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Abstract
Reconciling the constraint of guaranteeing to always meet deadlines with the opti-
mization objective of reducing waste of computing capacity lies at the heart of a 
large body of research on real-time systems. Most approaches to doing so require 
the application designer to specify a deeper characterization of the workload (and 
perhaps extensive profiling of its run-time behavior), which then enables shaping 
the resource assignment to the application. In practice, such approaches are weak as 
they load the designer with the heavy duty of a detailed workload characterization. 
We seek approaches for reducing the waste of computing resources for recurrent 
real-time workloads in the absence of such additional characterization, by monitor-
ing the minimal information that needs to be observable about the run-time behavior 
of a real-time system: its response time. We propose two resource control strategies 
to assign resources: one based on binary-exponential search and the other, on prin-
ciples of control. Both approaches are compared against the clairvoyant scenario in 
which the average/typical behavior is known. Via an extensive simulation, we show 
that both techniques are useful approaches to reducing resource computation while 
meeting hard deadlines.

Keywords  Feedback-based resource management · Multi-core scheduling · Multi-
threaded applications

 *	 Alessandro V. Papadopoulos 
	 alessandro.papadopoulos@mdu.se

	 Kunal Agrawal 
	 kunal@wustl.edu

	 Enrico Bini 
	 enrico.bini@unito.it

	 Sanjoy Baruah 
	 baruah@wustl.edu

1	 Mälardalen University, Västerås, Sweden
2	 Washington University in St. Louis, St. Louis, MO, USA
3	 University of Turin, Turin, Italy

http://orcid.org/0000-0002-1364-8127
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-022-09386-7&domain=pdf


36	 Real-Time Systems (2023) 59:35–68

1 3

1  Introduction

The correctness of the run-time behavior of safety-critical applications needs to 
be verified prior to their deployment. In the context of computational systems that 
interact with the physical world and must take action in a timely manner, the cor-
rectness is defined not only in terms of functionality but also timing. Timing cor-
rectness of such systems is generally specified in terms of guarantees of meeting 
pre-specified deadlines.

In order to verify timing correctness, system designers model the potential 
behaviors of the system. To have a high degree of confidence that the conclusions 
drawn based on analysis of these models will hold for actual run-time behavior, 
these models are required to be conservative. Provisioning computing resources 
on the basis of such conservative models tends to lead to significant over-provi-
sioning, and subsequently to very poor platform resource utilization during run-
time. The safety-critical systems research community has widely recognized this 
problem, and a variety of approaches have been proposed for dealing with it such 
as mixed-criticality analysis (Vestal 2007; Burns and Davis 2017) and probabilis-
tic analysis (Bernat et al. 2002; Cucu-Grosjean et al. 2012) of run-time behavior.

In this paper, we will consider parallel tasks as a scenario to explore another 
approach for modeling and checking the timing correctness of safety-critical sys-
tems. Often, parallel tasks in the real-time literature are represented using complex 
models such as DAGs—while these representations are accurate and can represent 
the detailed internal structure of tasks, they are often difficult to generate and expen-
sive to analyze. In addition, for some applications, different runs may generate dif-
ferent dependencies, making it difficult to represent them using a single DAG. In 
this paper, we will explore measurement-based models where, instead of modeling 
the full complexity of the program, we will model parallel tasks with a couple of 
parameters only: the work—the total execution needed to complete the task; and the 
span—the running time of the task if it is given an infinite number of processors.

Even with this simpler model, the problem of pessimistic modeling remains. 
To guarantee safety, one might estimate the work and span of the DAG to be 
very large and these large values may not manifest very often (or indeed, ever) in 
practice. Therefore, allocating resources based on these estimates leads to over-
allocation. Prior work  (Agrawal and Baruah 2018) has considered an approach 
similar to the one undertaken in mixed-criticality systems: instead of modeling 
the task with just one value each of work and span, it is modeled using both its 
worst-case parameters and typical case parameters. The requirement is that we 
must guarantee safety in the worst case. In particular, we are given a task with 
worst-case work W and worst-case span L which must be completed within D 
time units (its deadline). However, we might expect that most executions of the 
task will have a substantially smaller work and span. Therefore, during run-time, 
one can first start by allocating fewer resources based on the typical case, and 
then increase resources if the typical case assumptions do not hold.

This research In this work, we develop an approach to conserve resources in 
the typical case (where the computational requirements of the task are smaller 
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than the worst-case parameters), while still guaranteeing that the task will meet 
deadlines even if the task does manifest its worst-case execution. Our particular 
approach is sketched below and exemplified by Fig. 1. 

1.	 We assume we have a single periodic or sporadic task that must be scheduled on 
M processors within D time units of arrival. The worst-case work W and span L 
parameters of a task are known—no job of the task has a larger work or span than 
specified by these parameters. Further, we assume that it is feasible to schedule 
this task on M processors in the worst case.

2.	 However, typically jobs of the task have a smaller work and span—this typical 
case may not be known or may change over time.

3.	 The scheduler first allocates m ≤ M processors to the job for V < D time units—
the expectation is that most of the time (in the typical case) the job will complete 
within this time, thereby conserving computing resources.

4.	 If the job does not complete within this time, all processors are allocated for the 
remaining time D − V .

The goal is to compute m and V such that the job completes within its deadline 
even in the worst case—where it has work as large as W and span as large as L. 
The values of m and V are related, once we pick one, the other is constrained. 
There may be many pairs (m,V) which satisfy this criterion—we want to pick 
the largest V and smallest m such that the jobs complete by time V in the typical 
case while still completing by time D in the worst case. If the typical case val-
ues of work and span are known and remain constant, we can use those to pick 
appropriate values of m and V. However, these parameters may be unknown and 
may change over time as the task releases a sequence of jobs. We propose a gen-
eralization that does not require additional characterization of run-time behavior 
(beyond the worst-case characterization that is needed to assure safety). Our gen-
eralized approach is based on monitoring past executions and making resource-
allocation decisions based on the information that is obtained via such monitor-
ing. We explore different techniques, drawn from the sub-disciplines of control 
theory and algorithm design, for making such resource-allocation decisions.

Contributions and Organization This paper makes the following contributions: 

Fig. 1   The parallel task begins 
execution at time-instant 0 with 
a deadline at time-instant D. It 
executes upon m processors over 
the interval [0,V) , and upon 
M processors over the interval 
[V ,D) . (The x-axis thus denotes 
time, and the y-axis, the number 
of assigned processors)
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1.	 Section 3 provides a general strategy for calculating m and V—in particular, given 
an instantiation of one parameter, how we can safely set the other parameter while 
guaranteeing safety. In Sect. 4 we instantiate this scheduling strategy to situations 
in which some additional information, viz. the typical case values of the param-
eters characterizing the parallel tasks, are known. These sections are a simplified 
restatement of work from Agrawal et al. (2020).

2.	 In Sect. 5, we derive, and prove correct, algorithms for scheduling such tasks 
in the general situation where these typical-case parameters are not known, and 
furthermore when these typical-case values may vary over time. In this section, 
we explore two general strategies, one based on binary-exponential search, and 
one based on proportional control algorithms. Both these strategies observe the 
behavior of the task over time and continually change the settings of m and V to 
maximize utilization of the system.

3.	 In Sect. 6, we evaluate the effectiveness of our proposed algorithms via a wide 
range of simulation experiments on synthetically-generated workloads. These 
experiments indicate that both our algorithms perform well, but have different 
characteristics. The binary-exponential algorithm converges quickly but has a 
larger variation compared to the control-based algorithm.

