
Vol:.(1234567890)

Real-Time Systems (2021) 57:190–226
https://doi.org/10.1007/s11241-020-09361-0

1 3

Concurrency groups: a new way to look at real‑time
multiprocessor lock nesting

Catherine E. Nemitz1  · Tanya Amert1 · Manish Goyal1 · James H. Anderson1

Accepted: 8 December 2020 / Published online: 5 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
When designing a real-time multiprocessor locking protocol, the allowance of lock
nesting creates complications that can inhibit parallelism. Such protocols are typ-
ically designed by focusing on the arbitration of resource requests that should be
prohibited from executing concurrently. This paper proposes “concurrency groups,”
a new concept that reflects an alternative point of view that focuses instead on
requests that can be allowed to execute concurrently. A concurrency group is sim-
ply a group of lock requests, determined offline, that can safely execute together.
This paper’s main contribution is the CGLP, a new real-time multiprocessor lock-
ing protocol that supports lock nesting through the use of concurrency groups. The
CGLP is able to reap runtime parallelism benefits that have eluded prior protocols
by investing effort offline in the construction of concurrency groups. A schedulabil-
ity study is presented to quantify these benefits, as well as an approach to determin-
ing such groups using an Integer Linear Program (ILP) solver, which we show to be
efficient in practice.

Keywords  Multiprocess locking protocols · Nested locks · Priority-inversion
blocking · Real-time locking protocols

 *	 Catherine E. Nemitz
	 nemitz@cs.unc.edu

	 Tanya Amert
	 tamert@cs.unc.edu

	 Manish Goyal
	 manishg@cs.unc.edu

	 James H. Anderson
	 anderson@cs.unc.edu

1	 Department of Computer Science, University of North Carolina at Chapel Hill, 201 S. Columbia
St., Chapel Hill, NC 27599, USA

http://orcid.org/0000-0002-5800-3533
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-020-09361-0&domain=pdf

191

1 3

Real-Time Systems (2021) 57:190–226	

1  Introduction

Although real-time multiprocessor locking protocols have been studied for over
thirty years (Rajkumar et al. 1988), the issue of enabling unrestricted lock nest-
ing—i.e., a task holding locks on several resources simultaneously—in an effi-
cient manner was considered only relatively recently (Ward and Anderson 2013).
The desire to support nesting is motivated by practical concerns: use cases are
common in practice in which a task must access multiple resources at once with-
out interference from other tasks (AUTOSAR 2019; Bacon et al. 1998; Branden-
burg and Anderson 2007). However, unrestricted lock nesting causes complica-
tions in real-time systems.

Many of these complications are rooted in the fact that it is difficult to avoid
negating the parallelism that the underlying hardware platform affords. This dif-
ficulty is due, at least in part, to two fundamental problems. The first is a problem
we call the Transitive Blocking Chain Problem: when lock nesting is allowed,
chains of requests can form that prevent resource requests from being satisfied
even though the requested resources are free. The second is a problem we call the
Request Timing Problem: even in protocols designed to reap gains in parallelism,
such gains can be negated by even small variations in resource request durations
or other timing details. All existing real-time multiprocessor locking protocols
that allow nesting are subject to one or both of these problems.

In this paper, we present the CGLP, the first ever protocol designed to
address both problems. The design of the CGLP reflects a fundamentally differ-
ent approach compared to prior work: rather than viewing a locking protocol as
merely preventing resources from being accessed concurrently, we instead view it
as a mechanism that safely allows concurrency with respect to shared resources.
Doing so allows us to take advantage of the timing information provided in real-
time systems to gain parallelism; this is reflected in the determination of per-
request blocking bounds (which are used in schedulability analysis). The CGLP
is designed around a new notion: groups of tasks called concurrency groups that
may safely execute concurrently.

Before describing the CGLP further, we first describe the two fundamental
problems noted above in more detail.

Transitive blocking chain problem Most approaches to coordinating resource access
order requests using a pre-determined scheme such as first-in-first-out (FIFO), which
we assume here. Any such scheme can result in chains of requests all blocked on a
single request. Such a transitive blocking chain can cause a request to be blocked
by another request with no resources in common. This problem can affect both
nested and non-nested requests. We illustrate it via an example involving only nested
requests.

Example 1  Consider a scenario with four tasks and five resources, �a through �e .
Each task �i issues a single request, Ri , for two resources for some duration. In
Fig. 1, resources are shown along the horizontal axis, and requests have been issued

192	 Real-Time Systems (2021) 57:190–226

1 3

and enqueued in task-index order. The maximum duration of each request is illus-
trated by a box of that height. In Fig. 1, R1 holds �a and �b . This prevents R2 from
acquiring �b and �c . Thus, R2 is blocked by R1 . A transitive blocking chain may
form, as shown in Fig. 1. Such a chain causes R4 to experience blocking for up to
the duration of three critical-section lengths.

When determining schedulability, we must account for the worst-case ordering
of request execution to calculate the worst-case blocking of each task. The order-
ing in Fig. 1 illustrates the chain that causes the worst-case blocking for R4.

Example 1  (Continued) To solve the Transitive Blocking Chain Problem, the CGLP
partitions the requests in Fig. 1 into two groups wherein concurrent execution is
allowed, as shown in Fig. 2. At runtime, resource access is provided on a per-group
basis. As seen in Fig. 2, doing so prevents transitive blocking chains from forming.

We call groups of tasks as just described concurrency groups. Such groups are
determined offline based on task-system characteristics.

Request timing problem. Although existing approaches have addressed the Transi-
tive Blocking Chain Problem (Jarrett et al. 2015; Nemitz et al. 2019a), worst-case
blocking under these protocols is heavily dependent on the timing of request issu-
ances and differences in request durations. Such timing-related variations can cause
“gaps” in the underlying queues utilized by a protocol. These gaps inhibit parallel
execution.

Fig. 1   FIFO-ordering

Fig. 2   Optimized offline order-
ing

193

1 3

Real-Time Systems (2021) 57:190–226	

Example 2  Consider requests R1–R4 , shown in Fig. 3, issued in numerical order and
enqueued. R5 is then issued and enqueued after R4 . Another “slot” that could have
been considered is shown in Fig. 3, but R5 cannot be inserted here, as this would
further delay R4 . (Such delays are problematic because the number of later-arriving
requests is generally unbounded.) Observe how the timing of the issuance of R2
caused a gap just after time 30 into which no conflicting request can fit.

The CGLP obviates such gaps by using task-system characteristics to pre-
determine the “slots” into which requests are inserted. Because this determination
is made offline, it is not subject to runtime timing variations.

In many protocols, having to deal with requests of different durations can also
cause “gaps” similar to that in Ex. 2. Thus, such differences are also a source
of the Request Timing Problem. The concurrency groups of the CGLP are con-
structed so as to minimize such differences and thus eliminate these gaps.

Contributions. We introduce a new real-time multiprocessor locking protocol, the
CGLP, that allows lock nesting and that results in lower blocking and overhead than
prior protocols for many systems. We gain analytical advantages by focusing on
which tasks may execute requests concurrently.

The CGLP has an offline component for determining concurrency groups that
simplifies the arbitration of requests at runtime. This component examines vari-
ous optimizations to the request ordering that would be impractical to explore
at runtime. A preliminary version of this work framed the construction of con-
currency groups as a graph-coloring problem and presented a method for form-
ing these groups with an Integer Linear Program (ILP) (Nemitz et al. 2019b). In
this work, we present that ILP in full. We then explore approaches for determin-
ing groups that improve worst-case blocking bounds and present an alternate ILP
that leverages additional task system information to improve blocking bounds. To
assess the CGLP, we analyze the offline component by examining its execution
time and the online component by presenting the results of a schedulability study.

Fig. 3   An illustration of the request timing problem. R5 may not be inserted in the earlier slot marked by
an ‘X’, as this would delay an already issued request

194	 Real-Time Systems (2021) 57:190–226

1 3

Organization. We begin with required background in Sect. 2. In Sect. 3, we intro-
duce the CGLP by first presenting a basic variant of it and an analysis of its blocking
complexity. We then consider various extensions to the protocol in Sects. 4–6. In
Sect. 4, we present an ILP that minimizes blocking instead of the number of concur-
rency groups. In Sect. 5, we extend the previous two ILPs to account for mixed-type
requests. In Sect. 6, we explore incorporating additional task system parameters into
the optimization problem. We present the aforementioned schedulability study in
Sect. 7, discuss related work in Sect. 8, and conclude in Sect. 9.

2 � Background

Before summarizing prior work on real-time locking protocols for multiprocessor
systems, we provide necessary details of our task and resource models.

System model. We focus on a sporadic task set Γ of n implicit-deadline tasks
{�1,… , �n} on a multiprocessor platform with m processors. A task �i is further
specified by its worst-case execution time Ci and its minimum job separation Ti . We
assume these tasks are scheduled with a job-level fixed-priority scheduler such as
Global Earliest Deadline First (G-EDF).

Resource model. When a task requires access to one or more resources, it issues a
request. We denote an arbitrary request as Ri and an arbitrary resource as �a . We say
a request Ri is satisfied while it holds all of its required resources, denoted Di.1 Ri
executes its critical section non-preemptively for at most Li time units before it com-
pletes and releases all of its held resources. A request is active from the time it is
issued to the time it completes. The maximum critical-section length of any request
is denoted Lmax . We call a request Ri a write request if it requires mutually exclusive
access to Di or a read request if other requests may access Di concurrently. A request
is a mixed request if it requires mutually exclusive access to some resources in Di
and other requests may concurrently access the remaining resources in Di.

A particular challenge is allowing nested resource access, in which a task holds
multiple resources concurrently. We focus primarily on providing efficient synchro-
nization for nested write requests; other work has presented methods for efficiently
handling read requests and non-nested requests in the presence of write requests and
nested requests (Nemitz et al. 2019a). We also consider how our protocol can be
extended to accommodate mixed requests.

