
Vol:.(1234567890)

Real-Time Systems (2024) 60:150–196
https://doi.org/10.1007/s11241-023-09412-2

1 3

ChamelIoT: a tightly‑ and loosely‑coupled
hardware‑assisted OS framework for low‑end IoT devices

Miguel Silva1  · Tiago Gomes1 · Mongkol Ekpanyapong2 · Adriano Tavares1 ·
Sandro Pinto1

Accepted: 30 October 2023 / Published online: 20 December 2023
© The Author(s) 2023

Abstract
The evergrowing Internet of Things (IoT) ecosystem continues to impose new
requirements and constraints on every device. At the edge, low-end devices are get-
ting pressured by increasing workloads and stricter timing deadlines while simulta-
neously are desired to minimize their power consumption, form factor, and memory
footprint. Field-Programmable Gate Arrays (FPGAs) emerge as a possible solution
for the increasing demands of the IoT. Reconfigurable IoT platforms enable the off-
loading of software tasks to hardware, enhancing their performance and determin-
ism. This paper presents ChamelIoT, an agnostic hardware operating systems (OSes)
framework for reconfigurable IoT devices. The framework provides hardware accel-
eration for kernel services of different IoT OSes by leveraging the RISC-V open-
source instruction set architecture (ISA). The ChamelIoT hardware accelerator can
be deployed in a tightly- or loosely-coupled approach and implements the following
kernel services: thread management, scheduling, synchronization mechanisms, and
inter-process communication (IPC). ChamelIoT allows developers to run unmodi-
fied applications of three well-established OSes, RIOT, Zephyr, and FreeRTOS.
The experiments conducted on both coupling approaches consisted of microbench-
marks to measure the API latency, the Thread Metric benchmark suite to evaluated
the system performance, and tests to the FPGA resource consumption. The results
show that the latency can be reduced up to 92.65% and 89.14% for the tightly- and
loosely-coupled approaches, respectively, the jitter removed, and the execution per-
formance increased by 199.49% and 184.85% for both approaches.

Keywords  Internet of Things · Operating systems · Hardware accelerator ·
Agnosticism

Extended author information available on the last page of the article

http://orcid.org/0000-0003-4414-3612
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-023-09412-2&domain=pdf

151

1 3

Real-Time Systems (2024) 60:150–196	

1  Introduction

The Internet of Things (IoT) has remarkably evolved during the past years, result-
ing in the proliferation of smart devices (things) through a wide variety of sec-
tors, e.g., healthcare (Pinto et al. 2017), automotive (Cunha et al. 2022), indus-
trial (Sanchez-Iborra and Cano 2016), and domotics (Alexandrescu et al. 2022),
among others (Oliveira et al. 2020). With the growing trend of having more nodes
connected to the Internet, there has been a substantial effort towards shifting
heavy computational workloads from centralized facilities to decentralized net-
works of devices at the edge, i.e., edge computing (Perera et al. 2014; Wei et al.
2018).

Edge devices are, by nature, resource-constrained, especially when compared
to their counterparts, the servers on the cloud. However, edge computing requires
these devices to have better performance and real-time capabilities to gather and
process data and execute their functions without needing intervention from cloud
services. Despite the increasing demand for performance, these devices are still
limited by their small form factor and low-power consumption requirements,
pushing the limits of what is achievable with the system’s current hardware (pro-
cessor, memory, peripherals, among others) (Cao et al. 2020).

Aiming to improve and expand the capabilities of the current IoT edge devices,
reconfigurable platforms are gaining traction in the IoT industry. These platforms,
namely Field Programmable Gate Arrays (FPGAs), enable the development of
custom solutions by offloading intensive software tasks to hardware accelerators
(Pena et al. 2017). System configurations based on FPGAs often include a micro-
controller unit (MCU) and reconfigurable fabric where the hardware accelerators
are deployed. The MCU can be a hard core, i.e., implemented in silicon, or a
soft core, deployed in the FPGA fabric, and it is responsible for managing the
hardware accelerators. The most common targets for hardware acceleration are
tasks requiring great amounts of processing power, e.g., mathematical or artificial
intelligence (AI) algorithms (Boutros et al. 2020), or tasks that execute very fre-
quently during the standard system’s workflow, such as kernel services (Gomes
et al. 2016; Maruyama et al. 2014). Furthermore, hardware accelerators have
been used in the IoT context to optimize power consumption by applying tech-
niques like Dynamic Voltage and Frequency Scaling (DVS) (Chéour et al. 2019;
Karray et al. 2018).

Operating Systems (OSes) are widely present across embedded and IoT sys-
tems. They provide a plethora of advantages to the development of any applica-
tion, for instance, managing complexity by abstracting the low-level details from
the developer and providing a set of libraries that enable easy implementation
of features like network communication or device drivers. Given the ubiquity
of OSes in the IoT and considering that kernel services are executed countless
times throughout the execution of any application, they are a prime target for
hardware acceleration (Gomes et al. 2016). Nevertheless, this approach has been
disregarded by the IoT industry since prior hardware accelerators were highly tai-
lored to a specific application or OS and did not provide an easy-to-use software

152	 Real-Time Systems (2024) 60:150–196

1 3

application programming interface (API). An alternative solution is the imple-
mentation of a hardware accelerator capable of improving the performance of
multiple OSes with only minimal modifications to their kernels and providing
agnosticism to the developer by allowing applications to be executed without any
changes to the code. This approach would minimize the knowledge required to
build and deploy an entire system stack with hardware acceleration (Ong et al.
2013).

Another consideration regarding hardware acceleration is the processing system
that manages and controls the accelerator (Maruyama et al. 2014). Depending on
the target platform, this system can either be a hardcore MCU, implemented in sili-
con, parallel to the FPGA, or a softcore instantiated in the same reconfigurable logic
as the hardware accelerator. A hardcore MCU imposes any accelerator to be con-
nected through the resources available, which often are memory interfaces, resulting
in loosely-coupled accelerators (Maruyama et al. 2010). On the other hand, a soft-
core MCU allows the deployment of loosely-coupled accelerators and enables the
inclusion of tightly-coupled accelerators integrated directly into the MCU datapath.
Additionally, if the architecture’s instruction set architecture (ISA) is proprietary, the
deploying method, soft or hardcore, is irrelevant. Any modification to the MCU is
unfeasible due to the intellectual property being close-source, and for the same rea-
son, scaling the accelerator to be deployed in silicon also becomes impossible.

Open-source ISAs, like RISC-V, have been rising in popularity to mitigate this
effect. RISC-V is a novel open-source ISA that follows a reduced instruction set
computer (RISC) design (Asanovic et al. 2014; Waterman 2016). It was designed
to support a broad range of devices, spanning from high-performance application
processors to low-power embedded microcontrollers. RISC-V enables a new level
of software and hardware freedom by allowing easy integration of dedicated and
custom-tailored accelerators with the application software. Among the multiple
available implementations of the RISC-V ISA, some already take into considera-
tion the possibility of adding accelerators as coprocessors coupled to the datapath by
defining a subset of instructions for these coprocessors. With these instructions and
the standard memory interfaces, implementations like the Rocket core (Asanović
et al. 2016) allow for easy deployment of tightly- and loosely-coupled hardware
accelerators. Consequently, RISC-V cores provide an extra degree of flexibility
and the possibility of exploring the trade-offs from the two coupling approaches
regarding performance, determinism, real-time, system integration, and portability
(Davide Schiavone et al. 2017; Fritzmann et al. 2020; SEMICO Research Corpora-
tion 2019).

This paper presents a solution that consolidates hardware acceleration of IoT
OSes in an easy-to-use agnostic framework from reconfigurable IoT devices, named
ChamelIoT. Our framework leverages the Rocket core implementation of the RISC-
V ISA to provide a highly configurable hardware accelerator for IoT OS kernel ser-
vices, requiring minimal modifications to the OS software kernels and no modifica-
tions to application-level code. This way, there are no barriers to using ChamelIoT
from the software development point of view, allowing legacy applications to take
advantage of the benefits of hardware acceleration. The main contributions of this
article are summarized as follows:

153

1 3

Real-Time Systems (2024) 60:150–196	

1.	 An agnostic framework that currently supports three different IoT OSes, RIOT,
FreeRTOS, and Zephyr, requiring few changes to the kernel while keeping the
end-user interface unmodified;

2.	 A highly configurable hardware accelerator with two different coupling
approaches, tightly and loosely, integrated with an open-source implementation
of the RISC-V ISA, Rocket core;

3.	 An easily portable abstraction layer for several kernel services that enable the use
of hardware acceleration to any IoT OS;

4.	 Complete evaluation of the three aforementioned IoT OSes using the ChamelIoT
framework, including microbenchmark experiments, system-wide benchmarks,
and FPGA resource consumption measurements.

2 � Background and related work

At the edge of the IoT ecosystem, low-end devices are becoming more strained
with the increasing demands from the growing popularity of edge computing (Wei
et al. 2018). Considering the nature of these devices, with limited form factor and
energy consumption, frequently it is impossible to add hardware to compensate for
the lack of performance. Hence, reconfigurable platforms emerge as possible solu-
tions to IoT low-end devices (Pena et al. 2017). These platforms incorporate FPGA
fabric, allowing for offloading software tasks to hardware, where they can be sped
up, vastly increasing their performance and determinism. Hardware acceleration is
a widely known endeavor that has proven to provide significant advantages since
the early 1990s (Baum and Winget 1990; Brebner 1996). Recently, this technique
has also reached the IoT across different ecosystems: security (Gomes et al. 2022;
Johnson et al. 2015), AI (Qiu et al. 2016; Zhang et al. 2017), wireless connectivity
(Engel and Koch 2016; Gomes et al. 2017), and image processing (DivyaKrishna
et al. 2016), among others (Najafi et al. 2017; Zhao et al. 2019).

Nevertheless, reconfigurable platforms and hardware acceleration have failed to
gain traction in the IoT industry until recent years since FPGA-based platforms were
costly regarding price, form factor, and energy consumption. However, the latest
efforts in reconfigurable fabric technology development are attempting to solve the
size, weight, power, and cost (SWaP-C) constraints imposed on IoT systems. For
example, Embedded FPGAs such as those provided by QuickLogic or low-power
FPGAs from the Lattice portfolio are seeing increasing applicability in low-end IoT
devices. These platforms are highly tailored towards low-end applications, with opti-
mized reconfigurable slices, fewer resources available, and power-efficient organiza-
tion. Further along, we expect this technology to evolve to accompany the growing
need for low-end FPGAs (Allied Market Research 2023).

Traditionally, hardware accelerators were developed in FPGAs that physically
were separated from the processing system, which often is an MCU where the main
software application is executed. The communication methods between the two
elements were often limited to the facilities available in the processing system, for
instance, specialized I/O connections or memory buses. When the accelerator is
connected through a standard memory interface, like AXI (ARM 2013) or TileLink

154	 Real-Time Systems (2024) 60:150–196

1 3

(SiFive 2018), the accelerator is a memory-mapped device accessible by the soft-
ware through conventional memory instructions, e.g., loads and stores. This method
is referred to as a loosely-coupled approach and is depicted in Fig. 1. One of the
main advantages of this approach is the easy portability across platforms since the
accelerator’s core can remain untouched in the porting process. Only the connection
interface needs modifications to be compatible with the MCU. However, resorting to
memory buses to communicate with the accelerator can lead to bus contention. Both
the processing system and the hardware accelerator try to access the memory bus,
consequently inducing stalls in the pipeline, which translates into worse throughput
and less determinism for the whole system (Maruyama et al. 2014).

Alternatively, hardware accelerators can be implemented following a tightly-
coupled approach, as illustrated in Fig. 2. This approach requires the accelerator to
be integrated with the MCU datapath, forcing modifications on the pipeline, and
consequently, the MCU has to be provided as a softcore. A tightly-coupled accelera-
tor requires the MCU to include additional specialized instructions dedicated only
to communicating with the accelerator. Most compilers do not accommodate these
instructions by default. Hence an extra layer of abstraction is required for the soft-
ware to use the instructions. On the other hand, this approach can vastly improve the
system performance and determinism since the usage of external buses introduces
no delays.

The two aforementioned approaches present portability, scalability, performance,
real-time, and determinism trade-offs. To explore these trade-offs, it is necessary to
have a reconfigurable platform that can be modified as needed. Open-source ISAs
like RISC-V offer great potential since they consolidate, in a single place, the pos-
sibility of having both tightly- and loosely-coupled accelerators.

Fig. 1   Example of a loosely-
coupled accelerator

Processing
System

Reconfigurable Platform

B
u
s
 M

a
s
te

r

Interconnect
Hardware

Accelerator

B
u
s
 S

la
v
e

Fig. 2   Example of a tightly-
coupled accelerator Reconfigurable Platform

Processing System
Hardware Accelerator

Fetch &

Decode

Coprocessor Interface

Execute
Memory

Access

Write

Back

155

1 3

Real-Time Systems (2024) 60:150–196	

RISC-V is a highly modular and customizable open-source ISA initially devel-
oped by the University of California, Berkeley, and currently administered by the
RISC-V International (Asanovic et al. 2014; Waterman 2016). It supports mul-
tiple word sizes (32 and 64-bit) and well-defined, documented, and maintained
ISA extensions. These extensions can be used to tailor the ISA implementations
to fit the system’s requirements and constraints, leading to a wide variety of read-
ily available RISC-V softcores, like Rocket, BOOM, CVA6, and Ariane, among
others. Different implementations differ in terms of the implemented microarchi-
tecture (e.g., pipeline stages, caches, etc.) to the high-level SoC elements (e.g.,
peripherals, buses).

Among these implementations, Rocket was chosen for the current stage of Cha-
melIoT since it provides, by default, mechanisms that enable the design and deploy-
ment of hardware accelerators, both tightly- and loosely-coupled (Sá et al. 2022).
For the former approach, Rocket provides the Rocket Custom Coprocessor (RoCC)
interface (Asanović et al. 2016; Pala 2017), which is integrated with the MCU data-
path and accounts for up to four separate accelerators with their respective instruc-
tion opcodes. The RoCC interface also provides memory access to the accelerator
without needing the MCU or software intervention. Regarding the loosely-coupled
approach, Rocket allows for the inclusion of accelerators or any form of periph-
eral as memory-mapped devices accessible from the MCU through load and store
instructions. Additionally, with the available Rocket libraries, any accelerator can
also include a Direct Memory Access (DMA) port, enabling it to perform memory
transactions without requiring external intervention.

