to obtain

Tf ¼
cs
h

oTs

ot�
� ks

h
r2
�Ts þ Ts ðA.3Þ
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and substituting it into Equation (A.2), re-grouping the terms and dividing
the resulting equation by ðcs þ cfÞ, to produce one equation for Ts in the form

sq
o2Ts

ot2�
þ oTs

ot�
¼ aer2

�Ts þ der2
�

oTs

ot�

� �
� ber4

�Ts ðA:4Þ

where the following notation was used

sq ¼
cscf

hðcs þ cfÞ
; ae ¼

ðks þ kfÞ
ðcs þ cfÞ

; de ¼
ðcskf þ cfksÞ
hðcs þ cfÞ

; be ¼
kskf

hðcs þ cfÞ
ðA:5Þ

Alternatively, by isolating Ts in Equation (A.2) and substituting it into
Equation (A.1) one obtains an identical equation as (A.4) for Tf in the form

sq
o2Tf

ot2�
þ oTf

ot�
¼ aer2

�Tf þ der2
�

oTf

ot�

� �
� ber4

�Tf ðA:6Þ

Note the negative sign in front of the bi-harmonic term as distinct from Tzou
(1997), which shows incorrectly a positive sign in front of this term.

The second way in resolving the coupling between the two equations is by
presenting them in the equivalent operator form

cs
o

ot�
� ksr2

� þ h
� �

; �h

�h; cf
o

ot�
� kfr2

� þ h
� �

2
4

3
5 Ts

Tf

� �
¼ 0 ðA:7Þ

Then, their uncoupled form is obtained by evaluating the operator deter-
minant leading to

cs
o

ot�
� ksr2

� þ h

� �
cf

o

ot�
� kfr2

� þ h

� �
� h2

� �
Ti ¼ 0 8i ¼ s, f ðA:8Þ

where the index i can be s, representing the solid phase, or f, standing for the
fluid phase. Equation (A.8) can be presented explicitly, after dividing it by
hðcs þ cfÞ in the form

sq
o2Ti

ot2�
þ oTi

ot�
¼ aer2

�Ti þ der2
�

oTi

ot�

� �
� ber4

�Ti 8i ¼ s, f ðA:9Þ

where the index i can be s, representing the solid phase, or f, standing for the
fluid phase This Equation (A.9) is identical to (A.4) and (A.6) obtained by the
substitution method.

The derivation of Equation (A.9) or its equivalent forms (A.4) and (A.6)
was the main objective of this Appendix, and is presented as Equation (7) in
the text.
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In addition, an equivalent equation presented in terms of the heat flux
instead of temperature is derived below by using Equations (1) and (2) that
are presented in the following equivalent form

cs
oTs

ot�
þ r� � q�s þ hðTs � TfÞ ¼ 0 ðA:10Þ

cf
oTf

ot�
þ r� � q�f � hðTs � TfÞ ¼ 0 ðA:11Þ

by using Fourier’s Law q�s ¼ �ksr�Ts and q�f ¼ �kfr�Tf. By applying the
gradient operator ðr�Þ on Equations (A.10) and (A.11) and the Fourier Law
expressed in the form

r�Ts ¼ �q�s=ks; r�Tf ¼ �q�=kf ðA:12Þ

to replace the r�Ts and r�Tf terms, produces the following system

cs
ks

o
ot�
� r�ðr��Þ þ h

ks

� �
; � h

kf

� �
� h

ks

� �
;

cf
kf

o
o t�
� r�ðr��Þ þ h

kf

� �
2
4

3
5 q�s

q�f

� �
¼ 0 ðA:13Þ

Following a similar process as for the temperature one obtains the
uncoupled equation for the heat flux in the form

sq
o2q�i
ot2�
þ

oq�i
ot�
¼ aer�ðr� � q�iÞ þ de

or�ðr� � q�iÞ
ot�

� ber�½r2
�ðr� � q�iÞ� 8i ¼ s,f

ðA:14Þ

where the definitions of the parameters are identical to Equation (A.5).

References

Alazmi, B. and Vafai, K.: 2002, Constant wall heat flux boundary conditions in porous media

under local thermal non-equilibrium conditions, Int. J. Heat Mass Transfer 45, 3071–3087.
Banu, N. and Rees, D. A. S.: 2002, Onset of Darcy–Benard convection using a thermal non-

equilibrium model, Int. J. Heat Mass Transfer 45, 2221–2238.
Baytas, A. C. and Pop, I.: 2002, Free convection in a square porous cavity using a thermal

nonequilibrium model, Int. J. Thermal Sci. 41, 861–870.
Kim, S. J. and Jang, S. P.: 2002, Effects of Darcy number, the Prandtl number, and the

Reynolds number on local thermal non-equilibrium, Int. J. Heat Mass Transfer 45, 3885–

3896.
Minkowycz, W. J., Haji-Shiekh, A. and Vafai, K.: 1999, On departure from local thermal

equilibrium in porous media due to a rapidly changing heat source: the Sparrow number,

Int. J. Heat Mass Transfer 42, 3373–3385.
Nield, D. A.: 1998, Effects of local thermal nonequilibrium in steady convective processes in a

saturated porous, medium: forced convection in a channel, J. Porous Media 1, 181–186.
Nield, D. A.: 2002, A note on the modeling of local thermal non-equilibrium in a structured

porous medium, Int. J. Heat Mass Transfer 45, 4367–4368.

PETER VADASZ354



Nield, D. A., and Bejan, A.: 1999, Convection in Porous Media, 2nd edn., Springer-Verlag,
New York.

Nield, D. A. Kuzentsov, A. V. and Xiong, M.: 2002, Effect of local thermal non-equilibrium
on thermally developing forced convection in a porous medium’’, Int. J. Heat Mass
Transfer 45, 4949–4955.

Rees, D. A. S.: 2002, Vertical free convective boundary-layer flow in a porous medium using a
thermal nonequilibrium model: elliptical effects, Zeitchrift fur angewandte Mathematik und
Physik ZAMP 53, 1–12

Tzou, D. Y.: 1995, A unified field approach for heat conduction from macro-to-micro-scales,

ASME J. Heat Transfer 117, 8–16.
Tzou, D. Y.: 1997, Macro-to-Microscale Heat Transfer; The Lagging Behavior, Taylor &

Francis, Washington, DC.

CONDITIONS FOR LOCAL THERMAL EQUILIBRIUM 355


