
Vol.:(0123456789)

Real-Time Systems (2023) 59:35–68
https://doi.org/10.1007/s11241-022-09386-7

1 3

Feedback‑based resource management for multi‑threaded
applications

Alessandro V. Papadopoulos1  · Kunal Agrawal2 · Enrico Bini3 · Sanjoy Baruah2

Accepted: 10 June 2022 / Published online: 2 July 2022
© The Author(s) 2022

Abstract
Reconciling the constraint of guaranteeing to always meet deadlines with the opti-
mization objective of reducing waste of computing capacity lies at the heart of a
large body of research on real-time systems. Most approaches to doing so require
the application designer to specify a deeper characterization of the workload (and
perhaps extensive profiling of its run-time behavior), which then enables shaping
the resource assignment to the application. In practice, such approaches are weak as
they load the designer with the heavy duty of a detailed workload characterization.
We seek approaches for reducing the waste of computing resources for recurrent
real-time workloads in the absence of such additional characterization, by monitor-
ing the minimal information that needs to be observable about the run-time behavior
of a real-time system: its response time. We propose two resource control strategies
to assign resources: one based on binary-exponential search and the other, on prin-
ciples of control. Both approaches are compared against the clairvoyant scenario in
which the average/typical behavior is known. Via an extensive simulation, we show
that both techniques are useful approaches to reducing resource computation while
meeting hard deadlines.

Keywords  Feedback-based resource management · Multi-core scheduling · Multi-
threaded applications

 *	 Alessandro V. Papadopoulos
	 alessandro.papadopoulos@mdu.se

	 Kunal Agrawal
	 kunal@wustl.edu

	 Enrico Bini
	 enrico.bini@unito.it

	 Sanjoy Baruah
	 baruah@wustl.edu

1	 Mälardalen University, Västerås, Sweden
2	 Washington University in St. Louis, St. Louis, MO, USA
3	 University of Turin, Turin, Italy

http://orcid.org/0000-0002-1364-8127
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-022-09386-7&domain=pdf

36	 Real-Time Systems (2023) 59:35–68

1 3

1  Introduction

The correctness of the run-time behavior of safety-critical applications needs to
be verified prior to their deployment. In the context of computational systems that
interact with the physical world and must take action in a timely manner, the cor-
rectness is defined not only in terms of functionality but also timing. Timing cor-
rectness of such systems is generally specified in terms of guarantees of meeting
pre-specified deadlines.

In order to verify timing correctness, system designers model the potential
behaviors of the system. To have a high degree of confidence that the conclusions
drawn based on analysis of these models will hold for actual run-time behavior,
these models are required to be conservative. Provisioning computing resources
on the basis of such conservative models tends to lead to significant over-provi-
sioning, and subsequently to very poor platform resource utilization during run-
time. The safety-critical systems research community has widely recognized this
problem, and a variety of approaches have been proposed for dealing with it such
as mixed-criticality analysis (Vestal 2007; Burns and Davis 2017) and probabilis-
tic analysis (Bernat et al. 2002; Cucu-Grosjean et al. 2012) of run-time behavior.

In this paper, we will consider parallel tasks as a scenario to explore another
approach for modeling and checking the timing correctness of safety-critical sys-
tems. Often, parallel tasks in the real-time literature are represented using complex
models such as DAGs—while these representations are accurate and can represent
the detailed internal structure of tasks, they are often difficult to generate and expen-
sive to analyze. In addition, for some applications, different runs may generate dif-
ferent dependencies, making it difficult to represent them using a single DAG. In
this paper, we will explore measurement-based models where, instead of modeling
the full complexity of the program, we will model parallel tasks with a couple of
parameters only: the work—the total execution needed to complete the task; and the
span—the running time of the task if it is given an infinite number of processors.

Even with this simpler model, the problem of pessimistic modeling remains.
To guarantee safety, one might estimate the work and span of the DAG to be
very large and these large values may not manifest very often (or indeed, ever) in
practice. Therefore, allocating resources based on these estimates leads to over-
allocation. Prior work (Agrawal and Baruah 2018) has considered an approach
similar to the one undertaken in mixed-criticality systems: instead of modeling
the task with just one value each of work and span, it is modeled using both its
worst-case parameters and typical case parameters. The requirement is that we
must guarantee safety in the worst case. In particular, we are given a task with
worst-case work W and worst-case span L which must be completed within D
time units (its deadline). However, we might expect that most executions of the
task will have a substantially smaller work and span. Therefore, during run-time,
one can first start by allocating fewer resources based on the typical case, and
then increase resources if the typical case assumptions do not hold.

This research In this work, we develop an approach to conserve resources in
the typical case (where the computational requirements of the task are smaller

37

1 3

Real-Time Systems (2023) 59:35–68	

than the worst-case parameters), while still guaranteeing that the task will meet
deadlines even if the task does manifest its worst-case execution. Our particular
approach is sketched below and exemplified by Fig. 1.

1.	 We assume we have a single periodic or sporadic task that must be scheduled on
M processors within D time units of arrival. The worst-case work W and span L
parameters of a task are known—no job of the task has a larger work or span than
specified by these parameters. Further, we assume that it is feasible to schedule
this task on M processors in the worst case.

2.	 However, typically jobs of the task have a smaller work and span—this typical
case may not be known or may change over time.

3.	 The scheduler first allocates m ≤ M processors to the job for V < D time units—
the expectation is that most of the time (in the typical case) the job will complete
within this time, thereby conserving computing resources.

4.	 If the job does not complete within this time, all processors are allocated for the
remaining time D − V .

The goal is to compute m and V such that the job completes within its deadline
even in the worst case—where it has work as large as W and span as large as L.
The values of m and V are related, once we pick one, the other is constrained.
There may be many pairs (m,V) which satisfy this criterion—we want to pick
the largest V and smallest m such that the jobs complete by time V in the typical
case while still completing by time D in the worst case. If the typical case val-
ues of work and span are known and remain constant, we can use those to pick
appropriate values of m and V. However, these parameters may be unknown and
may change over time as the task releases a sequence of jobs. We propose a gen-
eralization that does not require additional characterization of run-time behavior
(beyond the worst-case characterization that is needed to assure safety). Our gen-
eralized approach is based on monitoring past executions and making resource-
allocation decisions based on the information that is obtained via such monitor-
ing. We explore different techniques, drawn from the sub-disciplines of control
theory and algorithm design, for making such resource-allocation decisions.

Contributions and Organization This paper makes the following contributions:

Fig. 1   The parallel task begins
execution at time-instant 0 with
a deadline at time-instant D. It
executes upon m processors over
the interval [0,V) , and upon
M processors over the interval
[V ,D) . (The x-axis thus denotes
time, and the y-axis, the number
of assigned processors)

0 V D

m

M

time

#
co

re
s

38	 Real-Time Systems (2023) 59:35–68

1 3

1.	 Section 3 provides a general strategy for calculating m and V—in particular, given
an instantiation of one parameter, how we can safely set the other parameter while
guaranteeing safety. In Sect. 4 we instantiate this scheduling strategy to situations
in which some additional information, viz. the typical case values of the param-
eters characterizing the parallel tasks, are known. These sections are a simplified
restatement of work from Agrawal et al. (2020).

2.	 In Sect. 5, we derive, and prove correct, algorithms for scheduling such tasks
in the general situation where these typical-case parameters are not known, and
furthermore when these typical-case values may vary over time. In this section,
we explore two general strategies, one based on binary-exponential search, and
one based on proportional control algorithms. Both these strategies observe the
behavior of the task over time and continually change the settings of m and V to
maximize utilization of the system.

3.	 In Sect. 6, we evaluate the effectiveness of our proposed algorithms via a wide
range of simulation experiments on synthetically-generated workloads. These
experiments indicate that both our algorithms perform well, but have different
characteristics. The binary-exponential algorithm converges quickly but has a
larger variation compared to the control-based algorithm.

In addition to the above section, Sect. 2 explains the model and its motivations, we
briefly review the related work in Sect. 7 and conclude in Sect. 8 by placing this
work within a larger context of the resource-efficient implementation of hard real-
time systems.

2 � Measurement‑based modeling and scheduling of parallel tasks

In this section, we flesh out the details of a measurement-based model for repre-
senting parallel tasks and describe a general strategy for scheduling tasks that are
modeled in this manner. We will first motivate the model informally in Sects. 2.1
and 2.1. Then, a formal definition of the model is provided in Sect. 2.3.

2.1 � Motivation: revising existing models

As stated in Sect. 1, several excellent DAG-based models for representing parallel
real-time code have been developed in the real-time community; however, there are
some classes of real-time applications for which such models have proved unsuit-
able. This may be for one or more of the following reasons:

1.	 The internal structure of the parallel code may be very complex, with multiple
conditional dependencies (as may be represented in e.g., the conditional DAG
tasks model (Melani et al. 2015; Baruah et al. 2015) and (bounded) loops. Explicit

39

1 3

Real-Time Systems (2023) 59:35–68	

enumeration of all possible paths through such code in order to identify worst-
case behavior may be computationally infeasible.1

2.	 If some parts of the code are procured from outside the application developers’
organization, the provider of this code may seek to protect their intellectual prop-
erty (IP) by not revealing the internal structure of the code and instead only pro-
viding executables—this may be the case if, e.g., commercial vision algorithms
are used in a real-time application.