Leveraging reconfigurable platforms to implement OS hardware acceleration is
not a new endeavor. Moreover, the rising popularity of the IoT made it clear that it
is crucial to have high-performing and deterministic OSes (Pena et al. 2017; Silva
et al. 2019). There are two distinct types of OSes that use hardware acceleration:
Reconfigurable OSes and Hardware-accelerated OSes. Reconfigurable OSes can
be described as software OSes enhanced with capabilities to execute and schedule
application-level tasks in hardware. In some cases, these OSes can also use partial
reconfiguration techniques to change the accelerator in run-time according to the
application’s needs. On the other hand, hardware-accelerated OSes take advantage
of FPGA platforms to enhance the performance of their kernel services, e.g., sched-
uler, thread management, or synchronization and inter-process communication (IPC)
mechanisms, by migrating them to hardware.

In the following sections, we provide a brief description of several OS repre-
sentatives of the two aforementioned categories. More hardware-accelerated OSes
are studied and analyzed since ChamelIoT is a framework that enables hardware
acceleration for kernel services. Additionally, Table 1 summarizes the gap analysis
among hardware-accelerated OSes, providing a feature comparison between these
OSes and ChamelIoT, highlighted in bold. For each OS, the following characteris-
tics are identified: (1) the target CPU architecture, (2) the coupling approach, either
tightly- or loosely-coupled, (3) whether the accelerator targets a Commercial Off-
The-Shelf (COTS) OS or is used as a standalone OS, (4) the type of API provided, if
it follows a standard like POSIX, if it can be ported to replace APIs from a software

156	 Real-Time Systems (2024) 60:150–196

1 3

Ta
bl

e 
1  

G
ap

 a
na

ly
si

s

H
ar

dw
ar

e
O

S
C

PU
 a

rc
hi

te
ct

ur
e

C
ou

pl
in

g
ap

pr
oa

ch
Su

pp
or

te
d

O
S

A
PI

Sc
he

du
lin

g
Th

re
ad

 m
an

-
ag

em
en

t
Sy

nc
hr

.
m

ec
ha

ni
sm

IP
C

H
Th

re
ad

s
M

ic
ro

bl
az

e
Lo

os
el

y
Its

el
f

PO
SI

X
✓

✓
✓

✓
A

R
PA

-M
T

M
IP

S3
2

Ti
gh

tly
Its

el
f

C
us

to
m

✓
✓

✓
✗

H
ar

tO
S

M
ic

ro
bl

az
e

Lo
os

el
y

Its
el

f
C

us
to

m
✓

✓
✓

✗
SE

O
S

M
ic

ro
bl

az
e

Lo
os

el
y

M
ul

tip
le

M
ap

pe
d

✓
✓

✓
✓

RT
-S

H
A

D
O

W
S

A
rm

Ti
gh

tly
uC

O
S-

II
, F

re
eR

TO
S

M
ap

pe
d

✓
✓

✓
✗

O
SE

K
-V

R
IS

C
-V

Ti
gh

tly
Its

el
f

C
us

to
m

✓
✗

✓
✗

A
RT

ES
SO

-L
C

A
rm

Lo
os

el
y

Its
el

f
M

ap
pe

d
✓

✓
✓

✓
A

RT
ES

SO
-T

C
A

rm
Ti

gh
tly

Its
el

f
M

ap
pe

d
✓

✓
✓

✓
C

ha
m

el
Io

T
R

IS
C

-V
Ti

gh
tly

 a
nd

 lo
os

el
y

R
IO

T,
 F

re
eR

TO
S,

 Z
ep

hy
r

M
ap

pe
d

✓
✓

✓
✓

157

1 3

Real-Time Systems (2024) 60:150–196	

OS, or if it has custom-built API, and, lastly, (5) the kernel services accelerated in
hardware.

2.1 � Reconfigurable operating systems

R3TOS Iturbe et al. (2015) presented R3TOS, which leverages FPGA reconfigur-
ability to provide a reliable and fault-tolerant OS. This reconfigurable OS is com-
posed of a multilayered architecture including a Real-time Scheduler, Network-on-
chip Manager, Allocator, Dynamic Router, Placer, Diagnostic Unit, and Inter-Device
Coordinator. These layers schedule the hardware tasks, manage resources, and con-
trol the access port to reconfigure the FPGA fabric. The abstraction layer provided
by R3TOS aims for a “software look and feel” while alleviating the application
developer from dealing with occurring faults and managing the FPGA’s lifetime.

ReconOS Introduced by Lübbers and Platzner (2009), ReconOS is a Real-Time
Operating System (RTOS) that allows the scheduling of hardware threads among
software threads. Each hardware thread is assigned to a reconfigurable slot that
encompasses two modules. The first manages the communication with software
(OS interface). And the second is responsible for ensuring that hardware threads can
correctly access synchronization and communication mechanisms implemented in
software (OS synchronization finite state machine). ReconOS provides a POSIX-
like API and a set of VHDL libraries for OS communication and memory access.
Together with a system-building tool, it is possible to generate a fully integrated
hardware-software project.

2.2 � Hardware‑accelerated operating systems

HThreads Agron et al. (2006) proposed HThreads, a multithreaded RTOS kernel for
hybrid FPGA/CPU systems. This work intended to offload the (i) thread manager,
(ii) scheduler, (iii) mutex manager, and (iv) interrupt scheduler to hardware. Each
module is connected to the CPU through the available peripheral bus, allowing the
software to access the hardware modules via load/store instructions. HThreads also
allows for user-defined hardware threads that execute as a service available to soft-
ware threads. Additionally, the API provided is compatible with the POSIX thread
standard.

ARPA-MT ARPA-MT (Oliveira et al. 2011) is a MIPS32 implementation that
takes advantage of user-defined coprocessors and exception interfaces to implement
hardware support to an RTOS. The coprocessor includes a scheduler, task manager,
synchronization, and communication mechanisms and provides support for non-
real-time, soft, and hard real-time tasks. An object-oriented API enables the inter-
face between software tasks and the hardware coprocessor. ARPA-MT also provides
software implementations for services instantiated in hardware.

HartOS HartOS (Lange et al. 2012) is a microkernel-structured RTOS imple-
mented in hardware that targets hard real-time applications. A custom proces-
sor, connected to the CPU through a standard peripheral bus, is responsible for

158	 Real-Time Systems (2024) 60:150–196

1 3

interpreting the software requests and controlling the remaining hardware modules
to attend to the received requests. This custom processor shares with the remaining
hardware blocks an internal memory implemented in the FPGA fabric. This memory
also interacts with the timer module, watchdog module, mutexes, and semaphores,
among others.

SEOS SEOS (Ong et al. 2013) is a hardware-based OS designed to provide high
adaptability for easy hardware RTOS adoption. SEOS aims for easy integration
with a variety of CPUs. As such, it is connected to the core through a configur-
able peripheral bus that meets the CPU architecture. Furthermore, SEOS provides
parametrization of several modules, e.g., mutexes, semaphores, and message queues.
Regarding the software, SEOS defines a set of porting steps that do not require in-
depth knowledge of both SEOS and the RTOS, enabling easy integration of this
hardware RTOS with a software one.

RT-SHADOWS RT-SHADOWS (Gomes et al. 2016) is an architecture that pro-
vides unified hardware-software scheduling by manipulating an ARM-based soft-
core, developed in-house, to include support for multi-threading in the datapath.
RT-SHADOWS is implemented as a coprocessor that includes a scheduler, thread
manager, context switching, and synchronization and communication mechanisms.
It leverages magic instructions (supported by unmodified compilers) to enable mul-
tiple APIs directly mapped to RTOS APIs, allowing for effortless integration in soft-
ware by swapping both calls.

OSEK-V OSEK-V (Dietrich and Lohmann 2017) explores the hardware-software
design space for event-triggered fixed-priority real-time systems at the hardware-OS
boundary. By modifying the whole pipeline of a RISC-V core and introducing addi-
tional instructions to the ISA, OSEK-V integrates a highly-tailored hardware RTOS.
Components like hardware tasks, alarms, and the scheduling policy, are imple-
mented only to fit the application demands. The finite state machine customization
happens at the compile time, ensuring the hardware-software synchronization. This
approach aims at minimizing the FPGA resource consumption while maximizing
the performance by designing the hardware for the application’s behavior.

ARTESSO Maruyama et al. (2014) present a study comparing the same hard-
ware-accelerated RTOS (ARTESSO) implemented in two approaches: tightly- and
loosely-coupled. ARTESSO HWRTOS (Maruyama et al. 2010) was originally
developed to be an integrating part of a proprietary purpose-built CPU for TCP/
IP-based applications. This implementation resorted to custom ISA instructions to
enable the communication between the CPU and the hardware RTOS, and included
scheduling, context-switching, event/semaphore/mailbox controllers, and an inter-
rupt controller. With the goal of making the hardware RTOS easily portable and
adaptable to industrial controllers, ARTESSO can be integrated tightly-coupled to
a modified Arm core or loosely-coupled to an unmodified Arm core through stand-
ard peripheral buses. The evaluation in Maruyama’s study encompasses API execu-
tion times, interrupt responses, the influence of interrupts and ticks, and UDP/IP
throughput. The results show that using a hardware RTOS improves the system’s
performance and determinism when compared to an software-only approach. Fur-
thermore, the tightly-coupled approach results presented are at least one order
of magnitude better than the loosely-coupled one. Notwithstanding, the better

159

1 3

Real-Time Systems (2024) 60:150–196	

performance of the tightly-coupled approach comes at the cost of portability and
integrability. The tightly-coupled approach requires a modified Arm core, while the
loosely-coupled is easier to integrate with any FPGA-based platform.

3 � ChamelIoT overview

3.1 � Motivation and goals

As supported by the extensive work in the literature presented earlier, offload-
ing OS kernel services to hardware is not a new effort. Considering the hard-
ware-accelerated OSes and their features, depicted in Table 1, there is a lack of
direction regarding the ideal method for implementing OS hardware acceleration
for IoT systems. Some OSes, like RT-SHADOWS, provide a portable API map-
pable into most IoT OSes allowing applications to run unmodified. Others, like
HThreads or HartOS, have a dedicated API and require applications to be devel-
oped from the ground up. The multiple OSes are also deployed in different plat-
forms, integrated with several MCUs, and have a varying range of services in
hardware and configurability points. Taking this into account, both reconfigurable
and hardware-accelerated OSes have yet to draw attention in the IoT industry,
considering the roadblocks they present to their adoption. The main roadblocks
we identify are discussed as follows:

Software interface The software API provided by each OS influences the
amount knowledge regarding the whole required by the application developer.
Some hardware-accelerated OSes provide their custom-built and unique API,
which increases the development and learning curves since it requires develop-
ers to learn a complete set of new APIs and develop the application from scratch.
Considering that time-to-market is a driving force for the IoT industry, the addi-
tional development time imposed by the learning curve of these hardware OS
APIs compels the industry to opt for COTS solutions. To solve these issues, other
hardware-accelerated OSes use compatibility standards like POSIX as a basis for
their APIs, allowing for better portability for legacy Linux-based applications and
the development of new applications due to the community’s overall familiarity
with POSIX-like APIs. Lastly, the remaining OSes APIs were designed to mimic
software IOT OSes’ APIs and replace them seamlessly. This approach allows
developers to keep using the OS they are familiar with since the compiler or other
external tools select which APIs to use. Additionally, this method can also enable
legacy applications to use hardware acceleration since no modification is required
at the application level.

Target architecture The processing system in reconfigurable platforms pro-
vides a limited number of interfaces usable by external peripherals and devices,
consequently limiting the methods for integrating hardware accelerators with the
core. In addition to the fact that not all MCUs are designed with hardware accel-
erators in mind, the number of processing systems that can be used for OS hard-
ware acceleration is reduced. Furthermore, similarly to the software interface,
developers also have a degree of familiarity with some processor families and

160	 Real-Time Systems (2024) 60:150–196

1 3

architectures, which results in these being preferred by the IoT industry. Consid-
ering these facts, softcore MCUs are well-suited for IoT systems with hardware
acceleration since they can be modified to include and accept hardware accel-
erators, both tightly- and loosely-coupled. Hardware-accelerated OSes usually
are developed targeting a single CPU or architecture, which limits their overall
usability and portability, hindering their adoption. The problem is even worse
when the accelerators are tightly-coupled to the CPU and require modifications to
the datapath. This fact makes the hardware replication in mass a challenge, as it
involves redesigning the silicon, which is nearly impossible with proprietary CPU
architectures, often behind a paywall. To tackle this issue, some hardware OSes
are exploring open ISAs, e.g., RISC-V, as their foundation, due to their availabil-
ity and openness. This approach future-proofs the system and thus enhances its
scalability and possible adoption.

Application suitability Due to the heterogeneity of the IoT ecosystem, the myr-
iad of different systems presents a variety of requirements and constraints. Nota-
bly, closer to the edge, each application is progressively more constrained regarding
energy consumption and form factor, as these applications are often small sensors or
actuators powered by batteries. Therefore, reconfigurable platforms in the IoT edge
ideally uses the smallest FPGA available. To cope with this, hardware-accelerated
OSes must provide enough configurability points to fit within the hardware con-
straints. As such, the OS should allow the user to modify kernel parameters, e.g.,
number of states or priorities, or entirely remove unused features. This is only possi-
ble if the hardware-accelerated OS allows by design for such configurability, which
is not always true, as a variety of accelerators in the literature are tailored to a spe-
cific application or OS.

Aiming to increase the adoption rate of hardware-accelerated OSes in the IoT
market, ChamelIoT tackles the previously identified roadblocks by providing a
framework for accelerating kernel services in hardware in an agnostic fashion,
allowing applications from different IoT OSes to run unmodified. To do so, Chame-
lIoT presents the following solutions:

•	 Regarding the Software Interface, ChamelIoT offers a minimalist set of APIs that
implement low-level communication with the hardware accelerator to execute
well-defined kernel services. Each function can be mapped to a kernel service
in software and is replaced at compile-time, providing the benefits of hardware
acceleration to any IoT OS. Since only kernel internals are modified, the applica-
tion-level code is kept intact. Taking this into consideration, developers can lev-
erage ChamelIoT without the need to learn any new set of APIs or the workings
of an OS, thus making it easier to use hardware acceleration.

•	 The Target Architectures of ChamelIoT are architectures deployed in reconfigur-
able logic. Leveraging RISC-V, an open-source ISA and its available implemen-
tations, allows ChamelIoT to explore multiple avenues of hardware acceleration,
like providing the same accelerator as both tightly- and loosely-coupled. Further-
more, with RISC-V gaining popularity in the IoT industry, there is inherent scal-
ability for hardware accelerators implemented with the same foundation as these
emerging platforms.