We measure efficiency with regard to reducing the delays lower-priority tasks
cause for higher-priority tasks. Specifically, we look at priority-inversion block-
ing (pi-blocking), the delay a task incurs due to waiting for access to one or more
resources held by a lower-priority task. Achieving a reduction in pi-blocking

1  We assume the use of dynamic group locks (Ward and Anderson 2013), which coalesce all resources a
task may require concurrently under a single request. For example, if a task requires access to �

a
 and then

conditionally requires access to either �
b
 or �

c
 , it issues a single request for {�

a
,�

b
,�

c
}.

195

1 3

Real-Time Systems (2021) 57:190–226	

ought to be done with minimal introduction of additional overhead. In this paper,
we focus on locking protocols that are spin-based; a task busy-waits non-preemp-
tively until its request is satisfied.

Existing protocols. In this work we compare our new protocol to four existing pro-
tocols. The broader context of these protocols is discussed in Sect. 8, but we briefly
describe these protocols here.

First, we compare to a single MCS lock (Mellor-Crummey and Scott 1991)
used to protect all resources as a static group lock. The MCS lock is a FIFO-
ordered lock with very low overhead, but its application as a single group lock
severely limits parallelism. The remaining three protocols to which we compare
are in the real-time nested locking protocol (RNLP) family of protocols (Jarrett
et al. 2015; Ward 2016; Ward and Anderson 2012, 2013, 2014). Each of these
protocols also use dynamic group locking (Ward and Anderson 2013) to coalesce
each set of nested requests into a single request for multiple resources. (Other
approaches to handling nested resource access in real-time systems are discussed
in Sect. 8.) We compare to the basic RNLP (Ward and Anderson 2012), which
provides asymptotically optimal pi-blocking for nested requests. It does so by
using per-resource queues that are timestamp-ordered based on the time each
request was issued. We also compare to the two C-RNLP variants (the U-C-RNLP
and the G-C-RNLP) (Jarrett et al. 2015), which can provide a tighter blocking
bound that is based on the number of requests with which the request of interest
shares resources. The C-RNLP also uses per-resource queues, but allows later-
issued requests to cut ahead of enqueued requests when doing so will not increase
blocking for these requests. This more complex protocol necessarily has higher
overhead in order to achieve lower blocking.

3 � Concurrency groups

We develop the Concurrency Group Locking Protocol (CGLP) to address both
the Transitive Blocking Chain Problem and the Request Timing Problem. Recall
the pathological case of transitive blocking presented in Sect. 1. Although each
nested request required only two resources, a FIFO-ordered synchronization pro-
tocol could cause a long chain of transitive blocking, as illustrated in Fig. 1. The
blocking chain in this example could be eliminated by partitioning the requests
into the two groups shown in Fig. 2 and allowing only one group to execute at
any given time. This captures the basic intuition of the CGLP; the protocol is
described in detail below.

In this section, we begin by discussing how to generate concurrency groups for
an arbitrary set of write requests (we will extend our consideration to mixed-type
requests in Sect. 5). Then we show how phase-based access to resources can be
achieved by generalizing prior protocols that orchestrate phases of only two or three
types (Nemitz et al. 2018, 2019a). We finish this section by bounding the worst-case
blocking any request may incur under the CGLP.

196	 Real-Time Systems (2021) 57:190–226

1 3

3.1 � Offline group creation via graph coloring

A k-coloring of a graph is a mapping of its vertices to a set of colors, K, such that
|K| = k . A coloring is proper if no two adjacent vertices are assigned the same
color. A graph is k-colorable if it has a proper k-coloring. The Vertex Coloring
Problem (VCP) for a graph entails finding the chromatic number, defined as the
smallest integer k for which the graph is k-colorable.

Given a set of write requests, we seek to create concurrency groups. All
requests in a single group must not share any resources. Our goal is to create
the minimum number of groups, as this maximizes the possible concurrency. We
transform our problem to the VCP in two steps. First, for each request Ri , we cre-
ate a corresponding vertex Vi . Once we have added all vertices to the graph, we
add edges. An edge is added between Vi and Vj , where i ≠ j , if Di ∩Dj ≠ �.

Example 3  Consider a task set that produces five requests: R1 for D1 = {�a,�e} ,
R2 for D2 = {�c,�e} , R3 for D3 = {�b,�d} , R4 for D4 = {�a,�b} , and R5 for
D5 = {�d,�e} . The graph representation of these requests is shown in Fig. 4. For
example, V4 is connected to V1 and V3 because D4 ∩D1 = {�a} and D4 ∩D3 = {�b} .
V4 does not have an edge to either V2 or V5 , as D4 ∩D2 = � and D4 ∩D5 = �.

To determine the minimum number of concurrency groups, we find the mini-
mum k such that the graph can be colored with k colors. This results in k groups,
G1 through Gk . A specific coloring informs which requests belong in which group;
if a vertex Vi is assigned Color g, then Ri ∈ Gg.

Example 3  (Continued) This graph is 3-colorable, so only three concurrency groups
are required. In particular, we can color the vertices as shown in Fig. 4, which results
in G1 = {R1,R3} , G2 = {R2,R4} , and G3 = {R5}.

By our construction of the graph and the constraints on a solution to the
VCP, none of the requests in a given concurrency group require any overlapping
resources.

Fig. 4   An example coloring

197

1 3

Real-Time Systems (2021) 57:190–226	

Theorem 1  All requests in a given concurrency group Gg created via a solution to
the corresponding VCP may be satisfied concurrently (i.e., mutual exclusion will not
be violated).

Proof  Suppose not. Therefore, there exist two requests Ri and Rj in the same con-
currency group Gg that share a resource (i.e., Di ∩Dj ≠ � ). By the method of con-
structing the VCP described above, there is an edge between Vi and Vj . Thus, Vi and
Vj could not both be assigned Color g as a valid solution to the problem. Therefore,
Ri and Rj cannot both be in Gg . Contradiction. 	� ◻

As is standard for the analysis of real-time systems, we assume that all possible
requests are known a priori. Thus, we can run a k-colorability analysis offline to
determine the number of groups required for a given system and add each request to
a group based on its assigned color.

3.2 � Implementation of offline component

We encode an instance of the VCP as an Integer Linear Program (ILP) by using
binary variables to indicate a color assignment for each vertex. The following for-
mulation of this problem is based on the description in prior work (Palladino 2010).

Variables. We use the binary variable xi,g to indicate whether Vi is assigned Color g
(i.e., Ri belongs to Gg ). We let the binary variable colorg denote whether Color g is
used to color any vertex.

Constraints. The first constraint of our ILP enforces that each vertex is assigned
exactly one color.

Constraint 1  ∀i ∶
∑

c xi,c = 1

By using binary variables, we have xi,c ∈ {0, 1} . Thus, summing xi,c across all
colors for a given vertex Vi yields the number of colors that the vertex has been
assigned.

Our second constraint enforces that adjacent vertices may not be assigned the
same color.

Constraint 2  ∀c∀Ri,Rj ∶ Ri ≠ Rj ∧Di ∩Dj ≠ � ∶ xi,c + xj,c ≤ 1

When considering adjacent vertices Vi and Vj , for any color, at most one of the
vertices may be assigned that color.

Our third constraint captures whether a given color has been used.

Constraint 3  ∀i∀c ∶ colorc ≥ xi,c

If any vertex is assigned Color c, colorc will be 1.

198	 Real-Time Systems (2021) 57:190–226

1 3

Finally, our objective function reflects our goal of minimizing the number of
colors used.

Objective  min
∑

c colorc

To describe this problem as an ILP, we must include a variable for each avail-
able color. This requires us to pre-determine a sufficient number of colors. Two sim-
ple methods can be used to obtain a maximum number of colors: (1) the maximum
is bounded by the number of vertices, or (2) the maximum may be more tightly
bounded by applying a greedy coloring algorithm (described in Sect. 7.1).

We now specify the ILP corresponding to the running example from above.

Example 3  (Continued) Let us suppose we have applied a greedy coloring approach
that yielded four colors. Thus, we know that the minimum k is at most four. For each
request, Constraint 1 yields one equality, resulting in five total. Constraint 2 results
in inequalities for each color: for a given color, there is one inequality per edge in
the graph. This results in 24 inequalities. Finally, Constraint 3 results in 20 inequali-
ties, five per color, to enforce that each colorg variable accurately captures whether
Color g has been assigned to any vertex. This yields the following ILP.

Though the VCP is NP-hard, we show in Sect. 7.1 that, for many systems, groups
can be determined in a reasonable amount of time (in our experiments, using the
Gurobi ILP solver (Gurobi Optimization 2018)). What remains is to coordinate
access to these groups of requests during runtime.

min
c

4∑

c=1

color
c

s.t. x1,1 + x1,2 + x1,3 + x1,4 = 1

repeat above equality for Vertices 2-5

x1,1 + x2,1 ≤ 1

x1,1 + x4,1 ≤ 1

x1,1 + x5,1 ≤ 1

x2,1 + x5,1 ≤ 1

x3,1 + x4,1 ≤ 1

x3,1 + x5,1 ≤ 1

repeat above six inequalities for Colors 2-4

color1 ≥ x1,1

color1 ≥ x2,1

color1 ≥ x3,1

color1 ≥ x4,1

color1 ≥ x5,1

repeat above five inequalities for Colors 2-4

199

1 3

Real-Time Systems (2021) 57:190–226	

3.3 � Group arbitration

Arbitration among concurrency groups must occur online. At most one group may
be allowed to be satisfied at a time. All requests in a given group may run concur-
rently with each other, but requests from different groups must not be allowed to
execute together.