3.	 Explicitly representing the internal structure of the DAG generated by some code
can be exponential in the size of the code. In addition, algorithms for the analysis
of systems represented using DAG-based models tend to have run-time pseudo-
polynomial or exponential in the size of the DAG. Therefore, in aggregate, these
runtimes may become too large to be useful in practice.

4.	 Particularly for conditional code, it may be the case that the true worst-case
behavior of the code is very infrequently expressed during run-time.

For pieces of parallel real-time code possessing one or more of the characteristics
discussed above, DAG-based representations may not be appropriate for schedula-
bility analysis; alternative representations are needed. Let us now discuss what such
a representation should provide.

2.2 � Approach: Identifying relevant characteristics of parallelizable real‑time
code

In modeling parallelizable real-time code that is to be executed upon a multiproces-
sor platform, a prime objective is to enable the exploitation of the parallelism that
may be present in the code by scheduling algorithms, to enhance the likelihood that
we will be able to meet timing constraints. We are interested here in developing
predictable real-time systems—systems that can have their timing (and other) cor-
rectness verified prior to run-time. To enable a priori timing verification, decades
of research in the parallel computing community suggest the following two timing
parameters of a piece of parallelizable code are particularly significant:

1.	 The work parameter W denotes the cumulative worst-case execution time of all
the parallel branches that are executed across all processors. Note that for non-
conditional parallelizable code this is equal to the worst-case execution time of the
code on a single processor (ignoring communication overhead from synchroniz-
ing processors).

2.	 The span parameter L (also called the critical path length in the literature) denotes
the maximum cumulative worst-case execution time of any sequence of prece-
dence-constrained pieces of code. The total running time of the program on any
number of processors is at least equal to its span.

1  We point out that techniques for approximating the worst-case behavior of complex conditional paral-
lelizable code have been proposed with regards to specific scheduling algorithms such as global fixed-
priority (Melani et al. 2015), global EDF (Baruah et al. 2015) or federated (Baruah 2015).

40	 Real-Time Systems (2023) 59:35–68

1 3

The relevance of these two parameters arises from well-known results in scheduling
theory. While scheduling a DAG to minimize its completion time is NP-hard in the
strong sense, Graham’s list scheduling algorithm (Graham 1969), which constructs
a work-conserving schedule by executing at each instant in time an available job
upon any available processor, performs fairly well in practice. In particular, it has
been proved in Graham (1969) that the response time R of the DAG, which is the
time elapsing from the release to the completion of the DAG, is guaranteed to be no
larger than

when the DAG is scheduled over M machines. The analogous term makespan is
often used in the scheduling community.

A little thought makes it clear that this bound is (2 − 1

M
)-competitive—no sched-

uler can finish the job in less than R∕(2 − 1

M
) time – suggesting that list scheduling

is a reasonable algorithm to use in practice. In fact, most run-time scheduling algo-
rithms for DAGs upon multiprocessors use different flavors of list scheduling.

2.3 � Formal system model

We now provide a formal definition of our model, by describing in detail our work-
load model. A parallel task is characterized by

•	 W is a conservative estimate of the total computational requirement of the job
over all the processors (the work),

•	 L is the conservative estimate on the longest path of dependencies in the task
(the span) and

•	 D denotes the relative deadline parameter: a correct execution requires that the
response time upper bound of (1) is no greater than D that is

In this paper, we consider the scheduling of a single such task upon a dedicated
bank of identical processors. We point out that our results are directly applicable to
the scheduling of multiple recurrent—periodic or sporadic—real-time DAGs where
each instantiation of the task is called a job. We assume that we have a multipro-
cessor or a multicore where each task is assigned a set of dedicated processors for
execution and need not worry about the other tasks running on the same machine.
Here, we assume that each periodic/sporadic task satisfies the additional constraint
that its relative deadline parameter is no larger than its period parameter (i.e., they
are constrained-deadline tasks).

We assume that timing correctness is specified assuming that W and L are cor-
rect estimates: the code is required to complete execution within the specified rela-
tive deadline D provided its work and span parameters are no larger than W and L
respectively.

(1)R ≤
W − L

M
+ L

(2)
W − L

M
+ L ≤ D

41

1 3

Real-Time Systems (2023) 59:35–68	

Note that the work and span parameters are not, in themselves, fully descriptive
of the program itself. Consider the examples in Fig. 2. The work and span (W, L) of
the individual DAGs in these figures are (20, 12), (20, 10), (20, 12), (20, 6), (12, 12)
respectively. However, a particular task may generate many different DAGs varying
from instance to instance. If we had a program that could generate all these jobs,
then we would define the worst-case work and span as defined in our model as 20
and 12, respectively. In particular, even if the program could only generate the last
two DAGs, we would still define the worst-case work as 20 and the worst-case span
as 12 even though no individual instantiation of the program can simultaneously
have work of 20 and the span of 12.

3 � Sufficient schedulability conditions

As described in Sect. 1 and illustrated in Fig. 1, given a task modeled by the param-
eters (W, L, D) as described above that is to be implemented upon an M-processor
platform, we want to compute m and V such that we can both (i) guarantee safety
and (ii) improve performance in the typical case. In this section, we will compute
the sufficient schedulability conditions which guarantee safety. In particular, we will
derive the relationship between m and V such that any values that satisfy this rela-
tionship can ensure that the job will complete by its deadline. In later sections, we
will use this condition to calculate specific values that can be used to get good per-
formance in the typical case.

Suppose that we are given values of m and V (with 0 < m ≤ M and 0 ≤ V ≤ D ),
and the run-time algorithm schedules the task on m processors using list scheduling.
If the task completes execution within V time units, correctness is preserved since
V ≤ D . It remains to determine sufficient conditions for correctness when the task
does not complete by time-instant V.

Figure 1 depicts the processors that are available for this task if it does not com-
plete execution within V time units, thereby resulting in the run-time scheduler allocat-
ing the additional (M − m) processors. (These processors may have been allocated to

2

4

1

2

5 3 5

5

5

5

11

4

1

3

1

3

4

5

6

12

Fig. 2   Illustrating the notions of worst-case work and span. Numbers in vertices represent the required
processing time of the vertex, while arrows denote precedence between vertices. The figure shows five
possible realizations of a DAG with worst-case work and span respectively equal to equal to W = 20
and L = 12 . We observe that the general notions of work and span generalize DAGs with very different
dependencies, possibly even fully independent vertices (fourth case) or just sequential work (fifth case).
The only requisite is that the work and span of the realization do not exceed the worst-case values

42	 Real-Time Systems (2023) 59:35–68

1 3

other, non real-time work over the period [0,V) or they may be put to sleep to conserve
energy). We will now derive conditions for ensuring that the task completes execution
by its deadline at time-instant D when executing upon these available processors, given
that its work parameter may be as large as W and its span parameter, L.

Let W ′ and L′ denote the work and span parameters of the amount of computation
of the parallel task that remains at time-instant V (these are strictly positive quanti-
ties since the task is assumed to not have completed execution by time-instant V). This
remaining computation executes upon M processors. By Eq. (1) the response time R of
the DAG is upper bounded by

Consider the time period until V in this execution and say that there were X time
steps where all m processors were busy and Y time steps where not all processors
are busy. Since the remaining span reduces on each time step when all processors
are not busy (and may reduce on the other time steps as well), we have L − L� ≥ Y  .
Therefore, X = V − Y ≥ V − (L − L�) . Hence the total amount of execution occur-
ring over [0,V) is at least

 from which it follows that

 Substituting Inequality (4) into (3), the response time upper bound becomes equal
to:

 Since m ≤ M , the upper bound of (5) is maximized when L′ is large as possible; i.e.,
L� = L (the physical interpretation is that the entire critical path executes after V).
Substituting L′ ← L into Expression (5), we get the following upper bound on the
response time:

Correctness is guaranteed by having the response time bound be ≤ D , that is:

(3)R ≤ V +

(
W � − L�

M
+ L�

)

Xm ≥

(
V − (L − L�)

)
m,

(4)W �
≤ W − V m + (L − L�)m

(5)
V +

(
W − V m + Lm − L� m − L�

M
+ L�

)

= V +
(
W − V m + Lm

M
+ L�

(
1 −

m + 1

M

))

V +
(
W − V m + Lm

M
+ L

(
1 −

m + 1

M

))

= V +
(W − V m − L

M
+ L

)

43

1 3

Real-Time Systems (2023) 59:35–68	

The condition of (6) is thus the sufficient schedulability condition we seek: values of
m and V satisfying (6) guarantee correctness.

4 � Resource allocation when typical parameter values are known

In this section, we will assume that we have some additional prior information—
namely, we know typical or nominal values of the work and span parameters—W

T
 and

L
T
 . These parameters bound the work and span values of a “typical” invocation of the

task and are derived via measurements or more optimistic analysis techniques. For the
remainder of this section only, the expectation is that these values exist and are known.
Later in Sect. 5, we will consider the case where the DAG does not exhibit any typical
behavior. It will be then our proposed logic that infers the values that are to be assigned
to the W

T
 and L

T
 parameters.

We saw in Sect. 3 that choosing the parameters m and V satisfying the condition
of (6) ensures the correctness of the scheduling algorithm. We will use the nominal
parameters to pick a particular pair of values from this space. Our goal here is effi-
ciency: we want to use the minimum amount of computational resources under the typ-
ical circumstances. Therefore, we want to minimize the product of m and V.

