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Abstract
Time-Sensitive Networking (TSN) collectively defines a set of protocols and stand-
ard amendments that enhance IEEE 802.1Q Ethernet nodes with time-aware and 
fault-tolerant capabilities. Specifically, the IEEE 802.1Qbv amendment defines a 
timed-gate mechanism that governs the real-time transmission of critical traffic via a 
so-called Gate Control List (GCL) schedule encoded in each TSN-capable network 
device. Most TSN scheduling mechanisms are designed for homogeneous TSN net-
works in which all network devices must have at least the TSN capabilities related 
to scheduled gates and time synchronization. However, this assumption is often 
unrealistic since many distributed applications use heterogeneous TSN networks 
with legacy or off-the-shelf end systems that are unscheduled and/or unsynchro-
nized. We propose a new scheduling paradigm for heterogeneous TSN networks that 
intertwines a network calculus worst-case interference analysis within the schedul-
ing step. Through this, we compromise on the solution’s optimality to be able to 
support heterogeneous TSN networks featuring unscheduled and/or unsynchro-
nized end-systems while guaranteeing the real-time properties of critical commu-
nication. Within this new paradigm, we propose two solutions to solve the problem, 
one based on a Constraint Programming formulation and one based on a Simulated 
Annealing metaheuristic, that provide different trade-offs and scalability properties. 
We compare and evaluate our flexible window-based scheduling methods using both 
synthetic and real-world test cases, validating the correctness and scalability of our 
implementation. Furthermore, we use OMNET++ to validate the generated GCL 
schedules.

Keywords Time-Sensitive Networking (TSN) · Scheduled traffic · Metaheuristics · 
Constraint programming
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1 Introduction

Real-time communication with safety guarantees over standardized protocols is 
becoming increasingly necessary in various application domains, such as industrial 
automation and advanced driver assistance in automotive applications (Ashjaei et al. 
2021). Time-Sensitive Networking (TSN)  (Institute of Electrical and Electronics 
Engineers 2016a) is a collection of amendments and protocols that enhances stand-
ard 802.1 Ethernet to provide real-time capabilities such as time synchronization, 
preemption, redundancy management and scheduled traffic (Craciunas et al. 2016). 
Through TSN, safety-critical scheduled traffic (ST) can be isolated and guaranteed 
in the presence of best-effort (BE) traffic within the same multi-hop switched Ether-
net network. The main TSN mechanisms that enable ST traffic with bounded latency 
and jitter to coexist with BE communication are a network-wide clock synchroniza-
tion protocol [802.1ASrev (Institute of Electrical and Electronics Engineers 2017] 
and a Time-Aware Shaper (TAS) mechanism (Institute of Electrical and Electron-
ics Engineers 2016b) with a global communication schedule implemented in Gate 
Control Lists (GCLs). The TAS mechanism operates as a gate for each transmission 
queue, allowing or denying the transmission of frames as configured in the GCL 
schedule.

Most previous work guaranteeing real-time communication behavior through 
TSN networks (e.g., Craciunas et al. 2016; Serna Oliver et al. 2018; Pop et al. 2016) 
assume that the network devices are homogeneous, i.e., they all have the time-aware 
gating mechanism and are synchronized to a global network time. However, many 
brownfield deployments in industrial systems require end-to-end guarantees in het-
erogeneous TSN networks that connect TSN-capable switches with legacy resource-
constrained end-points (e.g., PLC, sensors, actuators) that are not easily retrofitted 
with TSN capabilities. Moreover, in industrial systems that have a long life-cycle 
and which are dependent on legacy technology (Schriegel et al. 2018), customers are 
more likely to accept the replacement of switches but not of customized end-points; 
hence it is more beneficial to transition gradually to new technologies making the 
integration of legacy systems into TSN networks essential (Mateu et al. 2021). Fur-
thermore, converged IT/OT networks in, e.g., fog and edge use-cases  (Schriegel 
et  al. 2018), interconnection of TSN networks with, e.g., 5G domains  (Larrañaga 
et  al. 2020), or multi-domain TSN networks with different sync mechanisms can-
not readily communicate isochronous (fully periodic) traffic  (Böhm and Wermser 
2021). Here, the region outside the TSN domain can be viewed as an unscheduled 
and unsynchronized end-point sending sporadic critical traffic. Moreover, even if the 
end-points do have some form of TSN capability (e.g., via switched end-points, von 
Arnim et al. 2020), the software layers on top of the TSN hardware mechanism can 
suffer from non-deterministic jitter and delays, leading to missed transmission slots 
and ultimately resulting in a sporadic, rather than periodic frame transmission from 
the end-points.

Hence, we investigate heterogeneous TSN networks in which end-systems are 
unscheduled and/or unsynchronized, meaning that they do not have TSN capabili-
ties (such as 802.1Qbv and 802.1AS) and thus lead to sporadic arrivals of critical 
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traffic at the TSN-capable switches or domains. Classical schedule generation 
methods for GCLs typically enforce either a fully deterministic, 0-jitter forward-
ing of critical frames with exact SMT/ILP-based solvers (Craciunas et al. 2016) 
or heuristics  (Pop et  al. 2016), or a more flexible window-based approach that 
allows a bounded interference between critical frames (Serna Oliver et al. 2018). 
The drawback of these methods is that they require end-systems to send critical 
frames in a scheduled and synchronized way that matches the forwarding sched-
ule of switches, and thus necessitate TSN capabilities in both end systems and 
switches. Other work, cf. Reusch et  al. (2020), Hellmanns et  al. (2020a), intro-
duce scheduling approaches that do not impose synchronization on the end-sys-
tems level but constrain all forwarding GCL windows on switches to be aligned 
and, in the case of Hellmanns et al. (2020a), do not use safe formal verification 
methods like network calculus for the interference calculation used for the sched-
ule creation.

In this paper, which is an extended version of Barzegaran et al. (2022), we con-
sider heterogeneous TSN networks, relaxing the requirement that end-systems need 
to be synchronized and/or scheduled and, furthermore, take into account relative 
offsets of windows on different nodes. We intertwine the worst-case delay analysis 
from Zhao et al. (2020) with the scheduling step in order to generate correct sched-
ules where the end-to-end requirements of ST streams (also called flows in previous 
work) are met. Furthermore, we compare different TSN scheduling approaches that 
have been proposed in the literature (see Table 3 for an overview) to our flexible 
window-based approach. We define the analysis-driven window optimization prob-
lem resulting from our more flexible approach with the goal to be able to enlarge 
the solution space, reduce computational complexity, and apply it to end-systems 
without TSN mechanisms. Depending on industrial applications’ requirements, our 
evaluation can help system designers choose the most appropriate combination of 
configurations for their use-case. The main contributions of the paper are:

• We propose a novel flexible window-based scheduling method that does not indi-
vidually schedule ST frames and streams, but rather schedules open gate win-
dows for individually scheduled queues. Hence, we can support non-determin-
istic queue states and thus networks with unscheduled and/or unsynchronized 
end-systems by integrating the WCD Network Calculus (NC) analysis into the 
scheduling step. The NC analysis is used to construct a worst-case scenario for 
each stream to check its schedulability, considering arbitrary arrival times of 
these streams and the given open GCL window placements.

• We formulate the “window optimization problem” and provide timing guaran-
tees for real-time streams even in systems with unscheduled and unsynchronized 
end systems.

• We propose two solutions to solve the problem, one based on a Constraint 
Programming formulation and one based on a Simulated Annealing (SA) 
metaheuristic.

• For the CP formulation, we propose a proxy function as an alternative to the 
network calculus analysis in Zhao et al. (2020) and use it to provide timing guar-
antees inside the CP search.



708 Real-Time Systems (2023) 59:705–747

1 3

• We compare and evaluate our flexible window-based scheduling method with 
existing scheduling methods for TSN networks. The evaluation is based on both 
synthetic and real-world test cases, validating the correctness and the scalability 
of our implementation. Furthermore, we use the OMNET++ simulator to vali-
date the generated solutions.

We start by introducing the system, network, and application models in Sect. 2 and 
outline the problem formulation, including a motivational example, in Sect.  3. In 
Sect.  4, we present the novel scheduling mechanism and the optimization strat-
egy based on Constraint Programming (CP), followed by our heuristic solution in 
Sect. 5. We review related research in Sect. 6, focusing on the existing scheduling 
mechanisms that we compare our work to. In Sect. 7, we present the comparison and 
evaluation results of our methods and conclude the paper in Sect. 8.

2  System model

This section defines our system model for which we summarize the notation in 
Table. 1.

2.1  Network model

We represent the network as a directed graph G = (V,E) where V = ES
⋃

SW is the 
set of end systems (ES) and switches (SW) (also called nodes), and E is the set of 
bi-directional full-duplex physical links. An ES can receive and send network traffic 
while SWs are forwarding nodes through which the traffic is routed. The edges E of 
the graph represent the full-duplex physical links between two nodes, E ⊆ V × V . If 
there is a physical link between two nodes va, vb ∈ V , then there exist two ordered 
tuples [va, vb], [vb, va] ∈ E . An equivalence between output ports p ∈ P and links 

Table 1  Summary of notations Symbol System model

G = (V,E) Network graph with nodes ( V ) and links ( E)
[va, vb] ∈ E Link
[va, vb] ⋅ C, Link speed
[va, vb] ⋅ mt Link macrotick
p ∈ P Output port
p·Q Eight priority queues in an output port p
q ∈ p ⋅ QST A queue used for ST traffic in p
⟨�,w,T⟩q GCL configuration for a queue q ∈ p ⋅ QST , where 

q ⋅ � , q·w, and q·T are the window offset, length, 
and period for queue q, respectively

f·l, f·T Payload size and period of a stream f ∈ F

f·P, f·D Priority, and deadline of a stream f ∈ F

f·r Route for a stream f ∈ F
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[va, vb] ∈ E can be drawn as each output port is connected to exactly one link. A 
link [va, vb] ∈ E is defined by the link speed C (Mbps), propagation delay dp (which 
is a function of the physical medium and the link length), and the macrotick mt. The 
macrotick is the length of a discrete time unit in the network, defining the granular-
ity of the scheduling timeline (Craciunas et al. 2016). Without loss of generality, we 
assume dp = 0 in this paper.

As opposed to previous work, we do not require that end-system are either syn-
chronized or scheduled. Since ESs can be unsynchronized and unscheduled, they 
transmit frames according to a strict priority (SP) mechanism. Switches still need to 
be synchronized and scheduled using the 802.1ASrev and 802.1Qbv, respectively. 
Please note that our method also works for systems where only a subset of the ESs 
are unsynchronized or unscheduled, and the rest have TSN capabilities. However, in 
such mixed systems, the response times of critical traffic coming from synchronized/
scheduled ESs may be unnecessarily pessimistic, and the pessimism may lead to 
reduced schedulability in some use cases. If schedulability needs to be increased and 
the pessimism decreased, we need to isolate critical traffic that arrives at a switch 
from TSN-capable ESs from any other traffic. This can be achieved by placing the 
scheduled critical traffic from scheduled and synchronized ESs into different queues 
than the sporadic traffic arriving from unscheduled/unsynchronized ESS in order to 
eliminate interference. While this will guarantee a deterministic timely behavior as 
in the classical models (e.g. Craciunas et al. 2016; Serna Oliver et al. 2018), it will 
mean that the reserved queues will not be available for the sporadic critical traffic 
arriving from unscheduled/unsynchronized ESs.