In this way, requests within the same group may be considered to be read requests
relative to each other. Thus, we must provide synchronization between k groups of
readers. We do so with a protocol called the RkLP , which we present as a k-phased
extension to the 2-phased (Nemitz et al. 2018) and 3-phased (Nemitz et al. 2019a)
reader-reader locking protocols.

Example 3  (Continued) No synchronization protection is required between requests
R1 and R3 , both in G1 , as they do not shared resources. However, G1 and G2 cannot be
allowed to execute concurrently.

To refine how we reason about the RkLP , we present a series of rules that encap-
sulate how this protocol functions. We call the time during which a group is active
a phase.

G1	� Each group is either active, waiting, or inactive, and at most one group is
active at any time.

G2	� If a request belonging to an inactive group is issued, then the group becomes
active if no group is active, or waiting if there is an active group.

G3	� A waiting group becomes active once all groups that were active or waiting
when this group entered the waiting state have completed a single phase of
execution.

G4	� All active requests in a group that becomes active are satisfied immediately.

Example 3  (Continued) As depicted in Fig. 5, R1 is issued at time t = 10 . Because
no other groups are active at t = 10 , G1 becomes active immediately, by Rule G2. By
Rule G4, R1 is satisfied immediately. At t = 15 , R5 is issued. At most one group can
be active at any time and G1 is still active, so G3 is now waiting, by Rules G1 and G2.
By Rules G3 and G4, R5 will be satisfied when G1 has completed a phase of execu-
tion. This occurs at time t = 60.

G5	� All requests satisfied in a phase finish by the end of that phase.
G6	� When all satisfied requests of a phase finish, the group enters the waiting state

if there are any active requests in the group. Otherwise it enters the inactive
state.

G7	� When all satisfied requests of a phase finish, the completion of the last request
and the transition to a new active phase, if there was a waiting group, happen
atomically.

200	 Real-Time Systems (2021) 57:190–226

1 3

Example 3  (Continued) G3 is active from t = 60 to t = 110 . R5 completes by the end
of that phase, by Rule G5. When R5 completes, G3 becomes inactive, by Rule G6. At
that time, G2 becomes active, by Rules G3 and G7.

G8	� If a request belonging to the active group is issued while the group is active,
it becomes satisfied immediately as part of the current phase only if there are
no waiting groups. (If there is a waiting group, it will be satisfied in the next
active phase of its group.)

Example 3  (Continued) R3 is issued at time t = 25 , while G1 is active and there are
waiting groups, so R3 must wait for the next active phase of G1 , by Rule G8. (If R3
were instead satisfied immediately, the current phase of G1 would not end until time
t = 75 , delaying the satisfaction of R5 by 15 time units; such delays could lead to
starvation of waiting groups.)

The above rules capture how the k concurrency groups alternate between active
phases. These, along with the non-preemptive execution of critical sections, prevent
deadlock. We next discuss our spin-based implementation of the RkLP.

3.4 � Implementation of online component

The RkLP builds on the reader-reader locking protocol (Nemitz et al. 2018) and the
R3LP (Nemitz et al. 2019a). Here we describe the key components of the RkLP
implementation broadly; it is very similar to that of the R3LP.

Fig. 5   Trace of executions of
requests in Ex. 3

201

1 3

Real-Time Systems (2021) 57:190–226	

For each group, a set of counters is maintained. A newly issued request is
assigned the current value of the counter that tracks how many requests have been
issued. This counter, along with two others, serves to identify how many requests
are active and distinguish which requests in the group are satisfied and which are
waiting.

The RkLP can be implemented without a mutex by instead using a standard
atomic read-and-update mechanism on a shared bit vector. Two bits per concur-
rency group are maintained in the shared bit vector; one bit indicates that a request
in the group is active, and the other denotes the phase of that group (to prevent a
race condition in which a request from a different group fails to read the bit vector
between phases of this group). Based on this construction, a 64-bit vector allows
for 32 groups, or using a double-width compare-and-swap mechanism allows for 64
groups. While this may limit some applications, if the number of groups is larger
than the number of processors, minimal analytical advantage can be gained by form-
ing concurrency groups. Thus, this constraint (at most 64 groups being supported
without the use of a mutex) is primarily a concern for systems with more than 64
processors.

3.5 � Bounding blocking

The essential component to determining schedulability given a locking protocol is
the bound on worst-case pi-blocking. With the RkLP , the bound depends on the time
it takes each of the k groups to execute. Intuitively, each phase may execute for up
to the maximum critical-section length, Lmax . Below, we establish a bound on the
worst-case acquisition delay.

Lemma 1  When there is at least one waiting group, the current phase of the active
group ends within Lmax time units.

Proof  When there is at least one waiting group, newly issued requests belonging to
the active group are not immediately satisfied, by Rule G8. Therefore, only the cur-
rently satisfied requests must complete before the active group enters the waiting
state. Any satisfied request executes for at most Lmax time units. Thus, the current
phase of the active group will end within Lmax time units, and the active group will
become waiting or inactive. 	� ◻

Theorem 2  In a system with k concurrency groups, a request Ri has a maximum
acquisition delay of k ⋅ Lmax.

Proof  Upon being issued, if request Ri belonging to Gg is not satisfied immediately,
then at least one group is waiting, by Rules G2 and G8. Furthermore, Gg is either
waiting or active.

Suppose Gg is waiting. Some other group must be active, by Rule G2. Because
there is a waiting group ( Gg ), the active group will complete within Lmax time units,
by Lemma 1. By Rule G3, Gg will become active once all groups that were active or

202	 Real-Time Systems (2021) 57:190–226

1 3

waiting when Gg entered the waiting state have completed a single phase of execu-
tion. Because there are at most k concurrency groups, at most k − 1 other groups
could have been active or waiting when Gg entered the waiting state. Thus, at most
k − 1 other groups must complete a phase, and each phase will last for at most Lmax
time units. Hence, the maximum acquisition delay for Ri is (k − 1) ⋅ Lmax in this
case. (By Rule G4, as soon as Gg becomes active, Ri will be satisfied.)

Suppose instead that Gg is active. Because Ri is not satisfied immediately, there
must be a waiting group (preventing Ri from being satisfied immediately due to
Rule G8). Gg will complete its active phase within Lmax time units. Its group will
then transition to the waiting state by Rule G6. As reasoned above, the waiting Gg
will become active, and thus Ri be satisfied, within (k − 1) ⋅ Lmax time units. Thus, in
total, the worst-case acquisition delay for Ri is k ⋅ Lmax time units. 	� ◻

We revisit our example to see that this blocking bound is tight.

Example 3  (Continued) When R3 is issued at t = 25 in Fig. 5, it cannot be satisfied
immediately, by Rule G8. Its maximum acquisition delay is 3 ⋅ Lmax , corresponding
to a phase of each of G1 , G3 , and G2 , as illustrated in Fig. 5.

3.6 � Refining the blocking bound

Up to this point, we have not specified the critical-section lengths, so we treated
each as Lmax . When requests have varying critical-section lengths, the bound in The-
orem 2 may be overly pessimistic. When analyzing the impact of each concurrency
group on the blocking a given request may experience, we define the maximum crit-
ical-section length of a group Gg to be LGg

max.

Example 4  Here, we use the same set of requests from Ex. 3, but instead let the crit-
ical-section lengths of the five requests be L1 = 10 , L2 = 55 , L3 = 60 , L4 = 25 , and
L5 = 30 time units. Then, LG1

max = 60 , LG2

max = 55 , and LG3

max = 30.

Lemma 2  When there is at least one waiting group, the current phase of the active
group Gg ends within LGg

max time units.

Proof  As in Lemma 1, when at least one group is waiting, no new requests belong-
ing to Gg may be satisfied. Thus, the current phase of Gg will end once all satisfied
requests complete, which occurs within LGg

max time units. 	� ◻

Theorem 3  The acquisition delay a request Ri may experience is at most
∑k

c=1
L
Gc

max
time units.

Proof  As in Theorem 2, Ri may need to wait for the completion of at most one
phase of each of the k groups, including its own, before being satisfied. Thus, the
maximum acquisition delay of Ri is

∑k

c=1
L
Gc

max . 	� ◻

203

1 3

Real-Time Systems (2021) 57:190–226	

Example 4  (Continued) Consider the execution trace shown in Fig. 6. In this trace,
R1 is released at t = 45 and satisfied at time t = 145 , so it is blocked for 100 time
units. By Theorem 3, the worst-case blocking of R1 is 60 + 55 + 30 = 145 time
units. Note that this is far less time than the 3 ⋅ 60 = 180 time units given as a bound
by Theorem 2.

4 � Alternate coloring choices

Now that we have explained the fundamental components of the CGLP, we dis-
cuss several extensions to the protocol. In this section, we focus on the benefits of
allowing critical-section lengths to factor into the group assignments. This alterna-
tive method minimizes the total blocking experienced by all tasks. Therefore, when
comparing protocols on the basis of schedulability, we expect this variant to outper-
form the basic CGLP from Sect. 3; the results of this comparison are presented in
Sect. 7.2 (Obs. 5).

4.1 � Motivation

In the basic version of the CGLP, we picked an arbitrary coloring of the verti-
ces that required the minimum number of colors. However, there can be multiple

Fig. 6   An illustration of the
maximum blocking for R1 in
Ex. 4

204	 Real-Time Systems (2021) 57:190–226

1 3

ways to color a set of vertices with k colors, resulting in different concurrency
groups. We use the following examples to motivate a different method of group-
ing requests.

Example 4  (Continued) Continuing the running example from the prior section,
there are multiple ways of forming three concurrency groups for this set of requests.
For example, instead of the coloring shown in Fig. 4, the coloring shown in Fig. 7
would yield G1 = {R1} , G2 = {R2,R3} , and G3 = {R4,R5}.