By Inequality (1), we know that upon m processors a typical invocation (an execu-
tion with work and span bounded by W

T
 and L

T
 respectively, will complete no later than (

(W
T
− L

T
)∕m + L

T

)
 . Hence, the assignment of

guarantees that if the DAG work and span do not exceed the typical values W
T
 and

L
T
 , respectively, only m cores are used and processing capacity is saved.
Equation 7 makes it clear that the two parameters in the product mV have an inverse

relationship—as m decreases, V increases. However, we can also see that due to the
additive L

T
 in the equation, we want to pick the minimum feasible m to minimize the

product. Recall that we must pick these values to satisfy Eq. (6) to guarantee feasibility
in the worst-case—therefore substituting this value V, we get

as a sufficient schedulability condition, which is equivalent to

(6)

(
V +

(W − V m − L

M
+ L

))
≤ D

⇔
(
V −

V m

M

)
≤

(
D −

W − L

M
− L

)

⇔ V
(
1 −

m

M

)
≤

(
D −

W − L

M
− L

)

(7)V ←
(W

T
− L

T

m
+ L

T

)

(8)
(W

T
− L

T

m
+ L

T

)(
1 −

m

M

)
≤

(
D −

W − L

M
− L

)

am2 + bm + c ≥ 0

44	 Real-Time Systems (2023) 59:35–68

1 3

with a, b, and c assigned the following values:

By finding the positive root of this second-degree polynomial, we find that the num-
ber of cores m assigned over [0, V] should be

and the corresponding value of V is set by Eq. (7). Algorithm 1 reports the pseudo-
code for assigning both m and V.

Algorithm 1 Computing values for m,V

Input:
(
W,L,WT , LT , D,m

)

Output: failure, or values for m, V
1 begin
2 if m < �(W − L)/(D − L)�

)
then

3 return (failure) /* The test of
Inequality (2) cannot guarantee that the deadline will be
met on m processors */

4 end
5 a ← LT // Precompute a
6 b ← M (D − (L+ LT))− (W − L) + (WT − LT) // Precompute b
7 c ← −M (WT − LT) // Precompute c

8 m ← −b+
√
b2 − 4 a c

)
/(2 a)

⌉
// Compute the number of cores

9 V ← LT + (WT − LT)/m // Compute the virtual deadline
10 return (m,V)
11 end

4.1 � Run‑time complexity

Algorithm 1 comprises straight-line code with no loops or recursive calls. Hence,
given as input the parameters specifying a task, it is evident that Algorithm 1 has
constant—Θ(1)—run-time.

In the rest of the paper, the typical parameters are assumed to be unknown.
We will be using the typical parameters of the DAG as an oracle to compare
approaches that ignore this additional information. Therefore, we will use m�� to
refer to the ideal allocation of cores of (9), which is aware of the typical param-
eters W

T
, L

T
.

a ← L
T

b ← M
(
D − (L + L

T
)
)
− (W − L) + (W

T
− L

T
)

c ← −M(W
T
− L

T
)

(9)m ←

�
−b +

√
b2 − 4 a c

2 a

�

45

1 3

Real-Time Systems (2023) 59:35–68	

5 � Observation‑based adaptation of resource allocation decisions

In the previous section, we had assumed that the typical work and span values
were known a priori and that these values remain constant as the system contin-
ues to execute. Under these assumptions, we were able to compute the optimal
allocation of (m,V) . A resource allocation scheme relying on “typical” param-
eters, however, may be very inefficient because typical parameters may not exist
due to the uncertain and variable nature of DAG workloads. In the following we
investigate runtime observation-based mechanisms to adapt the allocation of
(m,V) over multiple iterations, relaxing such assumptions.

5.1 � Response‑time based processor allocation

We now describe the general scheme for optimizing resources assigned to recur-
rent applications, while maintaining the guarantee that the application always
meets its deadline. Figure 3 illustrates the general scheme and the equations
of the dynamics of our monitoring-based decision-making process for control-
ling the allocation of resources to an application modeled as a recurrent multi-
threaded application. Similar feedback-based schemes can be found also in the
cloud computing literature literature (Lorido-Botran et al. 2014; Jennings and
Stadler 2015; Papadopoulos et al. 2016), where different autoscaling techniques
have been proposed. However, autoscaling techniques are usually not concerned
with (hard) real-time guarantees, and they are more focused on developing tech-
niques for workload prediction to perform prompt and proactive scaling.

In the equations in Fig. 3, we use the following terms

•	 �����(k) is the internal state of the decision-making algorithm at the k’th itera-
tion

•	 �������(k) is the monitored run-time measurements
•	 ��������(k) is the resource allocation at the k’th iteration

Decision Making
state(k)

Multi-Threaded
Application

runtime(k)resource(k)

{
state(k) = nextState state(k − 1), runtime(k − 1)

)

resource(k) = resourceAlloc state(k)
)

Fig. 3   A general diagram for the decision-making process and the corresponding dynamics

46	 Real-Time Systems (2023) 59:35–68

1 3

•	 ���������(…) describes the internal logic of the decision-making algorithm (in
the following, three different algorithms are proposed)

•	 �������������(…) determines the resource allocation for a given state of the
decision-making algorithm.

The above description is quite general. There are many possible run-time meas-
urements and many different types of resources to be controlled. In this paper, our
goal is to design a simple resource allocation scheme enabled by minimal moni-
toring in order to demonstrate the applicability of the general idea.

One could envision monitoring different aspects of the run-time behavior mod-
eled by �������(k) , for example

•	 the response time of the DAG;
•	 the total amount of computing capacity consumed by the DAG;
•	 the progress of the DAG execution along different paths, possibly monitored

by instrumenting the DAG code.

These are all reasonable solutions, and each offers a different level of detail. As a
general principle, the richer the monitored information is, the more efficient any
resource allocation decisions can be. Acquiring richer (and more fine-grained)
information may, however, require greater effort on the part of the system devel-
oper, or may not even be possible via the available interfaces. In addition, moni-
toring itself typically adds overheads and disturbs the system—therefore, heavy-
weight monitoring may provide additional information for too high a cost.

In this work, we make the following assumption of minimal monitoring.

Assumption 1  The only information detected by run-time monitoring is the response
time R of each job.

This assumption makes our approach very general, and applicable in a broad
variety of settings. Using the formalism introduced above, this assumption means
that

where R(k) denotes the response time of the kth job—the kth invocation of the DAG
task.

In addition, the amount of computing resources ��������(k) allocated to sched-
ule the DAG during an invocation may be set in several different ways. Examples
include:

•	 The number of processors/cores allocated;
•	 The frequency at which subsets of the cores are run;
•	 The fraction of computing capacity allocated (via resource reservation

schemes); and
•	 Various combinations of the above methods.

�������(k) = R(k),

47

1 3

Real-Time Systems (2023) 59:35–68	

Again, as we privilege simplicity and generality, we make the following assumption
regarding resource allocation.

Assumption 2  The computing capacity allocated to the DAG is controlled by set-
ting the number m of cores assigned over the interval [0,V) at every DAG release, in
accordance to the scheduling strategy of Sect. 3.

We note that many OSes do in fact give the user the ability to specify the number
of cores of a multi-core platform to assign to individual multi-threaded applications.
E.g., one way of doing this on the command line in Linux is by the taskset com-
mand or by using the sched_setaffinity(...) system call. Neither method
requires superuser privileges.

In this context, the choice of the number of cores m implies the value of the vir-
tual deadline V. In fact, solving the Inequality (6) for V, we obtain that

showing that the choice is coupled, as m upper bounds the choice of V. Moreover, as
the main objective of the approach is to minimize the amount of allocated resource
for the largest period of time, in the following we will assume that Inequality (10)
will hold with the equal sign, and it will be indicated in the following as V(m)—see
Eq. (12). In such a way, the only decision variable is m, and the virtual deadline
V(m) is a direct function of m. In summary, our proposed resource allocation scheme
labeled ��������(k) , can be modeled by

here m(k) denotes the number of processors initially allocated to the k’th job, and
V(m(k)) is determined by m(k) via Eq. (12).

Remark 1  The virtual deadline V(m) is a non-decreasing function of m.

Proof  For m < M , the virtual deadline is computed as:

Computing the derivative of V with respect to m, we get

and then

which is true due to the schedulability condition of (2). 	� ◻

(10)V ≤
M(D − L) − (W − L)

M − m

(11)��������(k) = m(k),

(12)V(m) =
M(D − L) − (W − L)

M − m

dV(m)

dm
=

M(D − L) − (W − L)

(M − m)2

dV(m)

dm
≥ 0 ⇔ M ≥

W − L

D − L

48	 Real-Time Systems (2023) 59:35–68

1 3

Finally, we assume that the assignment of a larger amount of processing capacity
leads to a reduction of the response time.

Algorithm 2 Binary search for core allocation.
Input: k, R(k), m(k), hi, lo
Output: m(k + 1), hi, lo

1 begin
2 if R(k) > V (m(k)) then
3 lo = m(k)
4 end
5 if R(k) < V (m(k)) then
6 hi = m(k)
7 end
8 m(k + 1) = �(hi+ lo)/2�
9 end

Assumption 3  If m < m�� cores are allocated, then the completion time will exceed
the virtual deadline, i.e., R > V(m) . If m ≥ m�� , then the completion time will be
below the virtual deadline, i.e., R ≤ V(m) , and the completion time is a non-increas-
ing function of the number of assigned cores.