In addition to the above section, Sect. 2 explains the model and its motivations, we 
briefly review the related work in Sect.  7 and conclude in Sect.  8 by placing this 
work within a larger context of the resource-efficient implementation of hard real-
time systems.

2 � Measurement‑based modeling and scheduling of parallel tasks

In this section, we flesh out the details of a measurement-based model for repre-
senting parallel tasks and describe a general strategy for scheduling tasks that are 
modeled in this manner. We will first motivate the model informally in Sects. 2.1 
and 2.1. Then, a formal definition of the model is provided in Sect. 2.3.

2.1 � Motivation: revising existing models

As stated in Sect. 1, several excellent DAG-based models for representing parallel 
real-time code have been developed in the real-time community; however, there are 
some classes of real-time applications for which such models have proved unsuit-
able. This may be for one or more of the following reasons: 

1.	 The internal structure of the parallel code may be very complex, with multiple 
conditional dependencies (as may be represented in e.g., the conditional DAG 
tasks model (Melani et al. 2015; Baruah et al. 2015) and (bounded) loops. Explicit 
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enumeration of all possible paths through such code in order to identify worst-
case behavior may be computationally infeasible.1

2.	 If some parts of the code are procured from outside the application developers’ 
organization, the provider of this code may seek to protect their intellectual prop-
erty (IP) by not revealing the internal structure of the code and instead only pro-
viding executables—this may be the case if, e.g., commercial vision algorithms 
are used in a real-time application.

3.	 Explicitly representing the internal structure of the DAG generated by some code 
can be exponential in the size of the code. In addition, algorithms for the analysis 
of systems represented using DAG-based models tend to have run-time pseudo-
polynomial or exponential in the size of the DAG. Therefore, in aggregate, these 
runtimes may become too large to be useful in practice.

4.	 Particularly for conditional code, it may be the case that the true worst-case 
behavior of the code is very infrequently expressed during run-time.

For pieces of parallel real-time code possessing one or more of the characteristics 
discussed above, DAG-based representations may not be appropriate for schedula-
bility analysis; alternative representations are needed. Let us now discuss what such 
a representation should provide.

2.2 � Approach: Identifying relevant characteristics of parallelizable real‑time 
code

In modeling parallelizable real-time code that is to be executed upon a multiproces-
sor platform, a prime objective is to enable the exploitation of the parallelism that 
may be present in the code by scheduling algorithms, to enhance the likelihood that 
we will be able to meet timing constraints. We are interested here in developing 
predictable real-time systems—systems that can have their timing (and other) cor-
rectness verified prior to run-time. To enable a priori timing verification, decades 
of research in the parallel computing community suggest the following two timing 
parameters of a piece of parallelizable code are particularly significant: 

1.	 The work parameter W denotes the cumulative worst-case execution time of all 
the parallel branches that are executed across all processors. Note that for non-
conditional parallelizable code this is equal to the worst-case execution time of the 
code on a single processor (ignoring communication overhead from synchroniz-
ing processors).

2.	 The span parameter L (also called the critical path length in the literature) denotes 
the maximum cumulative worst-case execution time of any sequence of prece-
dence-constrained pieces of code. The total running time of the program on any 
number of processors is at least equal to its span.

1  We point out that techniques for approximating the worst-case behavior of complex conditional paral-
lelizable code have been proposed with regards to specific scheduling algorithms such as global fixed-
priority (Melani et al. 2015), global EDF (Baruah et al. 2015) or federated (Baruah 2015).
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The relevance of these two parameters arises from well-known results in scheduling 
theory. While scheduling a DAG to minimize its completion time is NP-hard in the 
strong sense, Graham’s list scheduling algorithm (Graham 1969), which constructs 
a work-conserving schedule by executing at each instant in time an available job 
upon any available processor, performs fairly well in practice. In particular, it has 
been proved in Graham (1969) that the response time R of the DAG, which is the 
time elapsing from the release to the completion of the DAG, is guaranteed to be no 
larger than

when the DAG is scheduled over M machines. The analogous term makespan is 
often used in the scheduling community.

A little thought makes it clear that this bound is (2 − 1

M
)-competitive—no sched-

uler can finish the job in less than R∕(2 − 1

M
) time – suggesting that list scheduling 

is a reasonable algorithm to use in practice. In fact, most run-time scheduling algo-
rithms for DAGs upon multiprocessors use different flavors of list scheduling.

2.3 � Formal system model

We now provide a formal definition of our model, by describing in detail our work-
load model. A parallel task is characterized by

•	 W is a conservative estimate of the total computational requirement of the job 
over all the processors (the work),

•	 L is the conservative estimate on the longest path of dependencies in the task 
(the span) and

•	 D denotes the relative deadline parameter: a correct execution requires that the 
response time upper bound of (1) is no greater than D that is 

In this paper, we consider the scheduling of a single such task upon a dedicated 
bank of identical processors. We point out that our results are directly applicable to 
the scheduling of multiple recurrent—periodic or sporadic—real-time DAGs where 
each instantiation of the task is called a job. We assume that we have a multipro-
cessor or a multicore where each task is assigned a set of dedicated processors for 
execution and need not worry about the other tasks running on the same machine. 
Here, we assume that each periodic/sporadic task satisfies the additional constraint 
that its relative deadline parameter is no larger than its period parameter (i.e., they 
are constrained-deadline tasks).

We assume that timing correctness is specified assuming that W and L are cor-
rect estimates: the code is required to complete execution within the specified rela-
tive deadline D provided its work and span parameters are no larger than W and L 
respectively.

(1)R ≤
W − L

M
+ L

(2)
W − L

M
+ L ≤ D
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Note that the work and span parameters are not, in themselves, fully descriptive 
of the program itself. Consider the examples in Fig. 2. The work and span (W, L) of 
the individual DAGs in these figures are (20, 12), (20, 10), (20, 12), (20, 6), (12, 12) 
respectively. However, a particular task may generate many different DAGs varying 
from instance to instance. If we had a program that could generate all these jobs, 
then we would define the worst-case work and span as defined in our model as 20 
and 12, respectively. In particular, even if the program could only generate the last 
two DAGs, we would still define the worst-case work as 20 and the worst-case span 
as 12 even though no individual instantiation of the program can simultaneously 
have work of 20 and the span of 12.

3 � Sufficient schedulability conditions

As described in Sect. 1 and illustrated in Fig. 1, given a task modeled by the param-
eters (W, L, D) as described above that is to be implemented upon an M-processor 
platform, we want to compute m and V such that we can both (i) guarantee safety 
and (ii) improve performance in the typical case. In this section, we will compute 
the sufficient schedulability conditions which guarantee safety. In particular, we will 
derive the relationship between m and V such that any values that satisfy this rela-
tionship can ensure that the job will complete by its deadline. In later sections, we 
will use this condition to calculate specific values that can be used to get good per-
formance in the typical case.

Suppose that we are given values of m and V (with 0 < m ≤ M and 0 ≤ V ≤ D ), 
and the run-time algorithm schedules the task on m processors using list scheduling. 
If the task completes execution within V time units, correctness is preserved since 
V ≤ D . It remains to determine sufficient conditions for correctness when the task 
does not complete by time-instant V.