As an extension to the basic CGLP, the concurrency groups could be chosen in
a manner that minimizes blocking. This can be done by considering the critical-
section lengths in light of the blocking bound given in Theorem 3 when assigning
groups.

Example 4  (Continued) By Theorem 3, the worst-case blocking of any of the
requests under the grouping shown in Fig. 4 is 60 + 55 + 30 = 145 time units. In
contrast, the blocking under the grouping of Fig. 7 is at most 10 + 60 + 30 = 100
time units. Therefore, the grouping shown in Fig. 7 should be used instead of that in
Fig. 4.

Example 4 highlights the improvements in worst-case blocking that can be
achieved by creating concurrency groups based on the critical-section lengths of
the requests. In fact, taking minimizing blocking as our primary goal may require
more than k groups. We illustrate this with an example.

Example 5  Consider the following set of requests: R1 with D1 = {�a,�b} , R2 with
D2 = {�b,�c} , R3 with D3 = {�c,�d} , and R4 with D4 = {�d,�e} . Here, L1 = 60 ,
L2 = 10 , L3 = 10 , and L4 = 30 time units. In Table 1, we show all possible group-
ings of these requests; those with different group number assignments are simply
permutations of these groups and result in the same summed blocking.

Fig. 7   An alternate coloring

205

1 3

Real-Time Systems (2021) 57:190–226	

Example 5 illustrates that the minimum coloring does not always result in the
lowest blocking. For this task set, the lowest blocking is found by using three groups
to yield a blocking bound of 80 time units instead of the bound of 90 time units
produced when only two groups are used. These choices of colorings are depicted
in Fig. 8.

4.2 � Minimizing blocking

To minimize the impacts of synchronization on the system, we seek to minimize
blocking with our assignment of requests to concurrency groups. We do so by
developing an ILP that follows many of the same principles as the ILP presented
in Sect. 3.2. We begin by describing the variables we use and then detail the con-
straints we apply.

Variables. As in Sect. 3.2, we use the notion of graph coloring to guide our
approach. We use the binary variable xi,g to indicate whether Vi is assigned Color g
(i.e., Ri belongs to Gg ). To capture LGg

max , we use the variable durationg . Here, we
no longer minimize the number of colors, as described below. Thus, the number of
colors in the ILP is given by the number of vertices in the graph.

Constraints. We now present our ILP to determine groups while minimizing
blocking. We use Constraints 1 and 2 from Sect. 3.2, which are restated below.

Table 1   Five possible groupings
of the requests from Ex. 5 with
the Rk

LP blocking bounds
computed

Using the minimum of two groups does not result in the lowest
blocking

G1 G2 G3 G4
∑4

c=1
L
G
c

max

R1 R2 R3 R4 110
R1 R2 , R4 R3 – 100
R1 , R4 R2 R3 – 80
R1 , R3 R2 R4 – 100
R1 , R3 R2 R4 – – 90

Fig. 8   For the requests in Ex. 5, the corresponding minimum coloring is on the left, and the coloring that
achieves the minimum blocking is on the right

206	 Real-Time Systems (2021) 57:190–226

1 3

Constraint 1  ∀i ∶
∑

c xi,c = 1

Constraint 2  ∀c∀Ri,Rj ∶ Ri ≠ Rj ∧Di ∩Dj ≠ � ∶ xi,c + xj,c ≤ 1

We add a constraint that forces a given durationg to capture the largest critical-sec-
tion length of the requests in Gg.

Constraint 3  ∀i∀c ∶ durationc ≥ xi,c ⋅ Li

Intuitively, if Ri is in Gg , then LGg

max must be at least Li . When the ILP is formed, the
critical-section lengths are incorporated into the model. Note that in the context of a
given task system these are constants.

Our objective function is to minimize
∑

durationc over all possible colors. This
minimizes overall blocking, as computed by the expression in Theorem 3.

Objective  min
∑

c durationc

We illustrate how this is used with the example task system from above.

Example 5  (Continued) The ILP corresponding to this set of four requests is listed
below. Constraint 1 results in four equalities, Constraint 2 results in twelve inequali-
ties, and Constraint 3 results in sixteen inequalities.

min

4∑

c=1

duration
c

s.t. x1,1 + x1,2 + x1,3 + x1,4 = 1

repeat above equality for Vertices 2-4

x1,1 + x2,1 ≤ 1

x2,1 + x3,1 ≤ 1

x3,1 + x4,1 ≤ 1

repeat above three inequalities for Colors 2-4

duration1 ≥ x1,1 ⋅ 60

duration1 ≥ x2,1 ⋅ 10

duration1 ≥ x3,1 ⋅ 10

duration1 ≥ x4,1 ⋅ 30

repeat above four inequalities for Colors 2-4

207

1 3

Real-Time Systems (2021) 57:190–226	

5 � Mixed‑type requests

Recall that a mixed-type request is one in which the task requires write access for
one or more resources and only requires read access for some resources. Such a
request may occur when a task must read one or more values from various buff-
ers or sensors before writing value(s) from a resulting computation to some other
region of shared memory. We capture these different synchronization requirements
in a manner that allows us to exploit the relaxed resource-sharing assumptions for
read requests. We do so by modifying how we generate the graph corresponding to
the requests.

5.1 � Graph creation

A vertex is created for each request, as before. However, the addition of edges is
changed to reflect this different sharing paradigm. When listing the set of resources
Di required by a request Ri , we denote the type of access required (read or write)
with a superscript. For example, Di = {�r

a
,�w

b
} indicates that Ri requires read access

to �a and write access to �b.

Example 6  Consider a set of requests, R1 through R4 , which require resources
D1 = {�r

a
,�w

b
} , D2 = {�r

a
,�w

c
} , D3 = {�w

c
,�w

d
} , and D4 = {�w

a
,�w

d
} . Here, R1 and

R2 are mixed-type requests and R3 and R4 are write requests.

We define Dw
i
= {�y|�w

y
∈ Di} as the set of resources to which Ri requires write

access. An edge is added between two vertices corresponding to requests Ri and Rj
if Ri ≠ Rj and (Dw

i
∩Dj ≠ �) ∨ (Di ∩D

w
j
≠ �).

Example 6  (Continued) The graph corresponding to this set of requests is shown
in Fig. 9. Here, Dw

1
= {�b} . Although both R1 and R2 require �a , both read �a :

when comparing R1 and R2 , we check (Dw
1
∩D2) = ({�b} ∩ {�a,�c}) = � and

(D1 ∩D
w
2
) = ({�a,�b} ∩ {�c}) = � , so no edge is added between V1 and V2 . This

fits the intuition that R1 and R2 could be satisfied concurrently. For R1 and R4 ,

Fig. 9   Graph of mixed-type
requests

208	 Real-Time Systems (2021) 57:190–226

1 3

(D1 ∩D
w
4
) = ({�a,�b} ∩ {�a,�d}) = {�a} ≠ � , so an edge is added between V1 and

V4.

Given graphs created in this manner, the blocking analysis presented in Sect. 3.6
can be applied.

5.2 � Modifications to ILP

Both of the ILPs we presented previously can be modified to account for mixed
requests (or read requests) by replacing Constraint 2 with the following:

Constraint 2  ∀c∀Ri,Rj ∶ Ri ≠ Rj ∧ ((Dw

i
∩Dj ≠ �) ∨ (Di ∩Dw

j
≠ �)) ∶ xi,c + xj,c ≤ 1

As in Sect. 4.2, the number of colors in the ILP is given by the number of vertices
in the graph.

Example 6  (Continued) This updated Constraint 2 results in the following con-
straints for this set of requests:

6 � Hierarchical organization

Our initial approach to determining concurrency groups resulted in each request
being satisfied with the same frequency. Here we explore adding a layer of hierarchy
to the request-management scheme to alter the frequency with which requests are
satisfied. We begin by considering a group of six requests: the five requests from
Ex. 4 and one additional request.

Example 7  Consider the task set with the requests from Ex. 4 and a sixth request,
R6 , for D6 = {�a,�e} with a critical-section length of at most L6 = 55 time units.
Using the approach described in Sects. 3.1 and 4.2, we determine that four con-
currency groups, as shown in Fig. 10, are required (adding G4 = {R6} to the three
groups used in Ex. 4). This grouping results in worst-case blocking for all requests
of 10 + 60 + 30 + 55 = 155 time units.

This example highlights the impact a single request may have on the task system
as a whole. Instead of the worst-case acquisition delay of 100 time units from Ex. 4,
each request in this set may experience 155 time units of blocking.

x1,1 + x4,1 ≤ 1

x2,1 + x3,1 ≤ 1

x2,1 + x4,1 ≤ 1

x3,1 + x4,1 ≤ 1

repeat above four inequalities for Colors 2-4

209

1 3

Real-Time Systems (2021) 57:190–226	

In this section, we propose a modification to the satisfaction order of concur-
rency groups that can lower the worst-case blocking for most requests at the cost of
increasing the worst-case blocking for a few requests.

6.1 � Hierarchical request satisfaction

Under this scheme, a set of slots2 becomes active in a round-robin-like fashion like
the group arbitration process described in Sect. 3.3. When a given slot becomes
active, one of the groups assigned to that slot is granted an active phase. Groups
within a slot compete as in Sect. 3.3, but now a group competes with only the other
groups in the same slot. Each group belongs to exactly one slot. We denote the set of
all groups belonging to Slot a as Sa.

Example 7  (Continued) The concurrency groups depicted in Fig. 10 may be assigned
to slots such that S1 = {G1} , S2 = {G2,G4} , and S3 = {G3}.

All groups in Sa may compete to occupy Slot a in its active phase. We add to the
rules stated in Sect. 3.3 to capture this new structure. All of the rules in Sect. 3.3
apply without modification (e.g., note that G8 refers to any waiting group belonging
to any slot) except for G3, which we replace with a modified version below.

We begin by stating the rules governing the coordination between the slots.