We note that, theoretically, this assumption holds for carefully designed versions of
list scheduling (Graham 1969) on preemptive processors. It also holds in practice for
most compute-bound programs, though it may not hold for memory-bound applications
due to locality, cache, and memory bandwidth issues. For the purposes of this paper,
we make this assumption and argue that our strategies can be reasonably expected to
reduce resource waste. The correctness guarantee (the fact that we will meet deadlines)
does not depend on this assumption.

5.2 � Unknown and constant typical workload

In this section, we assume that although the values of the typical work and span param-
eters, W

T
 and L

T
 , are not necessarily known to the run-time algorithm that is responsible

for allocating computing resources, these values do exist and are constant over time.
We use a relatively simple binary search method to calculate m(k + 1) given the values
of m(k) and R(k), which is sketched in Algorithm 2. Note that the algorithm is repeated
at every time k with the new measurement R(k). As internal state, the algorithm main-
tains two values

where lo(k) < hi(k) for all k and these are initialized to 0 and m, respectively. The
algorithm tries to converge to the ideal number of processors m = m�� by doing a

�����(k) =
(
lo(k), hi(k)

)
,

49

1 3

Real-Time Systems (2023) 59:35–68	

binary search between lo(k) and hi(k) and by changing the corresponding values of
lo(k) and hi(k) after each iteration. For any job k, we always assign

which corresponds to the function �������������
(
�����(k)

)
 in the generic skeleton of

resource management scheme of Fig. 3.

Lemma 1  The binary search algorithm converges.

Proof  The invariant we maintain is that lo(k) < m�� ≤ hi(k) in all iterations. This
is clearly true in the beginning since we set lo = 0 and hi = M . Recall Assump-
tion 3 where we know that if R(k) > V(k) , then m(k) < m�� . In this case, we can
safely increase increase lo(k + 1) to m(k) . Similarly, if R(k) ≤ V(k) , we know that
m(k) ≥ m��(k) . Therefore, we can safely set hi(k + 1) = m(k).

As in the usual binary search, in each iteration (until convergence), either the hi
value reduces or the lo value increases. Therefore, the algorithm will converge when
lo = hi − 1 . At this time, m = hi and will not change further. 	� ◻

5.3 � Unknown and time‑varying workload

In Sect. 5.2 above we had assumed that the values of W
T
 and L

T
 , although unknown,

remain constant. We now consider a further generalization: the values of W
T
 and L

T

may change over time. We propose two mechanisms to deal with such an unknown
and time-varying DAG workload. The first (Sect. 5.3.1) is based on binary-expo-
nential search (Bentley and Yao 1976) and extends the previously described binary
search algorithm. The second (Sect. 5.3.2) is a control-based approach.

5.3.1 � Binary‑exponential search

We now consider the situation where the underlying computation may change
from one job to the next. In particular, consider the case where the binary search
has converged such that lo(k) + 1 = m(k) = hi(k) and then the underlying compu-
tation changes so that R(k) > V(k) . Now we clearly need more processors and the
current hi(k) is no longer the correct upper bound on the number of processors we
need. Therefore, we must increase hi(k + 1) . Here we use the idea behind exponen-
tial search (Bentley and Yao 1976). We increase hi(k + 1) by a small increment (say
hi(k + 1) = hi(k) + 2 ) to begin with. This causes a small increase in m(k + 1) . If we
still have too few processors, we further increase hi(k) , this time by 4, doubling the
increase with each iteration until we reach the point where we have a sufficiently
large upper bound. At this point, again lo(k) and hi(k) are good upper and lower
bounds and the normal binary search allows us to converge. In Algorithm 3, line 3
shows the condition under which we increase hi(k + 1) . While this condition is cor-
rect, it may misfire and may increase hi even when it need not do so—for instance,

m(k) =

⌈
lo(k) + hi(k)

2

⌉
,

50	 Real-Time Systems (2023) 59:35–68

1 3

it may be the case that m(k) < hi(k)—therefore, R(k) which is the response time
with m(k) processors is larger than V(hi(k)) , but the response time with hi(k) proces-
sors (which may be smaller) would not exceed V(hi(k)) and therefore hi(k) is a good
upper bound and need not be increased. In our actual code, we use a slightly better
condition which is less likely to misfire. However, this problem can not be perfectly
solved since we can not precisely know the response time with hi(k) processors. This
problem is related to the observability problem described in the previous section,
albeit it is not identical.

A similar exponential change must be made to lo when the response time of the
underlying computation decreases. However, this is even more treacherous. Imagine
that we have converged to lo(k) + 1 = m(k) = hi(k) and we observe that R(k) < V(k) .
By symmetry from the above argument, one would imagine that we should decrease
lo(k + 1) to decrease m(k + 1) . However, recall that we want to compute the smallest
m(k + 1) such that the response time R(k + 1) is at most V(m(k + 1)) . Since R(k) may
not (in fact, it is unlikely to) exactly equal a virtual deadline corresponding to any
particular number of processors, R(k) is generally likely to be smaller than V(m(k))
even when we have the correct number of processors. Therefore, if we always
decrease m when R(k) < V(k) , the number of processors assigned will oscillate
between the “correct value” (where R < V  ) and one fewer processor (where R > V  ).
Therefore, we shouldn’t necessarily decrease the number of processors if the virtual
deadline is larger than the response time. To prevent this, on Line 9, we first check if
R(k) < V(m(k) − 1) . If R(k) is between V(m − 1) and V(m) , then we can be sure that
m was the correct allocation and we needn’t decrease lo(k + 1).

Algorithm 3 Binary-exponential search for core allocation.
Input: k, R(k), m(k), hi, lo
Output: m(k + 1), hi, lo

1 begin
2 if R(k) > V (m(k)) then
3 if m(k) == hi or R(k) > V (hi) then
4 Increase hi
5 end
6 lo = m(k)
7 end
8 if R(k) < V (m(k)) then
9 if R(k) < V (m(k)− 1) then

10 if lo == m(k)− 1 or R(k) < V (lo) then
11 Decrease lo
12 end
13 hi = m(k)
14 end
15 m(k + 1) = �(hi+ lo)/2�
16 end
17 end

51

1 3

Real-Time Systems (2023) 59:35–68	

This does not completely solve the problem, however. In particular, in some cases,
it is possible that the response time R(m) < V(m − 1) while R(m − 1) > V(m − 1) . In
this case, the correct allocation is m. However, with a single observation, no algorithm
can distinguish this case from the case where R(m − 1) > V(m − 1) . Therefore, for
such computations, our algorithm does oscillate between m and m − 1 . It is important
to note that this oscillation can not be prevented when we make a single response time
measurement. Furthermore, this oscillation automatically solves the observability prob-
lem described in Sect. 5.4. In particular, say that R(k) > V(m(k) − 1) . In this case, we
can be sure that the response time with m(k) − 1 processors (which we did not observe)
will also be larger than V(m(k) − 1) due to the non-decreasing property of response
time. Therefore, it is not necessary to check with one fewer processor. On the other
hand, if the response time R(k) > V(m(k) − 1) , then this algorithm will automatically
decrease lo(k + 1) and therefore, decrease m(k + 1) compared to m(k) . As mentioned in
Sect. 5.4, this measurement is enough to check if we are using resources inefficiently
and if so, the algorithm will converge to a smaller allocation.

5.3.2 � Integral controller

A natural choice to explore for the decision-making problem is a control-based
approach. Control theory has been extensively used in different domains for runtime
adaptation.

The main challenges in applying a control-based solution in this context are:

1.	 The difficulty in determining a model of the system to be controlled. The relation
between the amount of allocated resource (“��������(k) ” in Fig. 3) and the runt-
ime behavior (“�������(k) ” in Fig. 3) may be unknown or depend on unknown/
unavailable internal state (e.g. cache content)

2.	 The definition of an appropriate set point in terms of resource allocation to be
reached, and

3.	 The presence of integer variables, while normally feedback control loops work
better with real-valued variables.

All three problems are intertwined and need to be addressed jointly.
In a typical control structure, the set point is a well-defined concept that is the

desired behavior of the system. In this specific application, the ideal resource alloca-
tion m�� is unknown as it depends on the unknown relationship between the resource
allocation and the runtime behavior. Therefore, computing such quantity would require
knowing exactly the function R(m) for all the possible values of m and for all the time
instants—since such function can also vary over time. The control problem can be then
formulated as an approximation of the described problem, by measuring the response
time of the previous run R(m(k − 1)) , and computing the approximated desired value of
cores at the current time instant as:

(13)msp(k) ∶= argminiV(i) ≥ R(m(k − 1))

52	 Real-Time Systems (2023) 59:35–68

1 3

(Here, the superscript “sp” denotes “set point.”) If this is applied in an iterative way
over time, R(m(k − 1)) is the result of the allocation m(k − 1) , R(m(k)) is the result of
the allocation m(k) , and so on.

Recall that Remark 1 states that the virtual deadline V is a non-decreasing
function of m and that Assumption 3 states that the response time R decreases
with increasing values of m when R ≤ V  . Therefore, if the allocation of m(k) is
too low, the resulting response time will be R(k) > V  , and the controller will
increase m. On the other hand, if R(k) ≤ V the controller will try to make the two
quantities as close as possible, and it will decrease m.

