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Abstract
The evergrowing Internet of Things (IoT) ecosystem continues to impose new 
requirements and constraints on every device. At the edge, low-end devices are get-
ting pressured by increasing workloads and stricter timing deadlines while simulta-
neously are desired to minimize their power consumption, form factor, and memory 
footprint. Field-Programmable Gate Arrays (FPGAs) emerge as a possible solution 
for the increasing demands of the IoT. Reconfigurable IoT platforms enable the off-
loading of software tasks to hardware, enhancing their performance and determin-
ism. This paper presents ChamelIoT, an agnostic hardware operating systems (OSes) 
framework for reconfigurable IoT devices. The framework provides hardware accel-
eration for kernel services of different IoT OSes by leveraging the RISC-V open-
source instruction set architecture (ISA). The ChamelIoT hardware accelerator can 
be deployed in a tightly- or loosely-coupled approach and implements the following 
kernel services: thread management, scheduling, synchronization mechanisms, and 
inter-process communication (IPC). ChamelIoT allows developers to run unmodi-
fied applications of three well-established OSes, RIOT, Zephyr, and FreeRTOS. 
The experiments conducted on both coupling approaches consisted of microbench-
marks to measure the API latency, the Thread Metric benchmark suite to evaluated 
the system performance, and tests to the FPGA resource consumption. The results 
show that the latency can be reduced up to 92.65% and 89.14% for the tightly- and 
loosely-coupled approaches, respectively, the jitter removed, and the execution per-
formance increased by 199.49% and 184.85% for both approaches.
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1  Introduction

The Internet of Things (IoT) has remarkably evolved during the past years, result-
ing in the proliferation of smart devices (things) through a wide variety of sec-
tors, e.g., healthcare (Pinto et al. 2017), automotive (Cunha et al. 2022), indus-
trial (Sanchez-Iborra and Cano 2016), and domotics (Alexandrescu et al. 2022), 
among others (Oliveira et al. 2020). With the growing trend of having more nodes 
connected to the Internet, there has been a substantial effort towards shifting 
heavy computational workloads from centralized facilities to decentralized net-
works of devices at the edge, i.e., edge computing (Perera et al. 2014; Wei et al. 
2018).

Edge devices are, by nature, resource-constrained, especially when compared 
to their counterparts, the servers on the cloud. However, edge computing requires 
these devices to have better performance and real-time capabilities to gather and 
process data and execute their functions without needing intervention from cloud 
services. Despite the increasing demand for performance, these devices are still 
limited by their small form factor and low-power consumption requirements, 
pushing the limits of what is achievable with the system’s current hardware (pro-
cessor, memory, peripherals, among others) (Cao et al. 2020).

Aiming to improve and expand the capabilities of the current IoT edge devices, 
reconfigurable platforms are gaining traction in the IoT industry. These platforms, 
namely Field Programmable Gate Arrays (FPGAs), enable the development of 
custom solutions by offloading intensive software tasks to hardware accelerators 
(Pena et al. 2017). System configurations based on FPGAs often include a micro-
controller unit (MCU) and reconfigurable fabric where the hardware accelerators 
are deployed. The MCU can be a hard core, i.e., implemented in silicon, or a 
soft core, deployed in the FPGA fabric, and it is responsible for managing the 
hardware accelerators. The most common targets for hardware acceleration are 
tasks requiring great amounts of processing power, e.g., mathematical or artificial 
intelligence (AI) algorithms (Boutros et al. 2020), or tasks that execute very fre-
quently during the standard system’s workflow, such as kernel services (Gomes 
et  al. 2016; Maruyama et  al. 2014). Furthermore, hardware accelerators have 
been used in the IoT context to optimize power consumption by applying tech-
niques like Dynamic Voltage and Frequency Scaling (DVS) (Chéour et al. 2019; 
Karray et al. 2018).

Operating Systems (OSes) are widely present across embedded and IoT sys-
tems. They provide a plethora of advantages to the development of any applica-
tion, for instance, managing complexity by abstracting the low-level details from 
the developer and providing a set of libraries that enable easy implementation 
of features like network communication or device drivers. Given the ubiquity 
of OSes in the IoT and considering that kernel services are executed countless 
times throughout the execution of any application, they are a prime target for 
hardware acceleration (Gomes et al. 2016). Nevertheless, this approach has been 
disregarded by the IoT industry since prior hardware accelerators were highly tai-
lored to a specific application or OS and did not provide an easy-to-use software 
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application programming interface (API). An alternative solution is the imple-
mentation of a hardware accelerator capable of improving the performance of 
multiple OSes with only minimal modifications to their kernels and providing 
agnosticism to the developer by allowing applications to be executed without any 
changes to the code. This approach would minimize the knowledge required to 
build and deploy an entire system stack with hardware acceleration (Ong et  al. 
2013).

Another consideration regarding hardware acceleration is the processing system 
that manages and controls the accelerator (Maruyama et  al. 2014). Depending on 
the target platform, this system can either be a hardcore MCU, implemented in sili-
con, parallel to the FPGA, or a softcore instantiated in the same reconfigurable logic 
as the hardware accelerator. A hardcore MCU imposes any accelerator to be con-
nected through the resources available, which often are memory interfaces, resulting 
in loosely-coupled accelerators (Maruyama et al. 2010). On the other hand, a soft-
core MCU allows the deployment of loosely-coupled accelerators and enables the 
inclusion of tightly-coupled accelerators integrated directly into the MCU datapath. 
Additionally, if the architecture’s instruction set architecture (ISA) is proprietary, the 
deploying method, soft or hardcore, is irrelevant. Any modification to the MCU is 
unfeasible due to the intellectual property being close-source, and for the same rea-
son, scaling the accelerator to be deployed in silicon also becomes impossible.

Open-source ISAs, like RISC-V, have been rising in popularity to mitigate this 
effect. RISC-V is a novel open-source ISA that follows a reduced instruction set 
computer (RISC) design (Asanovic et  al. 2014; Waterman 2016). It was designed 
to support a broad range of devices, spanning from high-performance application 
processors to low-power embedded microcontrollers. RISC-V enables a new level 
of software and hardware freedom by allowing easy integration of dedicated and 
custom-tailored accelerators with the application software. Among the multiple 
available implementations of the RISC-V ISA, some already take into considera-
tion the possibility of adding accelerators as coprocessors coupled to the datapath by 
defining a subset of instructions for these coprocessors. With these instructions and 
the standard memory interfaces, implementations like the Rocket core (Asanović 
et  al. 2016) allow for easy deployment of tightly- and loosely-coupled hardware 
accelerators. Consequently, RISC-V cores provide an extra degree of flexibility 
and the possibility of exploring the trade-offs from the two coupling approaches 
regarding performance, determinism, real-time, system integration, and portability 
(Davide Schiavone et al. 2017; Fritzmann et al. 2020; SEMICO Research Corpora-
tion 2019).

This paper presents a solution that consolidates hardware acceleration of IoT 
OSes in an easy-to-use agnostic framework from reconfigurable IoT devices, named 
ChamelIoT. Our framework leverages the Rocket core implementation of the RISC-
V ISA to provide a highly configurable hardware accelerator for IoT OS kernel ser-
vices, requiring minimal modifications to the OS software kernels and no modifica-
tions to application-level code. This way, there are no barriers to using ChamelIoT 
from the software development point of view, allowing legacy applications to take 
advantage of the benefits of hardware acceleration. The main contributions of this 
article are summarized as follows: 
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1.	 An agnostic framework that currently supports three different IoT OSes, RIOT, 
FreeRTOS, and Zephyr, requiring few changes to the kernel while keeping the 
end-user interface unmodified;

2.	 A highly configurable hardware accelerator with two different coupling 
approaches, tightly and loosely, integrated with an open-source implementation 
of the RISC-V ISA, Rocket core;

3.	 An easily portable abstraction layer for several kernel services that enable the use 
of hardware acceleration to any IoT OS;

4.	 Complete evaluation of the three aforementioned IoT OSes using the ChamelIoT 
framework, including microbenchmark experiments, system-wide benchmarks, 
and FPGA resource consumption measurements.

2 � Background and related work

At the edge of the IoT ecosystem, low-end devices are becoming more strained 
with the increasing demands from the growing popularity of edge computing (Wei 
et al. 2018). Considering the nature of these devices, with limited form factor and 
energy consumption, frequently it is impossible to add hardware to compensate for 
the lack of performance. Hence, reconfigurable platforms emerge as possible solu-
tions to IoT low-end devices (Pena et al. 2017). These platforms incorporate FPGA 
fabric, allowing for offloading software tasks to hardware, where they can be sped 
up, vastly increasing their performance and determinism. Hardware acceleration is 
a widely known endeavor that has proven to provide significant advantages since 
the early 1990s (Baum and Winget 1990; Brebner 1996). Recently, this technique 
has also reached the IoT across different ecosystems: security (Gomes et al. 2022; 
Johnson et al. 2015), AI (Qiu et al. 2016; Zhang et al. 2017), wireless connectivity 
(Engel and Koch 2016; Gomes et  al. 2017), and image processing (DivyaKrishna 
et al. 2016), among others (Najafi et al. 2017; Zhao et al. 2019).

Nevertheless, reconfigurable platforms and hardware acceleration have failed to 
gain traction in the IoT industry until recent years since FPGA-based platforms were 
costly regarding price, form factor, and energy consumption. However, the latest 
efforts in reconfigurable fabric technology development are attempting to solve the 
size, weight, power, and cost (SWaP-C) constraints imposed on IoT systems. For 
example, Embedded FPGAs such as those provided by QuickLogic or low-power 
FPGAs from the Lattice portfolio are seeing increasing applicability in low-end IoT 
devices. These platforms are highly tailored towards low-end applications, with opti-
mized reconfigurable slices, fewer resources available, and power-efficient organiza-
tion. Further along, we expect this technology to evolve to accompany the growing 
need for low-end FPGAs (Allied Market Research 2023).

Traditionally, hardware accelerators were developed in FPGAs that physically 
were separated from the processing system, which often is an MCU where the main 
software application is executed. The communication methods between the two 
elements were often limited to the facilities available in the processing system, for 
instance, specialized I/O connections or memory buses. When the accelerator is 
connected through a standard memory interface, like AXI (ARM 2013) or TileLink 
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(SiFive 2018), the accelerator is a memory-mapped device accessible by the soft-
ware through conventional memory instructions, e.g., loads and stores. This method 
is referred to as a loosely-coupled approach and is depicted in Fig. 1. One of the 
main advantages of this approach is the easy portability across platforms since the 
accelerator’s core can remain untouched in the porting process. Only the connection 
interface needs modifications to be compatible with the MCU. However, resorting to 
memory buses to communicate with the accelerator can lead to bus contention. Both 
the processing system and the hardware accelerator try to access the memory bus, 
consequently inducing stalls in the pipeline, which translates into worse throughput 
and less determinism for the whole system (Maruyama et al. 2014).