G9	� A slot is either active, waiting, or inactive, and at most one slot is active at
any time.

G10	� A slot is inactive if all of its groups are inactive.
G11	� A waiting slot becomes active once all slots that were active or waiting when

this slot entered the waiting state have completed a single phase of execution.

Fig. 10   Four concurrency
groups for requests R1 to R6 :
G1 = {R1} , G2 = {R2,R3} ,
G3 = {R4,R5} and G4 = {R6}

2  Note that this work presents a change in the definition of slot from that by Nemitz et al. (2019b).

210	 Real-Time Systems (2021) 57:190–226

1 3

The following rules govern how the groups interact with their respective slots.

G12	� A group may only be active if it occupies its slot.
G13	� At most one group can occupy a slot at a time.
G14	� If a group belonging to an inactive slot becomes active, then the group imme-

diately occupies the slot, and the slot becomes active if no slot is active, or
waiting if there is an active slot.

G15	� When a slot becomes active, the group that occupies that slot becomes active.
G16	� When the group that occupies the active slot completes, the active phase of

the slot completes; if there are waiting slots, this slot enters the waiting state
if there are waiting groups in this slot, or enters the inactive state otherwise.

We illustrate these rules with an example depicted in Fig. 11 and described
below.

Example 7  (Continued) Before time t = 0 , there are no active requests. Thus all
groups are inactive and all slots are inactive. At t = 0 , R2 is issued, and by Rules G2,
G12, G14, and G15, G2 occupies Slot 2, Slot 2 becomes active, and G2 becomes
active. By Rule G4, R2 is therefore satisfied immediately.

The new version of Rule G3 is:

Fig. 11   An illustration of
execution under the hierarchical
approach

211

1 3

Real-Time Systems (2021) 57:190–226	

G3’	� A waiting group occupies its slot once all groups that were active or waiting
in its slot when this group entered the waiting state have completed a single
phase of execution.

Example 7  (Continued) As shown in Fig. 11, at t = 5 , R6 is issued. Because G2
occupies Slot 2, G4 can occupy the slot only after G2 has completed an active phase
(Rule G3’), which occurs at t = 55 . At this time, by Rule G16, Slot 2 enters the wait-
ing state, so by Rule G11, Slot 2 cannot become active until both Slot 3 and Slot 1
have completed a single phase, which occurs at t = 95.

As described in the rules above, we enforce a FIFO ordering among groups com-
peting for a given slot; the group with the earliest-issued active request occupies
the slot until all requests that were active when the group became active have com-
pleted. This introduces an additional layer of hierarchy and additional blocking for
these requests; a request must now wait until its group occupies its slot and then for
its slot to become active before it can be satisfied.

6.2 � Bounding blocking

To reason about the worst-case acquisition delay under this hierarchical approach,
we define LSa

max such that it upper-bounds the length of one phase of Slot a; we let
L
Sa

max = maxGg∈Sa
L
Gg

max.

Lemma 3  If there is an active request in a group in Sa , Slot a will become active
within

∑
b≠a L

Sb

max time units.

Proof  Slot a must be either active or waiting, as at least one of its groups is not inac-
tive (Rules G9 and G10). If Slot a is waiting, it will become active once all slots
that were active or waiting when this slot entered the waiting state have completed a
single phase of execution (Rule G11). The bound of

∑
b≠a L

Sb

max follows directly from
the definition of LSa

max . 	� ◻

Example 7  (Continued) At t = 45 , R1 is issued, Slot 2 is active, and Slot 3 is wait-
ing. By Rule G14, Slot 1 enters the waiting state at t = 45 . By Rule G11, Slot 1
will become active once Slot 2 and Slot 3 each complete a phase of execution. By
Lemma 3, this will occur within 60 + 30 = 90 time units.

Theorem 4  The worst-case acquisition delay a request Ri in group Gg in Sa may
experience is upper-bounded by �Sa� ⋅

∑
b L

Sb

max.

Proof  When Ri is issued, if Gg does not occupy its slot, then a different group,
Gd , occupies the slot. Gd becomes active within

∑
b≠a L

Sb

max time units (Lemma 3
and Rule G15), and then is active for up to LGd

max ≤ L
Sa

max time units. By Rule G3’,

212	 Real-Time Systems (2021) 57:190–226

1 3

Gg occupies its slot once all groups that were active or waiting in its slot when
it entered the waiting state have completed a phase of execution. There are
at most |Sa| − 1 such groups, and as reasoned above with Gd , each takes at
most

∑
b≠a L

Sb

max + L
Sa

max =
∑

b L
Sb

max time units to complete a phase of execu-
tion. Once Gg occupies its slot, it becomes active within

∑
b≠a L

Sb

max time units
(Lemma 3 and Rule G15). Thus Ri experiences an acquisition delay of up to
(�Sa� − 1) ⋅ (

∑
b L

Sb

max) +
∑

b≠a L
Sb

max ≤ �Sa� ⋅
∑

b L
Sb

max.
Otherwise, Gg does occupy its slot when Ri is issued. Then Gg is either waiting

or active (Rule G2). If Gg is waiting, it becomes active within
∑

b≠a L
Sb

max time units
(Lemma 3 and Rule G15), at which time Ri is satisfied (Rule G4).

If instead Gg is active, then Ri is either satisfied immediately (resulting in no
acquisition delay) or there must be waiting groups (Rule G8). If there are waiting
groups, by Rule G8, Ri will not be satisfied until the next active phase of Gg . The
current active phase of Gg finishes within LGg

max ≤ L
Sa

max time units before entering the
waiting state. The remaining delay Ri incurs depends on whether there are other
groups in Sa that are waiting.

If there are not other waiting groups in its slot, Gg occupies its slot and Ri is
satisfied when Gg becomes active, within

∑
b≠a L

Sb

max time units (Lemma 3
and Rules G4 and G15). Thus Ri ’s acquisition delay would be bounded by
L
Sa

max +
∑

b≠a L
Sb

max =
∑

b L
Sb

max time units.
Finally, if there are other waiting groups belonging to Sa , then once Gg fin-

ishes its active phase, another group occupies its slot (Rule G3’). Then, as above,
at most |Sa| − 1 groups occupy Sa before Gg again occupies it; these complete
within (�Sa� − 1) ⋅ (

∑
b L

Sb

max) time units. Then Gg becomes active again within ∑
b≠a L

Sb

max time units (by Lemma 3 and Rule G15). When Gg becomes active, Ri
is satisfied (Rule G4). Thus, the worst-case acquisition delay of Ri is bounded by
L
Sa

max + (�Sa� − 1) ⋅ (
∑

b L
Sb

max) +
∑

b≠a L
Sb

max = �Sa� ⋅
∑

b L
Sb

max . 	� ◻

Example 7  (Continued) As depicted in Fig. 11, when R6 is released at t = 5 , G4 does
not occupy its slot. With this new hierarchical approach, instead of being satisfied
after all active groups have completed a phase of execution (here, only G2 ), it is sat-
isfied at t = 95 . This acquisition delay is captured in Theorem 4: R6 has acquisi-
tion delay bounded by �{G2,G4}� ⋅

∑3

b=1
L
Sb

max = 2 ⋅ (10 + 60 + 30) = 200 time units
(as do R2 and R3 ). This benefits R1 , R4 , and R5 , which now have acquisition delay
bounded by 1 ⋅ (10 + 60 + 30) = 100 time units.

In essence, we can increase blocking for some requests in order to lower blocking
for other requests. The decision of which groups of requests to map to the same slot
can depend on multiple factors. In general, some tasks may be able to incur a higher
amount of blocking and still meet their deadlines; this will depend on specific details
of each task.

213

1 3

Real-Time Systems (2021) 57:190–226	

6.3 � Assigning groups to slots

Although Theorem 4 upper-bounds the acquisition delay each request may experi-
ence, it does not guide how to assign groups to slots. Here we provide some intuition
behind assignment decisions and a few possible approaches.

In general, the benefit of adding a layer of hierarchy in Ex. 7 is that less block-
ing is incurred in the system as a whole: three requests may incur up to 200 time
units of blocking and three up to 100 time units as opposed to all six incurring
up to 155 time units each. Thus, a first approach would be to form an optimiza-
tion process that minimizes the summed blocking. However, lowering total block-
ing across all requests ignores the periods of the tasks issuing these requests and
each task’s capacity to incur higher blocking and still meet its deadlines. Thus,
an approach that minimizes the summed blocking may ignore crucial features for
schedulability.

A second approach would be to pre-select tasks to belong to groups that share
a slot with at least one other group (with the remaining tasks being assigned to
groups that would not share a slot). The underlying motivation is that the slot-
sharing groups should be comprised of tasks that are able to incur additional
blocking. Without knowing the resulting blocking ahead of time, these tasks
could be selected by their low utilization or high period, both of which are prop-
erties that give additional flexibility for incurring higher blocking. Once the tasks
are separated, the groups for each set could be determined (e.g., with the ILP in
Sect. 5.2). Thus two distinct ILPs would be solved to yield two sets of groups.
The groups could then be assigned to slots randomly, ensuring that the groups
from the first set of tasks always share a slot and those from the second never do.

The final approach that we present enforces that each slot has either one or two
groups and maximizes the minimum anticipated relative slack for tasks of each
group. Without the considerations of blocking, the slack of a task �i is Ti − Ci (for
implicit-deadline tasks); this captures the capacity �i has to incur delays and still
meet its deadline. The anticipated relative slack incorporates the expected block-
ing. The intuition behind maximizing the minimum anticipated relative slack is to
maximize the buffer tasks have to incur delay and still meet their deadlines. We
specify this as an optimization problem and describe the approach in more detail
as we present each constraint.