2.2  Switch model

Figure 1a depicts the internals of a TSN switch. The switching fabric decides, based 
on the internal routing table to which output port p a received frame will be for-
warded. Each egress port has a priority filter that determines in which of the avail-
able 8 queues/traffic-classes q ∈ p ⋅ Q of that port a frame will be put. We assume 
that all 8 may (but don’t have to) be used. Within a queue, frames are transmitted in 
first-in-first-out (FIFO) order. Similar to Craciunas et al. (2016), a subset ( p ⋅ QST ) 

Fig. 1  TSN Switch model and queue interference
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of the queues is reserved for ST traffic, while the rest ( p ⋅ Q ) are used for non-criti-
cal communication. As opposed to regular 802.1Q bridges, where enqueued frames 
are sent out according to their respective priority, in 802.1Qbv bridges, there is a 
TAS, also called timed-gate, associated with each queue and positioned behind it. A 
timed-gate can be either in an open (O) or closed (C) state. When the gate is open, 
traffic from the respective queue is allowed to be transmitted, while a closed gate 
will not allow transmission, even if the queue is not empty. When multiple gates 
are open simultaneously, the highest non-empty priority queue gets selected first, 
blocking others until it is empty or the corresponding gate is closed. The 802.1Qbv 
standard includes a mechanism to ensure that no frames can be transmitted beyond 
the respective gate’s closing point. This look-ahead checks whether the entire frame 
present in the queue can be fully transmitted before the gate closes and, if not, it will 
not start the transmission.

The state of the queues is encoded in a GCL, which (contrary to e.g., TTEth-
ernet  Issuing Committee 2011) acts on the level of traffic-classes instead of on an 
individual frame level (Craciunas and Serna Oliver 2017). Hence, an imperfect time 
synchronization, frame loss, ingress policing (cf. Craciunas et al. 2016), or the var-
iance in the arrival of frames from unscheduled and/or unsynchronized ESs may 
lead to non-determinism in the state of the egress queues and, as a consequence, 
in the whole network. If the state of the queue is not deterministic at runtime, the 
order and timing of the sending of ST frames can vary dynamically. In Fig. 1b, the 
schedule for the queue of the (simplified) switch SW, opens for two frames and then, 
sometime later, for the duration of another two frames. The arrival of frames from 
unscheduled and/or unsynchronized end systems may lead to a different pattern in 
the egress queue of the switch, as illustrated in the top and bottom figures of Fig. 1b. 
Note that we do not actually know the arrival times of the frames, and what we 
depict in the figure are just two scenarios to illustrate the non-determinism. There 
may be scenarios where one of the frames, e.g., frame “2”, arrives much later. This 
variance makes it impossible to isolate frames in windows and obtain determinis-
tic queue states, and, as a consequence, deterministic egress transmission patterns, 
as required by previous methods for TSN scheduling (e.g.  Craciunas et  al. 2016; 
Serna Oliver et al. 2018; Pop et al. 2016; Dürr and Nayak 2016). We refer the reader 
to Craciunas et al. (2016) for an in-depth explanation of the TSN non-determinism 
problem.

The queue configuration is expressed by q = ⟨QST ,Q⟩ . The decision in which 
queue to place frames is taken either according to the priority code point (PCP) 
of the VLAN tag or according to the priority assignment of the IEEE  802.1Qci 
mechanism. In order to formulate the scheduling problem, the GCL configuration is 
defined as a tuple ⟨�,w,T⟩q for each queue q ∈ p ⋅ QST in an output port p, with the 
window offset � , window length w and window period T.

2.3  Application model

The traffic class we focus on in this paper is ST, also called time-sensitive traffic. 
ST traffic is defined as having requirements on the bounded end-to-end latency 
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and/or minimal jitter  (Craciunas et  al. 2016). Communication requirements of 
ST traffic itself are modeled with the concept of streams (also called flows), rep-
resenting a communication from one sender (talker) to one or multiple receivers 
(listeners). We define the set of ST streams in the network as F  . A stream f ∈ F  
is expressed as the tuple ⟨l, T ,P,D⟩f  , including the frame size, the stream period 
in the source ES, the priority of the stream, and the required deadline represent-
ing the upper bound on the end-to-end delay of the stream.

The route for each stream is statically defined as an ordered sequence of 
directed links,e.g., a stream f ∈ F sending from a source ES v1 to another desti-
nation ES vn has the route r = [[v1, v2],… , [vn−1, vn]] . Without loss of generality, 
the notation is simplified by limiting the number of destination ES to one, i.e., 
unicast communication. Please note that the model can be easily extended to 
multicast communication by adding each sender-receiver pair as a stand-alone 
stream with additional constraints between them on the common path.

We assume that streams arrive sporadically, meaning at a random time, but 
with a minimum interarrival time of the stream’s period.

3  Problem formulation

Given (1) a set of streams F  with statically defined routes R , and (2) a network 
graph G, we are interested in determining GCLs, which is equivalent to deter-
mining (i) the offset of windows q.� , (ii) the length of windows q.w, and (iii) the 
period of windows q.T such that the deadlines of all streams are satisfied and the 
overall bandwidth utilization (cf. Sect. 4.2) is minimized.

We remind the reader that with flexible window-based scheduling, we do 
not know the arrival times of frames, and frames of different ST streams may 
interfere with each other. Frames that arrive earlier will delay frames that arrive 
later; also, a frame may need to wait until a gate is open, or arrive at a time just 
before a gate closure and cannot fit in the interval that remains for transmission.

Once the problem is unschedulable (some stream deadlines are missed), we 
determine the solution in which the number of missed stream deadlines is mini-
mized. In this paper, we use Network Calculus (Jean-Yves and Patrick 2001) to 
calculate the worst-case delay of streams.

Our problem is intractable, i.e., the decision problem associated with 
the scheduling problem has been proved to be (NP)-complete in the strong 
sense (Sinnen 2007). We present two solutions for this problem. Our first solu-
tion is based on Constraint Programming (CP), see Sect. 4. CP is an exact math-
ematical programming approach that attempts to find an optimal solution. How-
ever, as our experiments in Sect.  7 will show, CP cannot handle realistic test 
cases. Hence, we also propose a second solution, based on a SA metaheuristic, 
see Sect. 5. Metaheuristics have been used as an alternative to exact optimiza-
tion methods such as CP (Burke and Kendall 2014).



712 Real-Time Systems (2023) 59:705–747

1 3

3.1  Motivational example

Let us illustrate the importance of determining optimized windows. Recall that 
with flexible window-based scheduling, we do not know the arrival times of 
frames, and frames of different ST streams may interfere with each other. Frames 
that arrive earlier will delay frames that arrive later; also, a frame may need to 
wait until a gate is open, or arrive at a time just before a gate closure and cannot 
fit in the interval that remains for transmission.

We illustrate in Fig. 2 three window configurations (a), (b), and (c), motivating 
the need to optimize the windows. The vertical axis represents each egress port in 
the network, and the horizontal axis represents the timeline. The tall grey rectan-
gles give the gate open time for a priority queue. As mentioned, we do not know 
the arrival times of the frames, thus it is necessary to provide a formal analysis 
method to ensure real-time performance. In this paper, we use the Network Cal-
culus (NC)-based approach from Zhao et al. (2020) to determine the worst-case 
end-to-end delay bounds (WCDs) for each stream. In the motivational example, 
the WCDs are determined by constructing a worst-case scenario for each stream. 
Hence, in Fig. 2 we show worst-case scenarios. The red and blue rectangles in the 
figure represent ST frames’ transmission. There are two periodic streams f1 (blue 
rectangles) and f2 (red rectangles) with the same frame size and priority. We use 
the arrows pointing down to mark the arrival time for ST frames creating the 
worst-case case for f2 . Let us assume that the deadline of each stream equals its 
period fi ⋅ T  . In each configuration in Fig. 2 we show that arrival scenario which 
would lead to the worst-case situation for frame f2 , i.e., the largest WCD for f2.

Fig. 2  Motivational example showing the importance of optimizing the windows. Note that the arrival 
times of frames are not known beforehand, hence we decided to illustrate in each configuration (a) to (c) 
an arrival scenario that leads to the worst-case delay for frame f

2
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Since the ESs are unscheduled (without TAS) and/or unsynchronized, the 
frames can arrive and be transmitted by the ES at any time (the offset of a peri-
odic stream on the ES is in an arbitrary relationship with the offsets of the win-
dows in the SWs). However, on the switches, frame transmissions are allowed to 
be forwarded only during the scheduled window. The worst-case for f2 happens 
when the frame (1.1) of f1 arrives on [ ES1, SW1 ] slightly earlier than the frame 
(2.1) of f2 arrives on [ ES2, SW1 ], and at the same time, they arrive on the subse-
quent egress port [ SW1, SW2 ] at a time when the remaining time during the cur-
rent window is smaller than the frame transmission time. In this case, the guard 
band delays the frames until the next window slot.

With the window configuration in Fig.  2a, the WCD of f2 is larger than its 
deadline, i.e., WCD(f2) > f2.T  , hence, f2 is not schedulable. If the window period 
is narrowed down, as shown in Fig. 2b, the WCD of f2 satisfies its deadline. How-
ever, there is a large bandwidth usage occupied by the windows. Figure 2c uses 
the same window period as in Fig.  2a but changes the window offset. As can 
be seen in the figure, the WCD of the stream f2 is also smaller than its dead-
line f2 ⋅ T  , and compared with Fig.  2b, the bandwidth usage of the windows is 
reduced. With the increasing complexity of the network, e.g., multiple streams 
joining and leaving at any switch in the network and/or an increased number of 
ST streams and priorities, an optimized window configuration cannot be done 
manually; therefore, optimization algorithms are needed to solve this problem.

4  Constraint programming window optimization (CPWO)

In this section we present a solution based on a Constraint Programming formula-
tion. Although CP can perform an exhaustive search and find the optimal solu-
tion, this is infeasible for large networks. Hence, we propose a strategy called 
Constraint Programming-based Window Optimization (CPWO) that is able to 
“prune” the search to find optimized solutions in a reasonable time, at the expense 
of optimality. CPWO has two features intended to speed up the search: 

 (i) A metaheuristic search traversal strategy: CP solvers can be configured with 
user-defined search strategies, which enforce a custom order for selecting vari-
ables for assignment and for selecting the values from the variable’s domain. 
Here, we use a metaheuristic strategy based on Tabu Search (Burke and Ken-
dall 2014).