161

1 3

Real-Time Systems (2024) 60:150–196	

•	 Lastly, ChamelIoT offers multiple configurability points to ensure Applica-
tion Suitability. The user can opt to: (1) have the accelerator either tightly-
or loosely-coupled, (2) modify multiple kernel parameters, e.g., number of
threads, priorities, and states, (3) configure feature-specific implementations
like the type of semaphores or if mutexes have priority inheritance, and (4)
add or remove components like mutexes, semaphores or message queues as
needed. All these configurations are made before the synthesis and deploy-
ment of the accelerator, enabling the user to fully customize the system and
avoid unnecessary resource consumption.

Taking into consideration, the current implementation of ChamelIoT provides
hardware acceleration to several OS services, which can replace with existing ser-
vices of three different software IoT OSes, without requiring modifications to the
application’s interface. The main goals and benefits of the ChamelIoT encompass:

Real-time and determinism As one of the main requirements of low-end IoT
devices, ChamelIoT must provide hard real-time guarantees and bounded worst-
case execution time (WCET). Moreover, predictability shall not be affected by
any configuration on the hardware accelerator, e.g., the number of priorities or
the total number of mutexes, or any application-specific detail like the number of
waiting threads or their priorities.

Performance It is paramount for a hardware-accelerated system to have better
performance than its software-centric implementation. ChamelIoT must ensure
higher performance, regardless of coupling approach or any configuration, by
executing kernel services faster than their respective standard software version,
independent of the IoT OS being accelerated.

Flexibility Without enough customization, it is impossible to guarantee that
a hardware accelerator is not using unnecessary resources. The framework must
provide several configurability points to modify ChamelIoT in a way that the
accelerator behaves precisely like the target IoT OS while minimizing resource
consumption.

Agnosticism In order to lessen the learning curve associated with hardware-
accelerated OSes, the ChamelIoT framework must allow the user to transparently
run unmodified applications of any supported IoT OS. This is achieved by only
modifying the kernels’ internals and leaving the user interface untouched when
using the hardware accelerator.

The current stage of development of the ChamelIoT framework incorpo-
rates a hardware-accelerated OS that can be deployed both tightly- or loosely-
coupled. The accelerator implements the following kernel services: scheduling,
thread management, and synchronization and communication mechanisms. It is
part of the already identified future work to provide a tool to ease the process of
configuring and building the complete system stack. This includes configuring
and synthesizing the hardware accelerator and applying the required modifica-
tions the software OS to use the accelerator. The kernel services implemented
are present across the vast majority of IoT OSes, and can be implemented and
deployed as hardware accelerators without changing the behavior of the software
OS. On the other hand, some OS services already deployed in hardware by works

162	 Real-Time Systems (2024) 60:150–196

1 3

in the literature, require more intrusive implementations capable of changing the
OS execution. Consequently, forcing the developer to adapt the application code.
These services are not within the scope of our framework and include:

•	 Interrupt management—the most common approach to manage interrupts in
hardware is to trap and process them in the accelerator, interrupting the proces-
sor through a single interface when needed. This approach reduces the priority
spaces of interrupts and threads to a single one, i.e., the accelerator becomes
responsible for managing both interrupts and threads which share the same pri-
ority rules. This approach has proven to bring several benefits to performance
and memory footprint (Hofer et al. 2009; Gomes et al. 2015). Notwithstanding,
it heavily modifies the OS behavior and requires the developer to understand
several implementation details. Thus, the agnostic characteristics of ChamelIoT
would be invalidated, as applications would need to be developed while consid-
ering the unified priority space.

•	 Time management—most IoT OSes rely on platform-available timers, e.g., sys-
tem tick or general purpose timers, to manage time features like the tick system,
delays, or periodic events. Migrating time-related operations to hardware would
require replicating the timer logic in the FPGA fabric (Gomes et al. 2016; Ong
et al. 2013), resulting in redundancy and waste of FPGA resources. Furthermore,
it would also require redirecting the system timer interrupt to a different source,
adding a priority space solely for the timer. It could lead developers to mistak-
enly assign priority to their interrupts, thus, breaking the system’s expected
behavior, which compromises ChamelIoT’s agnosticism.

•	 Context switching—as the most architecture-dependent feature, implementing
the context switching in hardware would require extensive modifications to the
CPU datapath to accommodate the different register files and other data that
need to be saved and loaded when a new thread is scheduled. Even though the
migration of this feature to hardware has proven to bring performance and deter-
minism benefits (Maruyama et al. 2014), a highly-tailored core limits its flexibil-
ity and adaptability. A custom-built core is not easily adapted to other platforms,
consequently limiting its reusability and adoption.

•	 Memory management—implementing heap and thread stacks management in
hardware is a great ordeal that requires a vast amount of FPGA resources. Con-
sidering the constrained nature of IoT devices, especially the FPGA-based ones,
we believe this feature makes sense to be handled in software.

3.2 � Architecture

In order to achieve the goals mentioned previously, the proposed ChamelIoT frame-
work architecture is composed of three main components: (1) a tightly- or loosely-
coupled Hardware Accelerator where the kernel services are implemented in hard-
ware; (2) an Abstraction Layer that enables the interface between the software and
hardware elements in the system; and (3) a Configuration and Building tool to cus-
tomize the whole system stack and abstract the user from low-level implementation

163

1 3

Real-Time Systems (2024) 60:150–196	

details. Figure 3 depicts the three components of ChamelIoT framework incorpo-
rated in system based on a RISC-V reconfigurable platform.

Hardware accelerator This component is the central piece of the framework since
it is responsible for the main goal of ChamelIoT, the acceleration of OS kernel ser-
vices in hardware. The services implemented in hardware encompass (1) a scheduler
responsible for determining the active thread, (2) a thread manager that stores and
manages the data related to each individual thread on the system, (3) synchroniza-
tion mechanisms, including mutexes and semaphores, and (4) inter-process commu-
nication mechanisms through message queues. By providing enough configurability
to each service, i.e., the scheduling priority or the number of threads supported, it is
possible to build the hardware accelerator to fit the application needs without wast-
ing unnecessary FPGA resources. Designed with flexibility in mind, the Hardware
Accelerator can be deployed following a loosely- and a tightly-coupled approach.
The tightly-coupled approach assumes that the accelerator is integrated into the
core’s datapath, for instance, using a coprocessor interface. However, this option is
not always available in some RISC-V implementations, where the loosely-coupled
approach is always viable by connecting the accelerator to the available system bus.

Abstraction layer The software API enables the communication between the soft-
ware and the hardware accelerator. This is achieved by providing a software abstrac-
tion for all the possible functions of each kernel service deployed in hardware,
which results in a fine-grained abstraction layer. Together with a collection of addi-
tional APIs to access and gather context data from the accelerator, it is possible to
easily adapt and port the ChamelIoT framework to most IoT OSes. Depending on the
hardware accelerator coupling approach, each function in this component comprises
one to four assembly instructions, a custom-made instruction for the tightly-coupled
approach, and memory operations for the loosely-coupled.

Configuration and building tool Our framework intends to offer an external tool
that can be used for hardware and software customization through a graphical user
interface to ease the development process and soften the learning curve of hardware
accelerators. This tool reduces the required knowledge about implementation details
by consolidating in a single place all the customization and configuration available

Fig. 3   ChamelIoT framework
overview

IoT Operating System

Abstraction Layer

Unmodified Application

Hardware Accelerator

System bus

C
o

n
fi

g
u

ra
ti

o
n

 a
n

d
 B

u
il

d
in

g
 T

o
o

l

CPU

Reconfigurable

Platform

164	 Real-Time Systems (2024) 60:150–196

1 3

in the complete system stack, automating the process of synthesizing the hardware
accelerator, including the correct abstraction layer, and building the target OS with
the modifications required.

4 � Framework implementation

Considering the heterogeneity of applications in the IoT ecosystem, numerous IoT
OSes start to implement and provide additional features to help with the variety of
requirements and constraints. High-level features like wireless connectivity or cryptog-
raphy are some of the prominent requirements in nowadays IoT edge devices, and OS
support for these features is highly appreciated in the community. In addition to these
features, design choices such as kernel architecture, scheduling policy, or synchroniza-
tion and communication mechanisms have a significant influence on the developer’s
choice of IoT OS since these features greatly impact the overall system performance
and behavior.

The OSes available for low-end IoT systems present a wide variety of them regard-
ing implementation details and features supported. From the myriad of IoT OSes, Cha-
melIoT currently provides support to RIOT, Zephyr, and FreeRTOS, as they present
enough variability regarding the main design points and present extensive popularity
and applicability in IoT applications. The three OSes share similar design principles,
e.g., they implement a preemptive priority-based scheduler and multi-queue thread
management, which are also common characteristics of other low-end IoT OSes (Chan-
dra et al. 2016; Hahm et al. 2016; Silva et al. 2019; Zikria et al. 2018). Nonetheless,
there are several distinctions in their design choices which the accelerator needs to
accommodate, as summarized in Table 3. The ChamelIoT framework allows for several
configurations to ensure that the minimum resources are used and that the system oper-
ates exactly like the software OS. These configurations describe how the OS works, for
instance, the number of thread states, the meaning of each state, the priority scheme,
and which synchronization and communication mechanisms are included.

The current implementation of the ChamelIoT framework includes the Hardware
Accelerator and Abstraction Layer components, while the Configuration and Building
Tool are still in development. The Hardware Accelerator is based on the open-source
SiFive E300, featuring an E31 Coreplex RISC-V core (RV32-IMAC), which supports
atomic (A) and compressed (C) instructions for higher performance and better code
density, respectively. This core is created by the Rocket Chip generator and its main
characteristics include a single-issue in-order 32-bit pipeline (with a peak sustained
execution rate of one instruction per clock cycle) and a single L1 instruction cache. The
E300 platform also includes a platform-level interrupt controller (PLIC), a debug unit,
several peripherals, and two TileLink interconnections interfaces (used to interface cus-
tom accelerators). The Abstraction Layer is composed of a set of APIs that implement
low-level abstractions for the interface between the software and hardware accelerator,
regardless of the coupling approach. The APIs are implemented resorting to macros
and inline functions and replace the software OS APIs at compile-time.

165

1 3

Real-Time Systems (2024) 60:150–196	

4.1 � Hardware accelerator

As the core element of the ChamelIoT framework, the Hardware Accelerator imple-
ments in hardware the kernel services common to the three IoT OSes supported,
as identified in Table 2. These services include scheduling, thread management,
mutexes, semaphores, and message queues, which directly correspond to hardware
modules, as depicted in Figs. 4 and 5. Additionally, there is also a Control Unit mod-
ule that manages the interaction between all other hardware elements and handles
the interface with the processing system. Each of these hardware modules will be
further detailed in later sections.

As mentioned previously, the Hardware Accelerator is implemented in a Rocket
Core based platform, considering it enables the deployment of hardware acceler-
ators both tightly- and loosely-coupled. The two different methods require differ-
ent techniques and resources from the processing system, which implies modifica-
tions to hardware that manages the communication with the processing system, the

Table 2   Key features of each
supported OS

OS RIOT Zephyr FreeRTOS

Thread states 14 8 4
Running state 11 6 3
Ready state 12 7 2
Priority scheme Descending Descending Ascending
Mutexes Yes Yes (with prior-

ity inherit-
ance)

Yes (with
priority
inheritance)

Semaphores Yes Yes Yes
Message queues Yes Yes Yes
Mailboxes Yes Yes No

Fig. 4   Tightly-coupled hardware
accelerator architecture

Control

Unit

Thread

Manager

CMD IF

MEM IF

RoCC IF

Hardware Accelerator

Scheduler

Mutexes

Semaphores

Message Queues

CPU

Memory

Fig. 5   Loosely-coupled hard-
ware accelerator architecture

Control

Unit

Thread

Manager

TileLink

Reg Map

Node

Hardware Accelerator

Scheduler

Mutexes

Semaphores

Message QueuesTileLink

DMA Node

CPU

Memory

166	 Real-Time Systems (2024) 60:150–196

1 3

Control Unit. Since this module is solely responsible for the interface with the CPU,
all the other hardware elements remain untouched, independently from the coupling
approach.

Tightly-coupled For this approach, the Hardware Accelerator leverages the RoCC
interface provided by the Rocket core to integrate the coprocessor directly into the
datapath. This interface is composed of two smaller interfaces, as illustrated in
Fig. 4: (1) the command interface (CMD IF), which is responsible for receiving and
answering any requests from the pipeline, and (2) the memory interface (MEM IF),
through which any memory transaction can be made without CPU intervention.

Along with the ISA specification, the command interface imposes restrictions
on the hardware accelerator. The instruction type specified for RoCC instructions
is R-type, which limits the data input to the accelerator to two 32-bit words and the
output to one 32-bit word, all in general-purpose registers. This data is provided
directly to the command interface already decoded by previous pipeline stages,
along with a 7-bit field that works as an internal opcode for the accelerator. Since
the accelerator is integrated within the pipeline, it also needs to follow its timing
restrictions, implying that the command interface needs to have the output ready
in the same clock cycle. This fact forces the output logic to be fully combinational,
demanding the majority of the other modules to be implemented with combinational
logic.

Loosely-coupled In this approach, the Hardware Accelerator acts as a memory-
mapped device for the processing system. The accelerator needs to be registered as
two different TileLink nodes, as depicted in Fig. 5: (1) a Register Map node, through
which the software can write input data and read the output from predefined mem-
ory addresses, and (2) a Direct Memory Access (DMA) node used to provide mem-
ory access to the accelerator without CPU intervention.

In the TileLink Register Map node, a memory address range has to be assigned
to the accelerator, which determines the addresses the software can use to communi-
cate with the hardware. In this range, a register file is defined according to the inputs
and outputs required for each kernel service. Each register is composed of a 32-bit
word and has a specific address. The software application can access these registers
through load and store instructions. Additionally, the TileLink DMA node grants the
accelerator access to the system memory through burst operations. These operations
are done in bursts with predefined sizes (values are always in powers of 2), which
limits finer-grained memory transactions.

4.1.1 � Control Unit

The Control Unit is the main component of the Hardware Accelerator, as it ensures
that all the other elements function as intended. Among its responsibilities, the Con-
trol Unit manages the interfaces with the processing system available in the accel-
erator. It involves processing the software request by interpreting internal instruction
opcode, collecting the input data from the correct sources, commanding other mod-
ules to execute the proper functions, and outputting results in a timely fashion. When
the accelerator is tightly-coupled, both the input and output data is available through

167

1 3

Real-Time Systems (2024) 60:150–196	

the RoCC command interface. The software issues a single instruction containing
the source and destination registers for the data. Contrarily, in the loosely-coupled
approach, the input data is provided by software by storing data in the register map
before the execution of any function. Likewise, the output is available in the register
map to be read by the software after executing the main instruction.