As before, we must encode a maximum number of colors. We choose the num-
ber of request-issuing tasks, denoted num_req . We also pre-select which groups
will share a slot: all groups with a number at most split = ⌊ num_req

4
⌋ ⋅ 2 will share a

slot. Group Gg will be in S⌊ g

2
⌋+(g mod 2) if g ≤ split or S

g−
split

2

 otherwise. We leave
the exploration of alternative choices of split to future work.

We now describe the constraints we apply. We reuse the constraints from
Sect. 3.2 to enforce the basic coloring restrictions.

Constraint 1  ∀i ∶
∑

c xi,c = 1

Constraint 2  ∀c∀Ri,Rj ∶ Ri ≠ Rj ∧Di ∩Dj ≠ � ∶ xi,c + xj,c ≤ 1

214	 Real-Time Systems (2021) 57:190–226

1 3

Next we constrain a set of variables to represent the maximum duration of
each slot: durationa represents LSa

max . Based on our construction of a hierarchical
approach, each slot has either one or two groups that impact LSa

max . This results in
the following three constraints.

Constraint 3  ∀i∀a ∶ a ≤
split

2
∶ durationa ≥ xi,2a−1 ⋅ Li

Constraint 4  ∀i∀a ∶ a ≤
split

2
∶ durationa ≥ xi,2a ⋅ Li

Constraint 5  ∀i∀a ∶ a >
split

2
∶ durationa ≥ xi,a+split∕2 ⋅ Li

Next we constrain the variable summed_duration , which upper-bounds the
sum in Theorem 4.

Constraint 6  summed_duration ≥
∑

b durationb

Our final constraints are those on the anticipated relative slack for each Gg ,
denoted slackg . Note that the groups that share a slot ( g ≤ split ) have a factor of
2 multiplying summed_duration, while the other groups do not. This reflects the
upper bound of blocking presented in Theorem 4.

Constraint 7  ∀i∀c ∶ c ≤ split ∶ slackc ≤
Ti−(Ci+2⋅summed_duration)xi,c

Ti

Constraint 8  ∀i∀c ∶ c > split ∶ slackc ≤
Ti−(Ci+⋅summed_duration)xi,c

Ti

We then seek to maximize the summed slack over all groups. The anticipated
per-group relative slack can be between zero and one; a color with no tasks
assigned to it has a minimum per-group relative slack of one.

Objective  max
∑

c slackc

The above optimization can be transformed in a straightforward manner with
the approach shown in Sect. 5 to handle mixed requests.

7 � Evaluation

Our evaluation of the CGLP is comprised of two parts: measuring the time
required for the offline group formation and comparing its online performance
to prior real-time locking protocols in a schedulability study. In our experiments,
we explored a broad space of task-system parameters, varying the individual
task utilization, the period, the percentage of tasks that issue requests, the criti-
cal-section lengths, the probability that a given request is nested, the number of
resources requested for a nested request, and the probability that a nested request

215

1 3

Real-Time Systems (2021) 57:190–226	

is mixed; named value sets are listed in Table 2, and the set of parameters used
for our schedulability study are in Table 3. If a nested request is mixed, it is ran-
domly assigned to require read access to half of its resources and write access
to its other resources. We define a scenario to be a setting of each of the above
parameters.

7.1 � Analysis of offline component

Here, we evaluate three possibles approaches to implementing the offline compo-
nent of the CGLP. In Sect. 3.2, we presented an ILP to assign concurrency groups
such that the number of groups is minimized. We denote this approach BasicILP.

Table 2   Named parameter
distributions

From each, a value is selected uniformly at random

Category Name Value

Task utilization Medium-light [0.01,0.1]
Medium [0.1,0.4]
Heavy [0.5,0.9]

Critical-section Moderate [15,100]
Length ( �s) Bimodal [15,500] or [500,1000]

Weighted bimodal [15,500] (prob: 0.7)
or [500,1000] (prob:
0.3)

Long [100,1000]
Period (ms) Short [3,33]

Long [50,250]

Table 3   Schedulability study
parameter choices

Critical-section lengths are assigned with one of two methods:
randomly for each request or within a range of the random length
assigned to a group

Category Options

Task utilization Medium, heavy
Period Short, long
Percentage issuing requests 50%, 80%, 100%
Critical-section length Moderate, bimodal,

weighted bimodal,
long

Number of resources 64
Nested probability 0.1, 0.2, 0.5
Mixed probability 0, 0.2, 0.5, 0.8
Nesting depth 2, 4

216	 Real-Time Systems (2021) 57:190–226

1 3

In Sect. 4.2, we presented an optimization problem to instead minimize blocking,
and we denote this DurationILP. Finally, in Sect. 5.2, we showed how the above
two optimization problems can be modified to account for mixed requests in a
more fine-grained manner. Here, we explore this modification to the duration-
based ILP, which we denote RW-DurationILP.

In this section, we examine how long each of these offline components takes
to determine the concurrency groups. We compare each of these without con-
sidering the additional impacts of the possible hierarchical approaches. We leave
evaluation of those to future work.

To give a sense of the scale of these problems, we generated random task
sets with total utilization of 16, in which every task issued a request and nested
requests required four random resources.

For each per-task utilization, we varied the nested probability and report the
average number of requests and average minimum number of colors (using Basi-
cILP) across 50 task sets in Table 4. Note that for task sets with heavy per-task
utilization, fewer tasks are needed to reach the given target system utilization;
conversely, with medium-light per-task utilization, many more tasks are needed
to reach the target system utilization, and thus more colors are needed.

As described in our specification of each ILP, we must create variables for
each color that might need to be used. In order to improve performance of Basi-
cILP, we restrict this number (thereby reducing the number of variables, and thus,
the problem size) based on the result of a greedy coloring algorithm. The greedy
coloring approach obtains a proper k-coloring of a graph. Although the value of
k obtained from greedy coloring is not necessarily minimal, it provides a tighter
upper bound on the chromatic number than simply using the total number of
requests. The greedy approach we applied begins with a number of colors equal
to the number of vertices in the graph, and each color is labeled with a numerical
identifier. Each vertex is assigned the lowest numbered color that does not appear
among its already colored neighbors.

To test how long it takes to determine concurrency groups for a given task set,
we generated random task sets across the space of all scenarios. For each task
set, we timed the setup time and the time required to solve each ILP with an ILP
solver (Gurobi Optimization 2018). In Fig. 12, we show the 95th percentile of the
solve time for each ILP in a scenario with heavy per-task utilization, short peri-
ods, and 100% of tasks issuing requests with long critical-section lengths. Each
request was nested with the probabilities shown. Nested requests required access

Table 4   Average size of a graph
coloring problem for a system
with total utilization of 16

Task utilization Average number of
requests

Average k

Heavy 23.4 3.7
Medium 64.7 6.7
Medium-light 291.6 19.8

217

1 3

Real-Time Systems (2021) 57:190–226	

to four randomly selected resources, and the probability of a request being nested
was 0.8. For each scenario, we generated 100 task sets.

Obs. 1  Although the connection of the problem of determining groups to the NP-
hard Vertex Coloring Problem may seem like a serious liability, the ILP solver was
almost always able to quickly find such groups across a wide spectrum of scenarios.

This is demonstrated in Fig. 12, which depicts a scenario with higher-than-
average ILP solve times for tasks with heavy utilization; in this scenario, the maxi-
mum 95th percentile solve time was still less than 3s. Based on these results, we
set a timeout on the ILP solver for each ILP when running our schedulability study
(described in more detail in Sect. 7.2). For task sets with heavy per-task utiliza-
tion, we used 0.1s for BasicILP and 2.7s for the two duration-based ILPs. In our
schedulability experiments, these thresholds were never exceeded. For task sets with
medium per-task utilization, we enforced a timeout of 0.1s for BasicILP and 120s
for the duration-based ILPs. Across 16.7 million task sets, one of these limits was
exceeded only 153 times.

Obs. 2  The time to solve each ILP depends on the number of requests and the con-
nectivity of the graph formed from those requests.

This observation is supported by looking at a range of factors. The per-task uti-
lization determines the number of tasks in the systems, and the percentage of tasks
which issue requests determines the total number of requests. Systems with higher
total utilization are comprised of more tasks (and thus more requests). The con-
nectedness of the graph depends on the probability of a given request being nested
and the number of resources required by nested requests. We illustrate this with a
small set of scenarios: in Fig. 12, we show the time required to solve each ILP for a

Fig. 12   Average time to solve each ILP. Each data point represents the 95th percentile from 100 random
task sets

218	 Real-Time Systems (2021) 57:190–226

1 3

scenario in which each nested request requires four resources. As shown in Fig. 12,
the nested probability has a significant impact on the time required to solve each
ILP.

Additionally, we note that the solution times for the duration-based ILPs are sig-
nificantly higher than those for BasicILP. We hypothesize that the solution times for
DurationILP and RW-DurationILP are higher partially due to having so many addi-
tional variables; we cannot use the greedy coloring to determine the minimum num-
ber of colors required to enable the ILP to minimize blocking. (Recall the discussion
in Sect. 4.1 that minimizing colors may not minimize duration.) Therefore, we use
the number of requests as a safe upper bound on the number of colors.

7.2 � Schedulability study

We evaluated the CGLP as a whole on the basis of schedulability with a large-scale
schedulability study. We compared the schedulability of a variety of task sets when
different synchronization protocols are used. The first protocol to which we compare
the CGLP is the C-RNLP. The C-RNLP is the only existing protocol that solves the
Transitive Blocking Chain Problem for nested write requests. There are two vari-
ants of the C-RNLP: the General C-RNLP (G-C-RNLP) grants resource access in a
contention-sensitive manner on a per-request basis, and the Uniform C-RNLP (U-C-
RNLP) does so by granting access to sets of requests (these sets are determined
dynamically based on issuance order). We also compare the CGLP to the RNLP and
to a simple group lock.3

Experimental setup. We conducted schedulability experiments using Sched-
CAT (SchedCAT 2019), an open-source real-time schedulability test toolkit. We
used SchedCAT to randomly generate task systems, compute blocking bounds, and
determine schedulability on a 16-core platform using G-EDF scheduling by Baru-
ah’s test (Baruah 2007). We inflated the execution time of tasks based on the locking

Table 5   Blocking bounds and
overhead of each protocol

For the C-RNLP bounds, N
i
 is the number of requests which conflict

with R
i
 . (The reported overhead of the CGLP is the maximum of

that measured with between two and ten concurrency groups.)