 (ii) A timing constraint specified in the CP model that prunes the search space: 
Ideally, the WCD Analysis would be called for each new solution. However, 
an NC-based analysis is time-consuming, and it would slow down the search 
considerably if called each time the CP solver visits a new valid solution. 
Hence, we have introduced “search pruning” constraints in the CP model (the 
“Timing (pruning)” constraints in the “CP model” box in Fig. 3), explained 
in Sect. 4.5.
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4.1  Overview

CPWO takes as the inputs the architecture and application models and outputs a set 
of the best solutions found during search (see Fig. 3). We use CP to search for solu-
tions (the “CP solver” box). CP performs a systematic search to assign the values 
of variables to satisfy a set of constraints and optimize an objective function, see 
the “CP model” box: the sets of variables are defined in Sect. 4.3, the constraints in 
Sect. 4.4 and the objective function in Sect. 4.2. A feasible solution is a valid solu-
tion that is schedulable, i.e., the worst-case delays (WCDs) of streams are within 
their deadlines. Since it is impractical to check for schedulability within a CP for-
mulation, we employ instead the Network Calculus (NC)-based approach from Zhao 
et al. (2020) to determine the WCDs, see the “WCD Analysis” box in Fig. 3. The 
WCD Analysis is called every time the CP solver finds a “new solution” which is 
valid with respect to the CP constraints. The “new solution” is not schedulable if 
the calculated latency upper bounds are larger than the deadlines of some critical 
streams.

These timing constraints implement a crude analysis that indicates if a solution 
may be schedulable and are solely used by the CP solver to eliminate solutions from 
the search space. These constraints may lead to both “relaxed-pruning” scenarios 
that are actually unschedulable or “aggressive-pruning” scenarios that eliminate 
solutions that are schedulable. The proxy function (pruning constraint) can thus 
be parameterized to trade-off runtime performance for search-space pruning in the 
CP-model.

The timing constraints assume that for a given stream, its frames in a queue will 
be delayed by other frames in the same queue, including a backlog of frames of the 
same stream. A parameter B is used to adjust the number of frames in the backlog 
which is an integer number greater than zero, as preemption is not allowed, tuning 
the pruning level of the CP model’s timing constraints. Note that NC still checks the 
actual schedulability, so it does not matter if the CP analysis is too relaxed—this will 
only prune fewer solutions, slowing down the search. However, using overly aggres-
sive pruning runs the risk of eliminating schedulable solutions of good quality. We 
consider that B is given by the user, controlling how fast to explore the search space. 
In the experiments, we adjusted B based on the feedback from the WCD Analy-
sis and the pruning constraint. If, during a CPWO run, the pruning constraint from 

Fig. 3  Overview of our CPWO optimization strategy
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Sect. 4.5 was invoked too often, we decreased B , as it was pruning too aggressively; 
otherwise, if the WCD analysis was invoked too often and was reporting that the 
solutions were schedulable, we increased B.

We first define the terms needed for the CP model in Table. 2. Then, we continue 
with the definition of the objective function, model variables, and constraints of the 
CP model.

4.2  CP objective function

The CP solver uses the objective function Ω , which minimizes the average band-
width usage:

Eq. 1 defines the objective function Ω as the average bandwidth usage in the net-
work. The average bandwidth usage is calculated as the sum of each window’s uti-
lization, i.e., the window length over its period, divided by the total number of win-
dows in the CP model. For each port in each device of the network ( ∀p ∈ P ), the 
sum is computed over all windows of the port schedule ( ∀q ∈ p ⋅ Q ). This objective 
function might be chosen differently depending on the use-case. Other possible for-
mulations could involve minimizing the maximum load on any link or the average 
end-to-end delay of streams. Note that solutions found by a CP solver are guaran-
teed to satisfy the constraints defined in Sect. 4.4. In addition, the schedulability is 
checked with the NC-based WCD Analysis (Zhao et al. 2020).

4.3  Variables

The model variables are the offset, length, and period of each window, see Sect. 2.2. 
For each variable, we define a domain which is a set of finite values that can be 
assigned to the variable. CP decides the values of the variables as an integer from 
their domain in each visited solution during the search. The domains of offset q ⋅ � , 
length q.w, and period q.T variables are defined, respectively, by

(1)∀p ∈ P ∶ Ω =

∑
q∈p⋅Q

q⋅w

q⋅T

N(P)
.

Table 2  Definition of terms used in CP model formulation

Term Definition

N(P) Total number of windows assigned to priority queues
K(p) Hyperperiod of the port p
L(q) Maximum size of any frame from all streams assigned to q
GB(q) Maximum transmission time of ST frames competing in q
R(q) All streams assigned to the queue q
X(q) All streams arriving from a switch and assigned to the queue q
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The domain of the window period is defined in the range from 0 to the hyperperiod 
of the respective port p, i.e., the Least Common Multiple (LCM) of all the stream 
periods forwarded via the port. The window period is an integer and cannot be zero. 
The domain of the window offset is defined in the range from 0 to the hyperperiod 
of the respective port p. Finally, the domain of the window length is defined in the 
range from the minimum accepted window length to the hyperperiod of the respec-
tive port p. The minimum accepted window length is the length required to transfer 
the largest frame from all streams assigned to the queue q, protected by the guard 
band GB(q) of the queue. A port p is attached to only one link [va, vb] ; and values and 
domains are scaled by the macrotick mt of the respective link.

4.4  Constraints

The first three constraints need to be satisfied by a valid solution: (1) the window is 
valid, (2) two windows in the same port do not overlap, and (3) the window band-
width is not exceeded. The next two constraints reduce the search space by restrict-
ing the periods of (4) queues and (5) windows to harmonic values in relation to the 
hyperperiod. Harmonicity may eliminate some feasible solutions but we use this 
heuristic strategy to speed up the search. Finally, we introduce a constraint that lim-
its the size of the resulting GCL configuration to be smaller than or equal to a given 
maximum (Eq. (8)). This is necessary since some resource-constrained TSN devices 
may only allow a limited GCL size per port.

(1) The window validity constraint (Eq. (3)) states that the offset plus the length 
of a window should be smaller or equal to the window’s period:

(2) Non-overlapping constraint (Eq. (4)). Since we search for solutions in which 
windows of the same port do not overlap, the opening or closing of each win-
dow on the same port (defined by its offset and the sum of its offset and length, 
respectively) is not in the range of another window, over all period instances:

(2)

∀p ∈ P,∀q ∈ p ⋅ Q ∶

0 < q ⋅ T ≤
K(p)

[va, vb].mt
, 0 ≤ q ⋅ 𝜙 ≤

K(p)

[va, vb].mt
,

L(q)

[va, vb].mt × [va, vb].C
+ GB(q) ≤ q ⋅ w ≤

K(p)

[va, vb].mt
.

(3)∀p ∈ P,∀q ∈ p ⋅ Q ∶ (q ⋅ w + q ⋅ �) ≤ q ⋅ T .

(4)

∀p ∈ P,∀q ∈ p ⋅ Q,∀q� ∈ p ⋅ Q,Tq,q� = max(q ⋅ T , q�T),

∀a ∈ [0, Tq,q�∕q ⋅ T),∀b ∈ [0, Tq,q�∕q
�
⋅ T) ∶

(q ⋅ � + q ⋅ w + a × q ⋅ T) ≤ (q� ⋅ � + b × q� ⋅ T)∨

(q� ⋅ � + q� ⋅ w + b × q� ⋅ T) ≤ (q ⋅ � + a × q ⋅ T)
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(3) The bandwidth constraint (Eq. (5)) ensures that all the windows have enough 
bandwidth for the assigned streams:

where F(q) is the set of streams assigned to the queue q.
(4) The port period constraint (Eq. (6)) imposes that the periods of all the queues 

in a port should be harmonic. This constraint is used to avoid window overlap-
ping and to reduce the search space. We note that this constraint has no influ-
ence on the period design of the streams in the system. The period of the given 
streams and the period of the windows that our solutions determine are two 
different entities that affect each other but are not restricted by one another. A 
stream may have any period, and we only constrain the period the resulting GCL 
windows in the schedule. It is necessary to constrain the GCL window period 
since it is an optimization variable, and if left unconstrained, there would be 
infinite possible solutions.

(5) The period limit constraint (Eq. (7)) reduces the search space by considering 
window periods q.T that are harmonic with the hyperperiod of the port K(p) 
(divide it):

(6) The GCL size constraint (Eq. (8)) mandates that the number of open/close 
entries in the resulting GCL is below a given maximum defined by GCLmax . 
Since in the previous constraint we imposed that any window period q.T is 
harmonic with the hyperperiod of the port K(p), we need to make sure that the 
resulting number of open/close windows until the hyperperiod of the port is 
smaller than or equal to the given maximum. Since we do not know if windows 
on different queues are back-to-back, the state transition from the closing event 
of one window may not coincide with the opening event of another window. 
Hence, each window can potentially introduce two entries in the GCL table, 
one for opening the window and another for closing it. Therefore the maximum 
number of GCL entries can be bounded as follows:

4.5  Timing constraints

As mentioned, it is infeasible to use a Network Calculus-based worst-case delay 
analysis to check the schedulability of each solution visited. Thus, we have defined 
a Timing Constraint as a way to prune the search space. Every solution that is not 

(5)∀p ∈ P,∀q ∈ p ⋅ Q ∶
q ⋅ w

q ⋅ T
≥

∑

f∈F(q)

f ⋅ l

f ⋅ T
.

(6)∀p ∈ P,∀q ∈ p ⋅ Q,∀q� ∈ p ⋅ Q ∶ (q.T%q� ⋅ T = 0) ∨ (q� ⋅ T%q.T = 0).

(7)∀p ∈ P,∀q ∈ p ⋅ Q ∶ K(p)%q.T = 0.

(8)∀p ∈ P ∶
∑

q∈p⋅Q

2 ×

⌈
K(p)

q.T

⌉
≤ GCLmax.
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eliminated via this timing constraint is evaluated for schedulability with the NC 
WCD analysis. The timing constraint is a heuristic that prunes the search space of 
(potentially unschedulable) solutions; it is not a sufficient nor a necessary schedula-
bility test. The timing constraint is related to the optimality of the solution, not to its 
correctness in terms of schedulability. An overly aggressive pruning may eliminate 
good quality solutions, and too little pruning will slow down the search because the 
NC WCD analysis is invoked too often.