Figure 1 depicts the processors that are available for this task if it does not com-
plete execution within V time units, thereby resulting in the run-time scheduler allocat-
ing the additional (M − m) processors. (These processors may have been allocated to 
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Fig. 2   Illustrating the notions of worst-case work and span. Numbers in vertices represent the required 
processing time of the vertex, while arrows denote precedence between vertices. The figure shows five 
possible realizations of a DAG with worst-case work and span respectively equal to equal to W = 20 
and L = 12 . We observe that the general notions of work and span generalize DAGs with very different 
dependencies, possibly even fully independent vertices (fourth case) or just sequential work (fifth case). 
The only requisite is that the work and span of the realization do not exceed the worst-case values
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other, non real-time work over the period [0,V) or they may be put to sleep to conserve 
energy). We will now derive conditions for ensuring that the task completes execution 
by its deadline at time-instant D when executing upon these available processors, given 
that its work parameter may be as large as W and its span parameter, L.

Let W ′ and L′ denote the work and span parameters of the amount of computation 
of the parallel task that remains at time-instant V (these are strictly positive quanti-
ties since the task is assumed to not have completed execution by time-instant V). This 
remaining computation executes upon M processors. By Eq. (1) the response time R of 
the DAG is upper bounded by

Consider the time period until V in this execution and say that there were X time 
steps where all m processors were busy and Y time steps where not all processors 
are busy. Since the remaining span reduces on each time step when all processors 
are not busy (and may reduce on the other time steps as well), we have L − L� ≥ Y  . 
Therefore, X = V − Y ≥ V − (L − L�) . Hence the total amount of execution occur-
ring over [0,V) is at least

 from which it follows that

 Substituting Inequality (4) into (3), the response time upper bound becomes equal 
to:

 Since m ≤ M , the upper bound of (5) is maximized when L′ is large as possible; i.e., 
L� = L (the physical interpretation is that the entire critical path executes after V). 
Substituting L′ ← L into Expression (5), we get the following upper bound on the 
response time:

Correctness is guaranteed by having the response time bound be ≤ D , that is:

(3)R ≤ V +

(
W � − L�

M
+ L�

)

Xm ≥

(
V − (L − L�)

)
m,

(4)W �
≤ W − V m + (L − L�)m

(5)
V +

(
W − V m + Lm − L� m − L�

M
+ L�

)

= V +
(
W − V m + Lm

M
+ L�

(
1 −

m + 1

M

))

V +
(
W − V m + Lm

M
+ L

(
1 −

m + 1

M

))

= V +
(W − V m − L

M
+ L

)
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The condition of (6) is thus the sufficient schedulability condition we seek: values of 
m and V satisfying (6) guarantee correctness.

4 � Resource allocation when typical parameter values are known

In this section, we will assume that we have some additional prior information—
namely, we know typical or nominal values of the work and span parameters—W

T
 and 

L
T
 . These parameters bound the work and span values of a “typical” invocation of the 

task and are derived via measurements or more optimistic analysis techniques. For the 
remainder of this section only, the expectation is that these values exist and are known. 
Later in Sect. 5, we will consider the case where the DAG does not exhibit any typical 
behavior. It will be then our proposed logic that infers the values that are to be assigned 
to the W

T
 and L

T
 parameters.

We saw in Sect. 3 that choosing the parameters m and V satisfying the condition 
of  (6) ensures the correctness of the scheduling algorithm. We will use the nominal 
parameters to pick a particular pair of values from this space. Our goal here is effi-
ciency: we want to use the minimum amount of computational resources under the typ-
ical circumstances. Therefore, we want to minimize the product of m and V.

By Inequality (1), we know that upon m processors a typical invocation (an execu-
tion with work and span bounded by W

T
 and L

T
 respectively, will complete no later than (

(W
T
− L

T
)∕m + L

T

)
 . Hence, the assignment of

guarantees that if the DAG work and span do not exceed the typical values W
T
 and 

L
T
 , respectively, only m cores are used and processing capacity is saved.
Equation 7 makes it clear that the two parameters in the product mV have an inverse 

relationship—as m decreases, V increases. However, we can also see that due to the 
additive L

T
 in the equation, we want to pick the minimum feasible m to minimize the 

product. Recall that we must pick these values to satisfy Eq. (6) to guarantee feasibility 
in the worst-case—therefore substituting this value V, we get

as a sufficient schedulability condition, which is equivalent to

(6)

(
V +

(W − V m − L

M
+ L

))
≤ D

⇔
(
V −

V m

M

)
≤

(
D −

W − L

M
− L

)

⇔ V
(
1 −

m

M

)
≤

(
D −

W − L

M
− L

)

(7)V ←
(W

T
− L

T

m
+ L

T

)

(8)
(W

T
− L

T

m
+ L

T

)(
1 −

m

M

)
≤

(
D −

W − L

M
− L

)

am2 + bm + c ≥ 0
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with a, b, and c assigned the following values:

By finding the positive root of this second-degree polynomial, we find that the num-
ber of cores m assigned over [0, V] should be

and the corresponding value of V is set by Eq. (7). Algorithm 1 reports the pseudo-
code for assigning both m and V.

Algorithm 1 Computing values for m,V

Input:
(
W,L,WT , LT , D,m

)

Output: failure, or values for m, V
1 begin
2 if m < �(W − L)/(D − L)�

)
then

3 return (failure) /* The test of
Inequality (2) cannot guarantee that the deadline will be
met on m processors */

4 end
5 a ← LT // Precompute a
6 b ← M (D − (L+ LT ))− (W − L) + (WT − LT ) // Precompute b
7 c ← −M (WT − LT ) // Precompute c

8 m ← −b+
√
b2 − 4 a c

)
/(2 a)

⌉
// Compute the number of cores

9 V ← LT + (WT − LT )/m // Compute the virtual deadline
10 return (m,V )
11 end

4.1 � Run‑time complexity

Algorithm 1 comprises straight-line code with no loops or recursive calls. Hence, 
given as input the parameters specifying a task, it is evident that Algorithm 1 has 
constant—Θ(1)—run-time.

In the rest of the paper, the typical parameters are assumed to be unknown. 
We will be using the typical parameters of the DAG as an oracle to compare 
approaches that ignore this additional information. Therefore, we will use m�� to 
refer to the ideal allocation of cores of (9), which is aware of the typical param-
eters W

T
, L

T
.

a ← L
T

b ← M
(
D − (L + L

T
)
)
− (W − L) + (W

T
− L

T
)

c ← −M(W
T
− L

T
)

(9)m ←

�
−b +

√
b2 − 4 a c

2 a

�
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5 � Observation‑based adaptation of resource allocation decisions

In the previous section, we had assumed that the typical work and span values 
were known a priori and that these values remain constant as the system contin-
ues to execute. Under these assumptions, we were able to compute the optimal 
allocation of (m,V) . A resource allocation scheme relying on “typical” param-
eters, however, may be very inefficient because typical parameters may not exist 
due to the uncertain and variable nature of DAG workloads. In the following we 
investigate runtime observation-based mechanisms to adapt the allocation of 
(m,V) over multiple iterations, relaxing such assumptions.

5.1 � Response‑time based processor allocation

We now describe the general scheme for optimizing resources assigned to recur-
rent applications, while maintaining the guarantee that the application always 
meets its deadline. Figure  3 illustrates the general scheme and the equations 
of the dynamics of our monitoring-based decision-making process for control-
ling the allocation of resources to an application modeled as a recurrent multi-
threaded application. Similar feedback-based schemes can be found also in the 
cloud computing literature literature  (Lorido-Botran et  al. 2014; Jennings and 
Stadler 2015; Papadopoulos et al. 2016), where different autoscaling techniques 
have been proposed. However, autoscaling techniques are usually not concerned 
with (hard) real-time guarantees, and they are more focused on developing tech-
niques for workload prediction to perform prompt and proactive scaling.