Protocol Worst-case acquisition delay Total
overhead
( �s)

CGLP ∑
c
L
G
c

max
3.1

U-C-RNLP
(
N
i
+ 1

)
⋅ L

max
13.0

G-C-RNLP N
i
⋅ L

max
+ N

i
⋅ L

i
15.1

RNLP (m − 1) ⋅ L
max

13.5
MCS (m − 1) ⋅ L

max
0.7

3  We use a single MCS lock (Mellor-Crummey and Scott 1991) to protect all resources for the group
lock. We leave it to future work to compare to a set of resource-ordered locks.

219

1 3

Real-Time Systems (2021) 57:190–226	

protocol overhead and blocking their requests may incur, as described by Branden-
burg (2011). In this context, overhead refers to the time a request spends adding or
removing itself from the lock queue(s), and blocking is the time spent waiting for the
request to be satisfied once it has been enqueued.

The blocking bounds and overhead of each protocol are summarized in Table 5.
Stated overhead values are the 99th percentile of measurements taken on a dual-
socket, 8-cores-per-socket machine with 32 GB of DRAM, running Ubuntu 16.04.
To maximize observed overhead, each task submitted a new request immediately
after completing the prior one. Each request was for four of 64 total resources,
and there were up to sixteen requests active at once.

As discussed above, the offline portion of the CGLP can be implemented with
several different approaches; we show the results for three of them here. We set a
timeout value for the ILP solver (see Sect. 7.1) for each approach. If this limit is
ever exceeded, we instead assign groups with a greedy coloring approach.

When calculating the blocking bounds for the CGLP in the schedulability
study, we use the expression presented in Theorem 3, in combination with addi-
tional refinements to bound the acquisition delay Ri can experience.

For example, because we focus on a spin-based system with m processors, at
most m − 1 other requests may be active at the time of Ri ’s issuance. Thus, if
there are more than m − 1 concurrency groups, only the m − 1 largest LGc

max values
should be counted toward the blocking Ri may experience. Additionally, Ri may
have the highest critical-section length of its group. In this case, when calculating
the maximum blocking it may experience due to an active phase of its group, the
second-highest critical-section length of a request in its group should be used.

We applied similar refinements to the C-RNLP variants. Again, at most m − 1
other requests may be active for each variant. Tighter analysis can also be applied
to determine the longest critical sections that may block Ri ; this is different
between the two variants, but for both we incorporated methods that limit the
number of times to include the largest Lj terms toward the blocking of Ri . These
methods rely on how many times a request Rj could be issued while Ri is active
(based on the period of each task) and the structure of the given protocol, espe-
cially with regard to a requests that share a set of resources with Ri.

Our schedulability study considered the 1,152 scenarios listed in Table 3; com-
mon trends are discussed here, and the full set of plots is available online along
with the code (Nemitz et al. 2021). For each scenario, 1000 task systems were
generated for every value of system utilization; we plot the percentage of these
that are schedulable when no synchronization delay is accounted for (NOLOCK)
and when synchronization delay results from one of the protocols we compare.

To compare the schedulability results under different protocols, we computed
the schedulable utilization area (SUA) of each by approximating the area under
the curve with a midpoint Riemann sum. We used 0.05 as a threshold for deter-
mining if two protocols performed about as well as each other; if their SUAs
in a given scenario were less than 0.05 different, we report that they performed
roughly the same under that scenario.

Comparison of the CGLP to existing protocols. We now present our gen-
eral observations along with graphs that showcase key trends from this study.

220	 Real-Time Systems (2021) 57:190–226

1 3

We begin by considering the 288 scenarios in which the probability of a nested
request being mixed is zero and comparing the CGLP approaches to existing
protocols; the analysis of existing protocols does not handle mixed requests and
instead must treat such requests as write requests.

We state key trends and illustrate these with representative graphs. In Fig. 13
we show the results of four scenarios. Each point depicts the fraction of task sets
of a given system utilization that were deemed schedulable.

Obs. 3  The CGLP approaches perform as well or better in most scenarios.

This is illustrated in Fig. 13(a–c). For task systems with moderate critical-sec-
tion lengths, the CGLP approaches always have the highest SUA (tied or alone).
For medium per-task utilization, the CGLP approaches perform as well or bet-
ter than other approaches in 70.1% of scenarios, and in 54.9% of scenarios, the
CGLP outperforms any existing approach.

Obs. 4  When a CGLP approach is not the best, the G-C-RNLP is the protocol that
results in the highest SUA.

In 33.7% of scenarios the G-C-RNLP outperforms all other protocols. In 97.9%
of these scenarios, periods are short. One such scenario is illustrated in Fig. 13d.

Comparison between CGLP variants. We now compare the different CGLP
approaches. To do so, we consider all values of mixed probability used in our
schedulability study. We highlight the results of two scenarios in Fig. 14, both of

Fig. 13   Scenarios in which periods were short, nested probability was 0.2, nesting depth was 4, mixed
probability was 0, and 100% of tasks issued requests

221

1 3

Real-Time Systems (2021) 57:190–226	

which have a nested probability of 0.5, a nesting depth of 4, a mixed probability
of 0.8, and 100% of the tasks issued requests.

Obs. 5  DurationILP is never worse than BasicILP; frequently it is better.

DurationILP is better in 52.5% of scenarios. In each scenario in Figs. 13
and 14, DurationILP is better than BasicILP, as determined by comparing SUAs.

Obs. 6  While RW-DurationILP frequently has a slightly higher SUA than Dura-
tionILP, it rarely is significantly better.

The SUA of RW-DurationILP exceeds that of DurationILP by the 0.05 threshold
in only eight scenarios, all with medium per-task utilization, nested probability of
0.5, and mixed probability of 0.8. One such scenario is shown in Fig. 14a. A sce-
nario in which the SUA of RW-DurationILP exceeds that of DurationILP by less
than 0.05 is shown in Fig. 14b.

8 � Related work

There is a large body of work aimed at developing locking protocols for multipro-
cessor systems (Afshar et al. 2014, 2017, 2018, 2013, 2015; Biondi et al. 2016;
Block et al. 2007; Brandenburg 2011, 2014; Brandenburg and Anderson 2008a, b,
2010, 2011, 2013; Burns and Wellings 2013; Chang et al. 2010; Chen and Tripathi
1994; Elliott and Anderson 2013; Faggioli et al. 2010, 2012; Gai et al. 2003, 2001;
Garrido et al. 2017; Jarrett et al. 2015; Lakshmanan et al. 2009; Nemati et al. 2011;
Nemitz et al. 2017, 2018; Rajkumar 1990, 1991; Rajkumar et al. 1988; Takada and
Sakamura 1995; Wang et al. 1996; Ward 2015, 2016; Ward and Anderson 2012,
2013, 2014; Ward et al. 2012; Wieder and Brandenburg 2013, 2014; Yang et al.
2015; Zhao et al. 2017). However, most of these approaches are limited to sys-
tems without lock nesting. Here, we focus on those protocols that do allow nesting.

Fig. 14   For this scenario, nested probability was 0.5, nesting depth was 4, mixed probability was 0.8, and
100% of tasks issued requests

222	 Real-Time Systems (2021) 57:190–226

1 3

(Lock nesting can be trivially supported by redefining resources such that no nesting
occurs; using such a coarse-grained group lock can cause significant unnecessary
blocking between tasks that do not actually share any resources. We compare to one
such approach, the MCS lock (Mellor-Crummey and Scott 1991), but focus instead
on describing fine-grained locking protocols that already support lock nesting.)

One synchronization approach that allows nested access to resources is the mul-
tiprocessor bandwidth inheritance protocol (M-BWI) (Faggioli et al. 2010, 2012).
Another approach is MrsP (Burns and Wellings 2013; Garrido et al. 2017; Zhao
et al. 2017). Both the M-BWI and MrsP require an ordering on nested resource
acquisition to prevent deadlock.4 A straightforward bound on the blocking a request
may experience when deadlock is prevented by resource ordering is exponential in
the number of resources (Takada and Sakamura 1995). Computing a tight bound on
worst-case blocking is NP-hard when nesting is allowed (Wieder and Brandenburg
2014).

The real-time nested locking protocol (RNLP) (Jarrett et al. 2015; Nemitz et al.
2018, 2019a; Ward 2016; Ward and Anderson 2012, 2013, 2014) family of protocols
also supports nested requests. Of the protocols mentioned, most do not handle the
Transitive Blocking Chain Problem. Those that do are the fast RW-RNLP (Nemitz
et al. 2019a) and the C-RNLP (Jarrett et al. 2015).

The fast RW-RNLP eliminates transitive blocking chains for non-nested requests
(and read requests) by ensuring that they are enqueued in separate data structures
from nested requests. (Non-nested requests can also experience increased blocking
due to transitive blocking chains. For example, a request for {�e} issued after R4 in
Ex. 1 would be blocked for up to 4 ⋅ Lmax time units.) Only once requests are at the
head of their respective queue(s) do they compete for resources; it is not possible
for a blocking chain to impact a non-nested (or read) request. Nested write requests,
however, may still suffer from transitive blocking chains under the fast RW-RNLP.