The challenge is that the min+ algebra used by NC cannot be directly expressed 
in the first-order formulation of CP. However, the NC formulation from Zhao et al. 
(2020) has inspired us to define the CP timing constraints. The Timing Constraint is 
defined in Eq. (9) and uses the concepts of window capacity WC and transmission 
demand WD to direct the CP solver to visit only those solutions where the capacity 
of each window, i.e., the amount of time available to transmit frames assigned to its 
queue, is greater than or equal to its transmission demand, i.e., the amount of trans-
mission time required by the frames in the queue. A window capacity larger than the 
transmission demand indicates that a solution has a high chance to be schedulable:

Thus, we first calculate the capacity WC of each window within the hyperperiod. 
This capacity is similar to the NC concept of a service curve, and its calculation 
is similar to the service curves proposed in the literature  (Wandeler 2006) for 
resources that use Time-Division Multiple Access (TDMA), which is how our win-
dows behave. For e.g., a window with a period of 10 μs, a length of 4 μs, and an 
offset of 3 μs; forwards 150 bytes over a 100 Mbps link in a hyperperiod of 30 μs. 
In Fig. 4, the capacity of such a window is depicted where the blue line shows the 
throughput of the window for transferring data. The capacity increases when the 
window opens (the rising slopes of the curve). The effect of window offset on the 
capacity (the area under the curve) can be observed in the figure. The function WC 
calculates the area under the curve to characterize the amount of capacity for a win-
dow in a hyperperiod, defined in Eq. (10), where the link [va, vb] is attached to the 
port p and assigned to the queue q; and function Y captures the transmission time of 
a single byte through link [va, vb].

To calculate the area under the curve, we consider 3 terms that are S1 , S2 , and 
S3 . They represent the total area under the curve caused by the window length, the 
window closure in the remainder of the window period, and the window period, 

(9)∀p ∈ P,∀q ∈ p ⋅ Q ∶ WD ≤ WC.

Fig. 4  Example capacity for a 
window
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respectively. The value for S1 equals to the area of three triangles, each with the 
base of 4 μs and the height of 50 Bytes. Similarly, the value for S2 equals to the three 
rectangles, each with a length of 3 μs and a width of 50 Bytes. Lastly, the value for 
S3 equals to the area of three triangles with a base of 10 μs and a height of 50 Bytes. 
The WC value of the example in Fig. 4 is 2250 Bytes × μs, where the S terms are 
shown.

Secondly, we calculate the transmission demand WD using Eq.  (11), where R(q) 
captures all the streams that are assigned to the queue q. The transmission demand is 
inspired by the arrival curves of NC. These are carefully determined in NC consid-
ering that the streams pass via switches and may change their arrival patterns (Zhao 
et  al. 2020). In our case, we have made the following simplifying assumptions to 
be able to express the “transmission demand” in CP. We assume that all streams 
are strictly periodic and arrive at the beginning of their respective periods. This is 
“optimistic” with respect to NC in the sense that NC may determine that some of 
the streams have a bursty behavior when they reach our window. To compensate for 
this, we consider that those streams that arrive from a switch may be bursty and thus 
have a backlog B of frames that have accumulated; streams that arrive from ESs do 
not accumulate a backlog. It is also noteworthy that the value of B being an integer 
or decimal depends on whether preemption (IEEE 802.1Qbu) is supported/enabled 
for the critical flows in the network, i.e., if critical flows are marked as express, and 
the devices support preemption. When frames can be preempted, the value of B can 
be chosen from ℝ+ , which implies that also fragments of frames are allowed to be 
backlogged. If preemption is not supported or enabled for the critical frames, the 
value of B can only take integer values greater than or equal to 1, specifying how 
many full frames can be backlogged. In this work, we consider that critical flows are 
not preemptable; hence, we consider only integers greater than zero for B . Figure 5 
shows three streams, f1 to f3 , and only f3 arrives from a switch and hence will have 
a backlog of frames captured by the stream denoted with f ′

3
 (we consider a B of 1 in 

the example). We also assume that the backlog f ′
3
 will not arrive at the same time as 

the original stream f3 , and instead, it is delayed by a period. Again, this is a heuristic 
used for pruning, and the actual schedulability check is done with the NC analysis. 
So, the definition of the “transmission demand” does not impact correctness, but, as 
discussed, it will impact our algorithm’s ability to search for solutions.

Since, in our case, the deadlines can be larger than the periods, we also need 
to consider, for each stream, bursts of frames coming from SWs and an additional 
frame for each stream coming from ESs (the ES periods are not synchronized 
with the SWs GCLs). Since we do not perform a worst-case analysis, we instead 

(10)

∀p ∈ P,∀q ∈ p ⋅ Q ∶

I =
K(p)

q.T
, J =

(q.w − GB(q)) × Y([va, vb])

[va, vb].C
,

S1 = I ×
q.w × J

2
, S2 = I × (q.T − q.w. − q.�) × J,

S3 =
I × (I − 1)

2
× q.T × J, WC = S1 + S2 + S3
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use a backlog parameter B , capturing the possible number of delayed frames in a 
burst within a stream forwarded from another SW. Note that as explained in the 
overview at the beginning of Sect. 4, B is a user-defined parameter that controls 
the “pruning level” of our timing constraint, i.e., how aggressively it eliminates 
candidates from the search space depending on the preemption.

We give an example in Fig.  5 where the streams  f1⟨< 50, 5, 0, 5⟩ and 
f2⟨60, 6, 0, 6⟩ have been received from an ES and the stream  f3⟨100, 15, 0, 15⟩ has 
been received from a SW. For the stream  f3 forwarded from a previous switch, we 
consider that one instance of the stream (determined by the backlog parameter 
B = 1 ), let us call it  f ′

3
 , may have been delayed and received together with the cur-

rent instance  f3 . This would cause a delay in the reception of the streams in the 
current node. The reception curve in Fig. 5 is the sum of curves for each stream 
separately in a hyperperiod of 30 μs.

We give the general definition of the transmission demand value WD as the 
area under the curve for the accumulated data amount of received streams and 
backlogs of the streams arrived from switches in a hyperperiod. For calculating 
the transmission demand WD , we consider 2 terms that are A1 and A2 for each 
stream. The term A1 calculates the area under the curve for the accumulated data 
of all streams assigned to the queue q captured by R(q) , in a hyperperiod. Any 
frames of all streams R(q) have arrived at the beginning of their period. Con-
sidering the hyperperiod of the received streams which is denoted by K(p) , each 
stream will have I instances in this queue. For each instance i, the area under the 
curve consists of i rectangles with the length of the stream period and the width 
of the stream size. Thus for all I instances of the stream the area under the curve 
is equal to I×(I+1)

2
 rectangles.

The term  A2 calculates the area under the curve for the accumulated backlog 
data of the streams arrived from a switch captured by X(q) . The backlog data of the 
streams X(q) are delayed for a period and controlled by B , which captures the num-
ber of backlogs. Similarly, the area under the curve for the stream backlogs consists 
of the number of rectangles with the length of the stream period and the width of 
the stream size. The only difference is that the stream has B instances less. Thus, 

Fig. 5  Example capacity and 
transmission demand for a 
window
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the number of rectangles equals to I×(I+1−2×B)
2

 . The function WD returns 16,650 
Bytes × �s in our example, see also Fig. 5 for the values of the terms A1 and A2.

Please note that the correctness of the constraints (Eq. (3), (4), (5)) follows from the 
implicit hardware constraints of 802.1Q(bv) (see the discussion in Craciunas et al. 
2016; Serna Oliver et al. 2018) while other constraints (Eq. (6), (7)) are used to limit 
the placement of GCL windows and are not related to correctness, just to optimality. 
Since the transmission of frames is decoupled from the GCL windows, the sched-
ule’s correctness concerning the end-to-end latency of streams is always guaranteed 
due to the NC analysis, which is intertwined in the schedule step.

5  Simulated Annealing Window Optimization (SAWO)

The previously described CPWO delivers good results in a reasonable time for 
small problem sizes. However, for larger problem sizes, the method either becomes 
intractable, or the search space pruning has to be done very aggressively, leading 
to a degradation in the quality of the results. For such intractable problems, opti-
mal algorithms such as Branch and Bound and Integer Linear Programming require 
an exponentially increasing time with increasing input size. Therefore we propose 
a metaheuristic algorithm that is aimed to be scalable for large problem sizes while 
still offering good quality solutions. Metaheuristics are designed to find good qual-
ity solutions while still being scalable for large problem sizes but are not guaran-
teed to find an optimal (or any) solution (Burke and Kendall 2014). A plethora of 
metaheuristic approaches have been proposed in the literature for intractable prob-
lems (Burke and Kendall 2014; Campelo and Aranha 2022). In this paper, we have 
developed a SA-based metaheuristic solution.

Our SAWO algorithm is shown in Algorithm 1. The key feature of SA is that it 
avoids getting stuck in a local optimum by accepting worse intermediate solutions 
with a certain probability, which decreases throughout the search (Kirkpatrick et al. 
1983; Burke and Kendall 2014). The likelihood of considering a worse solution 
(compared to the current solution) depends on the worsening of the objective func-
tion and a temperature parameter t (Voß and Woodruff 2002). In SA, the tempera-
ture starts from an initial temperature Tstart (line 3) and is decreased in every itera-
tion with a factor 0 < 𝛼 < 1 (line 16).

(11)

∀p ∈ P,∀q ∈ p ⋅ Q,∀f ∈ R(q),∀f � ∈ X(q) ∶

I =
K(p)

f ⋅ T
, I� =

K(p)

f � ⋅ T

A1 =
I × (I + 1)

2
× f ⋅ T × f ⋅ l,

A2 =
I� × (I� + 1 − 2 × B)

2
× f � ⋅ T × f � ⋅ l,

WD = A1 + A2
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SA starts from an initial solution Φ (line 1, see Sect. 5.1) which is evaluated using 
the objective function ΩSA (line 2), see Sect. 5.2 for details. When there are no infea-
sible streams the objective functions for CPWO and SAWO are identical and thus 
comparable. If there are infeasible streams, we penalize this in the SAWO solution 
in order to guide the search (see Sect. 5.2).

SA iterates until a stopping criterion, like a timeout or iteration limit, is satis-
fied (lines 4–17). In every iteration, we generate a random “neighbor” of the current 
solution (line 5) and calculate the difference � between its objective value ΩSA

new
 and 

the objective value ΩSA of the current solution (line 7). Section  5.3 presents how 
we generate a neighbor solution. If the new objective value is smaller, we accept 
the new solution as the current (and possibly best, see lines 11–14). However, we 
also sometimes accept a worse neighbor solution. This is the case if a random value 
(between 0 and 1) is smaller than an “acceptance probability function” e

�

t (see line 
8). This acceptance probability function decreases with a larger � , i.e., we are less 
likely to accept worse neighbors if they are further from the current solution, or a 
smaller temperature, i.e., the probability of accepting worse neighbors decreases 
during the search. We use a time limit as the stopping criterion.