In the equations in Fig. 3, we use the following terms

•	 �����(k) is the internal state of the decision-making algorithm at the k’th itera-
tion

•	 �������(k) is the monitored run-time measurements
•	 ��������(k) is the resource allocation at the k’th iteration

Decision Making
state(k)

Multi-Threaded
Application

runtime(k)resource(k)

{
state(k) = nextState state(k − 1), runtime(k − 1)

)

resource(k) = resourceAlloc state(k)
)

Fig. 3   A general diagram for the decision-making process and the corresponding dynamics
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•	 ���������(… ) describes the internal logic of the decision-making algorithm (in 
the following, three different algorithms are proposed)

•	 �������������(… ) determines the resource allocation for a given state of the 
decision-making algorithm.

The above description is quite general. There are many possible run-time meas-
urements and many different types of resources to be controlled. In this paper, our 
goal is to design a simple resource allocation scheme enabled by minimal moni-
toring in order to demonstrate the applicability of the general idea.

One could envision monitoring different aspects of the run-time behavior mod-
eled by �������(k) , for example

•	 the response time of the DAG;
•	 the total amount of computing capacity consumed by the DAG;
•	 the progress of the DAG execution along different paths, possibly monitored 

by instrumenting the DAG code.

These are all reasonable solutions, and each offers a different level of detail. As a 
general principle, the richer the monitored information is, the more efficient any 
resource allocation decisions can be. Acquiring richer (and more fine-grained) 
information may, however, require greater effort on the part of the system devel-
oper, or may not even be possible via the available interfaces. In addition, moni-
toring itself typically adds overheads and disturbs the system—therefore, heavy-
weight monitoring may provide additional information for too high a cost.

In this work, we make the following assumption of minimal monitoring.

Assumption 1  The only information detected by run-time monitoring is the response 
time R of each job.

This assumption makes our approach very general, and applicable in a broad 
variety of settings. Using the formalism introduced above, this assumption means 
that

where R(k) denotes the response time of the kth job—the kth invocation of the DAG 
task.

In addition, the amount of computing resources ��������(k) allocated to sched-
ule the DAG during an invocation may be set in several different ways. Examples 
include:

•	 The number of processors/cores allocated;
•	 The frequency at which subsets of the cores are run;
•	 The fraction of computing capacity allocated (via resource reservation 

schemes); and
•	 Various combinations of the above methods.

�������(k) = R(k),
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Again, as we privilege simplicity and generality, we make the following assumption 
regarding resource allocation.

Assumption 2  The computing capacity allocated to the DAG is controlled by set-
ting the number m of cores assigned over the interval [0,V) at every DAG release, in 
accordance to the scheduling strategy of Sect. 3.

We note that many OSes do in fact give the user the ability to specify the number 
of cores of a multi-core platform to assign to individual multi-threaded applications. 
E.g., one way of doing this on the command line in Linux is by the taskset com-
mand or by using the sched_setaffinity(...) system call. Neither method 
requires superuser privileges.

In this context, the choice of the number of cores m implies the value of the vir-
tual deadline V. In fact, solving the Inequality (6) for V, we obtain that

showing that the choice is coupled, as m upper bounds the choice of V. Moreover, as 
the main objective of the approach is to minimize the amount of allocated resource 
for the largest period of time, in the following we will assume that Inequality (10) 
will hold with the equal sign, and it will be indicated in the following as V(m)—see 
Eq.  (12). In such a way, the only decision variable is m, and the virtual deadline 
V(m) is a direct function of m. In summary, our proposed resource allocation scheme 
labeled ��������(k) , can be modeled by

here m(k) denotes the number of processors initially allocated to the k’th job, and 
V(m(k)) is determined by m(k) via Eq. (12).

Remark 1  The virtual deadline V(m) is a non-decreasing function of m.

Proof  For m < M , the virtual deadline is computed as:

Computing the derivative of V with respect to m, we get

and then

which is true due to the schedulability condition of (2). 	�  ◻

(10)V ≤
M(D − L) − (W − L)

M − m

(11)��������(k) = m(k),

(12)V(m) =
M(D − L) − (W − L)

M − m

dV(m)

dm
=

M(D − L) − (W − L)

(M − m)2

dV(m)

dm
≥ 0 ⇔ M ≥

W − L

D − L
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Finally, we assume that the assignment of a larger amount of processing capacity 
leads to a reduction of the response time.

Algorithm 2 Binary search for core allocation.
Input: k, R(k), m(k), hi, lo
Output: m(k + 1), hi, lo

1 begin
2 if R(k) > V (m(k)) then
3 lo = m(k)
4 end
5 if R(k) < V (m(k)) then
6 hi = m(k)
7 end
8 m(k + 1) = �(hi+ lo)/2�
9 end

Assumption 3  If m < m�� cores are allocated, then the completion time will exceed 
the virtual deadline, i.e., R > V(m) . If m ≥ m�� , then the completion time will be 
below the virtual deadline, i.e., R ≤ V(m) , and the completion time is a non-increas-
ing function of the number of assigned cores.

We note that, theoretically, this assumption holds for carefully designed versions of 
list scheduling (Graham 1969) on preemptive processors. It also holds in practice for 
most compute-bound programs, though it may not hold for memory-bound applications 
due to locality, cache, and memory bandwidth issues. For the purposes of this paper, 
we make this assumption and argue that our strategies can be reasonably expected to 
reduce resource waste. The correctness guarantee (the fact that we will meet deadlines) 
does not depend on this assumption.

5.2 � Unknown and constant typical workload

In this section, we assume that although the values of the typical work and span param-
eters, W

T
 and L

T
 , are not necessarily known to the run-time algorithm that is responsible 

for allocating computing resources, these values do exist and are constant over time. 
We use a relatively simple binary search method to calculate m(k + 1) given the values 
of m(k) and R(k), which is sketched in Algorithm 2. Note that the algorithm is repeated 
at every time k with the new measurement R(k). As internal state, the algorithm main-
tains two values

where lo(k) < hi(k) for all k and these are initialized to 0 and m, respectively. The 
algorithm tries to converge to the ideal number of processors m = m�� by doing a 

�����(k) =
(
lo(k), hi(k)

)
,
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binary search between lo(k) and hi(k) and by changing the corresponding values of 
lo(k) and hi(k) after each iteration. For any job k, we always assign

which corresponds to the function �������������
(
�����(k)

)
 in the generic skeleton of 

resource management scheme of Fig. 3.

Lemma 1  The binary search algorithm converges.

Proof  The invariant we maintain is that lo(k) < m�� ≤ hi(k) in all iterations. This 
is clearly true in the beginning since we set lo = 0 and hi = M . Recall Assump-
tion  3 where we know that if R(k) > V(k) , then m(k) < m�� . In this case, we can 
safely increase increase lo(k + 1) to m(k) . Similarly, if R(k) ≤ V(k) , we know that 
m(k) ≥ m��(k) . Therefore, we can safely set hi(k + 1) = m(k).

As in the usual binary search, in each iteration (until convergence), either the hi 
value reduces or the lo value increases. Therefore, the algorithm will converge when 
lo = hi − 1 . At this time, m = hi and will not change further. 	�  ◻

5.3 � Unknown and time‑varying workload

In Sect. 5.2 above we had assumed that the values of W
T
 and L

T
 , although unknown, 

remain constant. We now consider a further generalization: the values of W
T
 and L

T
 

may change over time. We propose two mechanisms to deal with such an unknown 
and time-varying DAG workload. The first (Sect.  5.3.1) is based on binary-expo-
nential search (Bentley and Yao 1976) and extends the previously described binary 
search algorithm. The second (Sect. 5.3.2) is a control-based approach.

