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Abstract. We investigate the convection amplitude in an infinite porous layer subjected to a

vibration body force that is collinear with the gravitational acceleration and heated from
below. The analysis focuses on the specific case of low frequency vibration where the frozen
time approximation is used. The results reveal that for moderate Vadasz numbers, increasing

the magnitude of the acceleration stabilizes the convection. The results of the large Vadasz
number analysis reveals that the acceleration plays a passive role in the stability of convection
and the classical stability criteria for Rayleigh–Benard convection applies.
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Nomenclature

b� vibration amplitude.
Da Darcy number, equals k0� =H2

�.
êx unit vector in the x-direction.

êy unit vector in the y-direction.
êz unit vector in the z-direction.
Fr Froude number, equals k2�=ðg�H3

�Þ.
g� gravitational acceleration.
H� the height of the porous layer.
k� permeability of the porous matrix.

L the front aspect ratio of the porous layer, equals L�=H�.
L� the length of the porous layer.
p dimensionless reduced pressure.
Pr Prandtl number, equals v�=k�.
R porous media gravitational Rayleigh number, equals, b�DTCg�kc�H�=v�k�.
s convection wavenumber.
t� time.

T dimensionless temperature, equals ðT� � TCÞ=ðTH � TCÞ.
TC coldest wall temperature.
TH hottest wall temperature.

u horizontal x component of the filtration velocity.
v horizontal y component of the filtration velocity.
V dimensionless filtration velocity vector, equals uêx þ vêy þ wêz.
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Va Vadasz number, equals / � Pr=Da.
w vertical z component of the filtration velocity.
W the top aspect ratio of the porous layer, equals W�=H�.
W� the width of the layer.
x horizontal length coordinate.
y horizontal width coordinate.

z vertical coordinate.

Greek Letters

DTC characteristic temperature difference.

X scaled vibration frequency, equals, x�H2
�=k�.

a a parameter related to the wave number, equals s2=p2.
b� thermal expansion coefficient.

c equals Va=p2.
d equals, jFrX2.
j equals b�=H�.
k� effective thermal diffusivity.

l� fluid dynamic viscosity.
v� fluid kinematic viscosity.
q fluid density.

r convection frequency.
x� vibration frequency.
/ porosity

Subscripts

* dimensional values.
c characteristic.

cr critical values.
C related to coldest wall.
H related to hottest wall.
o related to unmodulated quantities.

Over

� scaled quantities.

1. Introduction

Over the past decade, interest in fundamental studies of thermal convection
in porous media has significantly increased due to its presence in diverse
engineering applications. Buoyancy induced flows in porous media play an
important role in engineering applications, for example the presence mushy
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layers (a reactive porous medium) in binary alloy solidification. During
solidification one finds the presence of three distinct layers viz. the solid layer,
the melt layer and the mushy layer, which is sandwiched between the solid
and melt regions. The mushy layer may be thought of as a two-phase zone/
reactive porous medium that serves to smear the concentration gradient
between the solid and melt regions. Experimental studies by Sample and
Hellawell (1984) and Sarazin and Hellawell (1998) reveal important infor-
mation on mechanism for channel formation. It is also demonstrated that the
dynamics occurring in the mushy layer are critical to the quality of the final
product. Amberg and Homsy (1993), Anderson and Worster (1995) and
Worster (1992) provide an excellent numerical analysis of the effects of
gravity on solidification, whilst Govender and Vadasz (2002a, b) and
Govender (2003) extend their work by proposing rotation as a means of
stabilising convection.

Lately Govender (2004a, b) provided stability analyses for convection in
gravity modulated porous layers heated from below and above. In addition
Govender (2004c) provided a weak non-linear analysis of convection in a
gravity modulated porous layer for the large amplitude scaling. In that paper
he makes mention of the fact that the work may be extended to binary alloy
solidification, a task that is currently underway. The objective of the current
work is to analyse the stability of convection in a passive porous medium
subjected to low frequency vibration for both the moderate and large Vadasz
number scaling.