5.1  Initial solution

The goal of the InitialSolution function, shown in Algorithm 2, is to find a good 
starting point for SA. We start out by choosing a common period for all windows 

Algorithm 1  Simulated Annealing Window Optimization (SAWO)
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in the port, which helps speed up overlap and worst-case latency calculations. 
This also means that there is a maximum of two GCL entries per queue, which 
means that a GCLmax ≥ 16 will suffice for this solution. The choice of this period 
is important: A larger period means longer worst-case latencies but less band-
width occupation since the distance between two consecutive windows is longer 
(in the worst-case a stream arrives right at the moment when it can’t fit into the 
current window anymore, requiring it to wait a full window period). We choose 
the minimum period that is larger than the combined length of all streams in 
the port from a set containing all stream periods, their greatest common divisor 
(GCD), and half of that value (lines 2–5). We found empirically that choosing 
a period from this set of values provides a good balance between minimizing 
worst-case delays and bandwidth occupation. The half GCD value is often use-
ful for cases in which we have a large GCD of the given stream periods but 
tight deadlines (e.g. equal to the stream period). In the worst-case a stream gets 
delayed by approximately one window period per hop, so having those small 
window periods becomes very important. For topologies with very long routes, 
it could be worthwhile to consider even smaller fractions of the GCD in the set. 
Then we decide the length for each window (line 10). It has to be at least as long 
as the total sending time of all streams in that queue (line 8), and its size relative 
to the period of the window has to be at least as big as the stream sizes relative 
to their period (line 9). Finally, we align the windows in the different queues so 
they do not overlap (lines 11–12), since, in the worst-case, an overlapping part 
of a window has to be considered occupied.

Algorithm 2  SA initial solution
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5.2  SA objective function

The objective function ΩSA used inside SA is shown in Eq.  (12). The difference 
between ΩSA and Ω used by CP (Eq. (1), Sect. 4.2) is that Ω minimizes the average 
bandwidth usage and then uses timing constraints and network calculus to check that 
a solution is schedulable.

ΩSA has two components: The first component Ωbw is measuring the bandwidth 
consumed by all windows across all ports on average, and is equivalent Ω . The sec-
ond component Ωinf  is the number of streams that miss their deadline, also called 
infeasible streams. Thus, instead of using the schedulability as a constraint as in the 
CP formulation, we allow SA to visit unschedulable solutions in the hope of driv-
ing the search towards schedulable solutions. The amount of infeasible streams is 
determined by running the NC-based worst-case delay analysis of Zhao et al. (2020) 
with the given set of windows. Since the average consumed bandwidth is at most 1 
(equals to 100%), any missed deadlines will increase the objective value and thus 
drive the search to schedulable solutions that decrease Ωinf  , which dominates the 
objective function when a solution is not schedulable. The weights wa and wb in 
Eq. (12) can be used to control the relative importance of the two components, e.g., 
when a system engineer prefers lower bandwidth at the expense of schedulability, wa 
can be increased and wb decreased. In our experiments, we have used wa = wb = 1 , 
which we found is a good choice when searching for schedulable solutions.

5.3  Neighbor function

The purpose of the RandomNeighbor(Φ, pmv) function in Algorithm 1 is to select a 
close neighbor of the current solution Φ . A neighbor is generated by performing a 
transformation (also called “moves”) on the current solution. This transformation 
function is designed such that the SA search will have good coverage of the solution 
space. The solution space, in our case, includes all solutions that have one window 
per queue, with a minimum length and without overlap of windows in the same port. 
Our neighbor function uses two different moves to change the current solution:

• MoveWindow: Selects a random occupied queue. Changes the window offset to 
a random value within the range of all offsets where the window will not overlap 
with windows in other queues on the same port. This move occurs with a given 
probability of pmv.

• ChangeWindowSize: Selects a random occupied queue. Changes the window 
size to a random value in the range between the minimum window size and the 

(12)ΩSA = wa × Ωbw + wb × Ωinf , where

(13)
Ωbw =

∑
q∈p⋅Q

q.w

q.T

N(P)
,∀p ∈ P

Ωinf = �{f ∣ f ∈ F ∧ m
dest(f )

i
.𝜙 + m

dest(f )

i
.L − m

src(f )

i
.𝜙 > f ⋅ D − 𝛿}�
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maximum size before an overlap with another window in the same port would 
occur. This move is applied with a probability of 1 − pmv.

We have used a value of pmv = 0.8 in the experiments. This makes it more likely for 
a MoveWindow move to occur, which is usually more impactful, since the window 
sizes are already set to reasonable initial values by the initial solution, while the 
window alignment across ports is not very good yet.

6  Related work

Scheduling homogeneous TSN networks in which all devices are scheduled and 
synchronized has been solved in various forms using heuristics (Nayak et al. 2018; 
Mahfouzi et  al. 2018; Pahlevan and Obermaisser 2018; Pahlevan et  al. 2019; Vlk 
et al. 2022; Berisa et al. 2022) and optimal ILP- or SMT-based approaches (Craciu-
nas et al. 2016; Serna Oliver et al. 2018; Falk et al. 2018; Vlk et al. 2021; Zhou et al. 
2021a, b). The most relevant results for providing real-time communication prop-
erties in TSN networks, to which we compare our approach, have been presented 
in Craciunas et  al. (2016), Serna Oliver et  al. (2018), Pop et  al. (2016), Dürr and 
Nayak (2016) (summarized in Table  3). Originally, the TSN scheduling problem 

Table 3  Scheduling approaches in TSN

a This constraint refers to windows on different queues of the same port not allowing to overlap in the 
time domain. This constraint is called the “ordered window constraint” in Serna Oliver et al. (2018).
b  This constraint is called “window size constraint” in Serna Oliver et al. (2018).
c This constraint is called “Stream Constraint” in Serna Oliver et al. (2018)

Requirements 0GCL
 Craciunas et al. 
(2016), Pop et al. 
(2016)

FGCL
 Serna Oli-
ver et al. 
(2018)

WND
 Reusch et al. 
(2020)

FWND

Device Capabilities 802.1Qbv 802.1Qbv 802.1Qbv 802.1Qbv
ES Capabilities scheduled scheduled non-scheduled non-scheduled
SW Capabilities scheduled scheduled scheduled scheduled
Frame Constraint Yes Yes Yes Yes
Link  Constrainta Yes Yes No No
Bandwidth  Constraintb Implicit Yes Yes Yes
Stream Transmission 

 Constraintc
Yes Yes No No

Frame-to-Window Assign-
ment

Implicit Yes No No

Stream/Frame Isolation Yes Yes No No
End-to-end Constraint Yes Yes Yes Yes
Schedule synthesis Yes

(intractable)
Yes
(intractable)

No (only
windows)

No (only
windows)

Timing analysis required No No Yes Yes
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was addressed in Craciunas et al. (2016) for fully deterministic ST traffic temporal 
behavior and temporal isolation between ST and non-ST (e.g., AVB, BE) streams/
flows, similar to TTEthernet  (Steiner 2010; Craciunas and Serna Oliver 2016). In 
our comparison, we call this method 0GCL, since, besides enforcing the required 
end-to-end latency of ST streams, the scheduling constraints also impose a strictly 
periodic frame transmission resulting in 0 jitter forwarding of critical traffic. The 
work in Pop et al. (2016) uses heuristics instead of SMT-solvers to solve the 0-jit-
ter scheduling problem in order to improve scalability while also minimizing the 
end-to-end latency of AVB streams. In  Serna  Oliver et  al. (2018), which we call 
Frame-to-Window-based, the 0-jitter constraint of Craciunas et al. (2016) is relaxed 
by allowing more variance in the transmission times of frames over the hops of their 
routed paths. This increases the solution space at the expense of increased complex-
ity in the correctness constraints. The method in Serna Oliver et al. (2018) can be 
viewed as window-based scheduling, but, unlike our approach, it requires a unique 
mapping between GCL windows and frames in order to avoid non-determinism in 
the queues. In Dürr and Nayak (2016) the TSN scheduling problem is reduced to 
having one single queue for ST traffic and solving it using Tabu Search that opti-
mizes the number of guard-bands in order to optimize bandwidth usage.

The main goal of the aforementioned works is similar to ours, namely to allow 
temporal isolation and compositional system design for ST streams with end-to-end 
guarantees and deterministic communication behavior. However, all previous meth-
ods impose that the end-systems from which the ST traffic originates are synchro-
nized to the rest of the network and have the IEEE 802.1Qbv timed-gate mecha-
nism (i.e., they are scheduled). The open gate windows are then either a result of the 
frame transmission schedule (Craciunas et al. 2016; Pop et al. 2016) or are uniquely 
associated with predefined subsets of frames  (Serna Oliver et al. 2018). However, 
the above property is a significant limitation. In many use cases, especially in the 
industrial and automotive domains (cf. Schriegel et al. 2018), the end-systems are 
usually off-the-shelf sensors, microcontrollers, industrial PCs, and edge devices that 
do not have TSN capabilities.

The work in Reusch et al. (2020) proposed a more naive window-based approach 
(WND) in which the GCL window offsets on different network nodes are not 
included, thereby essentially limiting the mechanisms by requiring all GCL win-
dows to be lined up between bridges. Moreover,  Reusch et  al. (2020) uses a less 
advanced analysis step (cf. Zhao et al. 2018) in the scheduling decisions and a more 
naive heuristic approach. These limiting assumptions were relaxed in  Barzegaran 
et al. (2022), which has proposed a Constraint Programming solution to the window 
optimization problem.

The work in Hellmanns et al. (2020b) proposes a scheduling model for TSN 
networks in industrial automation with different traffic types and a hierarchi-
cal scheduling procedure for isochronous traffic. The method proposed in Hell-
manns et  al. (2020a) adopts a so-called stream batching approach, which can 
be classified as window-based in that it can assign multiple frames to the same 
GCL window. However, the end-points still need to be synchronized and sched-
uled, and, additionally, the worst-case delay bounds within the batch windows 
may lead to deadline misses since they are not based on formal methods like 
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the network calculus framework in our approach. In Shalghum et al. (2021), the 
authors present an NC-based analysis for overlapping GCL windows with less 
pessimistic latency bounds and a scheduling algorithm (FWOS) that focuses on 
maximizing the allowable overlap of GCL windows to increase the bandwidth 
of unscheduled traffic without jeopardizing the schedulability of ST traffic. As 
opposed to our method, Shalghum et al. (2021) cannot guarantee the schedula-
bility of traffic arriving from unscheduled or unsynchronized end-systems.