5.3.1 � Binary‑exponential search

We now consider the situation where the underlying computation may change 
from one job to the next. In particular, consider the case where the binary search 
has converged such that lo(k) + 1 = m(k) = hi(k) and then the underlying compu-
tation changes so that R(k) > V(k) . Now we clearly need more processors and the 
current hi(k) is no longer the correct upper bound on the number of processors we 
need. Therefore, we must increase hi(k + 1) . Here we use the idea behind exponen-
tial search (Bentley and Yao 1976). We increase hi(k + 1) by a small increment (say 
hi(k + 1) = hi(k) + 2 ) to begin with. This causes a small increase in m(k + 1) . If we 
still have too few processors, we further increase hi(k) , this time by 4, doubling the 
increase with each iteration until we reach the point where we have a sufficiently 
large upper bound. At this point, again lo(k) and hi(k) are good upper and lower 
bounds and the normal binary search allows us to converge. In Algorithm 3, line 3 
shows the condition under which we increase hi(k + 1) . While this condition is cor-
rect, it may misfire and may increase hi even when it need not do so—for instance, 

m(k) =

⌈
lo(k) + hi(k)

2

⌉
,
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it may be the case that m(k) < hi(k)—therefore, R(k) which is the response time 
with m(k) processors is larger than V(hi(k)) , but the response time with hi(k) proces-
sors (which may be smaller) would not exceed V(hi(k)) and therefore hi(k) is a good 
upper bound and need not be increased. In our actual code, we use a slightly better 
condition which is less likely to misfire. However, this problem can not be perfectly 
solved since we can not precisely know the response time with hi(k) processors. This 
problem is related to the observability problem described in the previous section, 
albeit it is not identical.

A similar exponential change must be made to lo when the response time of the 
underlying computation decreases. However, this is even more treacherous. Imagine 
that we have converged to lo(k) + 1 = m(k) = hi(k) and we observe that R(k) < V(k) . 
By symmetry from the above argument, one would imagine that we should decrease 
lo(k + 1) to decrease m(k + 1) . However, recall that we want to compute the smallest 
m(k + 1) such that the response time R(k + 1) is at most V(m(k + 1)) . Since R(k) may 
not (in fact, it is unlikely to) exactly equal a virtual deadline corresponding to any 
particular number of processors, R(k) is generally likely to be smaller than V(m(k)) 
even when we have the correct number of processors. Therefore, if we always 
decrease m when R(k) < V(k) , the number of processors assigned will oscillate 
between the “correct value” (where R < V  ) and one fewer processor (where R > V  ). 
Therefore, we shouldn’t necessarily decrease the number of processors if the virtual 
deadline is larger than the response time. To prevent this, on Line 9, we first check if 
R(k) < V(m(k) − 1) . If R(k) is between V(m − 1) and V(m) , then we can be sure that 
m was the correct allocation and we needn’t decrease lo(k + 1).

Algorithm 3 Binary-exponential search for core allocation.
Input: k, R(k), m(k), hi, lo
Output: m(k + 1), hi, lo

1 begin
2 if R(k) > V (m(k)) then
3 if m(k) == hi or R(k) > V (hi) then
4 Increase hi
5 end
6 lo = m(k)
7 end
8 if R(k) < V (m(k)) then
9 if R(k) < V (m(k)− 1) then

10 if lo == m(k)− 1 or R(k) < V (lo) then
11 Decrease lo
12 end
13 hi = m(k)
14 end
15 m(k + 1) = �(hi+ lo)/2�
16 end
17 end
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This does not completely solve the problem, however. In particular, in some cases, 
it is possible that the response time R(m) < V(m − 1) while R(m − 1) > V(m − 1) . In 
this case, the correct allocation is m. However, with a single observation, no algorithm 
can distinguish this case from the case where R(m − 1) > V(m − 1) . Therefore, for 
such computations, our algorithm does oscillate between m  and m − 1 . It is important 
to note that this oscillation can not be prevented when we make a single response time 
measurement. Furthermore, this oscillation automatically solves the observability prob-
lem described in Sect. 5.4. In particular, say that R(k) > V(m(k) − 1) . In this case, we 
can be sure that the response time with m(k) − 1 processors (which we did not observe) 
will also be larger than V(m(k) − 1) due to the non-decreasing property of response 
time. Therefore, it is not necessary to check with one fewer processor. On the other 
hand, if the response time R(k) > V(m(k) − 1) , then this algorithm will automatically 
decrease lo(k + 1) and therefore, decrease m(k + 1) compared to m(k) . As mentioned in 
Sect. 5.4, this measurement is enough to check if we are using resources inefficiently 
and if so, the algorithm will converge to a smaller allocation.

5.3.2 � Integral controller

A natural choice to explore for the decision-making problem is a control-based 
approach. Control theory has been extensively used in different domains for runtime 
adaptation.

The main challenges in applying a control-based solution in this context are: 

1.	 The difficulty in determining a model of the system to be controlled. The relation 
between the amount of allocated resource (“��������(k) ” in Fig. 3) and the runt-
ime behavior (“�������(k) ” in Fig. 3) may be unknown or depend on unknown/
unavailable internal state (e.g. cache content)

2.	 The definition of an appropriate set point in terms of resource allocation to be 
reached, and

3.	 The presence of integer variables, while normally feedback control loops work 
better with real-valued variables.

All three problems are intertwined and need to be addressed jointly.
In a typical control structure, the set point is a well-defined concept that is the 

desired behavior of the system. In this specific application, the ideal resource alloca-
tion m�� is unknown as it depends on the unknown relationship between the resource 
allocation and the runtime behavior. Therefore, computing such quantity would require 
knowing exactly the function R(m) for all the possible values of m and for all the time 
instants—since such function can also vary over time. The control problem can be then 
formulated as an approximation of the described problem, by measuring the response 
time of the previous run R(m(k − 1)) , and computing the approximated desired value of 
cores at the current time instant as:

(13)msp(k) ∶= argminiV(i) ≥ R(m(k − 1))
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(Here, the superscript “sp” denotes “set point.”) If this is applied in an iterative way 
over time, R(m(k − 1)) is the result of the allocation m(k − 1) , R(m(k)) is the result of 
the allocation m(k) , and so on.

Recall that Remark  1 states that the virtual deadline V  is a non-decreasing 
function of m and that Assumption  3 states that the response time R decreases 
with increasing values of m when R ≤ V  . Therefore, if the allocation of m(k) is 
too low, the resulting response time will be R(k) > V  , and the controller will 
increase m. On the other hand, if R(k) ≤ V  the controller will try to make the two 
quantities as close as possible, and it will decrease m.

The control strategy can be defined as follows. The tracking error e can be 
defined as the discrepancy between msp(k) and the old core allocation as:

The smooth adaptation, can be achieved with an integral control structure:

where K ∈ (0, 1] , and the symbol m̃(k) is used to indicate the non-integer number 
of cores. The resulting number of cores must be saturated between a minimum and 
maximum value as

Furthermore, whereas the tracking error e(k) is generally an integer, the resulting 
number of cores is not necessarily an integer due to the multiplication by the real 
constant K. The actual number of cores is therefore rounded:

Summarizing, the internal state of the control logic is �����(k) = m̃(k) , while the 
���������(⋅, ⋅) function is the composition of Eqs. (14)–(16), and the �������������(⋅) 
is (17).