Alternatively, hardware accelerators can be implemented following a tightly-
coupled approach, as illustrated in Fig. 2. This approach requires the accelerator to 
be integrated with the MCU datapath, forcing modifications on the pipeline, and 
consequently, the MCU has to be provided as a softcore. A tightly-coupled accelera-
tor requires the MCU to include additional specialized instructions dedicated only 
to communicating with the accelerator. Most compilers do not accommodate these 
instructions by default. Hence an extra layer of abstraction is required for the soft-
ware to use the instructions. On the other hand, this approach can vastly improve the 
system performance and determinism since the usage of external buses introduces 
no delays.

The two aforementioned approaches present portability, scalability, performance, 
real-time, and determinism trade-offs. To explore these trade-offs, it is necessary to 
have a reconfigurable platform that can be modified as needed. Open-source ISAs 
like RISC-V offer great potential since they consolidate, in a single place, the pos-
sibility of having both tightly- and loosely-coupled accelerators.

Fig. 1   Example of a loosely-
coupled accelerator
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RISC-V is a highly modular and customizable open-source ISA initially devel-
oped by the University of California, Berkeley, and currently administered by the 
RISC-V International (Asanovic et  al. 2014; Waterman 2016). It supports mul-
tiple word sizes (32 and 64-bit) and well-defined, documented, and maintained 
ISA extensions. These extensions can be used to tailor the ISA implementations 
to fit the system’s requirements and constraints, leading to a wide variety of read-
ily available RISC-V softcores, like Rocket, BOOM, CVA6, and Ariane, among 
others. Different implementations differ in terms of the implemented microarchi-
tecture (e.g., pipeline stages, caches, etc.) to the high-level SoC elements (e.g., 
peripherals, buses).

Among these implementations, Rocket was chosen for the current stage of Cha-
melIoT since it provides, by default, mechanisms that enable the design and deploy-
ment of hardware accelerators, both tightly- and loosely-coupled (Sá et  al. 2022). 
For the former approach, Rocket provides the Rocket Custom Coprocessor (RoCC) 
interface (Asanović et al. 2016; Pala 2017), which is integrated with the MCU data-
path and accounts for up to four separate accelerators with their respective instruc-
tion opcodes. The RoCC interface also provides memory access to the accelerator 
without needing the MCU or software intervention. Regarding the loosely-coupled 
approach, Rocket allows for the inclusion of accelerators or any form of periph-
eral as memory-mapped devices accessible from the MCU through load and store 
instructions. Additionally, with the available Rocket libraries, any accelerator can 
also include a Direct Memory Access (DMA) port, enabling it to perform memory 
transactions without requiring external intervention.

Leveraging reconfigurable platforms to implement OS hardware acceleration is 
not a new endeavor. Moreover, the rising popularity of the IoT made it clear that it 
is crucial to have high-performing and deterministic OSes (Pena et al. 2017; Silva 
et  al. 2019). There are two distinct types of OSes that use hardware acceleration: 
Reconfigurable OSes and Hardware-accelerated OSes. Reconfigurable OSes can 
be described as software OSes enhanced with capabilities to execute and schedule 
application-level tasks in hardware. In some cases, these OSes can also use partial 
reconfiguration techniques to change the accelerator in run-time according to the 
application’s needs. On the other hand, hardware-accelerated OSes take advantage 
of FPGA platforms to enhance the performance of their kernel services, e.g., sched-
uler, thread management, or synchronization and inter-process communication (IPC) 
mechanisms, by migrating them to hardware.

In the following sections, we provide a brief description of several OS repre-
sentatives of the two aforementioned categories. More hardware-accelerated OSes 
are studied and analyzed since ChamelIoT is a framework that enables hardware 
acceleration for kernel services. Additionally, Table 1 summarizes the gap analysis 
among hardware-accelerated OSes, providing a feature comparison between these 
OSes and ChamelIoT, highlighted in bold. For each OS, the following characteris-
tics are identified: (1) the target CPU architecture, (2) the coupling approach, either 
tightly- or loosely-coupled, (3) whether the accelerator targets a Commercial Off-
The-Shelf (COTS) OS or is used as a standalone OS, (4) the type of API provided, if 
it follows a standard like POSIX, if it can be ported to replace APIs from a software 
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OS, or if it has custom-built API, and, lastly, (5) the kernel services accelerated in 
hardware.

2.1 � Reconfigurable operating systems

R3TOS Iturbe et  al. (2015) presented R3TOS, which leverages FPGA reconfigur-
ability to provide a reliable and fault-tolerant OS. This reconfigurable OS is com-
posed of a multilayered architecture including a Real-time Scheduler, Network-on-
chip Manager, Allocator, Dynamic Router, Placer, Diagnostic Unit, and Inter-Device 
Coordinator. These layers schedule the hardware tasks, manage resources, and con-
trol the access port to reconfigure the FPGA fabric. The abstraction layer provided 
by R3TOS aims for a “software look and feel” while alleviating the application 
developer from dealing with occurring faults and managing the FPGA’s lifetime.

ReconOS Introduced by Lübbers and Platzner (2009), ReconOS is a Real-Time 
Operating System (RTOS) that allows the scheduling of hardware threads among 
software threads. Each hardware thread is assigned to a reconfigurable slot that 
encompasses two modules. The first manages the communication with software 
(OS interface). And the second is responsible for ensuring that hardware threads can 
correctly access synchronization and communication mechanisms implemented in 
software (OS synchronization finite state machine). ReconOS provides a POSIX-
like API and a set of VHDL libraries for OS communication and memory access. 
Together with a system-building tool, it is possible to generate a fully integrated 
hardware-software project.

2.2 � Hardware‑accelerated operating systems

HThreads Agron et al. (2006) proposed HThreads, a multithreaded RTOS kernel for 
hybrid FPGA/CPU systems. This work intended to offload the (i) thread manager, 
(ii) scheduler, (iii) mutex manager, and (iv) interrupt scheduler to hardware. Each 
module is connected to the CPU through the available peripheral bus, allowing the 
software to access the hardware modules via load/store instructions. HThreads also 
allows for user-defined hardware threads that execute as a service available to soft-
ware threads. Additionally, the API provided is compatible with the POSIX thread 
standard.

ARPA-MT ARPA-MT (Oliveira et  al. 2011) is a MIPS32 implementation that 
takes advantage of user-defined coprocessors and exception interfaces to implement 
hardware support to an RTOS. The coprocessor includes a scheduler, task manager, 
synchronization, and communication mechanisms and provides support for non-
real-time, soft, and hard real-time tasks. An object-oriented API enables the inter-
face between software tasks and the hardware coprocessor. ARPA-MT also provides 
software implementations for services instantiated in hardware.

HartOS HartOS (Lange et  al. 2012) is a microkernel-structured RTOS imple-
mented in hardware that targets hard real-time applications. A custom proces-
sor, connected to the CPU through a standard peripheral bus, is responsible for 
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interpreting the software requests and controlling the remaining hardware modules 
to attend to the received requests. This custom processor shares with the remaining 
hardware blocks an internal memory implemented in the FPGA fabric. This memory 
also interacts with the timer module, watchdog module, mutexes, and semaphores, 
among others.

SEOS SEOS (Ong et al. 2013) is a hardware-based OS designed to provide high 
adaptability for easy hardware RTOS adoption. SEOS aims for easy integration 
with a variety of CPUs. As such, it is connected to the core through a configur-
able peripheral bus that meets the CPU architecture. Furthermore, SEOS provides 
parametrization of several modules, e.g., mutexes, semaphores, and message queues. 
Regarding the software, SEOS defines a set of porting steps that do not require in-
depth knowledge of both SEOS and the RTOS, enabling easy integration of this 
hardware RTOS with a software one.

RT-SHADOWS RT-SHADOWS (Gomes et al. 2016) is an architecture that pro-
vides unified hardware-software scheduling by manipulating an ARM-based soft-
core, developed in-house, to include support for multi-threading in the datapath. 
RT-SHADOWS is implemented as a coprocessor that includes a scheduler, thread 
manager, context switching, and synchronization and communication mechanisms. 
It leverages magic instructions (supported by unmodified compilers) to enable mul-
tiple APIs directly mapped to RTOS APIs, allowing for effortless integration in soft-
ware by swapping both calls.

OSEK-V OSEK-V (Dietrich and Lohmann 2017) explores the hardware-software 
design space for event-triggered fixed-priority real-time systems at the hardware-OS 
boundary. By modifying the whole pipeline of a RISC-V core and introducing addi-
tional instructions to the ISA, OSEK-V integrates a highly-tailored hardware RTOS. 
Components like hardware tasks, alarms, and the scheduling policy, are imple-
mented only to fit the application demands. The finite state machine customization 
happens at the compile time, ensuring the hardware-software synchronization. This 
approach aims at minimizing the FPGA resource consumption while maximizing 
the performance by designing the hardware for the application’s behavior.

ARTESSO Maruyama et  al. (2014) present a study comparing the same hard-
ware-accelerated RTOS (ARTESSO) implemented in two approaches: tightly- and 
loosely-coupled. ARTESSO HWRTOS (Maruyama et  al. 2010) was originally 
developed to be an integrating part of a proprietary purpose-built CPU for TCP/
IP-based applications. This implementation resorted to custom ISA instructions to 
enable the communication between the CPU and the hardware RTOS, and included 
scheduling, context-switching, event/semaphore/mailbox controllers, and an inter-
rupt controller. With the goal of making the hardware RTOS easily portable and 
adaptable to industrial controllers, ARTESSO can be integrated tightly-coupled to 
a modified Arm core or loosely-coupled to an unmodified Arm core through stand-
ard peripheral buses. The evaluation in Maruyama’s study encompasses API execu-
tion times, interrupt responses, the influence of interrupts and ticks, and UDP/IP 
throughput. The results show that using a hardware RTOS improves the system’s 
performance and determinism when compared to an software-only approach. Fur-
thermore, the tightly-coupled approach results presented are at least one order 
of magnitude better than the loosely-coupled one. Notwithstanding, the better 
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performance of the tightly-coupled approach comes at the cost of portability and 
integrability. The tightly-coupled approach requires a modified Arm core, while the 
loosely-coupled is easier to integrate with any FPGA-based platform.

3 � ChamelIoT overview

3.1 � Motivation and goals

As supported by the extensive work in the literature presented earlier, offload-
ing OS kernel services to hardware is not a new effort. Considering the hard-
ware-accelerated OSes and their features, depicted in Table 1, there is a lack of 
direction regarding the ideal method for implementing OS hardware acceleration 
for IoT systems. Some OSes, like RT-SHADOWS, provide a portable API map-
pable into most IoT OSes allowing applications to run unmodified. Others, like 
HThreads or HartOS, have a dedicated API and require applications to be devel-
oped from the ground up. The multiple OSes are also deployed in different plat-
forms, integrated with several MCUs, and have a varying range of services in 
hardware and configurability points. Taking this into account, both reconfigurable 
and hardware-accelerated OSes have yet to draw attention in the IoT industry, 
considering the roadblocks they present to their adoption. The main roadblocks 
we identify are discussed as follows:

Software interface The software API provided by each OS influences the 
amount knowledge regarding the whole required by the application developer. 
Some hardware-accelerated OSes provide their custom-built and unique API, 
which increases the development and learning curves since it requires develop-
ers to learn a complete set of new APIs and develop the application from scratch. 
Considering that time-to-market is a driving force for the IoT industry, the addi-
tional development time imposed by the learning curve of these hardware OS 
APIs compels the industry to opt for COTS solutions. To solve these issues, other 
hardware-accelerated OSes use compatibility standards like POSIX as a basis for 
their APIs, allowing for better portability for legacy Linux-based applications and 
the development of new applications due to the community’s overall familiarity 
with POSIX-like APIs. Lastly, the remaining OSes APIs were designed to mimic 
software IOT OSes’ APIs and replace them seamlessly. This approach allows 
developers to keep using the OS they are familiar with since the compiler or other 
external tools select which APIs to use. Additionally, this method can also enable 
legacy applications to use hardware acceleration since no modification is required 
at the application level.