The control strategy can be defined as follows. The tracking error e can be
defined as the discrepancy between msp(k) and the old core allocation as:

The smooth adaptation, can be achieved with an integral control structure:

where K ∈ (0, 1] , and the symbol m̃(k) is used to indicate the non-integer number
of cores. The resulting number of cores must be saturated between a minimum and
maximum value as

Furthermore, whereas the tracking error e(k) is generally an integer, the resulting
number of cores is not necessarily an integer due to the multiplication by the real
constant K. The actual number of cores is therefore rounded:

Summarizing, the internal state of the control logic is �����(k) = m̃(k) , while the
���������(⋅, ⋅) function is the composition of Eqs. (14)–(16), and the �������������(⋅)
is (17).

The resulting control formulation is presented in Algorithm 4. The formulation
has the following advantages:

1.	 it provides a guarantee that the control strategy has a stable attractor in e(⋅) = 0 ,
meaning that it guarantees convergence either to zero tracking error or to a stable
limit cycle around e(⋅) = 0;

2.	 in the case that the required number of cores is exceeding the saturation values,
Eq. (16) avoids the accumulation of the error and then it allows a prompt reaction
as soon as the required number of cores becomes again within the saturation limits
(the so-called windup effect Åström and Murray 2021); and

3.	 having selected the real-valued number of cores m̃ as the state of the controller,
it accumulates the quantity Ke(k) over multiple iterations, causing the computed
number of cores m̃ to smoothly change and eventually cross the threshold for the
rounding. This enables the exploration of a different number of cores, which may
be needed to possibly infer information about the resource usage, not directly

(14)e(k) = msp(k) − m(k − 1)

(15)m̃(k) = m̃(k − 1) + Ke(k)

(16)m̃(k) = min(max(m̃(k), 1),M)

(17)m(k) = round(m̃(k)).

53

1 3

Real-Time Systems (2023) 59:35–68	

available from the monitoring of the response time only (as previously illustrated
in Sect. 5.4).

Algorithm 4 Integral Controller for core allocation.
Input: k, R(k), m̃(k − 1), K
Output: m(k + 1)

1 begin
2 msp(k) := argmini V (i) ≥ R(k) // Estimate the target allocation
3 e(k) = msp(k)−m(k − 1) // Estimate the allocation error
4 m̃(k) = m̃(k − 1) +Ke(k) // Compute the control action
5 m̃(k) = min(max(m̃(k), 1),M) // Saturate the control
6 m(k) = round(m̃(k)) // Round the control action

7 end

5.4 � Limits of response‑time‑based resource allocation

As explained above, the response time is perhaps the simplest and most easily moni-
tored aspect of run-time execution. Using this aspect as the sole basis for resource
allocation, however, poses some challenges. This potential issue is illustrated by an
example in Fig. 4.

Let us assume that we have a DAG composed of the six vertices labeled A, B, C,
D, E, and F. The precedence constraints among these six vertices are illustrated in
Fig. 4 (on the left). In this example, the completion of A enables the execution of B,
C, D, and E. The last vertex F may execute only after the preceding vertices B, C, D,
and E complete. Two scenarios are considered: the execution of the DAG workload
upon 4 cores (upper schedule) and the execution of the same workload upon 3 cores
(lower schedule). In both scenarios, the DAG releases three jobs at instants 0, 7, and
14 (the job releases are represented by thick arrows pointing up). The variability of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4
co

re
s

3
co

re
s

A3 E3

D3

C3

F3

B3

A3 F3E3

D3

C3

B3

B

C

D

E

A F

B2

C2

D2

E2A2 F2

C2

D2

E2 B2 F2A2F1

D1

B1E1A1

C1

E1A1

D1

F1

C1

B1

Fig. 4   Example of DAG schedule over 4 and 3 cores. The processing time labeled by “XY” represents
the schedule of the “X” vertex of the “Y” job released by the DAG. In the schedule over 4 cores, it
can be observed that different processing times of vertices may lead to different amounts of wasted
resources. Such a difference, however, cannot be detected by response time which has the same value of
R(1) = R(2) = R(3) = 4 for all three jobs

54	 Real-Time Systems (2023) 59:35–68

1 3

the execution times of each vertex is represented by different durations of each ver-
tex among the three jobs shown in the schedules. The two scenarios show the sched-
ules over 4 and 3 cores respectively of the same three jobs with the same duration of
the vertex execution time.

This example shows the implication and the potential issues of using only the
response time to allocate the “right” amount of processing resources. When the
three jobs of the example are scheduled upon 4 cores, the response times R(1), R(2),
and R(3) of the three jobs are all equal to 4. Hence, any resource allocation policy
which uses the response time only to determine the amount of allocated resources,
cannot detect any difference in resource usage of the three jobs. The three jobs, how-
ever, use the 4 allocated cores very differently. In the example of Fig. 4, the first
job uses much less processing than the other two. Of course, this could be detected
by monitoring the amount of processing actually used. The API for monitoring this
quantity, however, is not as simply available as the capacity to know the job response
time. For this reason, if we stick with Assumption 1, some alternate way to detect an
excessive amount of unused resources is needed.

In Fig. 4, the bottom diagram shows the schedule of the very same jobs when
scheduled upon 3 cores. When scheduling on fewer cores, in fact, a job that was
wasting a large amount of capacity may be capable of executing upon fewer cores
without affecting the response time. This is the case of the first job, which has the
same response time R(1) = 4 on both 4 and 3 cores. If instead, the job schedule is
tight, the assignment of fewer cores may lead to an increase in the response time. In
the example of Fig. 4, this is happening to both the second job (with a response time
R(2) increasing to 5) and the third one (with a response time R(3) increasing from 4
to 6 when scheduled over 3 instead of 4 cores).

This example illustrates that simply observing the response time on a certain
number of cores and making a resource allocation decision based on this observa-
tion may lead to inefficient use of resources. Hence, occasionally “exploring” the
option of scheduling the DAG on fewer cores may lead to the detection of unused
resources.

6 � Comparative evaluation

In this section, we evaluate the effectiveness of the proposed resource management
strategies, under different conditions.

6.1 � Assessing the waste of resource

To quantify and compare the effectiveness of the different strategies, we assess
how the proposed runtime adaptation strategies—unaware of the typical execu-
tion parameters—compare with the “ideal allocation” m�� (with the corresponding
response time R��)—obtained assuming that the typical execution parameters are
known. We define the following performance metrics.

55

1 3

Real-Time Systems (2023) 59:35–68	

1.	 The allocation error � assesses for every time instant k how far the allocated cores
m(k) are from the ideal m�� (computed according to Algorithm 1). It is computed
as:

 No distinction is made if the resource is over- or under-provisioned.
2.	 The waste of resource w assesses the amount of resource wasted due to a wrong

allocation. It is computed as follows:

 where R�� is the response time that is obtained with the ideal allocation of m��
cores, and V(m��).

While the metric � takes into account the instantaneous difference in the number of
allocated cores with the ideal number (regardless of the time such a difference lasts),
the metric w instead measures the amount of wasted processing capacity due to a
wrong allocation. Note that both metrics are defined per time instant k, as the ideal
allocation may vary over time. The ideal allocation, computed as per Algorithm 1, is
used as an oracle since it assumes that the typical execution parameters are known.

For both metrics, the lower the value, the better, with a perfect allocation having
both metrics equal to 0.

Note that the ideal allocation can vary over time, based on the DAG that is exe-
cuting. Such quantities are usually not possible to know in advance unless the struc-
ture of the DAG is known. The evaluation of the presented approaches is therefore
conducted in simulation to fully control the variation of the structure, and to have
full access to the required information to compute the ideal allocation. Note that the
DAG structure information is used only for simulation purposes, but it is not com-
municated to the decision-making strategies.

6.2 � Simulation results

To assess the quality of the runtime decision-making strategies we consider a Paral-
lel Synchronous DAG (PSDAG) (Saifullah et al. 2011; Nelissen et al. 2012), simu-
lated as described in “Appendix A”. For the simulations, we selected, M = 24 cores,
and the controller gain K = 0.5.

We conducted two types of simulation campaigns: (i) assuming that the PSDAG
structure never changes, and therefore that there is a constant ideal allocation, and
(ii) assuming that the PSDAG structure can change over time, and therefore that the
ideal allocation may continuously change.

6.2.1 � Constant typical execution parameters

In the first set of experiments, we consider that the typical execution parame-
ters are constant but unknown. In Sect. 5.2, a Binary Search (BS) approach was

(18)�(k) = |m(k) − m��(k)|

w(k) =

{
m(k)R(k) − m��(k)R��(k), if R(k) ≤ V(k),

m(k)V(k) + M(R(k) − V(k)) − m��(k)R��(k), if R(k) > V(k),

56	 Real-Time Systems (2023) 59:35–68

1 3

presented, to deal with this scenario. For the sake of completeness, we include in
the analysis the results obtained by using the Integral Controller (IC) presented in
Sect. 5.3.2, as it can also be used in the case of constant typical execution param-
eters. Both algorithms are initialized to initially allocate ⌈M∕2⌉ cores.

Two examples of the obtained results are presented in Fig. 5. In all the graphs,
the black dashed lines indicate the ideal resource allocation m�� (with the cor-
responding virtual deadline V�� ∶= V(m��) ). The solid blue lines indicate the
resource allocated m by the algorithm and the corresponding virtual deadline V.
The response time R resulting from the resource allocation is indicated with the
solid red line. When plotting the number of cores (“#Cores”) for the BS algo-
rithm, a green area indicates how the hi and lo values are varying.