Classical approaches like strict priority (SP) and AVB (Institute of Electrical 
and Electronics Engineers 2011) do not require a time-gate mechanism and also 
work with unscheduled end-systems. In order to provide response-time guar-
antees, a worst-case end-to-end timing analysis through methods like network 
calculus (Schmitt et al. 2003; De Azua and Boyer 2014) or Compositional Per-
formance Analysis (CPA) (Diemer et al. 2012) are used. In Zhao et al. (2017), 
Zhao et  al. (2014), Boyer et  al. (2016), the rate-constrained (RC) streams of 
TTEthernet  (Issuing Committee 2011; Steiner et  al. 2011) are analyzed using 
network calculus. Other works, such as  Wandeler and Thiele (2006a), Khanh 
and Mifdaoui (2014), study the response-time analysis for TDMA-based net-
works under the strict priority (SP) and weighted round-robin (WRR) queuing 
policies. Zhao et al. (2020) present a worst-case delay analysis, which we use in 
this paper, for determining the interference delay between ST traffic on the level 
of flexible GCL windows. Using SP only or leaving all ST windows open for the 
entire hyperperiod duration (which amounts to SP for ST traffic) will not result 
in the same response-time bounds and schedulability as our method. Our method 
can delay specific high-priority ST streams when needed to allow a timely trans-
mission of lower-priority ST streams with a much tighter deadline. Unlike SP, 
our method uses the IEEE 802.1Qbv timed gates to open and close queues as 
needed to enforce isolation between traffic classes. With pure SP (or when leav-
ing all gates open at all times), misbehaving end-systems (e.g., babbling-idiot 
failures) will disrupt all (lower-priority) traffic classes, potentially leading to a 
loss of all real-time properties of the network.

In Vlk et al. (2020), the authors present hardware enhancements to standard 
IEEE 802.1Qbv bridges (along with correctness constraints for the schedule 
generation) that remove the need for the isolation constraints between frames 
scheduled in the same egress queue defined in Craciunas et al. (2016). Another 
hardware adaptation for TSN bridges, which has been proposed by Heilmann 
and Fohler (2019) is to increase the number of non-critical queues in order to 
improve the bandwidth utilization without impacting the guarantees for critical 
messages.

Lastly, we look at our CP optimization strategy to improve scalability and 
performance. In our CPWO method, we combine an exact CP solver with a 
metaheuristic search within a loop to improve scalability. A similar direction 
and aim, but using a very different method, is given in Luteberget et al. (2021), 
where the authors combine an SMT-based method with a discrete event simula-
tion within a counterexample-guided abstraction refinement loop and apply it to 
railway design.
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6.1  In‑depth formal comparison

In this section, we compare FWND with the related work in terms of the objectives and 
constraints. The related work on ST scheduling using 802.1Qbv consists of: (i) zero-jit-
ter GCL (0GCL) (Craciunas et al. 2016; Pop et al. 2016), (ii) Frame-to-Window-based 
GCL (FGCL) (Serna Oliver et al. 2018), and (iii) Window-based GCL (WND) (Reusch 
et al. 2020).

We summarize the requirements of the ST scheduling approaches from the related 
work and our FWND approach in the first column of Table 3. The first three require-
ments refer to the device capabilities needed for the different approaches, and the next 
seven rows summarize which constraints and isolation requirements are needed by 
which approach. The last two rows present the requirements of the complexity of the 
optimization problem that needs to be solved to provide a solution for the respective 
approach.

To better understand the fundamental differences and the similarities (in terms of the 
imposed correctness constraints and schedulability parameters) between our work and 
the approaches that require synchronized and scheduled end systems, we briefly reiter-
ate the formal constraints of previous work. We describe, based on (Craciunas et al. 
2016; Craciunas and Serna Oliver 2017; Serna Oliver et al. 2018), the relevant sched-
uling constraints for creating correct TSN schedules when using frame- and window-
based methods. Table 3 shows which of these are needed by which approach.

We adapt some notations from Craciunas et al. (2016), Craciunas and Serna Oliver 
(2017) to describe the constraints and assume certain simplifications without loss of 
generality, e.g. the macrotick is the same in all devices, all streams have only one frame 
per period, the propagation delay dp is 0. We refer the reader to Craciunas et al. (2016), 
Serna Oliver et al. (2018) for a complete and generalized formal definition of the cor-
rectness constraints. We denote the messages (frames) of a stream fi on a link [va, vb] 
as m[va,vb]

i
 . A message m[va,vb]

i
 is defined by the tuple ⟨m[va,vb]

i
.�,m

[va,vb]

i
.l⟩, denoting the 

transmission time and duration of the frame on the respective link  (Craciunas et  al. 
2016; Craciunas and Serna Oliver 2017).

6.2  Frame constraint

Any frame belonging to a critical stream has to be transmitted between time 0 and its 
period Ti . To enforce this, we have the frame constraint from Craciunas et al. (2016):

6.3  Link constraint

A physical constraint of Ethernet-based networks is that only one frame can be on 
the wire from one port to another at a time. In Craciunas et al. (2016) and Serna Oli-
ver et  al. (2018) this constraint is expressed as windows on two different queues 

∀fi ∈ F,∀[va, vb] ∈ fi ⋅ r ∶(
m

[va,vb]

i
.� ≥ 0

)
∧
(
m

[va,vb]

i
.� ≤ fi ⋅ T − m

[va,vb]

i
.l
)
.
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of the same egress port not being able to overlap. In Reusch et al. (2020) and the 
FWND method presented in this paper, windows on different queues may overlap, 
leading to added interference delays since naturally, only one frame can be sent on 
the physical link at a time. Still, in both Reusch et al. (2020) and the FWND, solu-
tions where windows overlap are excluded since there is no added improvement 
from such schedules.

The link constraint adapted from Craciunas et al. (2016) is hence:

where hpj
i
= lcm(fi ⋅ T , fj.T) is the hyperperiod of fi and fj.

6.4  Bandwidth constraint

The bandwidth constraint expressed explicitly in our method ensures that there 
is no infinite backlog, i.e., the windows for the streams are large enough that the 
frames of the streams can be transmitted at some point. In 0GL  (Craciunas et  al. 
2016) this constraint is implicit since the schedule is created without the separation 
of streams and windows, meaning that each window is large enough to transmit the 
respective frames. In Serna Oliver et al. (2018) there is no one-to-one assignment 
between frames and windows; however, the window size constraint is equivalent to 
the bandwidth constraint. Using this constraint the length of the gate open window 
is required to be equal to the sum of the frame lengths that have been assigned to it. 
In Reusch et al. (2020) the bandwidth constraint is explicit in the conditions for the 
correctness of the schedule generation.

6.5  Stream transmission constraint

The stream transmission constraint expresses that the propagation of frames of a 
stream follows the sequential order along the path of the stream. This (optional) con-
straint enforces that a frame is forwarded by a device only after it has been received 
at that device also taking into account the network precision, denoted with �:

In FWND (and also in Reusch et al. 2020) this constraint is not explicitly needed 
since there is no predefined assignment of frames to windows and hence, there 
is no explicit ordering needed in sequential hops along the route of a stream, i.e., 

∀[va, vb] ∈ E,∀m
[va,vb]

i
,m

[va,vb]

j
(i ≠ j),

∀a ∈ [0, hp
j

i
∕fi ⋅ T − 1],∀b ∈ [0, hp

j

i
∕fj.T − 1] ∶

(
m

[va,vb]

i
.� + a × fi ⋅ T ≥ m

[va,vb]

j
.� + b × fj.T + m

[va,vb]

j
.l
)
∨

(
m

[va,vb]

j
.� + b × fj.T ≥ m

[va,vb]

i
.� + a × fi ⋅ T + m

[va,vb]

i
.l
)
,

∀fi ∈ F,∀[va, vx], [vx, vb] ∈ fi ⋅ r,∀m
[va,vx]

i
,∀m

[vx,vb]

i
∶

m
[vx,vb]

i
.� − � ≥ m

[va,vx]

i
.� + m

[va,vx]

i
.l.
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the transmission GCL window which is used at a certain time will depend on the 
enqueueing order at that time in the egress queue.

6.6  End‑to‑end constraint

The maximum end-to-end latency constraint (expressed by the deadline fi ⋅ D ) 
enforces a maximum time between the sending and the reception of a stream. We 
denote the sending link of stream fi with src(fi) and the last link before the receiv-
ing node with dest(fi) . The maximum end-to-end latency constraint (Craciunas et al. 
2016) is hence

Here again, the network precision � needs to be taken into account since the local 
times of the sending and receiving devices can deviate by at most �.

6.7  802.1Qbv stream/frame isolation

Due to the non-determinism problem in TSN (cf. Sect.  2.2), previous solutions 
(e.g., Craciunas et  al. 2016; Serna Oliver et  al. 2018) need an isolation constraint 
that maintains queue determinism. We refer the reader to Craciunas et al. (2016) for 
an in-depth explanation and only summarize here the stream and frame isolation 
constraint adapted from Craciunas et al. (2016). Let m[va,vb]

i
 and m[va,vb]

j
 be, respec-

tively, the frame instances of fi ∈ F  and fj ∈ F  scheduled on the outgoing link 
[va, vb] of device va . Stream fi arrives at the device va from some device vx on link 
[vx, va] . Similarly, stream fj arrives from another device vy on incoming link [vy, va] . 
The simplified stream isolation constraint adapted from  Craciunas et  al. (2016), 
under the assumption that the macrotick of the involved devices is the same, is as 
follows:

Here again hpj
i
= lcm(fi ⋅ T , fj.T) is the hyperperiod of fi and fj . The constraint 

ensures that once a stream arrives at a device, no other stream can enter the device 
until the first stream has been sent.

The above constraints apply to frames that are placed in the same queue on the 
egress port. However, the scheduler may choose (if possible) to place streams in 
different queues, isolating them in the space domain. Hence, the complete con-
straint  (Craciunas et  al. 2016) for frame/stream isolation for two streams fi and fj 
scheduled on the same link [va, vb] can be expressed as

∀fi ∈ F ∶ m
dest(fi)

i
.� + m

dest(fi)

i
.L − m

src(fi)

i
.� ≤ fi ⋅ D − �.

∀[va, vb] ∈ E,∀m
[va,vb]

i
,m

[va,vb]

j
(i ≠ j),

∀a ∈ [0, hp
j

i
∕fi ⋅ T − 1],∀b ∈ [0, hp

j

i
∕fj.T − 1] ∶

(
m

[va,vb]

i
.� + a × fi ⋅ T + � ≤ m

[vy,va]

j
.� + b × fj.T

)
∨

(
m

[va,vb]

j
.� + b × fj.T + � ≤ m

[vx,va]

i
.� + a × fi ⋅ T

)
.
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with m[va,vb]

i
.q ≤ Ntt and m[va,vb]

j
.q ≤ Ntt and where Φ[va,vb]

(fi, fj) denotes either the 
stream or frame isolation constraint from before.

6.8  Decoupling of frames

So far, the constraints were applicable on the level of frames, and the open windows 
of the GCLs were constructed from the resulting frame schedule. The approach 
in  Serna  Oliver et  al. (2018) decouples the frame transmission from the respec-
tive open gate windows defined in the GCLs, similar to our approach1. However, 
in Serna Oliver et  al. (2018) the requirement is that there is a unique assignment 
of which frames are transmitted in which windows, although also multiple frames 
can be assigned to be sent in the same window. Hence, the assignment of frames 
and, consequently, the length of each gate open window are, therefore, an output of 
the scheduler. Therefore, we have to construct additional constraints when (partially) 
decoupling frames from windows. For a more in-depth description and formaliza-
tion of these constraints, we refer the reader to Serna Oliver et al. (2018).