Target architecture The processing system in reconfigurable platforms pro-
vides a limited number of interfaces usable by external peripherals and devices, 
consequently limiting the methods for integrating hardware accelerators with the 
core. In addition to the fact that not all MCUs are designed with hardware accel-
erators in mind, the number of processing systems that can be used for OS hard-
ware acceleration is reduced. Furthermore, similarly to the software interface, 
developers also have a degree of familiarity with some processor families and 
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architectures, which results in these being preferred by the IoT industry. Consid-
ering these facts, softcore MCUs are well-suited for IoT systems with hardware 
acceleration since they can be modified to include and accept hardware accel-
erators, both tightly- and loosely-coupled. Hardware-accelerated OSes usually 
are developed targeting a single CPU or architecture, which limits their overall 
usability and portability, hindering their adoption. The problem is even worse 
when the accelerators are tightly-coupled to the CPU and require modifications to 
the datapath. This fact makes the hardware replication in mass a challenge, as it 
involves redesigning the silicon, which is nearly impossible with proprietary CPU 
architectures, often behind a paywall. To tackle this issue, some hardware OSes 
are exploring open ISAs, e.g., RISC-V, as their foundation, due to their availabil-
ity and openness. This approach future-proofs the system and thus enhances its 
scalability and possible adoption.

Application suitability Due to the heterogeneity of the IoT ecosystem, the myr-
iad of different systems presents a variety of requirements and constraints. Nota-
bly, closer to the edge, each application is progressively more constrained regarding 
energy consumption and form factor, as these applications are often small sensors or 
actuators powered by batteries. Therefore, reconfigurable platforms in the IoT edge 
ideally uses the smallest FPGA available. To cope with this, hardware-accelerated 
OSes must provide enough configurability points to fit within the hardware con-
straints. As such, the OS should allow the user to modify kernel parameters, e.g., 
number of states or priorities, or entirely remove unused features. This is only possi-
ble if the hardware-accelerated OS allows by design for such configurability, which 
is not always true, as a variety of accelerators in the literature are tailored to a spe-
cific application or OS.

Aiming to increase the adoption rate of hardware-accelerated OSes in the IoT 
market, ChamelIoT tackles the previously identified roadblocks by providing a 
framework for accelerating kernel services in hardware in an agnostic fashion, 
allowing applications from different IoT OSes to run unmodified. To do so, Chame-
lIoT presents the following solutions:

•	 Regarding the Software Interface, ChamelIoT offers a minimalist set of APIs that 
implement low-level communication with the hardware accelerator to execute 
well-defined kernel services. Each function can be mapped to a kernel service 
in software and is replaced at compile-time, providing the benefits of hardware 
acceleration to any IoT OS. Since only kernel internals are modified, the applica-
tion-level code is kept intact. Taking this into consideration, developers can lev-
erage ChamelIoT without the need to learn any new set of APIs or the workings 
of an OS, thus making it easier to use hardware acceleration.

•	 The Target Architectures of ChamelIoT are architectures deployed in reconfigur-
able logic. Leveraging RISC-V, an open-source ISA and its available implemen-
tations, allows ChamelIoT to explore multiple avenues of hardware acceleration, 
like providing the same accelerator as both tightly- and loosely-coupled. Further-
more, with RISC-V gaining popularity in the IoT industry, there is inherent scal-
ability for hardware accelerators implemented with the same foundation as these 
emerging platforms.
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•	 Lastly, ChamelIoT offers multiple configurability points to ensure Applica-
tion Suitability. The user can opt to: (1) have the accelerator either tightly- 
or loosely-coupled, (2) modify multiple kernel parameters, e.g., number of 
threads, priorities, and states, (3) configure feature-specific implementations 
like the type of semaphores or if mutexes have priority inheritance, and (4) 
add or remove components like mutexes, semaphores or message queues as 
needed. All these configurations are made before the synthesis and deploy-
ment of the accelerator, enabling the user to fully customize the system and 
avoid unnecessary resource consumption.

Taking into consideration, the current implementation of ChamelIoT provides 
hardware acceleration to several OS services, which can replace with existing ser-
vices of three different software IoT OSes, without requiring modifications to the 
application’s interface. The main goals and benefits of the ChamelIoT encompass:

Real-time and determinism As one of the main requirements of low-end IoT 
devices, ChamelIoT must provide hard real-time guarantees and bounded worst-
case execution time (WCET). Moreover, predictability shall not be affected by 
any configuration on the hardware accelerator, e.g., the number of priorities or 
the total number of mutexes, or any application-specific detail like the number of 
waiting threads or their priorities.

Performance It is paramount for a hardware-accelerated system to have better 
performance than its software-centric implementation. ChamelIoT must ensure 
higher performance, regardless of coupling approach or any configuration, by 
executing kernel services faster than their respective standard software version, 
independent of the IoT OS being accelerated.

Flexibility Without enough customization, it is impossible to guarantee that 
a hardware accelerator is not using unnecessary resources. The framework must 
provide several configurability points to modify ChamelIoT in a way that the 
accelerator behaves precisely like the target IoT OS while minimizing resource 
consumption.

Agnosticism In order to lessen the learning curve associated with hardware-
accelerated OSes, the ChamelIoT framework must allow the user to transparently 
run unmodified applications of any supported IoT OS. This is achieved by only 
modifying the kernels’ internals and leaving the user interface untouched when 
using the hardware accelerator.

The current stage of development of the ChamelIoT framework incorpo-
rates a hardware-accelerated OS that can be deployed both tightly- or loosely-
coupled. The accelerator implements the following kernel services: scheduling, 
thread management, and synchronization and communication mechanisms. It is 
part of the already identified future work to provide a tool to ease the process of 
configuring and building the complete system stack. This includes configuring 
and synthesizing the hardware accelerator and applying the required modifica-
tions the software OS to use the accelerator. The kernel services implemented 
are present across the vast majority of IoT OSes, and can be implemented and 
deployed as hardware accelerators without changing the behavior of the software 
OS. On the other hand, some OS services already deployed in hardware by works 
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in the literature, require more intrusive implementations capable of changing the 
OS execution. Consequently, forcing the developer to adapt the application code. 
These services are not within the scope of our framework and include:

•	 Interrupt management—the most common approach to manage interrupts in 
hardware is to trap and process them in the accelerator, interrupting the proces-
sor through a single interface when needed. This approach reduces the priority 
spaces of interrupts and threads to a single one, i.e., the accelerator becomes 
responsible for managing both interrupts and threads which share the same pri-
ority rules. This approach has proven to bring several benefits to performance 
and memory footprint (Hofer et al. 2009; Gomes et al. 2015). Notwithstanding, 
it heavily modifies the OS behavior and requires the developer to understand 
several implementation details. Thus, the agnostic characteristics of ChamelIoT 
would be invalidated, as applications would need to be developed while consid-
ering the unified priority space.

•	 Time management—most IoT OSes rely on platform-available timers, e.g., sys-
tem tick or general purpose timers, to manage time features like the tick system, 
delays, or periodic events. Migrating time-related operations to hardware would 
require replicating the timer logic in the FPGA fabric (Gomes et al. 2016; Ong 
et al. 2013), resulting in redundancy and waste of FPGA resources. Furthermore, 
it would also require redirecting the system timer interrupt to a different source, 
adding a priority space solely for the timer. It could lead developers to mistak-
enly assign priority to their interrupts, thus, breaking the system’s expected 
behavior, which compromises ChamelIoT’s agnosticism.

•	 Context switching—as the most architecture-dependent feature, implementing 
the context switching in hardware would require extensive modifications to the 
CPU datapath to accommodate the different register files and other data that 
need to be saved and loaded when a new thread is scheduled. Even though the 
migration of this feature to hardware has proven to bring performance and deter-
minism benefits (Maruyama et al. 2014), a highly-tailored core limits its flexibil-
ity and adaptability. A custom-built core is not easily adapted to other platforms, 
consequently limiting its reusability and adoption.

•	 Memory management—implementing heap and thread stacks management in 
hardware is a great ordeal that requires a vast amount of FPGA resources. Con-
sidering the constrained nature of IoT devices, especially the FPGA-based ones, 
we believe this feature makes sense to be handled in software.

3.2 � Architecture

In order to achieve the goals mentioned previously, the proposed ChamelIoT frame-
work architecture is composed of three main components: (1) a tightly- or loosely-
coupled Hardware Accelerator where the kernel services are implemented in hard-
ware; (2) an Abstraction Layer that enables the interface between the software and 
hardware elements in the system; and (3) a Configuration and Building tool to cus-
tomize the whole system stack and abstract the user from low-level implementation 
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details. Figure  3 depicts the three components of ChamelIoT framework incorpo-
rated in system based on a RISC-V reconfigurable platform.

Hardware accelerator This component is the central piece of the framework since 
it is responsible for the main goal of ChamelIoT, the acceleration of OS kernel ser-
vices in hardware. The services implemented in hardware encompass (1) a scheduler 
responsible for determining the active thread, (2) a thread manager that stores and 
manages the data related to each individual thread on the system, (3) synchroniza-
tion mechanisms, including mutexes and semaphores, and (4) inter-process commu-
nication mechanisms through message queues. By providing enough configurability 
to each service, i.e., the scheduling priority or the number of threads supported, it is 
possible to build the hardware accelerator to fit the application needs without wast-
ing unnecessary FPGA resources. Designed with flexibility in mind, the Hardware 
Accelerator can be deployed following a loosely- and a tightly-coupled approach. 
The tightly-coupled approach assumes that the accelerator is integrated into the 
core’s datapath, for instance, using a coprocessor interface. However, this option is 
not always available in some RISC-V implementations, where the loosely-coupled 
approach is always viable by connecting the accelerator to the available system bus.

Abstraction layer The software API enables the communication between the soft-
ware and the hardware accelerator. This is achieved by providing a software abstrac-
tion for all the possible functions of each kernel service deployed in hardware, 
which results in a fine-grained abstraction layer. Together with a collection of addi-
tional APIs to access and gather context data from the accelerator, it is possible to 
easily adapt and port the ChamelIoT framework to most IoT OSes. Depending on the 
hardware accelerator coupling approach, each function in this component comprises 
one to four assembly instructions, a custom-made instruction for the tightly-coupled 
approach, and memory operations for the loosely-coupled.