Considering the limited nature of FPGA resources, there is a limit to the num-
ber of kernel services that can be deployed in hardware. Mutexes, semaphores,
and message queues are kernel elements of which the software can use multiple
instances. Therefore, the maximum number of these modules deployed in hard-
ware is a parameter configured by the user and the Control Unit is responsible for
managing which modules are free or used in run time.

Lastly, regardless of the coupling approach, there is only a single interface to
perform memory operations. Consequently, whenever another module, e.g., mes-
sage queue, needs to execute any memory transaction, it must request the Control
Unit to execute that operation. This way, it is impossible to have multiple mod-
ules concurrently trying to access the system’s memory. Additionally, the Control
Unit has an internal memory buffer used by the message queues to store data
that has not yet been requested by the software. Given that some message queue
operations require direct transfer to and from this buffer to the system memory,
it also becomes part of the Control Unit’s responsibility to manage the buffer to
avoid concurrency in any access.

4.1.2 � Thread Manager

The Thread Manager is mainly responsible for storing and managing the data of
each thread used by the software application. With the goal of minimizing FPGA
resource usage, the total amount of active threads allowed in the system is a con-
figurable parameter at compile time. This configuration is one of the most impact-
ing on resource usage because it forces the internal Thread Identifier (TID) to
have a field size capable of holding the highest number of threads. Taking into
consideration that the TID is a field propagated throughout the whole accelerator,
it naturally increases resource consumption, especially considering that most of
the accelerator is implemented with combinational logic.

The TID is used by the Thread Manager to address each thread added by the
software application. It represents an index in an array of Thread Nodes, which
are structures that contain thread data required by most hardware modules, as
depicted in Fig. 6. The data field stores a pointer to the Thread Control Block
(TCB) provided by the software OS. The accelerator uses this pointer to enable
multiple ways for the software to access a thread, either through TID or TCB.
Furthermore, there is a context in the TCB that has not been migrated to hard-
ware, e.g., memory management details, allowing the software OS to not be

Fig. 6   Thread Node structure 32 bits

data state priority next dirty

log2(#states)
bits

log2(#priorities)
bits

log2(#nodes)
bits

1 bit

168	 Real-Time Systems (2024) 60:150–196

1 3

limited by what ChamelIoT implements. Both state and priority fields are used
by the scheduling algorithm and have variable field sizes according to additional
configurability points. A single-bit field, dirty, is used to indicate whether or not
that index is available. When a thread is added to the system, the software should
provide the previous fields, and the hardware determines which index is free, then
sets the dirty bit and outputs its index. To remove a thread, the Thread Manager
only needs to clear the dirty bit.

The last field in the Thread Node is named next, and it is used to implement linked
lists utilized in the queue of threads ready to be scheduled, henceforth referred to as
ready queue. Given that all thread data is stored and handled by the Thread Manager,
it is also part of this component’s function to manage the state of each thread and the
ready queue. The ready queue implemented in hardware follows a multi-queue system,
where there is a circular linked list for each priority level, leveraging the next field in
each node to point to the next thread with execution rights with the same priority. Fig-
ure 7 illustrates a state example of a ready queue with five threads. Thread 3 is cur-
rently running, and Thread 5 is blocked, both with the same priority level, resulting in
the Thread 3 node pointing to itself. The remaining three threads have lower priority
and form a circular list while waiting to be scheduled. Lastly, any changes to the ready
read are prompted by changes in the thread state, which can be caused by a mutex, sem-
aphore, or message queue blocking or unblocking a thread, the scheduling algorithm,
or directly by a software request.

4.1.3 � Scheduler

The scheduling policy implemented follows a preemptive priority-based algorithm that
uses a hardware configuration to define the priority order, i.e., ascending or descend-
ing. By definition, the thread with the highest priority in a ready state will run until it
yields its execution time or it is interrupted by a thread with higher priority. In case of
multiple threads with the same priority, the scheduling algorithm follows a round-robin
scheme to determine which thread is to be executed next.

To schedule the next thread, the Scheduler accesses the Thread Manager’s ready
queue to identify which is the highest priority among threads in a ready state. Then,
the Scheduler is responsible for changing the currently active thread state from running
to ready and the other way around for the new thread. Due to timing constraints, it is
mandatory for the Scheduler to be implemented with only combinational logic since
whenever a scheduling operation is requested, the kernel is in the process of swapping
active threads, which must be deterministic and requires the shortest possible time.

Fig. 7   Ready queue state
example

P
ri

o
ri

ty Thread 3 Thread 5

Thread 1 Thread 2 Thread 4

0

1

2

...

N

169

1 3

Real-Time Systems (2024) 60:150–196	

4.1.4 � Mutexes

A mutex is a synchronization primitive that ensures mutually exclusive access to
a resource. In the context of operating systems, a thread can use a mutex to guar-
antee that its access to a shared resource is undisturbed and that other threads can-
not corrupt the resource. To perform an access, a thread must attempt to lock the
mutex, which only is successful if no other thread is locking it. Once the thread is
successful, it becomes the owner of said mutex and holds its ownership until the
thread unlocks the mutex. On the other hand, if an attempt to lock a mutex fails,
the thread that tried is blocked and yields its execution to the next thread.

In the most common implementations of mutexes in IoT OSes, a failed lock can
result in a priority inversion scenario, where a thread with lower priority executes
before one with higher priority. It can lead to an instance where a critical portion
of code protected by a mutex is delayed to a later scheduling point. This is depicted
in Fig. 8a, where the highest priority Thread C interrupts Thread A, and fails to
lock a mutex currently owned by Thread A. This lead to a case where Thread A
critical section only occurs after Thread B finishes executing. These situations are
not desirable in IoT edge devices where real-time and determinism are paramount.

A possible solution to priority inversion scenarios is using priority inheritance
algorithms, which consist of raising the priority level of the current owner of a
mutex to the highest priority of the threads that attempted to lock the same mutex.
This is represented in Fig. 8b, where after Thread C fails to lock the mutex, Thread
A is given the same priority level to finish executing its critical section and unlock
the mutex. Once Thread A unlocks the mutex, Thread C can resume its critical sec-
tion, and Thread B only runs after the highest priority thread finishes its execution.

In ChamelIoT’s hardware accelerator, each Mutex implementation maintains a
register with the current thread that owns the mutex and a list of TIDs of each thread
that was blocked trying to lock it. This list of threads also contains their respective
priority, to enable the implementation of priority inheritance mechanisms. Whenever

Fig. 8   Mutexes use case sce-
narios

170	 Real-Time Systems (2024) 60:150–196

1 3

a thread’s priority is modified, the Mutex informs the Thread Manager of the TID
and new priority. Consequently, the Thread Manager can keep the ready queue cor-
rect, removing the thread from one linked list and adding it to the list regarding the
new priority. The process is the same whether the priority is raised as a result of a
failed lock or lowered after an unlock. Finally, whenever a thread is forced to change
state, e.g., to ready state when the priority is raised, the Scheduler is also updated
accordingly, and the software is notified in the next scheduling point.

4.1.5 � Semaphores

A semaphore is another method of synchronization utilized in operating systems. It
follows a producer–consumer scheme, where the producer thread signals the sema-
phore once it finishes acquiring or processing a certain resource. Internally, the sem-
aphore registers the count of how many signals were emitted by the producer thread.
In turn, the consumer thread checks, through the semaphore, if there are resources
available. If the semaphore’s internal count is greater than zero, the consumer thread
is allowed to keep executing, otherwise the thread is blocked. Semaphores are often
used in cases where a resource is produced at a high frequency, e.g., data acquired
from a sensor, and multiple threads need access to it.

Each hardware Semaphore has a configurable maximum count of resources pro-
duced and variable size of threads that are blocked when there are no resources
available. When a thread tries to take from a semaphore and fails, it is blocked and
its TID and priority are saved internally in the semaphore. At the same time, the
Thread Manager is informed to remove the thread from the ready queue. These two
values are used later when a producer thread issues a give operation to request the
Thread Manager to put the blocked thread in the ready queue.

4.1.6 � Message queues

Message queues are asynchronous communication mechanisms used to send data
from one thread to another. Common implementations of message queues in OSes
use Firs-In First-Out (FIFO) queues to store messages waiting for a receiving thread.
When a thread attempts to send a message, it should provide a pointer to the data
and the message size so that the message queue can store a copy of the message.
Likewise, when a thread receives a message, it should provide a pointer to the
address where it wants the data to be stored so it can receive a copy of the data.
When the message queue holds a copy of the data, it avoids having the threads share
memory, which often requires extra care to prevent data corruption.

As mentioned previously, the Control Unit manages the internal memory buffer
for all the hardware Message Queues to prevent concurrent accesses to the memory.
This buffer is composed of a configurable limit of messages per message queue,
with the message size also being configurable. The scenarios illustrated in Fig. 9
show an example of this memory buffer when there are four message queues in the
system with a limit of four messages each.

171

1 3

Real-Time Systems (2024) 60:150–196	

Figure 9a depicts a put operation on Message Queue 1. In this case, there is a
message already stored in the buffer. The Control Unit reads the data from the sys-
tem memory and stores it in the next free message slot. On the other hand, in the get
operation, illustrated in Fig. 9b, the data written to the system memory is from the
first message stored in the message queue, forming a FIFO queue. As such, the Mes-
sage Queues need to keep track of the order in which the messages are stored.

Lastly, whenever a thread tries to receive a message and the buffer is empty, the
thread is blocked until a message is sent. At the same time, when a thread attempts to
send a message, and there is no thread waiting to receive it, i.e., if the buffer is full,
the sending thread is also blocked to prevent overwriting other data. The amount of
threads in each waiting list, sending and receiving, is also a configurable parameter.

4.2 � Software abstraction layer

In the ChamelIoT framework, the Software Abstraction Layer fulfills the role of
mediator between the software kernel and the Hardware Accelerator. This layer is
mainly responsible for: (1) providing low-level generic functions that interact with
the accelerator, regardless of coupling approach, (2) implementing functions for
each kernel service in hardware and accessing their context data, and (3) doing the
modifications needed so that the supported OSes use ChamelIoT’s API.

Regarding the low-level functions that interact with the Hardware Accelerator, these
have to take into consideration the coupling approach. For the tightly-coupled accelera-
tor, all the interaction must be made in a single custom instruction, while accessing the
loosely-coupled accelerator is done by reading and writing to specific addresses.

Providing support for additional operating systems in ChamelIoT requires the
developer to have intimate knowledge of both the ChamelIoT framework and the

Fig. 9   Examples of scenarios
with message queues operations

172	 Real-Time Systems (2024) 60:150–196

1 3

OS. To add a hardware service to an IoT OS, the developer should follow the guide-
lines below:

1.	 Identify the code blocks or functions within the kernel that implement the service;
2.	 Add conditional compiling verification macros;
3.	 Include the necessary calls to ChamelIoT API to replicate the service behavior;
4.	 Ensure the inputs and outputs of the ChamelIoT Abstraction Layer match the

software version.

Furthermore, additional modifications may be required to the Software Abstraction
Layer. This is particularly applicable in unique scenarios where the operating system
requires specific inputs, outputs, or functionalities that are not readily available in the
hardware or require significant alterations. In this case, the suggested approach is to
keep the additional features outside the API to ensure the behavior remains unchanged.

Tightly-coupled Considering that ChamelIoT’s Hardware Accelerator is currently
deployed in a Rocket-based platform, it leverages the RoCC interface to implement
a tightly-coupled approach. Regarding the communication with the CPU, the RoCC
interface defines an extension to the RISC-V ISA by introducing a custom instruc-
tion that follows the R-type format, depicted in Fig. 10. It specifies the target coproc-
essor, the source and destination of data, and the performing operation.

The opcode field identifies the coprocessor, and according the RoCC specifica-
tion, it can only contain one of four predefined values, thus, limiting the num-
ber of coprocessors. The fields rd, rs1, and rs2 specify the destination (rd) and
source (rs1 and rs2) CPU registers used to transfer data with the coprocessor. The
xd, xs1, and xs2 are auxiliary fields that identify which of the previous registers
have valid data. Lastly, the field funct7 is used as a user-defined opcode for each
coprocessor that indicates which function has to be executed.

Listing 1 demonstrates how the RoCC instruction is translated into a C macro. This
macro is then used in the implementation of kernel service APIs by having function
arguments directly mapped to the source registers rs1 and rs2, and the return value
coming from the rd register. The funct7 is determined by a table which maps every
function implemented in hardware to a unique value. In order to keep every service
available through a single instruction, the interaction between the CPU and accelera-
tor becomes limited to: (1) two 32-bit words being received on the coprocessor; (2) a
single 32-bit word response; and (3) a maximum of 128 distinct operations.

1 #de f i n e ChamelIoT opcode 0b1011011
2 #de f i n e ROCC INSTRUCTION(rd , r s1 , r s2 , func7) \
3 asm v o l a t i l e (” . insn r ” STR(ChamelIoT opcode) ” , \
4 ” STR(0 x7) ” , ” STR(funct7) ” , %0, %1, %2” \
5 : ”=r ” (rd) \
6 : ” r ” (r s1) , ” r ” (r s2))

Listing 1   C macro for the RoCC instruction

Fig. 10   RoCC instruction
format funct7 rs2 rs1 xd xs1 xs2 rd opcode

31 25 24 20 19 15 14 13 12 11 7 6 0

173

1 3

Real-Time Systems (2024) 60:150–196	

Loosely-coupled When the accelerator is deployed loosely-coupled, it is inte-
grated with the Rocket core as a TileLink Register Map node. Consequently, the
Hardware Accelerator becomes a memory-mapped device with a well-defined
range of addresses configured at compile-time. This implies that the accesses to
the accelerator from the software application are done via loads and store instruc-
tions. An example of code used to execute these instructions is depicted in List-
ing 2, where a read and write to specific accelerator registers.

The register map consists of a register per possible input and output and a spe-
cial register for the instruction. In the current version of the hardware accelerator,
the register map includes a total of 34 registers. The instruction register is located
at the accelerator base address, and it triggers the accelerator to perform a func-
tion whenever anything is written in this register. This approach uses the same
funct7 values to offer a similar behavior to the RoCC interface implementation,
allowing most of the hardware component to remain unmodified.