6.9  Frame‑to‑window assignment

The frame-to-window assignment restricts a frame to be assigned to a specific win-
dow, although multiple frames can be assigned to the same window. In Craciunas 
et al. (2016) each frame is assigned implicitly to exactly one GCL window.

Comparing the existing approaches with the one proposed in this paper, we see 
that the choice of scheduling mechanism is, on the one hand, highly use-case spe-
cific and, on the other hand, is constrained by the available TSN hardware capa-
bilities in the network nodes. While the frame- and window-based methods from 
related work result in precise schedules that emulate either a 0- or constrained-jitter 
approach (e.g., like in TTEthernet), they require end systems to not only be synchro-
nized to the network time but also the end devices to have 802.1Qbv capabilities, 
i.e., to be scheduled. This limitation might be too restrictive for many real-world 
systems relying on off-the-shelf sensors, processing, and actuating nodes. While our 
FWND method overcomes this limitation, it does require a worst-case end-to-end 
analysis that introduces a level of pessimism into the timing bounds, thereby reduc-
ing the schedulability space for some use cases. However, as seen in Table 3, our 
method does not require many of the constraints imposed on the streams and sched-
uled devices from previous work, thereby reducing the complexity of the schedule 
synthesis.

(
Φ[va,vb]

(fi, fj)
)
∨
(
m

[va,vb]

i
.q ≠ m

[va,vb]

j
.q
)
,

1 Note that  (Craciunas et al. 2016; Serna Oliver et al. 2018; Pop et al. 2016) cannot be used in our con-
text because they require scheduled and synchronized ESs.
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7  Evaluation

In this section, we evaluate our optimization solutions CPWO and SAWO for FWND 
on synthetic and real-world test cases in Sects. 7.1 and Sect. 7.2, respectively.

7.1  CPWO evaluation

7.1.1  Test cases and setup

We implemented our CPWO approach in Java, utilizing the Java kernel of the 
RTC toolbox (Wandeler and Thiele 2006b). CPWO is designed as a command-line 
program, employing XML for input and output data, and it utilizes Google OR-
Tools (Google OR-Tools 2020) as the CP solver. Being open-source, the codebase 
comprises more than 7500 lines and is accessible via a public repository2. The tests 
were run on an i9 CPU (3.6 GHz) with 32 GB of memory running the Windows 
operating system. The timeout is set to 10 to 90 min, depending on the size of the 
test case. The macrotick and B parameters are set to 1 μs and 1, respectively, in all 
the test cases.

We have generated 15 synthetic test cases that have different network topologies 
(three test cases for each topology in Fig. 6) inspired by industrial and automotive 
application requirements. Similar to Zhao et al. (2017), the network topologies are 
small ring & mesh (SRM), medium ring (MR), medium mesh (MM), small tree-
depth 1 (ST), and medium tree-depth 2 (MT). The message sizes of streams are ran-
domly chosen between 64 bytes and 1518 bytes, while their periods are selected 
from the set P  =  {1500, 2500, 3500, 5000, 7500, 10,000}  μs. The physical link 
speed is set to 100 Mbps. The details of the synthetic test cases are in Table 4 where 
the second column shows the topology of the test cases, and the number of switches, 
end systems, and streams are shown in columns 3 to 6.

We have also used two realistic test cases: an automotive case from General 
Motors (GM) and an aerospace case, the Orion Crew Exploration Vehicle (CEV). 
The GM case consists of 27 streams varying in size between 100 and 1500 bytes, 
with periods between 1 and 40 ms and deadlines smaller or equal to the respective 
periods. The CEV case is larger, consisting of 137 streams, with sizes ranging from 
87 to 1527 bytes, periods between 4 and 375 ms, and deadlines smaller or equal to 
the respective periods. The physical link speed is set to 1000 Mbps. More informa-
tion can be found in the corresponding columns in Table 6. Use cases use the same 
topologies as in Gavrilut et al. (2017) and Zhao et al. (2020), and we consider that 
all streams are ST.

As already mentioned, we opted for B = 1 in all the test cases as it represents 
the minimum feasible value, assuming preemption is not allowed, even though 
it results in aggressive pruning. A less “relaxed” B , e.g., B = 0 , does not gener-
ate feasible solutions as it does not consider frame backlog. A value of B in the 

2 You can find CPWO on GitHub at https:// github. com/ rezab arzeg aran/ TSN.

https://github.com/rezabarzegaran/TSN
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interval [0, 1) is only possible if preemption is enabled and supported in the net-
work since a fractional value of B denotes the fragment length of frames that can 
be backlogged. Since we focus on non-preemptable critical flows, this is not an 
option in this work. A more “relaxed” B will result in CPWO running for several 
days without returning a solution. Due to the aggressive pruning, the solution 
returned by CPWO is not guaranteed to find the optimal solution and will, in 
fact, as the next section will show, miss good quality solutions.

However, we assign the value B = 1 and the less “relaxed” value B = 0 to the 
CPWO and assess its performance on the test cases. When B = 0 , CPWO gen-
erates solutions that do not comply with the WCD analysis. For instance, the 
WCD analysis reveals that in TC1, one out of 9 streams, and in TC15, four out 
of 32 streams fail to meet their deadlines. Conversely, all solutions generated by 
CPWO with B = 1 are feasible,i.e. no missed deadlines, according to the WCD 
analysis.

Table 4  Details of the synthetic test cases

No. Network topology Total no. of 
SWs

Total no. of 
ESs

Total no. of 
streams

Hyperperiod (μs)

1 SRM 2 3 9 15,000
2 SRM 3 3 11 70,000
3 SRM 3 4 15 70,000
4 MR 4 6 15 30,000
5 MR 4 8 21 210,000
6 MR 5 11 27 210,000
7 MM 4 5 13 15,000
8 MM 6 12 30 210,000
9 MM 7 13 35 210,000
10 ST 3 4 7 15,000
11 ST 3 6 12 15,000
12 ST 3 7 16 105,000
13 MT 7 8 18 105,000
14 MT 7 8 25 105,000
15 MT 7 12 32 210,000

Fig. 6  Network topologies used in the test cases (Zhao et al. 2017)
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7.1.2  CPWO evaluation on synthetic test cases

We have evaluated our CPWO solution for FWND on synthetic test cases. The 
results are depicted in Table  5 where we show the objective function value 
(average bandwidth Ω from Eq.  (1)) and the mean WCDs. For a quantitative 
comparison, we have also reported the results for the three other ST schedul-
ing approaches: 0GCL, FGCL, WND. 0GCL and FGCL were implemented by 
us with a CP formulation using the constraints from  Craciunas et  al. (2016) 
and Serna Oliver et  al. (2018), respectively. The WND method has been imple-
mented with the heuristic presented in Reusch et al. (2020), but instead of using 
the WCD analysis from  Zhao et  al. (2018), we extend it to use the analysis 
from Zhao et al. (2020) instead, in order not to unfairly disadvantage WND over 
our CPWO solution. Note that the respective mean worst-case end-to-end delays 
in the table are obtained over all the streams in a test case, from a single run of 
the algorithms, since the output of the algorithms is deterministic based on worst-
case analyses, not based on simulations.

It is important to note that 0GCL and FGCL are presented here as a means to 
evaluate CPWO; however, they are not producing valid solutions for our problem, 
which considers unscheduled end systems, see Table 3 for the requirements of each 
method. As expected, when end systems are scheduled and synchronized with the 
rest of the network as is considered in 0GCL and FGCL, we obtain the best results in 
terms of bandwidth usage ( Ω ) and WCDs, noting that 0GCL may further reduce the 
WCDs compared to FGCL.

The only other approach that has similar assumptions to our CPWO is WND 
from  Reusch et  al. (2020). As we can see from Table  5, in comparison to WND, 
our CPWO solution can slightly reduce the bandwidth usage. The most important 
result is that CPWO significantly reduces the WCDs compared to WND, with an 
average of 104% and up to 437% for some test cases such as TC13. Hence, we are 
able to obtain schedulable solutions in more cases compared to the work in Reusch 
et  al. (2020). Also, when comparing the WCDs obtained by our CPWO approach 
with the case when the end systems are scheduled, i.e., 0GCL and FGCL, we can 
see that the increase in WCDs is not dramatic. This means that for many classes of 
applications, which can tolerate a slight increase in latency, we can use our CPWO 
approach to provide solutions for more types of network implementations, including 
those that have unscheduled and/or unsynchronized end systems. In addition, due 
to the complexity of their CP model, it takes a long runtime to obtain solutions for 
0GCL and FGCL, and the CP-model for FGCL run out of memory for some of the 
test cases (the NA in the table). As shown in the last two columns of Table 5, where 
we present the runtimes of 0GCL and CPWO, CPWO reduces the runtime signifi-
cantly. The two numbers in the runtime column represent the runtime for obtaining 
the last solution and the runtime for the whole CPWO run, respectively. The reason 
for reduced runtime with CPWO is that the CP model has to determine values for 
fewer variables compared to 0GCL. CPWO introduces 3 variables (offset, period, 
and length) for each window (queue) in the network, whereas 0GCL introduces a 
variable for each frame of each stream. The number of variables in the 0GCL model 
depends on the hyperperiod, the number of streams, and the stream periods, whereas 
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the number of variables in the CPWO model depends on the number of switches and 
used queues.

7.1.3  CPWO evaluation on realistic rest cases

We have used two realistic test cases to investigate the scalability of CPWO and its 
ability to produce schedulable solutions for real-life applications. The results of the 
evaluation are presented in Table 6 where the mean WCDs, objective value Ω , and 
runtime for the two test cases are given. As we can see, CPWO has successfully 
scheduled all the streams in both test cases. Note that once all streams are schedula-
ble, CPWO aims at minimizing the bandwidth. This means that CPWO may be able 
to achieve even smaller WCD values at the expense of bandwidth usage. In terms o 
runtime, the CEV test case takes longer since it has 864 variables, whereas GM has 
only 102 variables in the CP models.