Configuration and building tool Our framework intends to offer an external tool 
that can be used for hardware and software customization through a graphical user 
interface to ease the development process and soften the learning curve of hardware 
accelerators. This tool reduces the required knowledge about implementation details 
by consolidating in a single place all the customization and configuration available 

Fig. 3   ChamelIoT framework 
overview
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in the complete system stack, automating the process of synthesizing the hardware 
accelerator, including the correct abstraction layer, and building the target OS with 
the modifications required.

4 � Framework implementation

Considering the heterogeneity of applications in the IoT ecosystem, numerous IoT 
OSes start to implement and provide additional features to help with the variety of 
requirements and constraints. High-level features like wireless connectivity or cryptog-
raphy are some of the prominent requirements in nowadays IoT edge devices, and OS 
support for these features is highly appreciated in the community. In addition to these 
features, design choices such as kernel architecture, scheduling policy, or synchroniza-
tion and communication mechanisms have a significant influence on the developer’s 
choice of IoT OS since these features greatly impact the overall system performance 
and behavior.

The OSes available for low-end IoT systems present a wide variety of them regard-
ing implementation details and features supported. From the myriad of IoT OSes, Cha-
melIoT currently provides support to RIOT, Zephyr, and FreeRTOS, as they present 
enough variability regarding the main design points and present extensive popularity 
and applicability in IoT applications. The three OSes share similar design principles, 
e.g., they implement a preemptive priority-based scheduler and multi-queue thread 
management, which are also common characteristics of other low-end IoT OSes (Chan-
dra et al. 2016; Hahm et al. 2016; Silva et al. 2019; Zikria et al. 2018). Nonetheless, 
there are several distinctions in their design choices which the accelerator needs to 
accommodate, as summarized in Table 3. The ChamelIoT framework allows for several 
configurations to ensure that the minimum resources are used and that the system oper-
ates exactly like the software OS. These configurations describe how the OS works, for 
instance, the number of thread states, the meaning of each state, the priority scheme, 
and which synchronization and communication mechanisms are included.

The current implementation of the ChamelIoT framework includes the Hardware 
Accelerator and Abstraction Layer components, while the Configuration and Building 
Tool are still in development. The Hardware Accelerator is based on the open-source 
SiFive E300, featuring an E31 Coreplex RISC-V core (RV32-IMAC), which supports 
atomic (A) and compressed (C) instructions for higher performance and better code 
density, respectively. This core is created by the Rocket Chip generator and its main 
characteristics include a single-issue in-order 32-bit pipeline (with a peak sustained 
execution rate of one instruction per clock cycle) and a single L1 instruction cache. The 
E300 platform also includes a platform-level interrupt controller (PLIC), a debug unit, 
several peripherals, and two TileLink interconnections interfaces (used to interface cus-
tom accelerators). The Abstraction Layer is composed of a set of APIs that implement 
low-level abstractions for the interface between the software and hardware accelerator, 
regardless of the coupling approach. The APIs are implemented resorting to macros 
and inline functions and replace the software OS APIs at compile-time.
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4.1 � Hardware accelerator

As the core element of the ChamelIoT framework, the Hardware Accelerator imple-
ments in hardware the kernel services common to the three IoT OSes supported, 
as identified in Table  2. These services include scheduling, thread management, 
mutexes, semaphores, and message queues, which directly correspond to hardware 
modules, as depicted in Figs. 4 and 5. Additionally, there is also a Control Unit mod-
ule that manages the interaction between all other hardware elements and handles 
the interface with the processing system. Each of these hardware modules will be 
further detailed in later sections.

As mentioned previously, the Hardware Accelerator is implemented in a Rocket 
Core based platform, considering it enables the deployment of hardware acceler-
ators both tightly- and loosely-coupled. The two different methods require differ-
ent techniques and resources from the processing system, which implies modifica-
tions to hardware that manages the communication with the processing system, the 

Table 2   Key features of each 
supported OS

OS RIOT Zephyr FreeRTOS

Thread states 14 8 4
Running state 11 6 3
Ready state 12 7 2
Priority scheme Descending Descending Ascending
Mutexes Yes Yes (with prior-

ity inherit-
ance)

Yes (with 
priority 
inheritance)

Semaphores Yes Yes Yes
Message queues Yes Yes Yes
Mailboxes Yes Yes No

Fig. 4   Tightly-coupled hardware 
accelerator architecture
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Control Unit. Since this module is solely responsible for the interface with the CPU, 
all the other hardware elements remain untouched, independently from the coupling 
approach.

Tightly-coupled For this approach, the Hardware Accelerator leverages the RoCC 
interface provided by the Rocket core to integrate the coprocessor directly into the 
datapath. This interface is composed of two smaller interfaces, as illustrated in 
Fig. 4: (1) the command interface (CMD IF), which is responsible for receiving and 
answering any requests from the pipeline, and (2) the memory interface (MEM IF), 
through which any memory transaction can be made without CPU intervention.

Along with the ISA specification, the command interface imposes restrictions 
on the hardware accelerator. The instruction type specified for RoCC instructions 
is R-type, which limits the data input to the accelerator to two 32-bit words and the 
output to one 32-bit word, all in general-purpose registers. This data is provided 
directly to the command interface already decoded by previous pipeline stages, 
along with a 7-bit field that works as an internal opcode for the accelerator. Since 
the accelerator is integrated within the pipeline, it also needs to follow its timing 
restrictions, implying that the command interface needs to have the output ready 
in the same clock cycle. This fact forces the output logic to be fully combinational, 
demanding the majority of the other modules to be implemented with combinational 
logic.

Loosely-coupled In this approach, the Hardware Accelerator acts as a memory-
mapped device for the processing system. The accelerator needs to be registered as 
two different TileLink nodes, as depicted in Fig. 5: (1) a Register Map node, through 
which the software can write input data and read the output from predefined mem-
ory addresses, and (2) a Direct Memory Access (DMA) node used to provide mem-
ory access to the accelerator without CPU intervention.

In the TileLink Register Map node, a memory address range has to be assigned 
to the accelerator, which determines the addresses the software can use to communi-
cate with the hardware. In this range, a register file is defined according to the inputs 
and outputs required for each kernel service. Each register is composed of a 32-bit 
word and has a specific address. The software application can access these registers 
through load and store instructions. Additionally, the TileLink DMA node grants the 
accelerator access to the system memory through burst operations. These operations 
are done in bursts with predefined sizes (values are always in powers of 2), which 
limits finer-grained memory transactions.

4.1.1 � Control Unit

The Control Unit is the main component of the Hardware Accelerator, as it ensures 
that all the other elements function as intended. Among its responsibilities, the Con-
trol Unit manages the interfaces with the processing system available in the accel-
erator. It involves processing the software request by interpreting internal instruction 
opcode, collecting the input data from the correct sources, commanding other mod-
ules to execute the proper functions, and outputting results in a timely fashion. When 
the accelerator is tightly-coupled, both the input and output data is available through 
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the RoCC command interface. The software issues a single instruction containing 
the source and destination registers for the data. Contrarily, in the loosely-coupled 
approach, the input data is provided by software by storing data in the register map 
before the execution of any function. Likewise, the output is available in the register 
map to be read by the software after executing the main instruction.

Considering the limited nature of FPGA resources, there is a limit to the num-
ber of kernel services that can be deployed in hardware. Mutexes, semaphores, 
and message queues are kernel elements of which the software can use multiple 
instances. Therefore, the maximum number of these modules deployed in hard-
ware is a parameter configured by the user and the Control Unit is responsible for 
managing which modules are free or used in run time.

Lastly, regardless of the coupling approach, there is only a single interface to 
perform memory operations. Consequently, whenever another module, e.g., mes-
sage queue, needs to execute any memory transaction, it must request the Control 
Unit to execute that operation. This way, it is impossible to have multiple mod-
ules concurrently trying to access the system’s memory. Additionally, the Control 
Unit has an internal memory buffer used by the message queues to store data 
that has not yet been requested by the software. Given that some message queue 
operations require direct transfer to and from this buffer to the system memory, 
it also becomes part of the Control Unit’s responsibility to manage the buffer to 
avoid concurrency in any access.

4.1.2 � Thread Manager

The Thread Manager is mainly responsible for storing and managing the data of 
each thread used by the software application. With the goal of minimizing FPGA 
resource usage, the total amount of active threads allowed in the system is a con-
figurable parameter at compile time. This configuration is one of the most impact-
ing on resource usage because it forces the internal Thread Identifier (TID) to 
have a field size capable of holding the highest number of threads. Taking into 
consideration that the TID is a field propagated throughout the whole accelerator, 
it naturally increases resource consumption, especially considering that most of 
the accelerator is implemented with combinational logic.

The TID is used by the Thread Manager to address each thread added by the 
software application. It represents an index in an array of Thread Nodes, which 
are structures that contain thread data required by most hardware modules, as 
depicted in Fig.  6. The data field stores a pointer to the Thread Control Block 
(TCB) provided by the software OS. The accelerator uses this pointer to enable 
multiple ways for the software to access a thread, either through TID or TCB. 
Furthermore, there is a context in the TCB that has not been migrated to hard-
ware, e.g., memory management details, allowing the software OS to not be 

Fig. 6   Thread Node structure 32 bits
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limited by what ChamelIoT implements. Both state and priority fields are used 
by the scheduling algorithm and have variable field sizes according to additional 
configurability points. A single-bit field, dirty, is used to indicate whether or not 
that index is available. When a thread is added to the system, the software should 
provide the previous fields, and the hardware determines which index is free, then 
sets the dirty bit and outputs its index. To remove a thread, the Thread Manager 
only needs to clear the dirty bit.

The last field in the Thread Node is named next, and it is used to implement linked 
lists utilized in the queue of threads ready to be scheduled, henceforth referred to as 
ready queue. Given that all thread data is stored and handled by the Thread Manager, 
it is also part of this component’s function to manage the state of each thread and the 
ready queue. The ready queue implemented in hardware follows a multi-queue system, 
where there is a circular linked list for each priority level, leveraging the next field in 
each node to point to the next thread with execution rights with the same priority. Fig-
ure 7 illustrates a state example of a ready queue with five threads. Thread 3 is cur-
rently running, and Thread 5 is blocked, both with the same priority level, resulting in 
the Thread 3 node pointing to itself. The remaining three threads have lower priority 
and form a circular list while waiting to be scheduled. Lastly, any changes to the ready 
read are prompted by changes in the thread state, which can be caused by a mutex, sem-
aphore, or message queue blocking or unblocking a thread, the scheduling algorithm, 
or directly by a software request.

4.1.3 � Scheduler

The scheduling policy implemented follows a preemptive priority-based algorithm that 
uses a hardware configuration to define the priority order, i.e., ascending or descend-
ing. By definition, the thread with the highest priority in a ready state will run until it 
yields its execution time or it is interrupted by a thread with higher priority. In case of 
multiple threads with the same priority, the scheduling algorithm follows a round-robin 
scheme to determine which thread is to be executed next.