The interaction between software and hardware is done through memory
accesses. It provides flexibility regarding inputs and outputs as they are not lim-
ited by the boundaries of a single instruction. However, it comes at the cost of
needing more instructions to execute a single service which involves writing all
the inputs, then writing the instruction register, and finally reading the outputs.

Independently from the coupling approach, the Software Abstraction Layer
provides a library of functions to be used by IoT OSes in their kernels. Table 3
lists all the current APIs used to accelerate the current IoT OSes. These include
functions to add or remove threads from the system, change thread states, sched-
ule a new thread, and use any operation in mutexes, semaphores, and message
queues. Furthermore, some functions allow the software to collect data from any
hardware component in the accelerator.

As mentioned previously, currently, the ChamelIoT framework supports three
IoT OSes: RIOT, Zephyr, and FreeRTOS. For each OS, minimal modifications
had to be made in their kernels to use ChamelIoT’s accelerator. Listing 3 shows
an example of a modification made to Zephyr’s kernel, replacing the code to
schedule the next thread. Currently, this is achieved by resorting to preproces-
sor directives, allowing the user to decide if hardware acceleration is used in the
system by defining a variable during the OS building process. Furthermore, any
additional feature not supported by the API that needs to be included to the sys-
tem should be added within the preprocessor directives.

Listing 2   Write and read data to the loosely-coupled accelerator

1 #de f i n e CHAMELIOT I TID 0x1001A00C
2 #de f i n e CHAMELIOT O TID 0x1001A048
3

4 � (unsigned in t �) (CHAMELIOT I TID) = data ;
5 value = � (unsigned in t �) (CHAMELIOT O TID)

174	 Real-Time Systems (2024) 60:150–196

1 3

1 #i f d e f CHAMELIOT
2 s t r u c t k thread � thread = (s t r u c t k thread �)

ChamelIoT get TCB (ChamelIoT schedule ()) ;
3 #e l s e
4 s t r u c t k thread � thread = next up () ;
5 #end i f //CHAMELIOT

Listing 3   Example of kernel modifications to use ChamelIoT’s API

5 � Evaluation

For the purpose of evaluating the ChamelIoT framework, we have integrated and
provided support for three IoT OSes: RIOT, FreeRTOS, and Zephyr. To assess
performance and determinism, we measured the latency of most kernel services
APIs through a series of microbenchmark experiments that measured the clock
cycles required by most kernel services implemented by the hardware accelera-
tor. We also evaluated the overall system’s performance using the Thread Metric
benchmark suite, which provides a set of synthetic benchmarks stressing kernel
features, like scheduling, and synchronization. Each experiment was performed
for the three OSes targeting the multiple configurations available with the Cha-
melIoT framework:

Table 3   List of functions available is the software abstraction layer

Function Inputs Outputs

Add thread Priority, TCB TID
Remove thread TCB –
Set thread state State, TCB –
Schedule – TID
Get active thread TCB – TCB
Get active thread TID – TID
Convert TCB from TID TID TCB
Conver TID from TCB TCB TID
Initialize mutex Mutex ID Success or error
Lock mutex Mutex ID Success, error or schedule
Unlock mutex Mutex ID Success, error or schedule
Initialize semaphore Semaphore ID Success or error
Give semaphore Semaphore ID Success, error or schedule
Take semaphore Semaphore ID Success, error or schedule
Initialize message queue MQ ID Success or error
Put message queue MQ ID, memory address Success, error or schedule
Get message queue MQ ID, memory address Success, error or schedule

175

1 3

Real-Time Systems (2024) 60:150–196	

•	 SW—the software-based approach without using the hardware accelerator
available, i.e., the vanilla software implementation of each OS;

•	 TC—the tightly-coupled approach where the hardware accelerator is connected
to the core through the RoCC interface, and each OS uses the hardware accelera-
tion by using specific instructions;

•	 LC—the loosely-coupled approach, where the multiple OSes leverage the mem-
ory-mapped hardware accelerator through memory operations.

Additionally, we evaluated the impact of ChamelIoT on the hardware resources
and power estimation required by different threads and priorities configurations,
which (from empirical experiments) are the most impactful configurability points.
Lastly, we measured the memory footprint of each OS for the three ChamelIoT
configurations.

5.1 � Experimental setup

We deployed and evaluated our solution on an Arty A7-100T, which features a
Xilinx XC7A100TCSG324-1 FPGA running at a clock speed of 65MHz. The hard-
ware accelerator is integrated into an E31 Coreplex RISC-V core (RV32-IMAC).
Both the RISC-V core and our accelerator were implemented using the SiFive Free-
dom E300 Arty FPGA Dev Kit and synthesized in Vivado 2020.2.

The performance evaluation experiments targeted the RIOT v6ae67, FreeRTOS
v10.2.1, and Zephyr v2.6.0-577. All software was compiled with the GNU RISC-
V Toolchain (version 9.2.0), with optimizations for size enabled (-Os). Apart from
OS-specific configurations such as the priority order, the hardware accelerator was
kept with the same configurations for the three OSes: maximum of 16 threads with
16 unique priorities, four different mutexes, semaphores, and messages queues (each
with 16-word size, and a list of four messages).

5.2 � API latency

To assess determinism and performance, we have measured the number of clock
cycles required to execute the most common OS services for the three aforemen-
tioned setups. Each experiment was repeated 10,000 times for each kernel service.
The results are presented by the average number of cycles, i.e., arithmetic mean (M),
along with the standard deviation (SD) measured across all repetitions. Furthermore,
the worst-case execution time (WCET) measured across all the experiments is pre-
sented for each API. The results are discussed below.

176	 Real-Time Systems (2024) 60:150–196

1 3

Ta
bl

e 
4  

T
hr

ea
d

M
an

ag
er

 a
nd

 S
ch

ed
ul

er
 A

PI
 la

te
nc

y

Th
re

ad
 su

sp
en

d
Th

re
ad

 re
su

m
e

Sc
he

du
le

M
 ±

 S
D

W
C

ET
M

 ±
 S

D
W

C
ET

M
 ±

 S
D

W
C

ET

R
IO

T
SW

57
.0

6
±

 0
.6

8
66

59
.0

8
±

 1
.0

3
75

78
.9

9
±

 0
.3

7
82

TC
32

.0
0

±
 0

.0
0

32
35

.0
1

±
 0

.1
9

38
12

.0
0

±
 0

.0
0

12
LC

57
.0

6
±

 0
.5

7
63

12
3.

96
 ±

 0
.5

0
12

7
30

.0
0

±
 0

.0
0

30
Ze

ph
yr

SW
13

2.
98

 ±
 0

.6
4

13
8

11
0.

00
 ±

 0
.0

0
11

0
39

.9
8

±
 1

.2
2

48
TC

11
5.

02
 ±

 0
.2

7
11

8
10

8.
00

 ±
 0

.0
0

10
8

20
.0

1
±

 0
.1

9
23

LC
21

2.
04

 ±
 0

.6
3

22
6

29
3.

02
 ±

 0
.3

8
29

9
32

.0
1

±
 0

.1
9

35
Fr

ee
RT

O
S

SW
22

1.
67

 ±
 3

.0
9

24
0

10
7.

06
 ±

 0
.6

5
11

3
46

2.
35

 ±
 1

.6
8

46
4

TC
79

.1
4

±
 0

.8
7

85
42

.0
2

±
 0

.3
8

48
55

.0
2

±
 0

.2
7

58
LC

10
7.

06
 ±

 0
.4

2
11

0
60

.0
3

±
 0

.4
4

67
69

.0
0

±
 0

.0
0

69

177

1 3

Real-Time Systems (2024) 60:150–196	

5.2.1 � Thread Manager and Scheduler

Table 4 presents the results regarding the latency of three different APIs imple-
mented by the Thread Manager and Scheduler: Thread Suspend, Thread Resume,
and Schedule. The first two APIs are responsible for modifying the thread state,
i.e., from ready to suspended state in Thread Suspend and the other way around in
Thread Resume. Whenever one of these functions is executed by a kernel, it implies
adding or removing a thread from the ready queue. To test these functions, the sys-
tem included two threads with different priorities, where the higher priority thread
suspends itself, and the low-priority thread resumes the high-priority thread. Lastly,
the Schedule function is executed at every scheduling point to select the next execut-
ing thread. In order to test this function, two threads with the same priority con-
stantly yielded their execution time to trigger an explicit scheduling point.

The TC setup on RIOT presents latency decreases and improved determinism on
all three APIs when compared to the baseline (SW configuration). The latency is
decreased by 43.92% on Thread Suspend, 40.73% on Thread Resume, and 62.02%
on Schedule. Additionally, the standard deviation is closer to zero on all kernel ser-
vice, indicating better determinism. On the other hand, the LC setup only shows
better performance on the Schedule, decreasing its latency by 62.02%. Nonetheless,
it presents better determinism. The number of cycles required to perform a Thread
Resume on the LC configuration is over double the number required on the SW con-
figuration. This is justified by the fact that the Abstraction Layer for the loosely-
coupled accelerator requires multiple registers to be written in order to perform a
service or access a value from the accelerator, e.g., thread priority or state. If a func-
tion performs multiple accesses like these, it will greatly increase the total number
of cycles required by that API since both the SW and TC would only need a single
instruction to execute the same function.

The results gathered for Zephyr also show that only the TC setup increases the
performance over the SW setup. The latency is decreased by 13.51%, 1.81%, and
49.94% Thread Suspend, Thread Resume, and Schedule, respectively. Furthermore,
the standard deviation is also lower. The LC configuration also shows a performance
increase of 99.76% on the Schedule function and better determinism on all three
APIS. However, for the previously mentioned reasons, both Thread Resume and
Thread Suspend functions show latency increases.

Lastly, both hardware-accelerated setups on FreeRTOS present performance
increase on all three kernel services along with less variance. On the TC setup, the
latency is decreased by 64.30% on Thread Suspend, 60.75% on Thread Resume, and
88.10% on Schedule. And the LC setup decreases the latency by 51.70%, 43.93%,
and 85.08% for each API, respectively.

5.2.2 � Mutexes

Table 5 summarizes the results gathered for the two APIs related to Mutexes in three
different scenarios. The Lock function is used when a thread attempts to acquire the
mutex before entering a critical section of code. Whenever this function executes
three different scenarios can occur: (i) the mutex is successfully locked, and the

178	 Real-Time Systems (2024) 60:150–196

1 3

Ta
bl

e 
5  

M
ut

ex
es

 A
PI

 la
te

nc
y

M
ut

ex
 lo

ck
M

ut
ex

 u
nl

oc
k

Su
cc

es
s

Pr
io

rit
y

in
he

rit
.

Fa
il

Su
cc

es
s

Pr
io

rit
y

in
he

rit
.

Fa
il

M
 ±

 S
D

W
C

ET
M

 ±
 S

D
W

C
ET

M
 ±

 S
D

W
C

ET
M

 ±
 S

D
W

C
ET

M
 ±

 S
D

W
C

ET
M

 ±
 S

D
W

C
ET

R
IO

T
SW

22
.0

0
±

 0
.0

0
22

–
–

65
.1

4
±

 3
.2

5
72

23
.9

6
±

 0
.3

3
24

–
–

17
.0

4
±

 0
.4

8
24

TC
19

.0
0

±
 0

.0
0

19
–

–
21

.0
0

±
 0

.0
0

21
18

.0
2

±
 0

.2
7

21
–

–
20

.9
5

±
 0

.3
8

21
LC

49
.0

0
±

 0
0

49
–

–
53

.0
0

±
 0

0
53

49
.9

9
±

 0
.1

9
50

–
–

50
.0

0
±

 0
.0

0
50

Ze
ph

yr
SW

30
.0

2
±

 0
.2

7
33

70
.0

3
±

 0
.3

7
75

33
.0

3
±

 0
.2

1
35

78
.0

4
±

 0
.6

3
88

88
.9

6
±

 0
.5

8
89

12
.0

1
±

 0
.1

9
15

TC
23

.0
0

±
 0

.0
0

23
23

.0
0

±
 0

.0
0

23
24

.0
0

±
 0

.0
0

24
12

.0
2

±
 0

.2
7

15
12

.0
1

±
 0

.1
9

15
12

.0
0

±
 0

.0
0

00
LC

55
.0

0
±

 0
.0

0
55

45
.0

1
±

 0
.8

4
49

59
.0

0
±

 0
.0

0
59

45
.0

1
±

 0
.8

4
49

45
.6

5
±

 1
.0

6
50

45
.0

7
±

 0
.4

8
49

Fr
ee

R-
TO

S
SW

10
0.

12
 ±

 1
.2

9
11

5
93

9.
07

 ±
 1

.7
8

95
5

10
7.

23
 ±

 1
.0

2
12

6
12

3.
09

 ±
 0

.9
8

13
7

30
3.

51
 ±

 1
.5

6
30

9
75

.2
0

±
 1

.2
8

88
TC

66
.0

6
±

 0
.6

2
73

69
.0

3
±

 0
.4

5
76

68
.0

0
±

 0
.0

0
68

66
.0

2
±

 0
.2

7
69

69
.9

8
±

 1
.1

2
75

68
.9

2
±

 0
.6

8
75

LC
91

.0
0

±
 0

.0
0

91
10

2.
03

 ±
 0

.2
7

10
5

95
.0

0
±

 0
.0

0
95

90
.0

2
±

 0
.2

7
93

10
7.

03
 ±

 0
.2

9
11

0
90

.0
2

±
 0

.2
7

93

179

1 3

Real-Time Systems (2024) 60:150–196	

current thread continues to execute; (ii) the mutex is already locked, and the prior-
ity inheritance mechanism is triggered; and (iii) the API fails to lock the mutex for
external reasons, e.g., uninitialized or invalid mutex. The Unlock API is used when
a thread is leaving a critical code section to release the mutex ownership. Likewise,
this service can result in three different scenarios: (i) a successful unlock, where
the thread keeps execution rights; (ii) the thread had its priority raised by the prior-
ity inheritance mechanism, and consequently, its priority has to be reverted, and a
scheduling point is forced; and (iii) the Unlock fails because the mutex was not pre-
viously locked, for instance. In order to test the three scenarios, we first had a single
thread successfully locking and unlocking the same mutex and then trying to lock
and unlock an uninitialized mutex, leading to failed attempts on both operations.
Lastly, to validate the priority inheritance scenario the following steps are executed
in a loop: (1) a low-priority thread locks a mutex and resumes a high-priority thread;
(2) the high-priority thread attempts to lock the mutex, triggering the priority inher-
itance mechanism, forcing the other thread to execute; (3) the first thread has its
priority raised and unlocks the mutex, once again triggering the priority inheritance
to revert its priority and schedule the next thread; and (4) the high priority thread
unlocks the mutex and suspends itself. The results shown in Table 5 for this scenario
were collected in the Lock function in step 2 and the Unlock in step 3.