The resulting control formulation is presented in Algorithm 4. The formulation 
has the following advantages: 

1.	 it provides a guarantee that the control strategy has a stable attractor in e(⋅) = 0 , 
meaning that it guarantees convergence either to zero tracking error or to a stable 
limit cycle around e(⋅) = 0;

2.	 in the case that the required number of cores is exceeding the saturation values, 
Eq. (16) avoids the accumulation of the error and then it allows a prompt reaction 
as soon as the required number of cores becomes again within the saturation limits 
(the so-called windup effect Åström and Murray 2021); and

3.	 having selected the real-valued number of cores m̃ as the state of the controller, 
it accumulates the quantity Ke(k) over multiple iterations, causing the computed 
number of cores m̃ to smoothly change and eventually cross the threshold for the 
rounding. This enables the exploration of a different number of cores, which may 
be needed to possibly infer information about the resource usage, not directly 

(14)e(k) = msp(k) − m(k − 1)

(15)m̃(k) = m̃(k − 1) + Ke(k)

(16)m̃(k) = min(max(m̃(k), 1),M)

(17)m(k) = round(m̃(k)).
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available from the monitoring of the response time only (as previously illustrated 
in Sect. 5.4).

Algorithm 4 Integral Controller for core allocation.
Input: k, R(k), m̃(k − 1), K
Output: m(k + 1)

1 begin
2 msp(k) := argmini V (i) ≥ R(k) // Estimate the target allocation
3 e(k) = msp(k)−m(k − 1) // Estimate the allocation error
4 m̃(k) = m̃(k − 1) +Ke(k) // Compute the control action
5 m̃(k) = min(max(m̃(k), 1),M) // Saturate the control
6 m(k) = round(m̃(k)) // Round the control action

7 end

5.4 � Limits of response‑time‑based resource allocation

As explained above, the response time is perhaps the simplest and most easily moni-
tored aspect of run-time execution. Using this aspect as the sole basis for resource 
allocation, however, poses some challenges. This potential issue is illustrated by an 
example in Fig. 4.

Let us assume that we have a DAG composed of the six vertices labeled A, B, C, 
D, E, and F. The precedence constraints among these six vertices are illustrated in 
Fig. 4 (on the left). In this example, the completion of A enables the execution of B, 
C, D, and E. The last vertex F may execute only after the preceding vertices B, C, D, 
and E complete. Two scenarios are considered: the execution of the DAG workload 
upon 4 cores (upper schedule) and the execution of the same workload upon 3 cores 
(lower schedule). In both scenarios, the DAG releases three jobs at instants 0, 7, and 
14 (the job releases are represented by thick arrows pointing up). The variability of 
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Fig. 4   Example of DAG schedule over 4 and 3 cores. The processing time labeled by “XY” represents 
the schedule of the “X” vertex of the “Y” job released by the DAG. In the schedule over 4 cores, it 
can be observed that different processing times of vertices may lead to different amounts of wasted 
resources. Such a difference, however, cannot be detected by response time which has the same value of 
R(1) = R(2) = R(3) = 4 for all three jobs
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the execution times of each vertex is represented by different durations of each ver-
tex among the three jobs shown in the schedules. The two scenarios show the sched-
ules over 4 and 3 cores respectively of the same three jobs with the same duration of 
the vertex execution time.

This example shows the implication and the potential issues of using only the 
response time to allocate the “right” amount of processing resources. When the 
three jobs of the example are scheduled upon 4 cores, the response times R(1), R(2), 
and R(3) of the three jobs are all equal to 4. Hence, any resource allocation policy 
which uses the response time only to determine the amount of allocated resources, 
cannot detect any difference in resource usage of the three jobs. The three jobs, how-
ever, use the 4 allocated cores very differently. In the example of Fig.  4, the first 
job uses much less processing than the other two. Of course, this could be detected 
by monitoring the amount of processing actually used. The API for monitoring this 
quantity, however, is not as simply available as the capacity to know the job response 
time. For this reason, if we stick with Assumption 1, some alternate way to detect an 
excessive amount of unused resources is needed.

In Fig.  4, the bottom diagram shows the schedule of the very same jobs when 
scheduled upon 3 cores. When scheduling on fewer cores, in fact, a job that was 
wasting a large amount of capacity may be capable of executing upon fewer cores 
without affecting the response time. This is the case of the first job, which has the 
same response time R(1) = 4 on both 4 and 3 cores. If instead, the job schedule is 
tight, the assignment of fewer cores may lead to an increase in the response time. In 
the example of Fig. 4, this is happening to both the second job (with a response time 
R(2) increasing to 5) and the third one (with a response time R(3) increasing from 4 
to 6 when scheduled over 3 instead of 4 cores).

This example illustrates that simply observing the response time on a certain 
number of cores and making a resource allocation decision based on this observa-
tion may lead to inefficient use of resources. Hence, occasionally “exploring” the 
option of scheduling the DAG on fewer cores may lead to the detection of unused 
resources.

6 � Comparative evaluation

In this section, we evaluate the effectiveness of the proposed resource management 
strategies, under different conditions.

6.1 � Assessing the waste of resource

To quantify and compare the effectiveness of the different strategies, we assess 
how the proposed runtime adaptation strategies—unaware of the typical execu-
tion parameters—compare with the “ideal allocation” m�� (with the corresponding 
response time R��)—obtained assuming that the typical execution parameters are 
known. We define the following performance metrics. 
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1.	 The allocation error � assesses for every time instant k how far the allocated cores 
m(k) are from the ideal m�� (computed according to Algorithm 1). It is computed 
as: 

 No distinction is made if the resource is over- or under-provisioned.
2.	 The waste of resource w assesses the amount of resource wasted due to a wrong 

allocation. It is computed as follows: 

 where R�� is the response time that is obtained with the ideal allocation of m�� 
cores, and V(m��).

While the metric � takes into account the instantaneous difference in the number of 
allocated cores with the ideal number (regardless of the time such a difference lasts), 
the metric w instead measures the amount of wasted processing capacity due to a 
wrong allocation. Note that both metrics are defined per time instant k, as the ideal 
allocation may vary over time. The ideal allocation, computed as per Algorithm 1, is 
used as an oracle since it assumes that the typical execution parameters are known.

For both metrics, the lower the value, the better, with a perfect allocation having 
both metrics equal to 0.

Note that the ideal allocation can vary over time, based on the DAG that is exe-
cuting. Such quantities are usually not possible to know in advance unless the struc-
ture of the DAG is known. The evaluation of the presented approaches is therefore 
conducted in simulation to fully control the variation of the structure, and to have 
full access to the required information to compute the ideal allocation. Note that the 
DAG structure information is used only for simulation purposes, but it is not com-
municated to the decision-making strategies.

6.2 � Simulation results

To assess the quality of the runtime decision-making strategies we consider a Paral-
lel Synchronous DAG (PSDAG) (Saifullah et al. 2011; Nelissen et al. 2012), simu-
lated as described in “Appendix A”. For the simulations, we selected, M = 24 cores, 
and the controller gain K = 0.5.

We conducted two types of simulation campaigns: (i) assuming that the PSDAG 
structure never changes, and therefore that there is a constant ideal allocation, and 
(ii) assuming that the PSDAG structure can change over time, and therefore that the 
ideal allocation may continuously change.