To schedule the next thread, the Scheduler accesses the Thread Manager’s ready 
queue to identify which is the highest priority among threads in a ready state. Then, 
the Scheduler is responsible for changing the currently active thread state from running 
to ready and the other way around for the new thread. Due to timing constraints, it is 
mandatory for the Scheduler to be implemented with only combinational logic since 
whenever a scheduling operation is requested, the kernel is in the process of swapping 
active threads, which must be deterministic and requires the shortest possible time.

Fig. 7   Ready queue state 
example
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4.1.4 � Mutexes

A mutex is a synchronization primitive that ensures mutually exclusive access to 
a resource. In the context of operating systems, a thread can use a mutex to guar-
antee that its access to a shared resource is undisturbed and that other threads can-
not corrupt the resource. To perform an access, a thread must attempt to lock the 
mutex, which only is successful if no other thread is locking it. Once the thread is 
successful, it becomes the owner of said mutex and holds its ownership until the 
thread unlocks the mutex. On the other hand, if an attempt to lock a mutex fails, 
the thread that tried is blocked and yields its execution to the next thread.

In the most common implementations of mutexes in IoT OSes, a failed lock can 
result in a priority inversion scenario, where a thread with lower priority executes 
before one with higher priority. It can lead to an instance where a critical portion 
of code protected by a mutex is delayed to a later scheduling point. This is depicted 
in Fig. 8a, where the highest priority Thread C interrupts Thread A, and fails to 
lock a mutex currently owned by Thread A. This lead to a case where Thread A 
critical section only occurs after Thread B finishes executing. These situations are 
not desirable in IoT edge devices where real-time and determinism are paramount.

A possible solution to priority inversion scenarios is using priority inheritance 
algorithms, which consist of raising the priority level of the current owner of a 
mutex to the highest priority of the threads that attempted to lock the same mutex. 
This is represented in Fig. 8b, where after Thread C fails to lock the mutex, Thread 
A is given the same priority level to finish executing its critical section and unlock 
the mutex. Once Thread A unlocks the mutex, Thread C can resume its critical sec-
tion, and Thread B only runs after the highest priority thread finishes its execution.

In ChamelIoT’s hardware accelerator, each Mutex implementation maintains a 
register with the current thread that owns the mutex and a list of TIDs of each thread 
that was blocked trying to lock it. This list of threads also contains their respective 
priority, to enable the implementation of priority inheritance mechanisms. Whenever 

Fig. 8   Mutexes use case sce-
narios
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a thread’s priority is modified, the Mutex informs the Thread Manager of the TID 
and new priority. Consequently, the Thread Manager can keep the ready queue cor-
rect, removing the thread from one linked list and adding it to the list regarding the 
new priority. The process is the same whether the priority is raised as a result of a 
failed lock or lowered after an unlock. Finally, whenever a thread is forced to change 
state, e.g., to ready state when the priority is raised, the Scheduler is also updated 
accordingly, and the software is notified in the next scheduling point.

4.1.5 � Semaphores

A semaphore is another method of synchronization utilized in operating systems. It 
follows a producer–consumer scheme, where the producer thread signals the sema-
phore once it finishes acquiring or processing a certain resource. Internally, the sem-
aphore registers the count of how many signals were emitted by the producer thread. 
In turn, the consumer thread checks, through the semaphore, if there are resources 
available. If the semaphore’s internal count is greater than zero, the consumer thread 
is allowed to keep executing, otherwise the thread is blocked. Semaphores are often 
used in cases where a resource is produced at a high frequency, e.g., data acquired 
from a sensor, and multiple threads need access to it.

Each hardware Semaphore has a configurable maximum count of resources pro-
duced and variable size of threads that are blocked when there are no resources 
available. When a thread tries to take from a semaphore and fails, it is blocked and 
its TID and priority are saved internally in the semaphore. At the same time, the 
Thread Manager is informed to remove the thread from the ready queue. These two 
values are used later when a producer thread issues a give operation to request the 
Thread Manager to put the blocked thread in the ready queue.

4.1.6 � Message queues

Message queues are asynchronous communication mechanisms used to send data 
from one thread to another. Common implementations of message queues in OSes 
use Firs-In First-Out (FIFO) queues to store messages waiting for a receiving thread. 
When a thread attempts to send a message, it should provide a pointer to the data 
and the message size so that the message queue can store a copy of the message. 
Likewise, when a thread receives a message, it should provide a pointer to the 
address where it wants the data to be stored so it can receive a copy of the data. 
When the message queue holds a copy of the data, it avoids having the threads share 
memory, which often requires extra care to prevent data corruption.

As mentioned previously, the Control Unit manages the internal memory buffer 
for all the hardware Message Queues to prevent concurrent accesses to the memory. 
This buffer is composed of a configurable limit of messages per message queue, 
with the message size also being configurable. The scenarios illustrated in Fig.  9 
show an example of this memory buffer when there are four message queues in the 
system with a limit of four messages each.
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Figure 9a depicts a put operation on Message Queue 1. In this case, there is a 
message already stored in the buffer. The Control Unit reads the data from the sys-
tem memory and stores it in the next free message slot. On the other hand, in the get 
operation, illustrated in Fig. 9b, the data written to the system memory is from the 
first message stored in the message queue, forming a FIFO queue. As such, the Mes-
sage Queues need to keep track of the order in which the messages are stored.

Lastly, whenever a thread tries to receive a message and the buffer is empty, the 
thread is blocked until a message is sent. At the same time, when a thread attempts to 
send a message, and there is no thread waiting to receive it, i.e., if the buffer is full, 
the sending thread is also blocked to prevent overwriting other data. The amount of 
threads in each waiting list, sending and receiving, is also a configurable parameter.

4.2 � Software abstraction layer

In the ChamelIoT framework, the Software Abstraction Layer fulfills the role of 
mediator between the software kernel and the Hardware Accelerator. This layer is 
mainly responsible for: (1) providing low-level generic functions that interact with 
the accelerator, regardless of coupling approach, (2) implementing functions for 
each kernel service in hardware and accessing their context data, and (3) doing the 
modifications needed so that the supported OSes use ChamelIoT’s API.

Regarding the low-level functions that interact with the Hardware Accelerator, these 
have to take into consideration the coupling approach. For the tightly-coupled accelera-
tor, all the interaction must be made in a single custom instruction, while accessing the 
loosely-coupled accelerator is done by reading and writing to specific addresses.

Providing support for additional operating systems in ChamelIoT requires the 
developer to have intimate knowledge of both the ChamelIoT framework and the 

Fig. 9   Examples of scenarios 
with message queues operations
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OS. To add a hardware service to an IoT OS, the developer should follow the guide-
lines below: 

1.	 Identify the code blocks or functions within the kernel that implement the service;
2.	 Add conditional compiling verification macros;
3.	 Include the necessary calls to ChamelIoT API to replicate the service behavior;
4.	 Ensure the inputs and outputs of the ChamelIoT Abstraction Layer match the 

software version.

Furthermore, additional modifications may be required to the Software Abstraction 
Layer. This is particularly applicable in unique scenarios where the operating system 
requires specific inputs, outputs, or functionalities that are not readily available in the 
hardware or require significant alterations. In this case, the suggested approach is to 
keep the additional features outside the API to ensure the behavior remains unchanged.

Tightly-coupled Considering that ChamelIoT’s Hardware Accelerator is currently 
deployed in a Rocket-based platform, it leverages the RoCC interface to implement 
a tightly-coupled approach. Regarding the communication with the CPU, the RoCC 
interface defines an extension to the RISC-V ISA by introducing a custom instruc-
tion that follows the R-type format, depicted in Fig. 10. It specifies the target coproc-
essor, the source and destination of data, and the performing operation.

The opcode field identifies the coprocessor, and according the RoCC specifica-
tion, it can only contain one of four predefined values, thus, limiting the num-
ber of coprocessors. The fields rd, rs1, and rs2 specify the destination (rd) and 
source (rs1 and rs2) CPU registers used to transfer data with the coprocessor. The 
xd, xs1, and xs2 are auxiliary fields that identify which of the previous registers 
have valid data. Lastly, the field funct7 is used as a user-defined opcode for each 
coprocessor that indicates which function has to be executed.

Listing 1 demonstrates how the RoCC instruction is translated into a C macro. This 
macro is then used in the implementation of kernel service APIs by having function 
arguments directly mapped to the source registers rs1 and rs2, and the return value 
coming from the rd register. The funct7 is determined by a table which maps every 
function implemented in hardware to a unique value. In order to keep every service 
available through a single instruction, the interaction between the CPU and accelera-
tor becomes limited to: (1) two 32-bit words being received on the coprocessor; (2) a 
single 32-bit word response; and (3) a maximum of 128 distinct operations.

1 #de f i n e ChamelIoT opcode 0b1011011
2 #de f i n e ROCC INSTRUCTION( rd , r s1 , r s2 , func7 ) \
3 asm v o l a t i l e ( ” . insn r ” STR(ChamelIoT opcode ) ” , \
4 ” STR(0 x7 ) ” , ” STR( funct7 ) ” , %0, %1, %2” \
5 : ”=r ” ( rd ) \
6 : ” r ” ( r s1 ) , ” r ” ( r s2 ) )

Listing 1   C macro for the RoCC instruction

Fig. 10   RoCC instruction 
format funct7 rs2 rs1 xd xs1 xs2 rd opcode

31    25 24    20 19  15  14 13    12  11   7 6   0 
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Loosely-coupled When the accelerator is deployed loosely-coupled, it is inte-
grated with the Rocket core as a TileLink Register Map node. Consequently, the 
Hardware Accelerator becomes a memory-mapped device with a well-defined 
range of addresses configured at compile-time. This implies that the accesses to 
the accelerator from the software application are done via loads and store instruc-
tions. An example of code used to execute these instructions is depicted in List-
ing 2, where a read and write to specific accelerator registers.

The register map consists of a register per possible input and output and a spe-
cial register for the instruction. In the current version of the hardware accelerator, 
the register map includes a total of 34 registers. The instruction register is located 
at the accelerator base address, and it triggers the accelerator to perform a func-
tion whenever anything is written in this register. This approach uses the same 
funct7 values to offer a similar behavior to the RoCC interface implementation, 
allowing most of the hardware component to remain unmodified.

The interaction between software and hardware is done through memory 
accesses. It provides flexibility regarding inputs and outputs as they are not lim-
ited by the boundaries of a single instruction. However, it comes at the cost of 
needing more instructions to execute a single service which involves writing all 
the inputs, then writing the instruction register, and finally reading the outputs.

Independently from the coupling approach, the Software Abstraction Layer 
provides a library of functions to be used by IoT OSes in their kernels. Table 3 
lists all the current APIs used to accelerate the current IoT OSes. These include 
functions to add or remove threads from the system, change thread states, sched-
ule a new thread, and use any operation in mutexes, semaphores, and message 
queues. Furthermore, some functions allow the software to collect data from any 
hardware component in the accelerator.