RIOT does not support priority inheritance in its mutex implementation, as
such, no results are available for this scenario. The TC configuration shows latency
decreases of 13.58% on successful Locks, 70.81% on failed Locks, and 24.79% on
successful Unlocks. On failed Unlocks, this setup shows a minimal latency increase.
However, it presents lower standard deviation and a better WCET. The LC setup
presents performance degradation on most scenarios due to the increasing number
of instructions to communicate with the accelerator.

The TC setup on Zephyr decreases the latency on both APIs and all scenarios.
For the Lock operations, it shows decreases of 23.35%, 67.14%, and 67.16% for the
successful, priority inheritance, and fail scenarios, respectively. On the Unlock func-
tion, the latency is decreased by 84.59%, 86.50%, and 0.10% on the same scenar-
ios correspondingly. For the LC setup, there is a latency increase in the successful
and fail experiments on both APIs. However, on the priority inheritance scenario,
it shows a decrease of 21.46% and 48.68% on the latency of the Lock and Unlock
functions.

Finally, both hardware configurations, TC and LC, increase the performance
on all scenarios and APIs. This is most notable in the priority inheritance cases,
where for the Lock function the latency is decreased by 92.65% on the TC setup
and 89.14% on the LC one. And for the Unlock function, it is decreased by 76.94%
and 64.75% on the TC and LC configurations, respectively. FreeRTOS software ker-
nel implements its ready queues in a fashion that requires the iterative traversing
of linked lists whenever a TCB is accessed. This results in longer times on func-
tions that need to modify thread priorities and states multiple times, like the priority
inheritance algorithm on mutexes.

180	 Real-Time Systems (2024) 60:150–196

1 3

5.2.3 � Semaphores

The Semaphores API consists of mainly two functions: Give and Take. The Give
function is used by a thread to signal a semaphore that new data or resources are
now available. Whenever this function executes, it can result in two different sce-
narios. The first where another thread previously tried to take from the semaphore,
and the current thread has to yield the execution after the Give. And the second sce-
nario where there is no thread waiting, and the current thread continues execution.
The Take function is used by a thread attempting to access a resource, and simi-
larly to the previous function, it can also result in two different scenarios: (i) the
resource is already available in the semaphore, allowing the current thread to access
it and keep executing; and (ii) there are no resources available, forcing the current
thread to yield until the semaphore is signaled by other threads. To test these APIs,
we devised two experiments, one with a single thread using Give and Take repeat-
edly, leading to no yields being required. And another experiment with two threads,
where the first attempts to take from a semaphore without resources, yielding the
execution to the other thread, which signals the semaphore and yields the execution
to the waiting thread. The results collected are presented in Table 6.

For RIOT OS, the TC setup provides a latency decrease for all the scenarios in
both APIs. This decrease varies from 69.16% on a Take with no resource available to
72.70% on a Give with a thread waiting. The LC setup slightly increases the latency
in all cases, up to 7.84%. However, it decreases the latency variance.

The TC configuration on Zephyr decreases the latency of Gives with threads
waiting by 63.65% and without threads waiting by 89.05%. For the Take API, this
setup only performs slightly better (up to 4.55%) than the SW configuration. The LC
setup decreases the latency on Gives with threads waiting by 0.12% and 75.23% on
Gives with no thread waiting. On the Take API, the latency increased to over double.
The software implementation of semaphores on Zephyr is already fast, to the point
that hardware acceleration mostly offers better determinism.

Lastly, the hardware-based setups increase the performance on all cases for the
semaphores API in FreeRTOS. This is most evident in the scenarios that require
the thread to yield execution, e.g., Gives with threads waiting (latency decreased
by 54.70% and 49.67% on the TC and LC setups respectively), and Takes with no
resource available (latency decreased by 89.58% and 87.07% on the TC and LC set-
ups, respectively). As mentioned previously, this is due to the fact that FreeRTOS
uses more complex logic to access the ready queue.

5.2.4 � Message queues

There are two main operations regarding message queues, i.e., Send and Receive.
Both functions may cause threads to be suspended or resumed, depending on
whether there is someone waiting for the message or if there is a message ready.
However, for the purpose of isolating the memory operations and evaluating their
performance, scenarios, where threads had to yield execution, were not consid-
ered. As such, the conducted experiment consisted of one thread sending a message
through a message queue, and another thread receiving it through the same queue.

181

1 3

Real-Time Systems (2024) 60:150–196	

Ta
bl

e 
6  

S
em

ap
ho

re
s A

PI
 la

te
nc

y

Se
m

ap
ho

re
 g

iv
e

Se
m

ap
ho

re
 ta

ke

Th
re

ad
 w

ai
tin

g
N

o
th

re
ad

 w
ai

tin
g

Re
so

ur
ce

 av
ai

la
bl

e
N

o
re

so
ur

ce
 av

ai
la

bl
e

M
 ±

 S
D

W
C

ET
M

 ±
 S

D
W

C
ET

M
 ±

 S
D

W
C

ET
M

 ±
 S

D
W

C
ET

R
IO

T
SW

44
.0

6
±

 0
.6

8
54

45
.0

5
±

 0
.7

6
57

39
.0

2
±

 0
.3

8
42

39
.0

2
±

 0
.3

8
42

TC
12

.0
3

±
 0

.4
4

19
12

.0
3

±
 0

.4
4

19
13

.0
0

±
 0

.0
0

13
12

.0
4

±
 0

.3
3

15
LC

44
.9

8
±

 0
.2

7
45

42
.0

5
±

 0
.5

2
49

42
.0

3
±

 0
.3

4
49

42
.0

8
±

 0
.2

7
49

Ze
ph

yr
SW

55
.0

5
±

 0
.5

4
61

21
0.

02
 ±

 0
.3

21
4

23
.0

0
±

 0
.0

0
23

22
.0

1
±

 0
.2

2
24

TC
20

.0
1

±
 0

.1
9

23
23

.0
0

±
 0

.0
0

23
22

.0
0

±
 0

.0
0

22
22

.0
1

±
 0

.1
9

24
LC

54
.9

9
±

 0
.1

9
55

52
.0

2
±

 0
.2

7
55

50
.0

0
±

 0
.0

0
50

50
.0

2
±

 0
.2

7
53

Fr
ee

RT
O

S
SW

18
1.

03
 ±

 0
.4

4
18

8
10

2.
18

 ±
 1

.6
4

11
9

84
.9

9
±

 0
.0

6
85

75
8.

14
 ±

 1
.3

7
77

3
TC

82
.0

1
±

 0
.1

9
85

77
.0

2
±

 0
.3

2
82

76
.0

4
±

 0
.4

8
83

79
.0

2
±

 0
.3

2
84

LC
91

.1
2

±
 1

.1
0

10
4

91
.0

8
±

 0
.4

9
94

95
.0

1
±

 0
.1

3
97

98
.0

2
±

 0
.2

0
10

1

182	 Real-Time Systems (2024) 60:150–196

1 3

After each iteration of this process, the sending thread modified the message con-
tents, and the receiving thread checked the content to ensure correctness. The results
are depicted in Fig. 11, where the same experiment was repeated to multiple mes-
sage sizes.

RIOT defines a structure to represent a message which contains a pointer to the
data sent/received. However, unlike standard message queue implementations, the
contents of this structure are copied from sending thread to the receiving thread,
including the original pointer. Thus, giving direct access to the memory location of
the original data to the receiving thread. Nonetheless, intending to keep agnosticism,
the ChamelIoT framework uses the same mechanism of only copying the structure

Fig. 11   Message queues API latency by message size

183

1 3

Real-Time Systems (2024) 60:150–196	

contents on message queue operations. This results in identical results across the
board, i.e., all three setups on both APIs, as the message size is always the structure
size.

The TC setup on Zephyr shows consistent latency decreases for both Send and
Receive APIs, averaging across all message sizes 65.80%, and 67.63%, respectively.
On the LC configurations, up to message sizes of 16 words, the hardware setup per-
forms better on both APIs. However, for bigger messages the latency is increased by
11.61% on Sends of 64 words and 10.76% on Receives of 64 words.

Finally, the TC configuration on FreeRTOS offers a consistent latency decrease
to both functions on message sizes up to 16 words. For bigger messages, the latency
decrease goes from an average of 45.33 to 16.92% on Sends of 64 words, and from
an average of 44.09 to 14.31% on Receives of 64 words. The LC setup shows a simi-
lar behavior, for bigger message sizes, the performance is worse. This setup only
offers latency decreases for messages up to four words on both Send and Receive
functions. For bigger messages the latency increase reaches up to 135.25% on Sends
and 145.82% on Receives.

On LC setups, the performance degradation observable for bigger message sizes
can be justified by the fact that the memory operations are made through a TileLink
DMA node, with lesser priority in the interconnects that are closer to the system
memory. Unlike the TC setup that has direct access to the memory port.

5.3 � Thread‑metric benchmark suite

To evaluate the impact of using the ChamelIoT framework fully integrated into dif-
ferent IoT OSes, we use the Thread-Metric Benchmark Suite. This synthetic suite
implements several benchmarks that stress a singular kernel service separately,
allowing us to understand the influence of each service when used in run-time by an
IoT application. Contrarily to the latency evaluation reported previously, this bench-
mark suite results take into consideration all other moving parts in the system, e.g.,
the tick system or context switching, despite a singular service being emphasized in
each experiment. To test the services implemented in hardware by the ChamelIoT
framework, we ran the following benchmarks:

1.	 Basic processing: a single thread performs mathematical operations in a loop.
2.	 Cooperative scheduling: five threads with the same priority execute concurrently,

yielding in a loop.
3.	 Preemptive scheduling: five threads with increasing priorities, each resuming the

next thread with a higher priority and suspending themselves in a loop.
4.	 Message processing: a single thread sends a message to itself through a message

queue in a loop.
5.	 Synchronization: a single thread gives and takes a semaphore in a loop.

Thread-Metric benchmarks count the number of times each loop is repeated, pre-
senting this count as a score after a period of time. For each experiment, the higher
score means that the loop was executed more times. Thus there was less time wasted

184	 Real-Time Systems (2024) 60:150–196

1 3

Ta
bl

e 
7  

T
hr

ea
d

m
et

ric
 b

en
ch

m
ar

k
re

su
lts

B
as

ic
 p

ro
ce

ss
in

g
C

oo
pe

ra
tiv

e
sc

he
du

lin
g

Pr
ee

m
pt

iv
e

sc
he

du
lin

g
M

es
sa

ge
 p

ro
ce

ss
in

g
Sy

nc
hr

on
iz

at
io

n

R
IO

T
SW

67
 9

02
4

01
4

56
4

1
98

9
56

4
2

15
4

84
0

7
11

6
82

8
TC

67
 9

02
5

86
8

62
3

2
86

3
94

5
9

20
4

93
4

20
 2

95
 6

51
LC

67
 9

02
5

39
9

88
4

1
96

8
61

9
4

37
2

33
5

8
89

7
76

6
Ze

ph
yr

SW
63

 4
04

1
14

0
71

8
70

5
37

3
2

82
7

90
0

6
86

3
45

0
TC

63
 4

03
1

24
8

81
7

71
6

46
2

7
27

3
40

3
13

 7
27

 3
47

LC
63

 4
02

1
14

6
14

6
61

2
18

2
3

91
9

40
7

7
67

4
17

2
Fr

ee
R-

TO
S

SW
59

 2
23

1
61

4
32

9
75

6
49

8
2

29
3

79
3

3
86

8
49

4
TC

63
 1

66
4

83
4

80
9

2
08

4
59

5
3

64
1

81
7

4
53

9
08

4
LC

63
 1

65
4

59
8

35
3

1
84

7
28

6
2

34
9

21
9

3
86

7
70

2

185

1 3

Real-Time Systems (2024) 60:150–196	

in the service under test, i.e., a higher count indicates better performance. Table 7
summarizes the results gathered from running each benchmark in periods of 30 s.
The values presented correspond to the average of 100 samples for a specific bench-
mark. We performed the same experiments for the three configurations (SW, TC,
and LC) on each OS (RIOT, Zephyr, and FreeRTOS).

RIOT performance is improved by both hardware setups. The TC configuration
offers bigger performance increases than the LC setup, corroborating the results
discussed in the previous section. For the Cooperative and Preemptive Scheduling
benchmarks, TC setup improves the performance by 46.18% and 43.95%, respec-
tively. The Message Processing tests show the best results for RIOT OS, where
the TC improves the system by 327.17%. Despite the LC setup showing latency
increases in some APIs, the performance is still better than the SW configuration.
For instance, the LC setup increases the latency on semaphore operations. However,
it presents a 25.02% performance increase. The same is true for the Message Pro-
cessing benchmark, where the results obtained are 102.91% better.

The TC configuration on Zephyr improves the system performance up to
157.20% and 100.01% on the Message Processing and Synchronization benchmarks.
For both Scheduling experiments, this configuration only offers small increments
in the results. According to the latency evaluation on the LC setup, all the bench-
marks tested should have shown worse performance than the SW approach. How-
ever, this is only true for the Preemptive Scheduling test. All the others have bet-
ter results, particularly the Message Processing and Synchronization benchmarks,
which improve the performance by 38.60% and 11.81%.

Lastly, the FreeRTOS is the only OS where the Basic Processing benchmark is
improved by the hardware configurations. This happens because FreeRTOS sched-
uling is tick-based, and at every tick, the kernel executes and tries to schedule the
next thread. Regarding the other benchmarks, both setups show better performance.
Nonetheless, both greatly improve the performance on the Cooperative Scheduling
benchmark (TC setup increase by 199.49% and LC setup by 184.85%) and on the
Preemptive Scheduling benchmark (TC setup increase by 175.56% and LC setup by
144.19%).

5.4 � Hardware resources

Measuring the FPGA resources consumed enables the developers to choose a plat-
form that fits their needs. The FPGA size heavily influences the system form factor
and power consumption, therefore being a major design choice on IoT devices. On
the ChamelIoT framework, the most impacting factor on resource consumption is
the total amount of threads supported. As mentioned previously, this number is pro-
portional to the number of Thread Nodes on the Thread Manager and the number of
bits used to identify each thread on the accelerator. Since the TID usage is propa-
gated throughout the hardware, increasing the TID bit size results in a significant
resource consumption increase.