6.2.1 � Constant typical execution parameters

In the first set of experiments, we consider that the typical execution parame-
ters are constant but unknown. In Sect. 5.2, a Binary Search (BS) approach was 

(18)�(k) = |m(k) − m��(k)|

w(k) =

{
m(k)R(k) − m��(k)R��(k), if R(k) ≤ V(k),

m(k)V(k) + M(R(k) − V(k)) − m��(k)R��(k), if R(k) > V(k),
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presented, to deal with this scenario. For the sake of completeness, we include in 
the analysis the results obtained by using the Integral Controller (IC) presented in 
Sect. 5.3.2, as it can also be used in the case of constant typical execution param-
eters. Both algorithms are initialized to initially allocate ⌈M∕2⌉ cores.

Two examples of the obtained results are presented in Fig. 5. In all the graphs, 
the black dashed lines indicate the ideal resource allocation m�� (with the cor-
responding virtual deadline V�� ∶= V(m��) ). The solid blue lines indicate the 
resource allocated m by the algorithm and the corresponding virtual deadline V. 
The response time R resulting from the resource allocation is indicated with the 
solid red line. When plotting the number of cores (“#Cores”) for the BS algo-
rithm, a green area indicates how the hi and lo values are varying.

The left and the right columns of Fig. 5 are associated with two distinct reali-
zations of the PSDAG, while the top part shows the results obtained by the BS 
algorithm, and the bottom part shows the ones obtained by the IC algorithm.
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The PSDAG realization presented in the left column shows that both algo-
rithms manage to reach the ideal allocation (indicated with the dashed line), but 
the BS approach converges in fewer steps than the IC.

On the other hand, with the PSDAG realization presented in the right column, the 
IC results in a faster convergence to the ideal allocation.

6.2.2 � Discussion on the simulation campaign

To better understand the obtainable performance of the proposed algorithms, we 
conducted a simulation campaign of 100 randomized (and seeded) experiments, 
where the PSDAG structure does not change, and the typical execution parameters 
are constant (additional details on the simulation of the PSDAG and the randomized 
quantities are included in “Appendix A”). Therefore, we can analyze the obtained 
performance more systematically.

Table  1 shows the average and standard deviation computed for the allocation 
error and waste of resource over the whole simulation campaign.

Comparing the averages to assess which method behaves better is typically 
not enough. To this end, a t-test (also known as Student test)  (Witte and Witte 
2017, Chapter 14) can be conducted to check if there is statistical evidence that the 
two averages are actually different, or if the difference is due to the chance of having 
extracted conducted an unlucky set of experiment, while in fact, they are statistically 
comparable.

More specifically, the null-hypothesis of the t-test is H0 : “the two methods have 
the same average”, while the alternative hypothesis H1 is that “the two methods have 
different averages”. The output of a t-test is the so-called “probability value” (or 
p-value), i.e., the probability of having observed the collected data assuming that the 
null-hypothesis is correct. Hence, having low p-values (typically lower than 0.05 or 
0.01) is an indication that the alternative hypothesis is correct.

We conducted a paired t-test for the two metrics to understand if there is statis-
tical evidence that one method is overall behaving better than the other. Since in 
both metrics, the average of the BS is lower than the IC, we performed a right-tailed 
t-test, where the alternative hypothesis is H1 : “The average of the IC is higher than 
the average of the BS”. The last column of Table 1 shows the obtained p values. 
While for the allocation error, the p-value is quite large—hence it is not possible 
to conclude that one method is statistically better than the other—, for the waste of 
resource metric, the p-value is less than 10−5 indicating that there is enough experi-
mental evidence to conclude that the BS has an average better performance than the 
IC.

Table 1   Aggregate metrics and 
results of the t test for constant 
typical execution parameters

BS [avg. ± std.] IC [avg. ± std.] p value

Allocation error 1.05 ± 2.26 1.15 ± 2.24 0.3254
Waste of resource 12.49 ± 37.03 13.23 ± 38.65 < 10−5
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6.2.3 � Time‑Varying Typical Execution Parameters

Notice that, in the case of time-varying typical execution parameters, it is in gen-
eral impossible to get the two considered metrics to be equal to 0 for all the time 
instants. This is due to at least two reasons: (i) initially, the allocation must be 
done without any information on the response time (which is true even in the con-
stant case), and (ii) even if the ideal allocation is reached for a given time instant, 
the structure of the DAG can change over time, hence changing also the ideal 
allocation; an observation-based decision-making strategy needs to either detect a 
variation in the response time or to go into an exploration phase to reach the new 
ideal allocation.

We conducted a simulation campaign of 500 runs, each composed of 100 
rounds, for the Binary Exponential (BE) algorithm, and for the Integral Control 
(IC) algorithm.

Figures  6, 7 and 8 show three examples of runs for the Binary Exponential 
(BE), the two graphs on top in each figure, and for the Integral Control (IC), the 
two graphs on the bottom. In each figure, the same realization of the PSDAG is 
handled by both BE and IC algorithms.

The figures, follow an analogous structure, and color-coding of Fig. 5, with the 
difference that in this set of experiments, the BE algorithm is used instead of the 
BS.

6.2.3.1  Experiment 1 (E1)  Figure 6 presents an experiment where BE has an over-
all qualitatively better behavior than the IC. In particular, the IC oscillates around 
the ideal allocation, and the oscillation has a large amplitude, occurring every time 
m�� decreases. The BE approach, on the other hand, manages to follow the ideal 
allocation. In the experiment it is possible to appreciate the exploration phase of 
BE, for example in the time interval k ∈ [50, 60] , when, even though the allocation 
converged to the ideal one, BE tries to decrease the allocated cores, exploring solu-
tions with less amount of resources.

6.2.3.2  Experiment 2 (E2)  Figure 7 shows an experiment where the IC exhibits a 
better qualitative behavior than the BE. This is visible during the transients, where 
the IC converges faster to the ideal allocation, while the BE has a slower conver-
gence rate. This is especially true when the allocated cores must be decreased.

6.2.3.3  Experiment 3 (E3)  Figure 8 shows an experiment where both approaches 
present an oscillatory behavior. Overall, the IC follows the ideal allocation but 
continuously oscillating around the ideal allocation. This phenomenon is mostly 
induced by the rounding in the algorithm, which does not allow the convergence 
towards a single equilibrium point, but rather to a limit cycle.

On the other hand, the BE suffers from a joint effect of exploration and win-
dow widening that significantly impacts the overall performance.
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6.2.3.4  Evaluation of  the  overall campaign  To assess the performance of the two 
methods over the whole simulation campaign, we computed for all the experiments 
and for all the rounds the instantaneous allocation error � and the resource waste w.
Figures 9 and 10 show the distribution of the computed allocation error and waste 
of resource. In particular, the top graphs of the two figures show the distribution 
of the occurrences of the respective metric—note that the vertical axis is logarith-
mic—while the bottom graphs show the computed Empirical Cumulative Distribu-
tion Function (ECDF) of the two metrics—note that the vertical axis does not start 
from 0 to better show the convergence of the ECDFs towards 1.

The average performance (avg.) and the standard deviation (std.) for the two met-
rics are reported in Table 2.