As mentioned previously, currently, the ChamelIoT framework supports three 
IoT OSes: RIOT, Zephyr, and FreeRTOS. For each OS, minimal modifications 
had to be made in their kernels to use ChamelIoT’s accelerator. Listing 3 shows 
an example of a modification made to Zephyr’s kernel, replacing the code to 
schedule the next thread. Currently, this is achieved by resorting to preproces-
sor directives, allowing the user to decide if hardware acceleration is used in the 
system by defining a variable during the OS building process. Furthermore, any 
additional feature not supported by the API that needs to be included to the sys-
tem should be added within the preprocessor directives.

Listing 2   Write and read data to the loosely-coupled accelerator

1 #de f i n e CHAMELIOT I TID 0x1001A00C
2 #de f i n e CHAMELIOT O TID 0x1001A048
3

4 � ( unsigned in t � ) (CHAMELIOT I TID) = data ;
5 value = � ( unsigned in t � ) (CHAMELIOT O TID)
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1 #i f d e f CHAMELIOT
2 s t r u c t k thread � thread = ( s t r u c t k thread � )

ChamelIoT get TCB ( ChamelIoT schedule ( ) ) ;
3 #e l s e
4 s t r u c t k thread � thread = next up ( ) ;
5 #end i f //CHAMELIOT

Listing 3   Example of kernel modifications to use ChamelIoT’s API

5 � Evaluation

For the purpose of evaluating the ChamelIoT framework, we have integrated and 
provided support for three IoT OSes: RIOT, FreeRTOS, and Zephyr. To assess 
performance and determinism, we measured the latency of most kernel services 
APIs through a series of microbenchmark experiments that measured the clock 
cycles required by most kernel services implemented by the hardware accelera-
tor. We also evaluated the overall system’s performance using the Thread Metric 
benchmark suite, which provides a set of synthetic benchmarks stressing kernel 
features, like scheduling, and synchronization. Each experiment was performed 
for the three OSes targeting the multiple configurations available with the Cha-
melIoT framework:

Table 3   List of functions available is the software abstraction layer

Function Inputs Outputs

Add thread Priority, TCB TID
Remove thread TCB –
Set thread state State, TCB –
Schedule – TID
Get active thread TCB – TCB
Get active thread TID – TID
Convert TCB from TID TID TCB
Conver TID from TCB TCB TID
Initialize mutex Mutex ID Success or error
Lock mutex Mutex ID Success, error or schedule
Unlock mutex Mutex ID Success, error or schedule
Initialize semaphore Semaphore ID Success or error
Give semaphore Semaphore ID Success, error or schedule
Take semaphore Semaphore ID Success, error or schedule
Initialize message queue MQ ID Success or error
Put message queue MQ ID, memory address Success, error or schedule
Get message queue MQ ID, memory address Success, error or schedule
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•	 SW—the software-based approach without using the hardware accelerator 
available, i.e., the vanilla software implementation of each OS;

•	 TC—the tightly-coupled approach where the hardware accelerator is connected 
to the core through the RoCC interface, and each OS uses the hardware accelera-
tion by using specific instructions;

•	 LC—the loosely-coupled approach, where the multiple OSes leverage the mem-
ory-mapped hardware accelerator through memory operations.

Additionally, we evaluated the impact of ChamelIoT on the hardware resources 
and power estimation required by different threads and priorities configurations, 
which (from empirical experiments) are the most impactful configurability points. 
Lastly, we measured the memory footprint of each OS for the three ChamelIoT 
configurations.

5.1 � Experimental setup

We deployed and evaluated our solution on an Arty A7-100T, which features a 
Xilinx XC7A100TCSG324-1 FPGA running at a clock speed of 65MHz. The hard-
ware accelerator is integrated into an E31 Coreplex RISC-V core (RV32-IMAC). 
Both the RISC-V core and our accelerator were implemented using the SiFive Free-
dom E300 Arty FPGA Dev Kit and synthesized in Vivado 2020.2.

The performance evaluation experiments targeted the RIOT v6ae67, FreeRTOS 
v10.2.1, and Zephyr v2.6.0-577. All software was compiled with the GNU RISC-
V Toolchain (version 9.2.0), with optimizations for size enabled (-Os). Apart from 
OS-specific configurations such as the priority order, the hardware accelerator was 
kept with the same configurations for the three OSes: maximum of 16 threads with 
16 unique priorities, four different mutexes, semaphores, and messages queues (each 
with 16-word size, and a list of four messages).

5.2 � API latency

To assess determinism and performance, we have measured the number of clock 
cycles required to execute the most common OS services for the three aforemen-
tioned setups. Each experiment was repeated 10,000 times for each kernel service. 
The results are presented by the average number of cycles, i.e., arithmetic mean (M), 
along with the standard deviation (SD) measured across all repetitions. Furthermore, 
the worst-case execution time (WCET) measured across all the experiments is pre-
sented for each API. The results are discussed below.
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5.2.1 � Thread Manager and Scheduler

Table  4 presents the results regarding the latency of three different APIs imple-
mented by the Thread Manager and Scheduler: Thread Suspend, Thread Resume, 
and Schedule. The first two APIs are responsible for modifying the thread state, 
i.e., from ready to suspended state in Thread Suspend and the other way around in 
Thread Resume. Whenever one of these functions is executed by a kernel, it implies 
adding or removing a thread from the ready queue. To test these functions, the sys-
tem included two threads with different priorities, where the higher priority thread 
suspends itself, and the low-priority thread resumes the high-priority thread. Lastly, 
the Schedule function is executed at every scheduling point to select the next execut-
ing thread. In order to test this function, two threads with the same priority con-
stantly yielded their execution time to trigger an explicit scheduling point.

The TC setup on RIOT presents latency decreases and improved determinism on 
all three APIs when compared to the baseline (SW configuration). The latency is 
decreased by 43.92% on Thread Suspend, 40.73% on Thread Resume, and 62.02% 
on Schedule. Additionally, the standard deviation is closer to zero on all kernel ser-
vice, indicating better determinism. On the other hand, the LC setup only shows 
better performance on the Schedule, decreasing its latency by 62.02%. Nonetheless, 
it presents better determinism. The number of cycles required to perform a Thread 
Resume on the LC configuration is over double the number required on the SW con-
figuration. This is justified by the fact that the Abstraction Layer for the loosely-
coupled accelerator requires multiple registers to be written in order to perform a 
service or access a value from the accelerator, e.g., thread priority or state. If a func-
tion performs multiple accesses like these, it will greatly increase the total number 
of cycles required by that API since both the SW and TC would only need a single 
instruction to execute the same function.

The results gathered for Zephyr also show that only the TC setup increases the 
performance over the SW setup. The latency is decreased by 13.51%, 1.81%, and 
49.94% Thread Suspend, Thread Resume, and Schedule, respectively. Furthermore, 
the standard deviation is also lower. The LC configuration also shows a performance 
increase of 99.76% on the Schedule function and better determinism on all three 
APIS. However, for the previously mentioned reasons, both Thread Resume and 
Thread Suspend functions show latency increases.

Lastly, both hardware-accelerated setups on FreeRTOS present performance 
increase on all three kernel services along with less variance. On the TC setup, the 
latency is decreased by 64.30% on Thread Suspend, 60.75% on Thread Resume, and 
88.10% on Schedule. And the LC setup decreases the latency by 51.70%, 43.93%, 
and 85.08% for each API, respectively.

5.2.2 � Mutexes

Table 5 summarizes the results gathered for the two APIs related to Mutexes in three 
different scenarios. The Lock function is used when a thread attempts to acquire the 
mutex before entering a critical section of code. Whenever this function executes 
three different scenarios can occur: (i) the mutex is successfully locked, and the 
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current thread continues to execute; (ii) the mutex is already locked, and the prior-
ity inheritance mechanism is triggered; and (iii) the API fails to lock the mutex for 
external reasons, e.g., uninitialized or invalid mutex. The Unlock API is used when 
a thread is leaving a critical code section to release the mutex ownership. Likewise, 
this service can result in three different scenarios: (i) a successful unlock, where 
the thread keeps execution rights; (ii) the thread had its priority raised by the prior-
ity inheritance mechanism, and consequently, its priority has to be reverted, and a 
scheduling point is forced; and (iii) the Unlock fails because the mutex was not pre-
viously locked, for instance. In order to test the three scenarios, we first had a single 
thread successfully locking and unlocking the same mutex and then trying to lock 
and unlock an uninitialized mutex, leading to failed attempts on both operations. 
Lastly, to validate the priority inheritance scenario the following steps are executed 
in a loop: (1) a low-priority thread locks a mutex and resumes a high-priority thread; 
(2) the high-priority thread attempts to lock the mutex, triggering the priority inher-
itance mechanism, forcing the other thread to execute; (3) the first thread has its 
priority raised and unlocks the mutex, once again triggering the priority inheritance 
to revert its priority and schedule the next thread; and (4) the high priority thread 
unlocks the mutex and suspends itself. The results shown in Table 5 for this scenario 
were collected in the Lock function in step 2 and the Unlock in step 3.

RIOT does not support priority inheritance in its mutex implementation, as 
such, no results are available for this scenario. The TC configuration shows latency 
decreases of 13.58% on successful Locks, 70.81% on failed Locks, and 24.79% on 
successful Unlocks. On failed Unlocks, this setup shows a minimal latency increase. 
However, it presents lower standard deviation and a better WCET. The LC setup 
presents performance degradation on most scenarios due to the increasing number 
of instructions to communicate with the accelerator.

The TC setup on Zephyr decreases the latency on both APIs and all scenarios. 
For the Lock operations, it shows decreases of 23.35%, 67.14%, and 67.16% for the 
successful, priority inheritance, and fail scenarios, respectively. On the Unlock func-
tion, the latency is decreased by 84.59%, 86.50%, and 0.10% on the same scenar-
ios correspondingly. For the LC setup, there is a latency increase in the successful 
and fail experiments on both APIs. However, on the priority inheritance scenario, 
it shows a decrease of 21.46% and 48.68% on the latency of the Lock and Unlock 
functions.

Finally, both hardware configurations, TC and LC, increase the performance 
on all scenarios and APIs. This is most notable in the priority inheritance cases, 
where for the Lock function the latency is decreased by 92.65% on the TC setup 
and 89.14% on the LC one. And for the Unlock function, it is decreased by 76.94% 
and 64.75% on the TC and LC configurations, respectively. FreeRTOS software ker-
nel implements its ready queues in a fashion that requires the iterative traversing 
of linked lists whenever a TCB is accessed. This results in longer times on func-
tions that need to modify thread priorities and states multiple times, like the priority 
inheritance algorithm on mutexes.
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5.2.3 � Semaphores

The Semaphores API consists of mainly two functions: Give and Take. The Give 
function is used by a thread to signal a semaphore that new data or resources are 
now available. Whenever this function executes, it can result in two different sce-
narios. The first where another thread previously tried to take from the semaphore, 
and the current thread has to yield the execution after the Give. And the second sce-
nario where there is no thread waiting, and the current thread continues execution. 
The Take function is used by a thread attempting to access a resource, and simi-
larly to the previous function, it can also result in two different scenarios: (i) the 
resource is already available in the semaphore, allowing the current thread to access 
it and keep executing; and (ii) there are no resources available, forcing the current 
thread to yield until the semaphore is signaled by other threads. To test these APIs, 
we devised two experiments, one with a single thread using Give and Take repeat-
edly, leading to no yields being required. And another experiment with two threads, 
where the first attempts to take from a semaphore without resources, yielding the 
execution to the other thread, which signals the semaphore and yields the execution 
to the waiting thread. The results collected are presented in Table 6.