2. Problem Formulation

A sketch of the vibrating porous layer and the important boundary condi-
tions are shown in Figure 1. Govender (2004a) presented a detailed formu-
lation of the continuity, energy, and Darcy equations (extended to include
vibration) for porous media. As the derivation will not be repeated here,
readers are referred there for a detailed analysis. The dimensionless gov-
erning equations are presented as follows:

r � V ¼ 0: ð1Þ
1

Va

@

@t
þ 1

� �
V ¼ �rp� R½1þ d cosðXtÞ�Têz; ð2Þ

@T

@t
þ V � rT ¼ r2T: ð3Þ

The symbols V, T and p represent the dimensionless filtration velocity vector,
temperature and reduced pressure, respectively, and êz is a unit vector in the
z-direction. In Equation (2), X is the scaled frequency, defined as
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X ¼ x�H2
�=k�, whilst the non-dimensional amplitude d is defined as

d ¼ jFrX2, where j ¼ b�=H� and Fr is the modified Froude number defined
as Fr ¼ k2�=ðg�H3

�Þ. The parameter Va is the Vadasz number, as pointed out
by Straughan (2000), and includes the Prandtl and Darcy numbers as well as
the porosity of the porous domain and is defined as Va ¼ /Pr=Da, where
Pr ¼ v�=k� is the Prandtl number, Da ¼ kc�=H

2
� is the Darcy number, / is the

porosity and v� stands for the kinematic viscosity of the fluid. It is only
through this combined dimensionless group that the Prandtl number affects
the flow in the porous media, see Vadasz (1998) for a full discussion on the
numerical values that Pr can assume in a typical porous medium. In Equa-
tion.(2) one also observes the Rayleigh number, R; defined as
R ¼ b�DTCg�H�=v�k�. As all boundaries are rigid, the solution must follow
the impermeability conditions there, i.e. V � ên ¼ 0 on the boundaries, where
ên is a unit vector normal to the boundary. The temperature boundary
conditions are: T ¼ 1 at z ¼ 0, T ¼ 0 at z ¼ 1 and rT � ên ¼ 0 at x ¼ 0 and
x ¼ L, representing the insulation condition on these walls. The partial dif-
ferential equations (1)–(3) forms a non-linear coupled system which together
with the corresponding boundary conditions accepts a basic motionless
solution with a parabolic pressure distribution. The solutions for the basic
temperature and flow field is given as, TB ¼ 1� z and VB ¼ 0. To provide a
non-trivial solution to the system it is convenient to apply the curl operator
(r�) twice on Equation (2) to obtain

1

Va

@

@t
þ 1

� �
r2Vþ R½1þ d sinðXtÞ� @2T

@x @z
êx þ

@2T

@y @z
êy �r2

HTêz

� �
¼ 0;

ð4Þ
for a solenoidal velocity field, Equation (1). The horizontal Laplacian
operator in Equation (4) is defined as r2

H � @2=@x2 þ @2=@y2.

Figure 1. Differentially heated porous layer subjected to vibration.
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3. Linear Stability Analysis

The system accepts a basic motionless solution of the form VB ¼ 0 and
TB ¼ 1� z. Assuming small perturbations around the basic solution in the
form V ¼ VB þ V 0 and T ¼ TB þ T 0, and linearising Equations (1)–(4) yields
the following linear system:

1

Va

@

@t
þ 1

� �
r2V 0 þR½1þ d cosðXtÞ� @

2T 0

@x@z
êxþ

@2T 0

@y@z
êy�r2

HT
0êz

� �
¼ 0;

ð5Þ
@

@t
�r2

� �
T 0 � w 0 ¼ 0; ð6Þ

where w 0 is the perturbation to the vertical component of the filtration
velocity. The boundary conditions in the z-direction required for solving
Equations (5) and (6) are w 0 ¼ T 0 ¼ 0 at z ¼ 0 and z ¼ 1. In the x-direction
@T=@x ¼ 0 at x ¼ 0 and x ¼ L. The coupling between Equations (5) and (6)
can be removed by considering the vertical component of Equation (5) and
eliminating w 0 to provide one equation for the temperature perturbation in
the form

1

Va

@

@t
þ 1

� �
r2 @

@t
�r2

� �
T 0 � RmðtÞr2

HT
0 ¼ 0; ð7Þ

where RmðtÞ ¼ R½1þ d cosðXtÞ�. Assuming an expansion into normal modes
in the x- and y-directions, and a time-dependent amplitude hðtÞ of the form

T 0 ¼ hðtÞ exp½iðsxyþ syzÞ� sinðpzÞ þ c:c:; ð8Þ

where c.c. stands for the complex conjugate terms and s2 ¼ s2x þ s2y. Substi-
tuting Equation (8) into the Equation (7) provides an ordinary differential
equation for the amplitude hðtÞ:

1

c
d2h
dt2
þ p2 aþ 1

c
þ 1

� �
dh
dt
� FðaÞ½ ~RmðtÞ � ~Ro�h ¼ 0; ð9Þ

where a ¼ s2=p2; c ¼ Va=p2; ~R ¼ R=p2;FðaÞ ¼ p4a=ðaþ 1Þ and ~Ro is the un-
modulated Rayleigh number defined as ~Roðaþ 1Þ2=a. The solution for the
moderate Vadasz number solution involving moderate to large frequencies
has been extensively investigated by Govender (2004a), so readers are re-
ferred to that paper for a full analysis. This paper will focus only on low
frequency effects (X<(1) and the growth rate factor with no modulation is
then assumed to apply instantaneously as follows by taking hðtÞ ¼ ert in
Equation (8). Subtsituting in Equation (9) and refining yields the following
growth rate factor for moderate Vadasz numbers:
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r ¼ u
~RmðtÞ � g

~Ro � g

� �1=2

�1
" #

; ð16Þ

where ~RmðtÞ ¼ R½1þ d cosðXtÞ� is considered here to be a slowly varying,
time-dependent Rayleigh number, u2 ¼ FðaÞcð ~Ro � gÞ and the parameter
g ¼ � ~Roðaþ 1� cÞ2=½4cðaþ 1Þ�. For marginal stability we require that there
be no net growth or decay over once cycle, i.e.Z 2p=X

0

r dt ¼ 0: ð17Þ

Allowing s0 ¼ Xt, yields the following criterion for marginal stability,

Z 2p=X

0

r dt ¼
Z 2p

0

ð1þ jo sin s0Þ1=2ds0 ¼ 2p
~R0 � g
~R� g

� �1=2

; ð18Þ

where j0 ¼ d ~R=ð ~R� gÞ � 1. Using the first three terms of the binomial
expansion of ð1þ jo sin s0Þ1=2 and performing the integral in Equation (18)
yields

jdj ¼ 4
~R� g

~R
1�

~R0 � g
~R� g

� �1=2
" #1=2

for j0 � 1: ð19Þ

It is observed from Equation (19) that for low frequency the stability is
dependent on the acceleration d ¼ jFrX2, and not independently by jFr and
X as discovered by Govender (2004a). It is clearly seen in Figure 2 that for
increasing values of acceleration d, the convection is stabilized as observed by
the increasing values of critical Rayleigh number. There is also a corre-
sponding increase in the critical wavenumbers for increasing values of
acceleration. It is also noted that below d 	 2 there is a marginal increase in
the critical Rayleigh number and wavenumber, whilst beyond d 	 2 there is a
marked increase in the critical Rayleigh number and wavenumber. For large
Vadasz numbers, i.e. c!1, Equation (9) has the following form:

dh
dt
¼ FðaÞ½ ~RmðtÞ � ~Ro�h: ð20Þ

For low frequency effects (X<(1), the growth rate factor with no modu-
lation is then assumed to apply instantaneously as follows by substituting
hðtÞ ¼ ert in Equation (20), to yields the following definition for r for large
Vadasz numbers:

r ¼ FðaÞð ~RmðtÞ � ~R0Þ: ð21Þ
Integrating Equation (21) over one cycle yields, ~R ¼ ~R0, which implies that
for large Vadasz numbers the critical conditions for Rayleigh–Benard
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convection hold, i.e. ~Rcr ¼ 4 and acr ¼ 1. In addition the acceleration d is
seen to play passive role in the stability of convection at low frequencies and
large Vadasz numbers.

5. Conclusion

The current work investigates the effect of low frequency gravity modulation
on the stability of convection in a differentially heated porous layer. The
results show that for large Vadasz numbers the stability criteria for unmod-
ulated Rayleigh–Benard convection applies, i.e. the stability criteria is
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Figure 2. Critical Rayleigh number and wavenumber curves for various values of
acceleration d.
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independent of the acceleration d. For moderate Vadasz numbers it is dis-
covered that convection is stabilized for increasing values of the acceleration d.
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Appendix. Derivation of Equation (18)

Allowing s0 ¼ Xt, yields the following criterion for marginal stability,

Z 2p

0

r ds0 ¼
Z 2p

0

u
~RmðtÞ � g

~R0 � g

� �1=2

�1
" #

ds0 ¼ 0: (A.1)

Substituting the Rayleigh number definition ~Rmðs0Þ ¼ ~R½1þ d cos s0� in
Equation (A.1) and integrating yields,

Z 2p

0

ð1þ jo sin s0Þ1=2ds0 ¼ 2p
~R0 � g
~R� g

� �1=2

; (A.2)

where j0 ¼ d ~R=ð ~R� gÞ<<1. For small values of j0 we may use the binomial
expansion to determine the acceleration d in terms of the characteristic
Rayleigh number and the parameter g.
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