7.1.4  Validating the CPWO solutions with OMNET++

We have used the OMNET++ simulator with the TSN NeSTiNg extension (Falk 
et al. 2019) to evaluate the generated GCLs and the calculated worst-case delays. 
We have synthesized the GCLs for all approaches on all synthetic test cases, 
and we have observed that the GCLs are correct and the simulation behaves as 
expected based on the simulation. The mean WCDs of CPWO for the synthetic 
test cases and the worst-case latency observed during multiple OMNET++ simu-
lations (with the windows from CPWO) are depicted in Fig. 7a. As expected, the 
latency values reported by OMNET++ are smaller than the WCDs, as reported 
by the WCD Analysis from Zhao et al. (2020). This is because a simulation can-
not easily uncover the worst-case behavior. However, the simulation indicates the 
average behavior and small delays mean that even for unscheduled/unsynchro-
nized end systems, we are able to obtain solutions that are not only schedula-
ble (WCDs are smaller than the deadlines) but also have good average behavior, 
where most of the time the delays are reasonable, even smaller than the static 
schedules obtained by 0GCL and CPWO for scheduled and synchronized ESs. 
The pessimism result of the WCD analysis is unavoidable in systems with un-
synchronized and/or unscheduled end-systems; in practice, however, simulated 

Table 6  CPWO results on 
realistic test cases

ORION (CEV) GM

ES 31 20
SW 15 20
Streams 137 27
Mean WCDs (μs) 10,376 1981
Ω ( ×1000) 435 84
Runtime (s) 891 17
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delays are much smaller, as can be seen in Fig. 7a and b. We also show in Fig. 7b 
the simulated delays and WCDs for all streams of TC12. All the streams are 
schedulable, and, as expected, the simulated delays are smaller than the WCDs, 
calculated with the worst-case delay analysis derived in the work from Zhao et al. 
(2020).

7.1.5  CPWO scalability evaluation

We have investigated the scalability of CPWO on 6 larger test cases (TC1 to 
TC6), that have up to 120 devices (75 ESs and 45 SWs) and 500 streams. The 
results and the details of the test cases are presented in Table 7, where columns 
2, 3, and 4 show the number of streams, end-systems, and switches, respectively. 
Columns 5, 6, and 7 show the mean WCD of streams in μs, the largest deadline 
of all streams in μs, and the objective value Ω , related to bandwidth, see Eq. (1). 
CPWO was able to generate schedulable solutions in all cases. Furthermore, 
CPWO optimizes the schedules for minimum bandwidth usage and has gener-
ated solutions that, besides being schedulable, have mean WCDs on average 14% 
smaller than the respective deadlines in all test cases.

7.2  SAWO evaluation

7.2.1  Test cases and setup

For the SAWO vs. CPWO comparison in Sect. 7.2.2 and the SAWO evaluation using 
realistic test cases in Sect. 7.2.3, we used the same test cases defined in Sect. 7.1.1. 
For the test cases in Sect. 7.2.4 we have taken the topology sizes proposed in Craci-
unas and Serna Oliver (2016) as a reference. We implemented our SAWO solution 
in Python and configured it for all experiments with wa = wb = 1, pmv = 0.8 on an 
i7-8565U CPU with 16GB memory and using Python 3. The solution communicates 

Fig. 7  WCD vs. simulated delays
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with the worst-case delay analysis of Zhao et al. (2020) via sockets, eliminating the 
unnecessary delay of file I/O.s

7.2.2  SAWO comparison to CPWO

We compare the SA-based approach (SAWO) to the CP-based solution (CPWO) 
but also to the classical zero-jitter GCL (0GCL) (Craciunas et al. 2016; Pop et al. 
2016),  Frame-to-Window-based GCL (FGCL) (Serna Oliver et al. 2018), and Win-
dow-based GCL (WND)  (Reusch et  al. 2020) solutions, in terms of the objective 
value (i.e., quality of the solution) and the mean worst-case end-to-end latency for 
the streams. We do not show the runtime figures since the SA-based solution was 
always set to a runtime of 2 and 10 min. We note that the runtime for CPWO is 
small due to the aggressive pruning parameter, thus trading off the quality of the 
solution for algorithm runtime. For the experiments, we use the same synthetic test 
cases described in Sect. 7.1.1. The details of the synthetic test cases can be found in 
Table 4.

Table 8 presents the results for SAWO compared to the aforementioned solutions. 
For SAWO, the columns showing the objective value Ω and the mean worst-case e2e 
delay present two numbers obtained with 2 and 10 min runtime, respectively.

We can see that SAWO can achieve significantly better results than CPWO in 
terms of the objective value Ω . While the runtime of 2 min is sufficient to get a good 
result, this result can be further improved by a longer runtime (see Section 7.2.4 for 
a more detailed analysis of the runtime impact). The objective function does not 
include the mean e2e-delay but the number of infeasible streams. That means that it 
is beneficial for the solutions to accept a higher mean e2e-delay for a lower objec-
tive value, e.g., by decreasing the size of a window. That can be seen, for example, 
in test case 2. However, sometimes there are also solutions that have both a lower 
objective value and e2e-delay, e.g., test case 4. This can happen through a window 
being moved to a better offset, which would decrease the e2e-delay without increas-
ing the objective value. Please note that the objective function Ω is the same for both 
CPWO and SAWO since SAWO can schedule all streams and thus there is no pen-
alty term for infeasible streams in the SAWO objective function.

Table 7  Scalability evaluation of CPWO

No. Total No. of 
Streams

Total No. of 
ESs

Total No. of 
SWs

Mean WCDs (μs) Largest dead-
line (μs)

Ω (×1000)

TC1 100 50 35 3226 4000 249
TC2 150 55 40 3521 4000 366
TC3 200 60 40 4387 5000 396
TC4 300 65 40 4911 6000 468
TC5 400 70 45 5210 6000 498
TC6 500 75 45 4399 5000 511
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As mentioned before in Sect. 7.1.2, 0GCL and FGCL are included as a means to 
evaluate SAWO; however, they are not producing valid solutions for our problem, as 
they require scheduled end-systems. As expected, when end systems are scheduled 
and synchronized with the rest of the network, as is considered in 0GCL and FGCL, 
we obtain the best results in terms of bandwidth usage ( Ω ) and WCDs.

7.2.3  SAWO evaluation on realistic test cases

As with CPWO, we have used two realistic test cases from Gavrilut et  al. (2017) 
and Zhao et al. (2020), an automotive case from General Motors (GM) and an aero-
space case, the Orion Crew Exploration Vehicle (CEV), where we consider that all 
streams are critical and scheduled. For the details of the test cases, please see the 
description in Sect. 7.1.1. We show the scalability of SAWO and its ability to pro-
duce schedulable solutions for real-life applications. The results of the evaluation 
are presented in Table 9 where the mean WCDs, objective value Ω , and runtime for 
the two test cases are given. As a comparison to CPWO, we refer the reader to the 
results presented in Table 6. As we can see, SAWO has successfully scheduled all 
the streams in both test cases and produces better results than CPWO in terms of 
mean WCD and quality of the solution (objective value Ω ). The runtime for SAWO 
was set to 10 min for the two realistic test cases.

7.2.4  SAWO evaluation on large synthetic test cases

As previously described, CPWO delivers good results in a reasonable time for small 
problem sizes, but does not scale well for large inputs unless the search space prun-
ing is done very aggressively, which leads to low-quality solutions. Therefore, we 
show that our SAWO heuristic algorithm scales well with the network and problem 
size while still offering good-quality solutions.

To evaluate the impact of the heuristic runtime and the test case size on the 
resulting solution quality, we have created three test batches as described in 
Table 10. Each batch consists of 50 test cases with a mesh topology (see Fig. 6) 
with sizes medium, large, and huge as described in Craciunas and Serna Oliver 
(2016). For each test case, we generated streams with random routes, priorities, 
and sizes under the constraint that no link utilization may exceed 50% until an 
average link utilization threshold of 15% was reached. For the medium test cases, 

Table 9  SAWO results on 
realistic test cases

ORION (CEV) GM

ES 31 20
SW 15 20
Streams 137 27
Mean WCDs ( �s) 341 992
Ω (×1000) 374 15
Runtime (s) 600 600
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there were between 31 and 67 streams with an average of around 46 streams per 
test case. For the large batch, the 50 test cases had between 127 and 178 streams 
averaging 147 streams. The huge test batches averaged 416 streams per test case 
with a minimum of 364 and a maximum of 475. Each stream has a random size 
between 64 and 1500 Bytes and a random period from the set {1, 2, 5, 10}ms , as 
defined for the use cases in Kramer et al. (2015). The stream deadline is set to ten 
times the stream’s period.

We ran each test batch with a 2-min and a 10-min timeout and measured the best 
objective function value ΩSA obtained within the timeout. Figure 8 shows the results 
as box plots for the medium and large test batches (y-axis), with all objective values 
multiplied by 1000 for clarity (x-axis). We set the upper and lower whisker bounds 
to depict outliers above 1.5 × IQR of the 3rd quartile and under 1.5 × IQR of the 1st 
quartile. Additionally, we show all data points within the figure. The median for the 
medium-sized size test-cases with 2 min and 10 min timeout was 172.5 and 140, 
respectively. The median for the large test cases with 2 min and 10 min timeout was 
180 and 179, respectively.

We can see that the test cases are consistently completely schedulable (objective 
value below 1000) with good solution quality. Furthermore, we can see that the heu-
ristic quickly can find good quality solutions. A longer runtime has a positive impact 
on the solution quality, but this impact depends on the size of the test case. The time 
needed to achieve significant improvement increases with the size of the test case, as 
the amount of possible moves increases in parallel with the worst-case analysis tak-
ing more time per iteration.

Figure 9 shows the result for the huge test batches as a box plot with the same 
whisker boundaries and outlier setting as before but with a logarithmic x-axis show-
ing the objective value. The median for the huge test cases were 180.5 and 179.5 for 
the 2 and 10 min timeout, respectively. With a 2 min timeout, 13 out of 50 test cases 

Table 10  Parameters of SAWO 
test batches

Topology Number of 
testcases

SW ES Avg. 
number of 
streams

Medium Mesh 50 4 16 46
Large Mesh 50 8 48 148
Huge Mesh 50 16 96 416

Fig. 8  Objective value boxplots for medium and large SAWO test batches



742 Real-Time Systems (2023) 59:705–747

1 3

had at least one unschedulable stream (objective value over 1000) and overall low 
solution quality. With a 10 min timeout, the solution quality improved, and only 8 
out of 50 test cases had at least one unschedulable stream. From the total of 20,810 
streams in the 50 test cases, a total of 35 streams were unschedulable with a 2 min 
timeout, while a total of 21 were unschedulable with the 10 min timeout.

8  Conclusions

We have addressed the problem of guaranteeing real-time communication behavior 
in heterogeneous TSN networks, introducing a more flexible heuristic schedule syn-
thesis approach (FWND) which decouples the frame transmission from the sched-
uled TAS windows. Using this approach, we have proposed two solutions to solve 
the problem, one based on a Constraint-Programming formulation within a Tabu 
Search metaheuristic (CPWO) and one based on a SAWO. The CPWO solution uses 
a novel proxy function that can be parametrized to trade off run-time performance 
for search-space pruning in the CP-model. We have shown that for large use cases, 
CPWO has to either aggressively prune the search space, leading to low-quality 
solutions, or is intractable. Therefore, we have introduced SAWO, which scales bet-
ter for large test cases while still offering good-quality solutions. We evaluated our 
approaches using synthetic and real-world test cases, comparing them with existing 
mechanisms, and validated the generated schedules using OMNET++.
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