For RIOT OS, the TC setup provides a latency decrease for all the scenarios in 
both APIs. This decrease varies from 69.16% on a Take with no resource available to 
72.70% on a Give with a thread waiting. The LC setup slightly increases the latency 
in all cases, up to 7.84%. However, it decreases the latency variance.

The TC configuration on Zephyr decreases the latency of Gives with threads 
waiting by 63.65% and without threads waiting by 89.05%. For the Take API, this 
setup only performs slightly better (up to 4.55%) than the SW configuration. The LC 
setup decreases the latency on Gives with threads waiting by 0.12% and 75.23% on 
Gives with no thread waiting. On the Take API, the latency increased to over double. 
The software implementation of semaphores on Zephyr is already fast, to the point 
that hardware acceleration mostly offers better determinism.

Lastly, the hardware-based setups increase the performance on all cases for the 
semaphores API in FreeRTOS. This is most evident in the scenarios that require 
the thread to yield execution, e.g., Gives with threads waiting (latency decreased 
by 54.70% and 49.67% on the TC and LC setups respectively), and Takes with no 
resource available (latency decreased by 89.58% and 87.07% on the TC and LC set-
ups, respectively). As mentioned previously, this is due to the fact that FreeRTOS 
uses more complex logic to access the ready queue.

5.2.4 � Message queues

There are two main operations regarding message queues, i.e., Send and Receive. 
Both functions may cause threads to be suspended or resumed, depending on 
whether there is someone waiting for the message or if there is a message ready. 
However, for the purpose of isolating the memory operations and evaluating their 
performance, scenarios, where threads had to yield execution, were not consid-
ered. As such, the conducted experiment consisted of one thread sending a message 
through a message queue, and another thread receiving it through the same queue. 
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After each iteration of this process, the sending thread modified the message con-
tents, and the receiving thread checked the content to ensure correctness. The results 
are depicted in Fig. 11, where the same experiment was repeated to multiple mes-
sage sizes.

RIOT defines a structure to represent a message which contains a pointer to the 
data sent/received. However, unlike standard message queue implementations, the 
contents of this structure are copied from sending thread to the receiving thread, 
including the original pointer. Thus, giving direct access to the memory location of 
the original data to the receiving thread. Nonetheless, intending to keep agnosticism, 
the ChamelIoT framework uses the same mechanism of only copying the structure 

Fig. 11   Message queues API latency by message size
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contents on message queue operations. This results in identical results across the 
board, i.e., all three setups on both APIs, as the message size is always the structure 
size.

The TC setup on Zephyr shows consistent latency decreases for both Send and 
Receive APIs, averaging across all message sizes 65.80%, and 67.63%, respectively. 
On the LC configurations, up to message sizes of 16 words, the hardware setup per-
forms better on both APIs. However, for bigger messages the latency is increased by 
11.61% on Sends of 64 words and 10.76% on Receives of 64 words.

Finally, the TC configuration on FreeRTOS offers a consistent latency decrease 
to both functions on message sizes up to 16 words. For bigger messages, the latency 
decrease goes from an average of 45.33 to 16.92% on Sends of 64 words, and from 
an average of 44.09 to 14.31% on Receives of 64 words. The LC setup shows a simi-
lar behavior, for bigger message sizes, the performance is worse. This setup only 
offers latency decreases for messages up to four words on both Send and Receive 
functions. For bigger messages the latency increase reaches up to 135.25% on Sends 
and 145.82% on Receives.

On LC setups, the performance degradation observable for bigger message sizes 
can be justified by the fact that the memory operations are made through a TileLink 
DMA node, with lesser priority in the interconnects that are closer to the system 
memory. Unlike the TC setup that has direct access to the memory port.

5.3 � Thread‑metric benchmark suite

To evaluate the impact of using the ChamelIoT framework fully integrated into dif-
ferent IoT OSes, we use the Thread-Metric Benchmark Suite. This synthetic suite 
implements several benchmarks that stress a singular kernel service separately, 
allowing us to understand the influence of each service when used in run-time by an 
IoT application. Contrarily to the latency evaluation reported previously, this bench-
mark suite results take into consideration all other moving parts in the system, e.g., 
the tick system or context switching, despite a singular service being emphasized in 
each experiment. To test the services implemented in hardware by the ChamelIoT 
framework, we ran the following benchmarks: 

1.	 Basic processing: a single thread performs mathematical operations in a loop.
2.	 Cooperative scheduling: five threads with the same priority execute concurrently, 

yielding in a loop.
3.	 Preemptive scheduling: five threads with increasing priorities, each resuming the 

next thread with a higher priority and suspending themselves in a loop.
4.	 Message processing: a single thread sends a message to itself through a message 

queue in a loop.
5.	 Synchronization: a single thread gives and takes a semaphore in a loop.

Thread-Metric benchmarks count the number of times each loop is repeated, pre-
senting this count as a score after a period of time. For each experiment, the higher 
score means that the loop was executed more times. Thus there was less time wasted 
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in the service under test, i.e., a higher count indicates better performance. Table 7 
summarizes the results gathered from running each benchmark in periods of 30 s. 
The values presented correspond to the average of 100 samples for a specific bench-
mark. We performed the same experiments for the three configurations (SW, TC, 
and LC) on each OS (RIOT, Zephyr, and FreeRTOS).

RIOT performance is improved by both hardware setups. The TC configuration 
offers bigger performance increases than the LC setup, corroborating the results 
discussed in the previous section. For the Cooperative and Preemptive Scheduling 
benchmarks, TC setup improves the performance by 46.18% and 43.95%, respec-
tively. The Message Processing tests show the best results for RIOT OS, where 
the TC improves the system by 327.17%. Despite the LC setup showing latency 
increases in some APIs, the performance is still better than the SW configuration. 
For instance, the LC setup increases the latency on semaphore operations. However, 
it presents a 25.02% performance increase. The same is true for the Message Pro-
cessing benchmark, where the results obtained are 102.91% better.

The TC configuration on Zephyr improves the system performance up to 
157.20% and 100.01% on the Message Processing and Synchronization benchmarks. 
For both Scheduling experiments, this configuration only offers small increments 
in the results. According to the latency evaluation on the LC setup, all the bench-
marks tested should have shown worse performance than the SW approach. How-
ever, this is only true for the Preemptive Scheduling test. All the others have bet-
ter results, particularly the Message Processing and Synchronization benchmarks, 
which improve the performance by 38.60% and 11.81%.

Lastly, the FreeRTOS is the only OS where the Basic Processing benchmark is 
improved by the hardware configurations. This happens because FreeRTOS sched-
uling is tick-based, and at every tick, the kernel executes and tries to schedule the 
next thread. Regarding the other benchmarks, both setups show better performance. 
Nonetheless, both greatly improve the performance on the Cooperative Scheduling 
benchmark (TC setup increase by 199.49% and LC setup by 184.85%) and on the 
Preemptive Scheduling benchmark (TC setup increase by 175.56% and LC setup by 
144.19%).

5.4 � Hardware resources

Measuring the FPGA resources consumed enables the developers to choose a plat-
form that fits their needs. The FPGA size heavily influences the system form factor 
and power consumption, therefore being a major design choice on IoT devices. On 
the ChamelIoT framework, the most impacting factor on resource consumption is 
the total amount of threads supported. As mentioned previously, this number is pro-
portional to the number of Thread Nodes on the Thread Manager and the number of 
bits used to identify each thread on the accelerator. Since the TID usage is propa-
gated throughout the hardware, increasing the TID bit size results in a significant 
resource consumption increase.



186	 Real-Time Systems (2024) 60:150–196

1 3

Ta
bl

e 
8  

F
PG

A
 re

so
ur

ce
 c

on
su

m
pt

io
n 

fo
r a

 sy
ste

m
 a

llo
w

in
g 

8 
th

re
ad

s a
nd

 8
 p

rio
rit

ie
s

M
od

ul
e

Lo
gi

c 
LU

TS
LU

TR
A

M
S

SR
Ls

FF
s

R
A

M
 b

lo
ck

s
D

SP
 b

lo
ck

s

TC
E3

00
A

rty
D

ev
K

itF
PG

A
C

hi
p

21
19

1
86

8
60

14
43

0
24

2
C

ha
m

el
Io

T 
H

W
 A

cc
el

.
59

87
19

0
0

37
26

0
0

%
28

.2
5%

21
.8

9%
0.

00
%

25
.8

2%
0.

00
%

0.
00

%
LC

E3
00

A
rty

D
ev

K
itF

PG
A

C
hi

p
22

67
9

72
8

60
15

63
5

25
2

C
ha

m
el

Io
T 

H
W

 A
cc

el
.

70
94

0
0

51
56

1
0

%
31

.2
8%

0.
00

%
0.

00
%

32
.9

8%
4.

00
%

0.
00

%



187

1 3

Real-Time Systems (2024) 60:150–196	

Ta
bl

e 
9  

F
PG

A
 re

so
ur

ce
 c

on
su

m
pt

io
n 

fo
r a

 sy
ste

m
 a

llo
w

in
g 

16
 th

re
ad

s a
nd

 1
6 

pr
io

rit
ie

s

M
od

ul
e

Lo
gi

c 
LU

TS
LU

TR
A

M
S

SR
Ls

FF
s

R
A

M
 b

lo
ck

s
D

SP
 b

lo
ck

s

TC
E3

00
A

rty
D

ev
K

itF
PG

A
C

hi
p

34
27

2
86

8
60

12
65

5
24

2
C

ha
m

el
Io

T 
H

W
 A

cc
el

.
19

76
7

19
0

0
22

74
0

0
57

.6
8%

21
.8

9%
0.

00
%

17
.9

7%
0.

00
%

0.
00

%
LC

E3
00

A
rty

D
ev

K
itF

PG
A

C
hi

p
40

87
5

72
8

60
16

39
9

25
2

C
ha

m
el

Io
T 

H
W

 A
cc

el
.

24
38

8
0

0
59

17
1

0
%

59
.6

6%
0.

00
%

0.
00

%
36

.0
8%

4.
00

%
0.

00
%



188	 Real-Time Systems (2024) 60:150–196

1 3

Evaluating the impact of increasing the number of threads and priorities on 
the resources consumed by ChamelIoT was done extensively in previous works 
(Silva et  al. 2022). However, the experiments only considered the tightly-coupled 
approach for the accelerator. To have a better understanding of how the two cou-
pling approaches influence resource consumption. Tables 8 and 9 show the FPGA 
resource distribution for the two setups in different scenarios, one with a maximum 
of eight threads and eight unique priorities and the other with 16 threads and priori-
ties. For both cases, the remaining system configurations were kept the same.