The left and the right columns of Fig. 5 are associated with two distinct reali-
zations of the PSDAG, while the top part shows the results obtained by the BS
algorithm, and the bottom part shows the ones obtained by the IC algorithm.

0 2 4 6 8

20

40

60

T
im

e
(s
)

Binary Search

R V Vid

0 2 4 6 8

50

100

150

200
Binary Search

R V Vid

0 2 4 6 8
0

10

20

k

#
C
or
es

hi-lo m mid

0 2 4 6 8
0

10

20

k

hi-lo m mid

0 2 4 6 8

20

40

60

T
im

e
(s
)

Integral Control

R V Vid

0 2 4 6 8

50

100

150

200
Integral Control

R V Vid

0 2 4 6 8
0

10

20

k

#
C
or
es

m mid

0 2 4 6 8
0

10

20

k

m mid

Fig. 5   Numerical results of feedback-based approaches. The binary search is presented on the top part
of the graph, and the Integral Control is presented on the bottom part of the graph. The ideal values are
indicated with a dashed line (Color figure online)

57

1 3

Real-Time Systems (2023) 59:35–68	

The PSDAG realization presented in the left column shows that both algo-
rithms manage to reach the ideal allocation (indicated with the dashed line), but
the BS approach converges in fewer steps than the IC.

On the other hand, with the PSDAG realization presented in the right column, the
IC results in a faster convergence to the ideal allocation.

6.2.2 � Discussion on the simulation campaign

To better understand the obtainable performance of the proposed algorithms, we
conducted a simulation campaign of 100 randomized (and seeded) experiments,
where the PSDAG structure does not change, and the typical execution parameters
are constant (additional details on the simulation of the PSDAG and the randomized
quantities are included in “Appendix A”). Therefore, we can analyze the obtained
performance more systematically.

Table 1 shows the average and standard deviation computed for the allocation
error and waste of resource over the whole simulation campaign.

Comparing the averages to assess which method behaves better is typically
not enough. To this end, a t-test (also known as Student test) (Witte and Witte
2017, Chapter 14) can be conducted to check if there is statistical evidence that the
two averages are actually different, or if the difference is due to the chance of having
extracted conducted an unlucky set of experiment, while in fact, they are statistically
comparable.

More specifically, the null-hypothesis of the t-test is H0 : “the two methods have
the same average”, while the alternative hypothesis H1 is that “the two methods have
different averages”. The output of a t-test is the so-called “probability value” (or
p-value), i.e., the probability of having observed the collected data assuming that the
null-hypothesis is correct. Hence, having low p-values (typically lower than 0.05 or
0.01) is an indication that the alternative hypothesis is correct.

We conducted a paired t-test for the two metrics to understand if there is statis-
tical evidence that one method is overall behaving better than the other. Since in
both metrics, the average of the BS is lower than the IC, we performed a right-tailed
t-test, where the alternative hypothesis is H1 : “The average of the IC is higher than
the average of the BS”. The last column of Table 1 shows the obtained p values.
While for the allocation error, the p-value is quite large—hence it is not possible
to conclude that one method is statistically better than the other—, for the waste of
resource metric, the p-value is less than 10−5 indicating that there is enough experi-
mental evidence to conclude that the BS has an average better performance than the
IC.

Table 1   Aggregate metrics and
results of the t test for constant
typical execution parameters

BS [avg. ± std.] IC [avg. ± std.] p value

Allocation error 1.05 ± 2.26 1.15 ± 2.24 0.3254
Waste of resource 12.49 ± 37.03 13.23 ± 38.65 < 10−5

58	 Real-Time Systems (2023) 59:35–68

1 3

6.2.3 � Time‑Varying Typical Execution Parameters

Notice that, in the case of time-varying typical execution parameters, it is in gen-
eral impossible to get the two considered metrics to be equal to 0 for all the time
instants. This is due to at least two reasons: (i) initially, the allocation must be
done without any information on the response time (which is true even in the con-
stant case), and (ii) even if the ideal allocation is reached for a given time instant,
the structure of the DAG can change over time, hence changing also the ideal
allocation; an observation-based decision-making strategy needs to either detect a
variation in the response time or to go into an exploration phase to reach the new
ideal allocation.

We conducted a simulation campaign of 500 runs, each composed of 100
rounds, for the Binary Exponential (BE) algorithm, and for the Integral Control
(IC) algorithm.

Figures 6, 7 and 8 show three examples of runs for the Binary Exponential
(BE), the two graphs on top in each figure, and for the Integral Control (IC), the
two graphs on the bottom. In each figure, the same realization of the PSDAG is
handled by both BE and IC algorithms.

The figures, follow an analogous structure, and color-coding of Fig. 5, with the
difference that in this set of experiments, the BE algorithm is used instead of the
BS.

6.2.3.1  Experiment 1 (E1)  Figure 6 presents an experiment where BE has an over-
all qualitatively better behavior than the IC. In particular, the IC oscillates around
the ideal allocation, and the oscillation has a large amplitude, occurring every time
m�� decreases. The BE approach, on the other hand, manages to follow the ideal
allocation. In the experiment it is possible to appreciate the exploration phase of
BE, for example in the time interval k ∈ [50, 60] , when, even though the allocation
converged to the ideal one, BE tries to decrease the allocated cores, exploring solu-
tions with less amount of resources.

6.2.3.2  Experiment 2 (E2)  Figure 7 shows an experiment where the IC exhibits a
better qualitative behavior than the BE. This is visible during the transients, where
the IC converges faster to the ideal allocation, while the BE has a slower conver-
gence rate. This is especially true when the allocated cores must be decreased.

6.2.3.3  Experiment 3 (E3)  Figure 8 shows an experiment where both approaches
present an oscillatory behavior. Overall, the IC follows the ideal allocation but
continuously oscillating around the ideal allocation. This phenomenon is mostly
induced by the rounding in the algorithm, which does not allow the convergence
towards a single equilibrium point, but rather to a limit cycle.

On the other hand, the BE suffers from a joint effect of exploration and win-
dow widening that significantly impacts the overall performance.

59

1 3

Real-Time Systems (2023) 59:35–68	

6.2.3.4  Evaluation of the overall campaign  To assess the performance of the two
methods over the whole simulation campaign, we computed for all the experiments
and for all the rounds the instantaneous allocation error � and the resource waste w.
Figures 9 and 10 show the distribution of the computed allocation error and waste
of resource. In particular, the top graphs of the two figures show the distribution
of the occurrences of the respective metric—note that the vertical axis is logarith-
mic—while the bottom graphs show the computed Empirical Cumulative Distribu-
tion Function (ECDF) of the two metrics—note that the vertical axis does not start
from 0 to better show the convergence of the ECDFs towards 1.

The average performance (avg.) and the standard deviation (std.) for the two met-
rics are reported in Table 2.

We conducted a paired t-test for the two metrics to understand if there is statisti-
cal evidence that one method is overall behaving better than the other. Since in both

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Binary Exponential

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
or
es

hi-lo m mid

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Integral Control

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
or
es

m mid

Fig. 6   Experiment example 1. In this scenario, the Binary Exponential has an overall better behav-
ior than the Integral Control, where the Integral Controller exhibits large oscillations in the allocated
resource

60	 Real-Time Systems (2023) 59:35–68

1 3

metrics, the average of the Integral Control is lower than the Binary Exponential, we
performed a right-tailed t-test, where the alternative hypothesis is H1 : “The average
of the Binary Exponential is higher than the average of the Integral Control”. The
last column of Table 2 shows the obtained p-values. For both metrics, the p value
is less than 10−5 indicating that there is enough experimental evidence to conclude
that the IC has an average better performance than the BE when the typical execu-
tion parameters are time-varying. This is despite potential oscillations like the ones
presented in Figs. 6 and 8.

0 10 20 30 40 50 60 70 80 90

20

40

60

T
im

e
(s
)

Binary Exponential

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
or
es

hi-lo m mid

0 10 20 30 40 50 60 70 80 90

20

40

60

T
im

e
(s
)

Integral Control

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
or
es

m mid

Fig. 7   Experiment example 2. In this scenario, the Integral Control has an overall better behavior than
the Binary Exponential

61

1 3

Real-Time Systems (2023) 59:35–68	

7 � Related work

As mentioned in Sect. 1, the real-time community has recently been devoting a
significant amount of effort to obtaining more resource-efficient implementations
of safety-critical systems that, for reasons of safety, need to have their run-time
behavior characterized using very conservative models. Noteworthy initiatives in
this regard include those centered on probabilistic analysis (Bernat et al. 2002;
Cucu-Grosjean et al. 2012), mixed-criticality analysis (Vestal 2007; Burns and
Davis 2017) and typical-case analysis (Quinton et al. 2012; Agrawal et al. 2020).
We have pointed out in Sect. 1 that these forms of analyses all require addi-
tional modeling of the run-time behavior of the system under consideration; it is
not always possible to devise such additional models (and even when possible,
obtaining these models may require significant effort on the part of the system
developer.)