We conducted a paired t-test for the two metrics to understand if there is statisti-
cal evidence that one method is overall behaving better than the other. Since in both 
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Fig. 6   Experiment example 1. In this scenario, the Binary Exponential has an overall better behav-
ior than the Integral Control, where the Integral Controller exhibits large oscillations in the allocated 
resource
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metrics, the average of the Integral Control is lower than the Binary Exponential, we 
performed a right-tailed t-test, where the alternative hypothesis is H1 : “The average 
of the Binary Exponential is higher than the average of the Integral Control”. The 
last column of Table 2 shows the obtained p-values. For both metrics, the p value 
is less than 10−5 indicating that there is enough experimental evidence to conclude 
that the IC has an average better performance than the BE when the typical execu-
tion parameters are time-varying. This is despite potential oscillations like the ones 
presented in Figs. 6 and 8.
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Fig. 7   Experiment example 2. In this scenario, the Integral Control has an overall better behavior than 
the Binary Exponential
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7 � Related work

As mentioned in Sect. 1, the real-time community has recently been devoting a 
significant amount of effort to obtaining more resource-efficient implementations 
of safety-critical systems that, for reasons of safety, need to have their run-time 
behavior characterized using very conservative models. Noteworthy initiatives in 
this regard include those centered on probabilistic analysis  (Bernat et  al. 2002; 
Cucu-Grosjean et  al. 2012), mixed-criticality analysis  (Vestal 2007; Burns and 
Davis 2017) and typical-case analysis (Quinton et al. 2012; Agrawal et al. 2020). 
We have pointed out in Sect.  1 that these forms of analyses all require addi-
tional modeling of the run-time behavior of the system under consideration; it is 
not always possible to devise such additional models (and even when possible, 
obtaining these models may require significant effort on the part of the system 
developer.)
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Fig. 8   Experiment example 3. In this scenario, the Binary Exponential and the Integral Control exhibit a 
comparable performance
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The approach to DAG-scheduling that is advocated in this paper, of optimisti-
cally assigning a low number of processors under the expectation that execution will 
complete by a specified intermediate deadline and increasing the number of proces-
sors assigned if this fails to happen, is conceptually close to the approach presented 
in Agrawal and Baruah (2018). Under the approach of Agrawal and Baruah (2018), 
the system developer is tasked with the responsibility of specifying two values for 
the work and the span parameter of the DAG: a conservative bound that is required 
to hold under all circumstances (as in our model—Sect. 2.3), and a “typical” bound 
that is assumed to hold under most, though not necessarily all, circumstances.

Our proposed scheme, presented in Sect. 5, borrows from Agrawal and Baruah 
(2018) the idea of assigning a lower number of cores before a virtual deadline. 
However, we do not exploit any other characterization of the workload nor any 
code instrumentation. We take our decision based on the completion time only. The 
idea of taking scheduling decisions based on runtime monitoring is not new. Sev-
eral authors proposed feedback scheduling to adjust the amount of resource based 
on runtime monitoring  (Lu et  al. 1999; Abeni et  al. 2002; Cervin et  al. 2002). In 
the context of multiprocessor scheduling,  Block et  al. (2008) proposed a task re-
weighting to respond to runtime variation in the demand, but still, the workload was 
sequential. Feedback-based scheduling of workload with internal parallelism was 
proposed in Bini et al. (2011), however, all cores were allocated to all applications.

To the best of our knowledge, our work is the first proposing to assign the number 
of cores based on the response time of the monitored workload.

8 � Conclusions

To be able to establish the correctness of their run-time behavior at the required very 
high levels of assurance, safety-critical systems are generally specified using models 
that make very pessimistic assumptions regarding their resource usage during run-
time. Directly implementing these models can result in inefficient system implemen-
tations—implementations that exhibit very poor run-time resource utilization. Prior 
approaches that have been proposed to enhance the efficiency of such implementa-
tions have required that additional (less conservative) characterization of run-time 
behavior also be provided by the system developer; even when feasible, doing so 
places an additional burden on the system developer.

In this work, we have proposed a feedback-based approach to enhancing run-
time efficiency in the absence of additional characterization for recurrent systems: 
systems whose run-time workload tends to be highly repetitive. (We note that such 

Table 2   Aggregate metrics and 
results of the t-test

BE [avg. ± std.] IC [avg. ± std.] p value

Allocation error 0.48 ± 1.16 0.44 ± 1.12 < 10−7

Waste of resource 15.72 ± 42.87 14.51 ± 41.66 < 10−5
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workloads constitute a significant fraction of the overall workloads of many safety-
critical systems.)

The proposed approach is based on the notion of virtual deadline, which reduces 
the usage of resources while guaranteeing meeting the deadline, even in the worst-
case scenario. Such a mechanism has been investigated under different assumptions, 
including the case where the typical parameter values are known (and constant), 
which leads to a solution that can be computed offline, to the case where the typi-
cal parameters are unknown (and time-varying), that leads to a run-time adaptation 
solution. More specifically, in the latter case, our approach monitors the response 
time of each occurrence of the workload and uses the monitored value to assign 
resources for the next occurrence. We have developed two different algorithms for 
such resource assignment, one based on algorithm-design principles and the other, 
on principles of control theory, and have applied these algorithms to an example 
application modeled as a DAG executing upon a multiprocessor platform. We have 
shown that both methods assure safety under worst-case conditions and that neither 
dominates the other with regards to the efficiency of resource utilization: there are 
scenarios in which each approach is able to make more efficient use of comput-
ing resources than the other. Based on the statistical evaluation, the control-based 
approach performs statistically better than the binary exponential, and therefore it 
can be preferred.

Future work will be devoted to the investigation of more advanced strategies to 
further reduce the waste of resources. One interesting direction is the development 
of runtime monitoring mechanisms, that can detect more easily over-provisioning 
situations, e.g., by measuring additional parameters other than the response time. 
Another interesting direction is the development of learning techniques to automati-
cally identify possible workload patterns—similarly to what is done in autoscaling 
techniques for cloud computing applications—to proactively allocate resources, 
rather than reacting to already experienced measurements.

Appendix A: Parallel synchronous DAGs simulation

The evaluation was conducted considering the execution of Parallel Synchronous 
DAGs (PSDAGs) (Saifullah et al. 2011; Nelissen et al. 2012). The PSDAG structure 
is a sequence of fully parallel threads interleaved with a sequence of synchronization 
barriers (as illustrated in Fig.  11). They represent well very typical programming 
structures, such as a sequence of for loops.

Fig. 11   An example of a parallel 
synchronous DAG with N = 5 
segments
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To emulate a varying structure of a PSDAG, we initialized M ∈ {1,… , 5} dif-
ferent structures of PSDAGs. For every PSDAG, we selected:

•	 N ∈ {2,… , 20} segments.
•	 For each segment i ∈ {1,… ,N}:

–	 �i ∈ {1,… , 10} is the duration of segment i.
–	 �i ∈ {1,… ,M} level of parallelism of segment i.

The variables M and, for each PSDAG, N, �i, and �i are selected randomly within 
the specified ranges, according to a uniform distribution.

With a period T, we switch between the M PSDAGs. The worst-case work and 
span are computed as the maximum work and span among all the M PSDAGs, 
multiplied by a padding factor � ≥ 1 . � close to 1 represents a worst-case close 
to actual runtime values. On the other hand, large values of � are associated with 
very conservative worst-case estimates. In the experiments, � = 1.2.

For every allocation round k, the response time is calculated based on the cur-
rent PSDAG that is considered to be active. More specifically, considering a given 
allocation of cores m and the corresponding virtual deadline V(m), the response 
time is calculated as the sum of three components:

where R��� is the response time to execute the amount of computation with m cores 
until the virtual deadline V(m), R��� is the extra response time of the (i��� + 1)-th seg-
ment which experiences the switch to M cores at V(m), and R���� is the response time 
to execute the final amount of computation after the virtual deadline V with M cores. 
Formally R���,R���, and R���� are defined as follows:
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