186	 Real-Time Systems (2024) 60:150–196

1 3

Ta
bl

e 
8  

F
PG

A
 re

so
ur

ce
 c

on
su

m
pt

io
n

fo
r a

 sy
ste

m
 a

llo
w

in
g

8
th

re
ad

s a
nd

 8
 p

rio
rit

ie
s

M
od

ul
e

Lo
gi

c
LU

TS
LU

TR
A

M
S

SR
Ls

FF
s

R
A

M
 b

lo
ck

s
D

SP
 b

lo
ck

s

TC
E3

00
A

rty
D

ev
K

itF
PG

A
C

hi
p

21
19

1
86

8
60

14
43

0
24

2
C

ha
m

el
Io

T
H

W
 A

cc
el

.
59

87
19

0
0

37
26

0
0

%
28

.2
5%

21
.8

9%
0.

00
%

25
.8

2%
0.

00
%

0.
00

%
LC

E3
00

A
rty

D
ev

K
itF

PG
A

C
hi

p
22

67
9

72
8

60
15

63
5

25
2

C
ha

m
el

Io
T

H
W

 A
cc

el
.

70
94

0
0

51
56

1
0

%
31

.2
8%

0.
00

%
0.

00
%

32
.9

8%
4.

00
%

0.
00

%

187

1 3

Real-Time Systems (2024) 60:150–196	

Ta
bl

e 
9  

F
PG

A
 re

so
ur

ce
 c

on
su

m
pt

io
n

fo
r a

 sy
ste

m
 a

llo
w

in
g

16
 th

re
ad

s a
nd

 1
6

pr
io

rit
ie

s

M
od

ul
e

Lo
gi

c
LU

TS
LU

TR
A

M
S

SR
Ls

FF
s

R
A

M
 b

lo
ck

s
D

SP
 b

lo
ck

s

TC
E3

00
A

rty
D

ev
K

itF
PG

A
C

hi
p

34
27

2
86

8
60

12
65

5
24

2
C

ha
m

el
Io

T
H

W
 A

cc
el

.
19

76
7

19
0

0
22

74
0

0
57

.6
8%

21
.8

9%
0.

00
%

17
.9

7%
0.

00
%

0.
00

%
LC

E3
00

A
rty

D
ev

K
itF

PG
A

C
hi

p
40

87
5

72
8

60
16

39
9

25
2

C
ha

m
el

Io
T

H
W

 A
cc

el
.

24
38

8
0

0
59

17
1

0
%

59
.6

6%
0.

00
%

0.
00

%
36

.0
8%

4.
00

%
0.

00
%

188	 Real-Time Systems (2024) 60:150–196

1 3

Evaluating the impact of increasing the number of threads and priorities on
the resources consumed by ChamelIoT was done extensively in previous works
(Silva et al. 2022). However, the experiments only considered the tightly-coupled
approach for the accelerator. To have a better understanding of how the two cou-
pling approaches influence resource consumption. Tables 8 and 9 show the FPGA
resource distribution for the two setups in different scenarios, one with a maximum
of eight threads and eight unique priorities and the other with 16 threads and priori-
ties. For both cases, the remaining system configurations were kept the same.

For the scenario with eight threads, albeit very close, the TC setup uses fewer
Look-Up Tables (LUTs) than the LC setup. As depicted in Table 8, the TC setup uses
fewer Logic LUTs, but on the other hand, it also uses LUTs as RAM (LUTRAMs),
which the LC setup does not consume. The amount LUTs, including Shift-Register
LUTs (SRLs), used by TC setup is 27.93% of the total amount of LUTs used by
the whole system, identified as E300ArtyDevKitFPGAChip on the following tables.
Regarding the Flip-Flop usage (FFs), the TC configuration also consumes less than
the LC setup, amounting to 25.82% of the system total for the TC setup and 32.98%
for the LC one. The resource distribution differences in both setups are justified
by the different interfaces they have with the MCU and the required modifications
to the Control Unit to accommodate these interfaces. Furthermore, the remaining
hardware elements, namely the CPU and memory, also have to adapt to the accel-
erator coupling approach, consequently having minimal changes to the resource
consumption.

The experiment with 16 threads shows upscaled consumption, as depicted in
Table 9. The TC setup uses 56.70% of the system’s total LUTs, and the LC setup
uses 58.54%. This was the most impacted resource by the increasing number of
threads and priorities. In particular, Logic LUTs was the only resource that signifi-
cantly increased its consumption. This fact reflects the effect of incrementing the
TID bit size, which extensively increases the logic across the entire accelerator.

5.5 � Power consumption

Power consumption is a metric highly dependent on the application since it is the
application dictates the time the processor spends in low-power or sleeping modes.
Furthermore, the application controls which peripherals are active, consequently

Table 10   ChamelIoT power
estimation

Rocket ChamelIoT-TC ChamelIoT-LC

8T8P 16T16P 8T8P 16T16P

Static (W) 0.099 0.099 0.099 0.099 0.099
Dynamic (W) 0.196 0.201 0.218 0.212 0.24
% 2.55% 11.22% 8.16% 22.45%
Total (W) 0.295 0.3 0.317 0.311 0.339
% 1.69% 7.46% 5.42% 14.92%

189

1 3

Real-Time Systems (2024) 60:150–196	

impacting energy consumption. Taking this into consideration, to evaluate the
effect of ChamelIoT on the system’s power consumption, we opted to use the Power
Analysis tools included in the Vivado Design Suite. The tool ran in vectorless mode
with the default settings and power optimizations disabled and with the platform
constraints for the Arty A7-100 board. The report includes dynamic power con-
sumption, which is determined by the switching activity of clocks and datapaths,
and static power consumption, which represents the minimum power consumption
required to operate the hardware blocks.

Table 10 summarizes the results gathered for the following system configura-
tions: (1) Rocket Core without ChamelIoT’s hardware accelerator, (2) ChamelIoT
tightly-coupled to the core, and (3) ChamelIoT loosely-coupled. Both setups with
ChamelIoT were evaluated while supporting 8 and 16 threads, with a corresponding
number of unique priorities.

The Rocket core deployed on the Arty A7-100T board presents an expected
power dissipation of 0.295 W. When the hardware accelerator is included, there is an
increase in the estimated dynamic power consumed while the static power consump-
tion remains the same. The TC setup presents a power consumption increase of 1.69%
for the 8-thread configuration and 7.46% for the 16-thread configuration. On the other
hand, the LC setups show increases of 5.42% and 14.02% for the 8- and 16-thread con-
figurations, respectively. For both TC and LC setups, the configuration with a higher
amount of threads supported have higher power consumption, which is justified by
increased hardware resource consumption presented in the previous section.

5.6 � Memory footprint

The code size of an IoT application heavily influences the platform used in a sys-
tem since a non-volatile memory needs to accommodate all the code. On low-end
IoT devices, the system often uses the RAM available in the SoC for runtime needs
and external memories to store the code. The memory footprint is a metric highly
dependent on the application, as the code size and variables and arrays allocated will
directly affect the memory used.

We used the Preemptive Scheduling benchmark from the Thread-Metric Bench-
mark Suite as the baseline for all three OSes to assess the memory footprint. This
way, the application code was kept the same, with the exception of the kernel since it
changes between OSes. Using the GNU RISC-V Toolchain, we gathered the amount
of ROM and RAM required by each OS on all three setups, SW, TC, and LC, as
depicted in Table 11.

Table 11   ChamelIoT memory footprint

RIOT Zephyr FreeRTOS

SW TC LC SW TC LC SW TC LC

RAM (B) 8384 8384 8384 11,376 11,376 11,376 12,372 12,372 12,372
ROM (B) 19,346 18,220 18,742 22,448 21,668 22,040 22,994 21,944 22,200
% 5.82% 3.12% 3.47% 1.82% 4.57% 3.45%

190	 Real-Time Systems (2024) 60:150–196

1 3

Across all experiments, the amount of used RAM never changes because the Cha-
melIoT Abstraction Layer does not initialize any variables and mostly consists of sim-
ple RoCC instructions or memory accesses that replace code from the kernel internals.
For this reason, setups using the ChamelIoT framework will have smaller code sizes.

RIOT presents a 5.82% decrease in the code size for the TC setup and 3.12%
for the LC setup. Zephyr shows a decrease of 3.47% and 1.82% for the TC and LC
setups, respectively. Moreover, FreeRTOS presents code size decreases of 4.57% on
the TC setup and 3.45% on the LC setup. As mentioned earlier, regardless of OS, the
LC setup requires more instructions on each function in the ChamelIoT Abstraction
Layer. This is reflected in the memory footprint results since the TC setup shows
better results for all three OSes.

6 � Discussion

Software abstraction The ChamelIoT framework resorts to a set of macros, a minimal-
ist abstraction layer, and slight modifications to each kernel to provide agnosticism
for the application developer. This allows the use of hardware acceleration from an
application by defining a variable at compile time without any other modifications to
the code. The current abstraction layer follows the same logic for both approaches,
where inputs need to be provided to the accelerator alongside an instruction opcode to
execute any function. While this algorithm is optimal for the tightly-coupled approach,
it fails to leverage the benefits of having multiple registers with data readily available
on the loosely-coupled approach. We believe that with more optimizations to the soft-
ware abstraction layer and minimal modification to the loosely-coupled accelerator,
the increased API latency measured can be mitigated or even turned into a latency
decrease. This could easily be achieved by having some fields from the Thread Node
available as read-only registers, for instance. As such, it would decrease the number of
instructions required to access a single value from four to one.

Additional features As mentioned before, some kernel services (e.g., time, mem-
ory, and interrupt management) were left aside from the current implementation.
Notwithstanding, we strongly believe that they can be implemented as optional fea-
tures to further enhance the OS performance. Furthermore, to achieve the goal of
widespread adoption, more IoT OSes will be supported by the ChamelIoT frame-
work. Additional services, like spin locks or mailboxes, or alternative services, e.g.,
different scheduling policies, will also be included on the hardware accelerator. We
also believe that including more configurability points will help towards the goal of
adoption. Lastly, a Configuration and Building Tool is a work in progress that aims
to provide an easy-to-use tool that configures and builds the whole system stack, fur-
ther minimizing the barrier of entry regarding hardware acceleration.

System evaluation The work presented only shows the evaluation of ChamelIoT
from a synthetic standpoint and mostly encompasses performance and determinism
experiments. We plan to extend the system evaluation to other fields like memory
footprint and power consumption, as these are important metrics for any IoT appli-
cation. Furthermore, we have a working setup of IEEE802.15.4 radio network where
one of the nodes is a ChamelIoT accelerated system. This node uses RIOT with a

191

1 3

Real-Time Systems (2024) 60:150–196	

loosely-coupled ChamelIoT accelerator and implements a UDP server that receives
and answers requests from other radios. Preliminary results show that the hardware
accelerated configuration can process more messages per second, i.e., has better
throughput, than the software implementation. We are working on extending the
same setup to the other approach and remaining OSes to have better comparison and
evaluation of the system in a real-world application.

Supporting additional IoT OSes Adapting ChamelIoT to support other IoT OSes
is done by modifying the kernel internals to use ChamelIoT’s Abstraction Layer
wherever needed, as described in Sect. 4.2. However, some OSes may require spe-
cific functionalities to be added in the Hardware Accelerator to keep their behavior
unmodified. In the ideal cases, the hardware modifications are limited to existing
instructions, e.g., replacing the scheduling algorithm, which requires the devel-
oper to keep the same inputs and outputs. Otherwise, new instructions need to be
added to support new features, in which case, the developer should implement these
instructions following the existing examples on ChamelIoT and ensure they follow a
similar approach regarding inputs, outputs, and how they interact with the software.

Porting ChamelIoT to other platforms Utilizing ChamelIoT’s Hardware Accelerator
on other Rocket-based platforms does not require modifications other than including
the accelerator in the core. However, porting ChamelIoT to other RISC-V cores is a
process that involves modifying the interfaces that connect the accelerator to the CPU
and the memory system. Some RISC-V cores, like CV32E40P or PicoRV32, already
have a dedicated custom interface for coprocessors, allowing the integration of tightly-
coupled accelerators. In these cases, porting ChamelIoT-TC consists of removing the
logic that interacts with RoCC and implementing new logic for the new interface
while ensuring the remaining components keep the same behavior. On the other hand,
porting the ChamelIoT-LC setup can be achieved by replacing the TileLink connection
with interconnects of other peripheral buses, like AXI. Alternatively, when the target
platform uses AXI, the developer can decide to add a TileLink-AXI adapter to the
existing infrastructure instead of replacing the current interface.

7 � Conclusions

In this paper, we presented ChamelIoT, an agnostic hardware OS framework for
FPGA-based IoT devices. It leverages the advantage of an open-source ISA, RISC-
V, to implement hardware acceleration for kernel services. Together with a minimal-
ist software abstraction layer and slight modifications to the OS internals, Chame-
lIoT allows IoT applications to benefit from hardware acceleration without needing
to modify the application code. This paper extends the previous by implementing
the hardware acceleration in a different coupling approach where the accelerator
is connected to the core through the memory interface, i.e., loosely-coupled to the
MCU. The original coupling approach uses a coprocessor interface to integrate the
accelerator in the MCU datapath, i.e., tightly-coupled.

We have deployed and evaluated our system with three different OSes: RIOT,
FreeRTOS, and Zephyr. The experiments realized encompass API latency tests,

192	 Real-Time Systems (2024) 60:150–196

1 3

overall system performance measurement, and FPGA resource consumption. Results
demonstrated that regardless of the coupling approach, hardware acceleration can
be used to improve performance and determinism on IoT OSes. Furthermore, we
can conclude that a tightly-coupled approach offers greater performance increases,
reaching values of 199.49% for the overall system. Notwithstanding, the loosely-
coupled configuration can more easily be adapted to other architectures, offering
more in terms of scalability and re-usability.

Acknowledgements  This work has been supported by FCT - Fundação para a Ciência e Tecnologia
within the R &D Units Project Scope: UIDB/00319/2020 and SFRH/BD/146678/2019.

Funding  Open access funding provided by FCT|FCCN (b-on).