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Binary Exponential

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
or
es

hi-lo m mid

0 10 20 30 40 50 60 70 80 90

20

40

T
im

e
(s
)

Integral Control

R V Vid

0 10 20 30 40 50 60 70 80 90
0

10

20

k

#
C
or
es

m mid

Fig. 8   Experiment example 3. In this scenario, the Binary Exponential and the Integral Control exhibit a
comparable performance

62	 Real-Time Systems (2023) 59:35–68

1 3

0 2 4 6 8 10 12

101

103

105
Fr

eq
ue

nc
y

Binary Exponential
Integral Control

0 2 4 6 8 10 12
0.7

0.8

0.9

1

Allocation Error (# Cores)

E
C
D
F

Binary Exponential
Integral Control

Fig. 9   Distribution of the core allocation errors, and the corresponding Empirical Cumulative Distribu-
tion Function (ECDF)

0 50 100 150 200 250 300 350 400 450 500100

101

102

103

104

105

Fr
eq

ue
nc

y

Binary Exponential
Integral Control

0 50 100 150 200 250 300 350 400 450 500
0.8

0.85

0.9

0.95

1

Waste of resource

E
C
D
F

Binary Exponential
Integral Control

Fig. 10   Distribution of the waste of resource, and the corresponding Empirical Cumulative Distribution
Function (ECDF)

63

1 3

Real-Time Systems (2023) 59:35–68	

The approach to DAG-scheduling that is advocated in this paper, of optimisti-
cally assigning a low number of processors under the expectation that execution will
complete by a specified intermediate deadline and increasing the number of proces-
sors assigned if this fails to happen, is conceptually close to the approach presented
in Agrawal and Baruah (2018). Under the approach of Agrawal and Baruah (2018),
the system developer is tasked with the responsibility of specifying two values for
the work and the span parameter of the DAG: a conservative bound that is required
to hold under all circumstances (as in our model—Sect. 2.3), and a “typical” bound
that is assumed to hold under most, though not necessarily all, circumstances.

Our proposed scheme, presented in Sect. 5, borrows from Agrawal and Baruah
(2018) the idea of assigning a lower number of cores before a virtual deadline.
However, we do not exploit any other characterization of the workload nor any
code instrumentation. We take our decision based on the completion time only. The
idea of taking scheduling decisions based on runtime monitoring is not new. Sev-
eral authors proposed feedback scheduling to adjust the amount of resource based
on runtime monitoring (Lu et al. 1999; Abeni et al. 2002; Cervin et al. 2002). In
the context of multiprocessor scheduling, Block et al. (2008) proposed a task re-
weighting to respond to runtime variation in the demand, but still, the workload was
sequential. Feedback-based scheduling of workload with internal parallelism was
proposed in Bini et al. (2011), however, all cores were allocated to all applications.

To the best of our knowledge, our work is the first proposing to assign the number
of cores based on the response time of the monitored workload.

8 � Conclusions

To be able to establish the correctness of their run-time behavior at the required very
high levels of assurance, safety-critical systems are generally specified using models
that make very pessimistic assumptions regarding their resource usage during run-
time. Directly implementing these models can result in inefficient system implemen-
tations—implementations that exhibit very poor run-time resource utilization. Prior
approaches that have been proposed to enhance the efficiency of such implementa-
tions have required that additional (less conservative) characterization of run-time
behavior also be provided by the system developer; even when feasible, doing so
places an additional burden on the system developer.

In this work, we have proposed a feedback-based approach to enhancing run-
time efficiency in the absence of additional characterization for recurrent systems:
systems whose run-time workload tends to be highly repetitive. (We note that such

Table 2   Aggregate metrics and
results of the t-test

BE [avg. ± std.] IC [avg. ± std.] p value

Allocation error 0.48 ± 1.16 0.44 ± 1.12 < 10−7

Waste of resource 15.72 ± 42.87 14.51 ± 41.66 < 10−5

64	 Real-Time Systems (2023) 59:35–68

1 3

workloads constitute a significant fraction of the overall workloads of many safety-
critical systems.)

The proposed approach is based on the notion of virtual deadline, which reduces
the usage of resources while guaranteeing meeting the deadline, even in the worst-
case scenario. Such a mechanism has been investigated under different assumptions,
including the case where the typical parameter values are known (and constant),
which leads to a solution that can be computed offline, to the case where the typi-
cal parameters are unknown (and time-varying), that leads to a run-time adaptation
solution. More specifically, in the latter case, our approach monitors the response
time of each occurrence of the workload and uses the monitored value to assign
resources for the next occurrence. We have developed two different algorithms for
such resource assignment, one based on algorithm-design principles and the other,
on principles of control theory, and have applied these algorithms to an example
application modeled as a DAG executing upon a multiprocessor platform. We have
shown that both methods assure safety under worst-case conditions and that neither
dominates the other with regards to the efficiency of resource utilization: there are
scenarios in which each approach is able to make more efficient use of comput-
ing resources than the other. Based on the statistical evaluation, the control-based
approach performs statistically better than the binary exponential, and therefore it
can be preferred.

Future work will be devoted to the investigation of more advanced strategies to
further reduce the waste of resources. One interesting direction is the development
of runtime monitoring mechanisms, that can detect more easily over-provisioning
situations, e.g., by measuring additional parameters other than the response time.
Another interesting direction is the development of learning techniques to automati-
cally identify possible workload patterns—similarly to what is done in autoscaling
techniques for cloud computing applications—to proactively allocate resources,
rather than reacting to already experienced measurements.

Appendix A: Parallel synchronous DAGs simulation

The evaluation was conducted considering the execution of Parallel Synchronous
DAGs (PSDAGs) (Saifullah et al. 2011; Nelissen et al. 2012). The PSDAG structure
is a sequence of fully parallel threads interleaved with a sequence of synchronization
barriers (as illustrated in Fig. 11). They represent well very typical programming
structures, such as a sequence of for loops.

Fig. 11   An example of a parallel
synchronous DAG with N = 5
segments

65

1 3

Real-Time Systems (2023) 59:35–68	

To emulate a varying structure of a PSDAG, we initialized M ∈ {1,… , 5} dif-
ferent structures of PSDAGs. For every PSDAG, we selected:

•	 N ∈ {2,… , 20} segments.
•	 For each segment i ∈ {1,… ,N}:

–	 �i ∈ {1,… , 10} is the duration of segment i.
–	 �i ∈ {1,… ,M} level of parallelism of segment i.

The variables M and, for each PSDAG, N, �i, and �i are selected randomly within
the specified ranges, according to a uniform distribution.

With a period T, we switch between the M PSDAGs. The worst-case work and
span are computed as the maximum work and span among all the M PSDAGs,
multiplied by a padding factor � ≥ 1 . � close to 1 represents a worst-case close
to actual runtime values. On the other hand, large values of � are associated with
very conservative worst-case estimates. In the experiments, � = 1.2.

For every allocation round k, the response time is calculated based on the cur-
rent PSDAG that is considered to be active. More specifically, considering a given
allocation of cores m and the corresponding virtual deadline V(m), the response
time is calculated as the sum of three components:

where R��� is the response time to execute the amount of computation with m cores
until the virtual deadline V(m), R��� is the extra response time of the (i��� + 1)-th seg-
ment which experiences the switch to M cores at V(m), and R���� is the response time
to execute the final amount of computation after the virtual deadline V with M cores.
Formally R���,R���, and R���� are defined as follows:

Funding  Open access funding provided by Mälardalen University. This study was supported by Veten-
skapsrådet (Grant No. 2020-05094) and Stiftelsen för Kunskaps- och Kompetensutveckling (Grant Nos.
20190034 and 20190021).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative

R = R��� + R��� + R����

R��� =

i���∑

i=1

�i

⌈�i

m

⌉
with i��� ∶= max{i ∶ R��� ≤ V}

R��� = min

{
V − R��� +

⌈�i���+1
− nm

M

⌉
�i���+1

,

⌈
n + 1 +

�i���+1
− (n + 1)m

M

⌉
�i���+1

}

with n =

⌊
V − R���

�i���+1

⌋

R���� =

N∑

i=i���+2

�i

⌈�i

M

⌉
.

66	 Real-Time Systems (2023) 59:35–68

1 3

Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​
licen​ses/​by/4.​0/.