For the scenario with eight threads, albeit very close, the TC setup uses fewer 
Look-Up Tables (LUTs) than the LC setup. As depicted in Table 8, the TC setup uses 
fewer Logic LUTs, but on the other hand, it also uses LUTs as RAM (LUTRAMs), 
which the LC setup does not consume. The amount LUTs, including Shift-Register 
LUTs (SRLs), used by TC setup is 27.93% of the total amount of LUTs used by 
the whole system, identified as E300ArtyDevKitFPGAChip on the following tables. 
Regarding the Flip-Flop usage (FFs), the TC configuration also consumes less than 
the LC setup, amounting to 25.82% of the system total for the TC setup and 32.98% 
for the LC one. The resource distribution differences in both setups are justified 
by the different interfaces they have with the MCU and the required modifications 
to the Control Unit to accommodate these interfaces. Furthermore, the remaining 
hardware elements, namely the CPU and memory, also have to adapt to the accel-
erator coupling approach, consequently having minimal changes to the resource 
consumption.

The experiment with 16 threads shows upscaled consumption, as depicted in 
Table 9. The TC setup uses 56.70% of the system’s total LUTs, and the LC setup 
uses 58.54%. This was the most impacted resource by the increasing number of 
threads and priorities. In particular, Logic LUTs was the only resource that signifi-
cantly increased its consumption. This fact reflects the effect of incrementing the 
TID bit size, which extensively increases the logic across the entire accelerator.

5.5 � Power consumption

Power consumption is a metric highly dependent on the application since it is the 
application dictates the time the processor spends in low-power or sleeping modes. 
Furthermore, the application controls which peripherals are active, consequently 

Table 10   ChamelIoT power 
estimation

Rocket ChamelIoT-TC ChamelIoT-LC

8T8P 16T16P 8T8P 16T16P

Static (W) 0.099 0.099 0.099 0.099 0.099
Dynamic (W) 0.196 0.201 0.218 0.212 0.24
% 2.55% 11.22% 8.16% 22.45%
Total (W) 0.295 0.3 0.317 0.311 0.339
% 1.69% 7.46% 5.42% 14.92%
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impacting energy consumption. Taking this into consideration, to evaluate the 
effect of ChamelIoT on the system’s power consumption, we opted to use the Power 
Analysis tools included in the Vivado Design Suite. The tool ran in vectorless mode 
with the default settings and power optimizations disabled and with the platform 
constraints for the Arty A7-100 board. The report includes dynamic power con-
sumption, which is determined by the switching activity of clocks and datapaths, 
and static power consumption, which represents the minimum power consumption 
required to operate the hardware blocks.

Table  10 summarizes the results gathered for the following system configura-
tions: (1) Rocket Core without ChamelIoT’s hardware accelerator, (2) ChamelIoT 
tightly-coupled to the core, and (3) ChamelIoT loosely-coupled. Both setups with 
ChamelIoT were evaluated while supporting 8 and 16 threads, with a corresponding 
number of unique priorities.

The Rocket core deployed on the Arty A7-100T board presents an expected 
power dissipation of 0.295 W. When the hardware accelerator is included, there is an 
increase in the estimated dynamic power consumed while the static power consump-
tion remains the same. The TC setup presents a power consumption increase of 1.69% 
for the 8-thread configuration and 7.46% for the 16-thread configuration. On the other 
hand, the LC setups show increases of 5.42% and 14.02% for the 8- and 16-thread con-
figurations, respectively. For both TC and LC setups, the configuration with a higher 
amount of threads supported have higher power consumption, which is justified by 
increased hardware resource consumption presented in the previous section.

5.6 � Memory footprint

The code size of an IoT application heavily influences the platform used in a sys-
tem since a non-volatile memory needs to accommodate all the code. On low-end 
IoT devices, the system often uses the RAM available in the SoC for runtime needs 
and external memories to store the code. The memory footprint is a metric highly 
dependent on the application, as the code size and variables and arrays allocated will 
directly affect the memory used.

We used the Preemptive Scheduling benchmark from the Thread-Metric Bench-
mark Suite as the baseline for all three OSes to assess the memory footprint. This 
way, the application code was kept the same, with the exception of the kernel since it 
changes between OSes. Using the GNU RISC-V Toolchain, we gathered the amount 
of ROM and RAM required by each OS on all three setups, SW, TC, and LC, as 
depicted in Table 11.

Table 11   ChamelIoT memory footprint

RIOT Zephyr FreeRTOS

SW TC LC SW TC LC SW TC LC

RAM (B) 8384 8384 8384 11,376 11,376 11,376 12,372 12,372 12,372
ROM (B) 19,346 18,220 18,742 22,448 21,668 22,040 22,994 21,944 22,200
% 5.82% 3.12% 3.47% 1.82% 4.57% 3.45%
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Across all experiments, the amount of used RAM never changes because the Cha-
melIoT Abstraction Layer does not initialize any variables and mostly consists of sim-
ple RoCC instructions or memory accesses that replace code from the kernel internals. 
For this reason, setups using the ChamelIoT framework will have smaller code sizes.

RIOT presents a 5.82% decrease in the code size for the TC setup and 3.12% 
for the LC setup. Zephyr shows a decrease of 3.47% and 1.82% for the TC and LC 
setups, respectively. Moreover, FreeRTOS presents code size decreases of 4.57% on 
the TC setup and 3.45% on the LC setup. As mentioned earlier, regardless of OS, the 
LC setup requires more instructions on each function in the ChamelIoT Abstraction 
Layer. This is reflected in the memory footprint results since the TC setup shows 
better results for all three OSes.

6 � Discussion

Software abstraction The ChamelIoT framework resorts to a set of macros, a minimal-
ist abstraction layer, and slight modifications to each kernel to provide agnosticism 
for the application developer. This allows the use of hardware acceleration from an 
application by defining a variable at compile time without any other modifications to 
the code. The current abstraction layer follows the same logic for both approaches, 
where inputs need to be provided to the accelerator alongside an instruction opcode to 
execute any function. While this algorithm is optimal for the tightly-coupled approach, 
it fails to leverage the benefits of having multiple registers with data readily available 
on the loosely-coupled approach. We believe that with more optimizations to the soft-
ware abstraction layer and minimal modification to the loosely-coupled accelerator, 
the increased API latency measured can be mitigated or even turned into a latency 
decrease. This could easily be achieved by having some fields from the Thread Node 
available as read-only registers, for instance. As such, it would decrease the number of 
instructions required to access a single value from four to one.

Additional features As mentioned before, some kernel services (e.g., time, mem-
ory, and interrupt management) were left aside from the current implementation. 
Notwithstanding, we strongly believe that they can be implemented as optional fea-
tures to further enhance the OS performance. Furthermore, to achieve the goal of 
widespread adoption, more IoT OSes will be supported by the ChamelIoT frame-
work. Additional services, like spin locks or mailboxes, or alternative services, e.g., 
different scheduling policies, will also be included on the hardware accelerator. We 
also believe that including more configurability points will help towards the goal of 
adoption. Lastly, a Configuration and Building Tool is a work in progress that aims 
to provide an easy-to-use tool that configures and builds the whole system stack, fur-
ther minimizing the barrier of entry regarding hardware acceleration.

System evaluation The work presented only shows the evaluation of ChamelIoT 
from a synthetic standpoint and mostly encompasses performance and determinism 
experiments. We plan to extend the system evaluation to other fields like memory 
footprint and power consumption, as these are important metrics for any IoT appli-
cation. Furthermore, we have a working setup of IEEE802.15.4 radio network where 
one of the nodes is a ChamelIoT accelerated system. This node uses RIOT with a 
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loosely-coupled ChamelIoT accelerator and implements a UDP server that receives 
and answers requests from other radios. Preliminary results show that the hardware 
accelerated configuration can process more messages per second, i.e., has better 
throughput, than the software implementation. We are working on extending the 
same setup to the other approach and remaining OSes to have better comparison and 
evaluation of the system in a real-world application.

Supporting additional IoT OSes Adapting ChamelIoT to support other IoT OSes 
is done by modifying the kernel internals to use ChamelIoT’s Abstraction Layer 
wherever needed, as described in Sect. 4.2. However, some OSes may require spe-
cific functionalities to be added in the Hardware Accelerator to keep their behavior 
unmodified. In the ideal cases, the hardware modifications are limited to existing 
instructions, e.g., replacing the scheduling algorithm, which requires the devel-
oper to keep the same inputs and outputs. Otherwise, new instructions need to be 
added to support new features, in which case, the developer should implement these 
instructions following the existing examples on ChamelIoT and ensure they follow a 
similar approach regarding inputs, outputs, and how they interact with the software.

Porting ChamelIoT to other platforms Utilizing ChamelIoT’s Hardware Accelerator 
on other Rocket-based platforms does not require modifications other than including 
the accelerator in the core. However, porting ChamelIoT to other RISC-V cores is a 
process that involves modifying the interfaces that connect the accelerator to the CPU 
and the memory system. Some RISC-V cores, like CV32E40P or PicoRV32, already 
have a dedicated custom interface for coprocessors, allowing the integration of tightly-
coupled accelerators. In these cases, porting ChamelIoT-TC consists of removing the 
logic that interacts with RoCC and implementing new logic for the new interface 
while ensuring the remaining components keep the same behavior. On the other hand, 
porting the ChamelIoT-LC setup can be achieved by replacing the TileLink connection 
with interconnects of other peripheral buses, like AXI. Alternatively, when the target 
platform uses AXI, the developer can decide to add a TileLink-AXI adapter to the 
existing infrastructure instead of replacing the current interface.

7 � Conclusions

In this paper, we presented ChamelIoT, an agnostic hardware OS framework for 
FPGA-based IoT devices. It leverages the advantage of an open-source ISA, RISC-
V, to implement hardware acceleration for kernel services. Together with a minimal-
ist software abstraction layer and slight modifications to the OS internals, Chame-
lIoT allows IoT applications to benefit from hardware acceleration without needing 
to modify the application code. This paper extends the previous by implementing 
the hardware acceleration in a different coupling approach where the accelerator 
is connected to the core through the memory interface, i.e., loosely-coupled to the 
MCU. The original coupling approach uses a coprocessor interface to integrate the 
accelerator in the MCU datapath, i.e., tightly-coupled.

We have deployed and evaluated our system with three different OSes: RIOT, 
FreeRTOS, and Zephyr. The experiments realized encompass API latency tests, 
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overall system performance measurement, and FPGA resource consumption. Results 
demonstrated that regardless of the coupling approach, hardware acceleration can 
be used to improve performance and determinism on IoT OSes. Furthermore, we 
can conclude that a tightly-coupled approach offers greater performance increases, 
reaching values of 199.49% for the overall system. Notwithstanding, the loosely-
coupled configuration can more easily be adapted to other architectures, offering 
more in terms of scalability and re-usability.
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