Data availability  The data that supports the findings of this study is available with the corresponding
author, Miguel Silva, upon reasonable request.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agron J, Peck W, Anderson E, Andrews D, Komp E, Sass R, Baijot F, Stevens J (2006) Run-time services
for hybrid CPU/FPGA systems on chip. In: 2006 27th IEEE international real-time systems sympo-
sium (RTSS’06). pp 3–12

Alexandrescu A, Botezatu N, Lupu R (2022) Monitoring and processing of physiological and domotics
parameters in an Internet of Things (IoT) assistive living environment. In: 2022 26th international
conference on system theory, control and computing (ICSTCC). pp 362–367

Allied Market Research (2023) Row-end FPGA market by technology (EEPROM, antifuse, SRAM, flash,
others), by node size (less than 28 nm, 28–90 nm, more than 90 nm), by application (telecommu-
nication, automotive, industrial, consumer electronics, data center, medical, aerospace and defense,
others): global opportunity analysis and industry forecast

ARM (2013) AMBA AXI and ACE protocol specification. Version E
Asanovic K, Patterson DA (2014) Instruction sets should be free: the case for RISC-V. Technical report,

EECS Department, University of California, Berkeley
Asanović K, Avizienis R, Bachrach J, Beamer S, Biancolin D, Celio C, Cook H, Dabbelt D, Hauser J,

Izraelevitz A, Karandikar S, Keller B, Kim D, Koenig J, Lee Y, Love E, Maas M, Magyar A, Mao
H, Moreto M, Ou A, Patterson DA, Richards B, Schmidt C, Twigg S, Vo H, Waterman A (2016)
The rocket chip generator. Number UCB/EECS-2016-17

Baum DR, Winget JM (1990) Real time radiosity through parallel processing and hardware acceleration.
In: Proceedings of the 1990 symposium on interactive 3D graphics, I3D ’90, New York, NY, USA.
Association for Computing Machinery, pp 67–75

Boutros A, Nurvitadhi E, Ma R, Gribok S, Zhao Z, Hoe JC, Betz V, Langhammer M (2020) Beyond peak
performance: comparing the real performance of AI-optimized FPGAS and GPUS. In: 2020 inter-
national conference on field-programmable technology (ICFPT). pp 10–19

Brebner G (1996) A virtual hardware operating system for the Xilinx XC6200. In: Hartenstein RW, Gle-
sner M (eds) Field-programmable logic smart applications, new paradigms and compilers, Berlin,
Heidelberg. Springer, Berlin, Heidelberg, pp 327–336

http://creativecommons.org/licenses/by/4.0/

193

1 3

Real-Time Systems (2024) 60:150–196	

Cao K, Liu Y, Meng G, Sun Q (2020) An overview on edge computing research. IEEE Access 8:85714–85728
Chandra TB, Verma P, Dwivedi AK (2016) Operating systems for Internet of Things: a comparative study.

In: Proceedings of the second international conference on information and communication technology
for competitive strategies, ICTCS ’16, New York, NY, USA. Association for Computing Machinery

Chéour R, Khriji S, El Houssaini D, Baklouti M, Abid M, Kanoun O (2019) Recent trends of FPGA used
for low-power wireless sensor network. IEEE Aerosp Electron Syst Mag 34(10):28–38

Cunha L, Roriz R, Pinto S, Gomes T (2022) Hardware-accelerated data decoding and reconstruction for
automotive LiDAR sensors. IEEE Trans Veh Technol 72:4267–4276

Davide Schiavone P, Conti F, Rossi D, Gautschi M, Pullini A, Flamand E, Benini L (2017) Slow and
steady wins the race? A comparison of ultra-low-power RISC-V cores for internet-of-things appli-
cations. In: 2017 27th international symposium on power and timing modeling, optimization and
simulation (PATMOS). pp 1–8

Dietrich C, Lohmann D (2017) OSEK-V: application-specific RTOS instantiation in hardware, vol 52.
Association for Computing Machinery, New York, pp 111–120

DivyaKrishna K, Akkala V, Bharath R, Rajalakshmi P, Mohammed AM, Merchant SN, Desai UB (2016)
Computer aided abnormality detection for kidney on FPGA based IoT enabled portable ultrasound
imaging system. IRBM 37(4):189–197

Engel A, Koch A (2016) Heterogeneous wireless sensor nodes that target the Internet of Things. IEEE
Micro 36(6):8–15

Fritzmann T, Sigl G, Sepúlveda J (2020) RISQ-V: tightly coupled RISC-V accelerators for post-quantum
cryptography. IACR Trans Cryptogr Hardw Embed Syst 2020(4):239–280

Gomes T, Garcia P, Salgado F, Monteiro J, Ekpanyapong M, Tavares A (2015) Task-aware interrupt con-
troller: priority space unification in real-time systems. IEEE Embed Syst Lett 7(1):27–30

Gomes T, Garcia P, Pinto S, Monteiro J, Tavares A (2016) Bringing hardware multithreading to the real-
time domain. IEEE Embed Syst Lett 8(1):2–5

Gomes T, Salgado F, Tavares A, Cabral J (2017) Cute mote, a customizable and trustable end-device for
the Internet of Things. IEEE Sens J 17(20):6816–6824

Gomes T, Sousa P, Silva M, Ekpanyapong M, Pinto S (2022) FAC-V: an FPGA-based AES coprocessor
for RISC-V. J Low Power Electron Appl 12(4):50

Hahm O, Baccelli E, Petersen H, Tsiftes N (2016) Operating systems for low-end devices in the Internet
of Things: a survey. IEEE IoT J 3(5):720–734

Hofer W, Lohmann D, Scheler F, Schröder-Preikschat W (2009) Sloth: threads as interrupts. In: 2009
30th IEEE real-time systems symposium. pp 204–213

Iturbe X, Benkrid K, Hong C, Ebrahim A, Torrego R, Arslan T (2015) Microkernel architecture and
hardware abstraction layer of a reliable reconfigurable real-time operating system (R3TOS). ACM
Trans Reconfigurable Technol Syst 8(1):1–35

Johnson AP, Chakraborty RS, Mukhopadhyay D (2015) A PUF-enabled secure architecture for FPGA-
based IoT applications. IEEE Trans Multi-Scale Comput Syst 1(2):110–122

Karray F, Jmal MW, Garcia-Ortiz A, Abid M, Obeid AM (2018) A comprehensive survey on wireless
sensor node hardware platforms. Comput Netw 144:89–110

Lange AB, Andersen KH, Schultz UP, Sørensen AS (2012) HartOS—a hardware implemented RTOS for
hard real-time applications. In: 11th IFAC, IEEE international conference on programmable devices
and embedded systems, vol 45. pp 207–213

Lübbers E, Platzner M (2009) ReconOS: multithreaded programming for reconfigurable computers.
ACM Trans Embed Comput Syst 9(1):1–33

Maruyama N, Ishihara T, Yasuura H (2010) An RTOS in hardware for energy efficient software-based TCP/
IP processing. In: 2010 IEEE 8th symposium on application specific processors (SASP). pp 58–63

Maruyama N, Ishikawa T, Honda S, Takada H, Suzuki K (2014) ARM-based SoC with loosely coupled
type hardware RTOS for industrial network systems. Proc. Operating Systems Platforms for Embed-
ded Real-Time applications (OSPERT’14). pp 9–16

Najafi M, Zhang K, Sadoghi M, Jacobsen H-A (2017) Hardware acceleration landscape for distributed
real-time analytics: virtues and limitations. In: 2017 IEEE 37th international conference on distrib-
uted computing systems (ICDCS). pp 1938–1948

Oliveira ASR, Almeida L, de Brito Ferrari A (2011) The ARPA-MT embedded SMT processor and its
RTOS hardware accelerator. IEEE Trans Ind Electron 58(3):890–904

Oliveira D, Costa M, Pinto S, Gomes T (2020) The future of low-end motes in the Internet of Things: a
prospective paper. Electronics 9(1):111

194	 Real-Time Systems (2024) 60:150–196

1 3

Ong SE, Lee SC, Ali Noohul BZ, Hussin Fawnizu AB (2013) SEOS: hardware implementation of real-
time operating system for adaptability. In: 2013 first international symposium on computing and
networking. pp 612–616

Pala D (2017) Design and programming of a coprocessor for a RISC-V architecture. Master’s Thesis,
Collegio di Ingegneria Informatica, del Cinema e Meccatronica

Pena MDV, Rodriguez-Andina JJ, Manic M (2017) The Internet of Things: the role of reconfigurable
platforms. IEEE Ind Electron Mag 11(3):6–19

Perera C, Liu CH, Jayawardena S, Chen M (2014) A survey on Internet of Things from industrial market
perspective. IEEE Access 2:1660–1679

Pinto S, Cabral J, Gomes T (2017) We-care: an IoT-based health care system for elderly people. In: 2017
IEEE international conference on industrial technology (ICIT). pp 1378–1383

Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, Yu J, Tang T, Xu N, Song S, Wang Y, Yang H (2016) Going
deeper with embedded FPGA platform for convolutional neural network. In: Proceedings of the
2016 ACM/SIGDA international symposium on field-programmable gate arrays, FPGA ’16, New
York, NY, USA. Association for Computing Machinery, pp 26–35

Sá B, Martins J, Pinto S (2022) A first look at RISC-V virtualization from an embedded systems perspec-
tive. IEEE Trans Comput 71(9):2177–2190

Sanchez-Iborra R, Cano M-D (2016) State of the art in LP-WAN solutions for industrial IoT services.
Sensors 16(5):708

SEMICO Research Corporation (2019) RISC-V market analysis the new kid on the block. Technical
report, Semico

SiFive (2018) SiFive TileLink Specication. Version 1.8.1
Silva M, Cerdeira D, Pinto S, Gomes T (2019) Operating systems for Internet of Things low-end

devices: analysis and benchmarking. IEEE Internet Things J 6(6):10375–10383
Silva M, Gomes T, Pinto S (2022) Agnostic hardware-accelerated operating system for low-end IoT.

pp 21–30
Waterman AS (2016) Design of the RISC-V instruction set architecture. PhD Thesis, UC Berkeley
Wei Y, Liang F, He X, Hatcher WG, Chao L, Lin J, Yang X (2018) A survey on the edge computing

for the Internet of Things. IEEE Access 6:6900–6919
Zhang X, Ramachandran A, Zhuge C, He D, Zuo W, Cheng Z, Rupnow K, Chen D (2017) Machine

learning on FPGAS to face the IoT revolution. In: 2017 IEEE/ACM international conference on
computer-aided design (ICCAD). pp 819–826

Zhao L, Machado Matsuo IB, Zhou Y, Lee W-J (2019) Design of an industrial IoT-based monitoring
system for power substations. pp 1–6

Zikria YB, Heejung Yu, Afzal MK, Rehmani MH, Hahm O (2018) Internet of Things (IoT): operating
system, applications and protocols design, and validation techniques. Future Gener Comput Syst
88:699–706

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Miguel Silva  is a Ph.D. candidate at the University of Minho. During
his master’s thesis at University of Minho, he worked in the develop-
ment and testing of automotive instrument clusters for a major indus-
try company, and late he joined a research project related with video
and multimedia. In these projects, he refined his knowledge of
embedded systems, system software, and connectivity on low-end
devices. At the moment, his focus is the development of an agnostic
operating system in hardware for the Internet of Things.

195

1 3

Real-Time Systems (2024) 60:150–196	

Tiago Gomes  has received the master’s degree in telecommunica-
tions engineering and Ph.D. degree in electronics and computers
engineering from the University of Minho, Braga, Portugal. He is a
Research Scientist and Assistant Professor with the University of
Minho. His current research interests include embedded hardware
acceleration for autonomous perception systems based on LiDAR
sensors, and hardware/software co-design for resource constrained
Internet of Things devices.

Mongkol Ekpanyapong  received the B.Eng. degree from Chulalong-
korn University, the M.Eng. degree from Asian Institute of Technol-
ogy (AIT), in, and the M.Sc. and Ph.D. degrees from Georgia Insti-
tute of Technology. He was a System Engineer with United
Communication Network, and later he was a Senior Computer Archi-
tect with the Core 2 Architecture Design Team, Intel Corporation.
Currently he is an Associate Professor in the School of Engineering
and Technology, AIT. His research interests include microarchitec-
ture, embedded systems, mechatronics, deep learning, and computer
vision.

Adriano Tavares  is an Associate Professor at University of Minho,
Portugal. He holds a Ph.D. in Industrial Electronics from University
of Minho, a Master of Science in Information Technology and an
undergraduate degree in Informatics both from University of Coim-
bra. His research interests are embedded systems modeling and
design, system software design, system-on-chip design and engineer-
ing education. He published multiple book chapters and papers on
international conferences and journals related to embedded systems
and two books on assembly and C programming.

196	 Real-Time Systems (2024) 60:150–196

1 3

Sandro Pinto  is an Associate Research Professor at the Centro
ALGORITMI, Universidade do Minho, Portugal. He holds a Ph.D.
in Electronics and Computer Engineering. Dr. Sandro has a deep
academic background and several years of industry collaboration
focusing on operating systems, virtualization, and security for
embedded, CPS, and IoT systems. He has published 100+ peer-
reviewed papers and is a skilled presenter with speaking experience
in top-tier academic and industrial conferences.

Authors and Affiliations

Miguel Silva1  · Tiago Gomes1 · Mongkol Ekpanyapong2 · Adriano Tavares1 ·
Sandro Pinto1

 *	 Miguel Silva
	 miguel.silva@dei.uminho.pt

	 Tiago Gomes
	 mr.gomes@dei.uminho.pt

	 Mongkol Ekpanyapong
	 mongkol@ait.ac.th

	 Adriano Tavares
	 atavares@dei.uminho.pt

	 Sandro Pinto
	 sandro.pinto@dei.uminho.pt

1	 Centro ALGORITMI/LASI, Universidade do Minho, Guimaraes, Portugal
2	 Department of Industrial Systems Engineering, Asian Institute of Technology, Khlong Luang,

Pathum Thani, Thailand

http://orcid.org/0000-0003-4414-3612

	ChamelIoT: a tightly- and loosely-coupled hardware-assisted OS framework for low-end IoT devices
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Reconfigurable operating systems
	2.2 Hardware-accelerated operating systems

	3 ChamelIoT overview
	3.1 Motivation and goals
	3.2 Architecture

	4 Framework implementation
	4.1 Hardware accelerator
	4.1.1 Control Unit
	4.1.2 Thread Manager
	4.1.3 Scheduler
	4.1.4 Mutexes
	4.1.5 Semaphores
	4.1.6 Message queues

	4.2 Software abstraction layer

	5 Evaluation
	5.1 Experimental setup
	5.2 API latency
	5.2.1 Thread Manager and Scheduler
	5.2.2 Mutexes
	5.2.3 Semaphores
	5.2.4 Message queues

	5.3 Thread-metric benchmark suite
	5.4 Hardware resources
	5.5 Power consumption
	5.6 Memory footprint

	6 Discussion
	7 Conclusions
	Acknowledgements
	References