References

Abeni L, Palopoli L, Lipari G, Walpole J (2002) Analysis of a reservation-based feedback scheduler. In:
IEEE real-time systems symposium (RTSS), pp 71–80. https://​doi.​org/​10.​1109/​REAL.​2002.​11815​
63

Agrawal K, Baruah S (2018) A measurement-based model for parallel real-time tasks. In: Euromicro
conference on real-time systems (ECRTS), vol 106. Dagstuhl, Germany, pp 1–19. https://​doi.​org/​10.​
4230/​LIPIcs.​ECRTS.​2018.5

Agrawal K, Baruah S, Burns A (2020) The safe and effective use of learning-enabled components in
safety-critical systems. In: Euromicro conference on real-time systems (ECRTS). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol 165, pp 1–20. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl. https://​doi.​org/​10.​4230/​LIPIcs.​ECRTS.​2020.7

Åström KJ, Murray RM (2021) Feedback systems: an introduction for scientists and engineers. Princeton
University Press, Princeton

Baruah S (2015) The federated scheduling of systems of conditional sporadic DAG tasks. In: Interna-
tional conference on embedded software (EMSOFT), pp 1–10. https://​doi.​org/​10.​1109/​EMSOFT.​
2015.​73182​54

Baruah S, Bonifaci V, Marchetti-Spaccamela A (2015) The global EDF scheduling of systems of condi-
tional sporadic DAG tasks. In: Euromicro conference on real-time systems (ECRTS), pp 222–231.
https://​doi.​org/​10.​1109/​ECRTS.​2015.​27

Bentley JL, Yao AC-C (1976) An almost optimal algorithm for unbounded searching. Inf Process Lett
5(3):82–87. https://​doi.​org/​10.​1016/​0020-​0190(76)​90071-5

Bernat G, Colin A, Petters S.M (2002) WCET analysis of probabilistic hard real-time systems. In: IEEE
real-time systems symposium (RTSS), pp 279–288. https://​doi.​org/​10.​1109/​REAL.​2002.​11815​82

Bini E, Buttazzo G, Eker J, Schorr S, Guerra R, Fohler G, Årzen K-E, Romero-Segovia V, Scordino C
(2011) Resource management on multicore systems: the ACTORS approach. IEEE Micro 31(3):72–
81. https://​doi.​org/​10.​1109/​MM.​2011.1

Block A, Brandenburg B, Anderson J.H, Quint S (2008) An adaptive framework for multiprocessor real-
time system. In: Euromicro conference on real-time systems (ECRTS), pp 23–33. https://​doi.​org/​10.​
1109/​ECRTS.​2008.​21

Burns A, Davis R.I (2017) A survey of research into mixed criticality systems. ACM Comput Surv.
https://​doi.​org/​10.​1145/​31313​47

Cervin A, Eker J, Bernhardsson B, Årzén K-E (2002) Feedback-feedforward scheduling of control tasks.
Real-Time Syst 23(1–2):25–53. https://​doi.​org/​10.​1023/A:​10153​94302​429

Cucu-Grosjean L, Santinelli L, Houston M, Lo C, Vardanega T, Kosmidis L, Abella J, Mezzetti E,
Quiñones E, Cazorla FJ (2012) Measurement-based probabilistic timing analysis for multi-path
programs. In: Euromicro conference on real-time systems (ECRTS), pp 91–101. https://​doi.​org/​10.​
1109/​ECRTS.​2012.​31

Graham RL (1969) Bounds on multiprocessor timing anomalies. SIAM J Appl Math 17(2):416–429.
https://​doi.​org/​10.​1137/​01170​39

Jennings B, Stadler R (2015) Resource management in clouds: survey and research challenges. J Netw
Syst Manag 23(3):567–619. https://​doi.​org/​10.​1007/​s10922-​014-​9307-7

Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elas-
tic applications in cloud environments. J Grid Comput 12(4):559–592. https://​doi.​org/​10.​1007/​
s10723-​014-​9314-7

Lu C, Stankovic J.A, Tao G, Son SH (1999) Design and evaluation of a feedback control EDF schedul-
ing algorithm. In: Real-time systems symposium (RTSS), pp 56–67. https://​doi.​org/​10.​1109/​REAL.​
1999.​818828

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/REAL.2002.1181563
https://doi.org/10.1109/REAL.2002.1181563
https://doi.org/10.4230/LIPIcs.ECRTS.2018.5
https://doi.org/10.4230/LIPIcs.ECRTS.2018.5
https://doi.org/10.4230/LIPIcs.ECRTS.2020.7
https://doi.org/10.1109/EMSOFT.2015.7318254
https://doi.org/10.1109/EMSOFT.2015.7318254
https://doi.org/10.1109/ECRTS.2015.27
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1109/REAL.2002.1181582
https://doi.org/10.1109/MM.2011.1
https://doi.org/10.1109/ECRTS.2008.21
https://doi.org/10.1109/ECRTS.2008.21
https://doi.org/10.1145/3131347
https://doi.org/10.1023/A:1015394302429
https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.1137/0117039
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1109/REAL.1999.818828
https://doi.org/10.1109/REAL.1999.818828

67

1 3

Real-Time Systems (2023) 59:35–68	

Melani A, Bertogna M, Bonifaci V, Marchetti-Spaccamela A, Buttazzo G.C (2015) Response-time analy-
sis of conditional DAG tasks in multiprocessor systems. In: Euromicro conference on real-time sys-
tems (ECRTS), pp 211–221. https://​doi.​org/​10.​1109/​ECRTS.​2015.​26

Nelissen G, Berten V, Goossens J, Milojevic D (2012) Techniques optimizing the number of proces-
sors to schedule multi-threaded tasks. In: Euromicro conference on real-time systems (ECRTS), pp
321–330. https://​doi.​org/​10.​1109/​ECRTS.​2012.​37

Papadopoulos AV, Ali-Eldin A, Årzén K-E, Tordsson J, Elmroth E (2016) PEAS: a performance evalu-
ation framework for auto-scaling strategies in cloud applications. ACM Trans Model Perform Eval
Comput Syst TOMPECS) 15(4):1–15. https://​doi.​org/​10.​1145/​29306​59

Quinton S, Hanke M, Ernst, R (2012) Formal analysis of sporadic overload in real-time systems. In:
Design, automation and test in Europe conference & exhibition (DATE), pp 515–520. https://​doi.​
org/​10.​1109/​DATE.​2012.​61765​23

Saifullah A, Agrawal K, Lu C, Gill C (2011) Multi-core real-time scheduling for generalized parallel task
models. In: IEEE real-time systems symposium (RTSS), pp 217–226. https://​doi.​org/​10.​1109/​RTSS.​
2011.​27

Vestal S (2007) Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In: IEEE international real-time systems symposium (RTSS), pp 239–243. IEEE
Computer Society Press, Tucson. https://​doi.​org/​10.​1109/​RTSS.​2007.​47

Witte RS, Witte JS (2017) Statistics. Wiley, Hoboken

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Alessandro V. Papadopoulos  is a Professor of Electrical and Com-
puter Engineering at Mälardalen University, Västerås, Sweden. He
received his B.Sc. and M.Sc. (summa cum laude) degrees in com-
puter engineering and his Ph.D. degree (Hons.) in information tech-
nology from the Politecnico di Milano, Milan, Italy, in 2008, 2010,
and 2013, respectively. He is a Senior member of IEEE. His research
interests include control theory, robotics, real-time systems, and
autonomic computing.

Kunal Agrawal  is a professor in the Department of Computer Sci-
ence and Engineering at Washington University in St. Louis. Her
areas of interest include parallel computing, algorithms, data struc-
tures, memory efficient algorithms, and real-time scheduling.

https://doi.org/10.1109/ECRTS.2015.26
https://doi.org/10.1109/ECRTS.2012.37
https://doi.org/10.1145/2930659
https://doi.org/10.1109/DATE.2012.6176523
https://doi.org/10.1109/DATE.2012.6176523
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/RTSS.2011.27
https://doi.org/10.1109/RTSS.2007.47

68	 Real-Time Systems (2023) 59:35–68

1 3

Enrico Bini  Enrico Bini is Associate Professor at Department of
Computer Science, University of Turin. Until 2016, he was assistant
professor at Scuola Superiore Sant’Anna (Real-Time Systems Lab) in
Pisa. Also, in 2012–2014 he was Marie-Curie fellow at Lund Univer-
sity, Department of Automatic Control. In 2004, he completed the
Ph.D. on Real-Time Systems at Scuola Superiore Sant’Anna (recipi-
ent of the “Spitali Award” for best Ph.D. thesis of the whole univer-
sity). In January 2010 he also completed a Master degree in Mathe-
matics with a thesis on optimal sampling for linear control systems.
He has published more than 100 papers (1 Test-of-Time award by the
IEEE TCRTS, 4 best-paper awards) on real-time scheduling, operat-
ing systems, optimization methods for real-time and control sys-
tems, optimal management of distributed and parallel resources. He
is Associate Editor of IEEE Transactions on Computers and Spring-
er’s Real-Time Systems journal. His service to the scientific commu-
nity includes chairing 12 events (including Program Chair of
RTSS21) and the participation in 75 Technical Program Committees

(including RTSS, RTAS, and EMSOFT).

Sanjoy Baruah  is the Hugo F. & Ina Champ Urbauer Professor of
ComputerScience & Engineering at Washington University in St.
Louis. His researchinterests and activities are in real-time and safety-
critical systemdesign, scheduling theory, and resource allocation and
sharing indistributed computing environments.

	Feedback-based resource management for multi-threaded applications
	Abstract
	1 Introduction
	2 Measurement-based modeling and scheduling of parallel tasks
	2.1 Motivation: revising existing models
	2.2 Approach: Identifying relevant characteristics of parallelizable real-time code
	2.3 Formal system model

	3 Sufficient schedulability conditions
	4 Resource allocation when typical parameter values are known
	4.1 Run-time complexity

	5 Observation-based adaptation of resource allocation decisions
	5.1 Response-time based processor allocation
	5.2 Unknown and constant typical workload
	5.3 Unknown and time-varying workload
	5.3.1 Binary-exponential search
	5.3.2 Integral controller

	5.4 Limits of response-time-based resource allocation

	6 Comparative evaluation
	6.1 Assessing the waste of resource
	6.2 Simulation results
	6.2.1 Constant typical execution parameters
	6.2.2 Discussion on the simulation campaign
	6.2.3 Time-Varying Typical Execution Parameters
	6.2.3.1 Experiment 1 (E1)
	6.2.3.2 Experiment 2 (E2)
	6.2.3.3 Experiment 3 (E3)
	6.2.3.4 Evaluation of the overall campaign

	7 Related work
	8 Conclusions
	References