To our knowledge, the C-RNLP is the only protocol that breaks transitive block-
ing chains for nested write requests. To do so, when any request Ri is issued, all
other active requests must be evaluated to determine the earliest spot in the queues
corresponding to Di in which Ri may cut ahead without increasing blocking times
for other requests. This requires the maintenance of a significant amount of state,
which can be detrimental to the protocol’s performance. Existing implementations
require a mutex to ensure safe, atomic insertion into all the maintained queues that
are required.

Other related protocols are reader-reader protocols; the CGLP builds on the
notion of a reader-reader locking protocol (a synchronization mechanism that man-
ages resource access between groups of read requests (Nemitz et al. 2018)). The
CGLP allows one group of requests access at a time; any requests from another
group must wait until the satisfied requests complete. In this sense, the protocol
alternates between phases in which different groups of requests are satisfied. This
reader-reader paradigm is an extension of the R3LP (Nemitz et al. 2019a), which

4  This ordering refers to the order in which resources must be acquired by a given task, not the order in
which requests are satisfied (Dijkstra 1978; Havender 1968).

223

1 3

Real-Time Systems (2021) 57:190–226	

coordinates three groups of read requests. Existing work (Nemitz et al. 2018, 2019a)
has also explored layering synchronization mechanisms to first establish that some
group of requests does not overlap, and thus could be viewed as a group of read
requests relative to each other.

The CGLP is motivated by the current lack of a solution to the Request Tim-
ing Problem. Existing protocols miss opportunities for concurrent execution because
of these timing issues. This occurs based on the design of these protocols, which
hinges on considering which requests must be prevented from executing concur-
rently. Our new approach groups requests that are allowed to execute concurrently.
These groups are established by using a graph coloring approach. Such an approach
has been used to solve a variety of other resource-allocation problems (Bandh et al.
2009; Barnier and Brisset 2004; Chaitin et al. 1981; Marx 2004).

In this work, we focus primarily on nested write requests and briefly describe
how the CGLP approaches can be modified to allow fine-grained access for mixed
requests. Existing work allows a nested write locking protocol to be combined
with other protocols in a modular fashion to produce a reader/writer locking proto-
col (Nemitz et al. 2017, 2019a). Other work has looked at the reader/writer sharing
paradigm (Brandenburg and Anderson 2010, 2011; Ward and Anderson 2014) or
other sharing paradigms like k-exclusion (Brandenburg and Anderson 2011; Elliott
and Anderson 2013; Ward et al. 2012), among others (Ward 2015).

9 � Conclusion

In this paper, we have presented the CGLP, a nested real-time locking protocol that
solves both the Transitive Blocking Chain Problem and the Request Timing Prob-
lem. The CGLP determines concurrency groups offline to reduce the blocking expe-
rienced by requests. We presented multiple approaches to this offline component and
proved upper bounds on acquisition delay.

The offline approaches to forming concurrency groups optimize for one of a few
conditions: minimum number of groups, minimum per-request blocking by account-
ing for critical-section lengths, or maximum relative slack. These allow worst-case
blocking to be tuned based on task parameters.

We showed that, for many task systems, the offline formation of concurrency
groups can be achieved by an ILP solver very quickly. We also evaluated the CGLP
on the basis of schedulability and showed that in many scenarios the CGLP outper-
forms existing protocols.

As future work, this protocol will be incorporated as a component of a larger pro-
tocol to merge work that handles non-nested requests and read requests efficiently
with the efficient management of nested and mixed-type requests provided by the
CGLP.

Acknowledgements  Work supported by NSF Grants CNS 1409175, CNS 1563845, CNS 1717589, and
CPS 1837337, ARO Grant W911NF-17-1-0294, and funding from General Motors. This material is
based upon work supported by the National Science Foundation Graduate Research Fellowship Program
under Grant No. DGS-1650116. Any opinions, findings, and conclusions or recommendations expressed

224	 Real-Time Systems (2021) 57:190–226

1 3

in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

References

AUTOSAR Release 4.4 (2019) Classic platform, specification of operating system. https​://www.autos​
ar.org/. Accessed 20 May 2019

Afshar S, Behnam M, Bril R, Nolte T (2014) Flexible spin-lock model for resource sharing in multipro-
cessor real-time systems. In: Proceedings of the 9th IEEE International Symposium on Industrial
Embedded Systems

Afshar S, Behnam M, Bril R, Nolte T (2017) An optimal spin-lock priority assignment algorithm for real-
time multi-core systems. In: Proceedings of the 23rd IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications

Afshar S, Behnam M, Bril R, Nolte T (2018) Per processor spin-based protocols for multiprocessor real-
time systems. Leibniz Trans Embed Syst https​://doi.org/10.4230/LITES​-v004-i002-a003

Afshar S, Behnam M, Nolte T (2013) Integrating independently developed real-time applications on a
shared multi-core architecture. ACM SIGBED Review’13

Afshar S, Khalilzad N, Nemati F, Nolte T (2015) Resource sharing among prioritized real-time applica-
tions on multiprocessors. ACM SIGBED Review’15

Bacon D, Konuru R, Murthy C, Serrano M (1998) Thin locks: featherweight synchronization for Java.
In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation

Bandh T, Carle G, Sanneck H (2009) Graph coloring based physical-cell-id assignment for LTE net-
works. In: Proceedings of the 2009 International Conference on Wireless Communications and
Mobile Computing: Connecting the World Wirelessly

Barnier N, Brisset P (2004) Graph coloring for air traffic flow management. Ann Oper Res
130(1–4):163–178

Baruah S (2007) Techniques for multiprocessor global schedulability analysis. In: Proceedings of the
28th IEEE Real-Time Systems Symposium

Biondi A, Brandenburg B, Wieder A (2016) A blocking bound for nested FIFO spin locks. In: Proceed-
ings of the 37th IEEE Real-Time Systems Symposium

Block A, Leontyev H, Brandenburg B, Anderson J (2007) A flexible real-time locking protocol for multi-
processors. In: Proceedings of the 13th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications

Brandenburg B (2011) Scheduling and locking in multiprocessor real-time operating systems. Ph.D. the-
sis, University of North Carolina, Chapel Hill, NC

Brandenburg B (2014) The FMLP+: an asymptotically optimal real-time locking protocol for suspension-
aware analysis. In: Proceedings of the 26th Euromicro Conference on Real-Time Systems

Brandenburg B, Anderson J (2007) Feather-trace: a lightweight event tracing toolkit. In: Proceed-
ings of the 3rd International Workshop on Operating Systems Platforms for Embedded Real-Time
Applications

Brandenburg B, Anderson J (2008a) A comparison of the M-PCP, D-PCP, and FMLP on LITMUS
RT . In:

Proceedings of the 12th International Conference on Principles of Distributed Systems
Brandenburg B, Anderson J (2008b) An implementation of the PCP, SRP, D-PCP, M-PCP, and FMLP

real-time synchronization protocols in LITMUS
RT . In: Proceedings of the 14th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications
Brandenburg B, Anderson J (2010) Spin-based reader-writer synchronization for multiprocessor real-time

systems. Real-Time Syst 46(1):25–87
Brandenburg B, Anderson J (2011) Real-time resource-sharing under clustered scheduling: mutex,

reader-writer, and k-exclusion locks. In: Proceedings of the 9th ACM International Conference on
Embedded Software

Brandenburg B, Anderson J (2013) The OMLP family of optimal multiprocessor real-time locking proto-
cols. Design Autom Embed Syst 17(2):277–342

Burns A, Wellings A (2013) A schedulability compatible multiprocessor resource sharing protocol—
MrsP. In: Proceedings of the 25th Euromicro Conference on Real-Time Systems

https://www.autosar.org/
https://www.autosar.org/
https://doi.org/10.4230/LITES-v004-i002-a003

225

1 3

Real-Time Systems (2021) 57:190–226	

Chaitin G, Auslander M, Chandra A, Cocke J, Hopkins M, Markstein P (1981) Register allocation via
coloring. Comput Lang 6(1):45–57

Chang Y, Davis R, Wellings A (2010) Reducing queue lock pessimism in multiprocessor schedulability
analysis. In: Proceedings of the 18th International Conference on Real-Time and Network Systems

Chen C, Tripathi S (1994) Multiprocessor priority ceiling based protocols. Department of Computer Sci-
ence, University of Maryland. Technical Report, CS-TR-3252, April

Dijkstra E (1978) Two starvation free solutions to a general exclusion problem. EWD 625, Plataanstraat
5, 5671 Al Nuenen, The Netherlands

Elliott G, Anderson J (2013) An optimal k-exclusion real-time locking protocol motivated by multi-GPU
systems. Real-Time Syst 49(2):140–170

Faggioli D, Lipari G, Cucinotta T (2010) The multiprocessor bandwidth inheritance protocol. In: Pro-
ceedings of the 22nd Euromicro Conference on Real-Time Systems

Faggioli D, Lipari G, Cucinotta T (2012) Analysis and implementation of the multiprocessor bandwidth
inheritance protocol. Real-Time Syst 48(6):789–825

Gai P, Di Natale M, Lipari G, Ferrari A, Gabellini C, Marceca P (2003) A comparison of MPCP and
MSRP when sharing resources in the Janus multiple-processor on a chip platform. In: Proceedings
of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium

Gai P, Lipari G, Di Natale M (2001) Minimizing memory utilization of real-time task sets in single
and multi-processor systems-on-a-chip. In: Proceedings of the 22nd IEEE Real-Time Systems
Symposium

Garrido J, Zhao S, Burns A, Wellings A (2017) Supporting nested resources in MrsP. In: Proceedings of
the Ada-Europe International Conference on Reliable Software Technologies

Gurobi Optimization, L.: Gurobi optimizer reference manual (2018). http://www.gurob​i.com
Havender J (1968) Avoiding deadlock in multitasking systems. IBM Syst J 7(2):74–84
Jarrett C, Ward B, Anderson J (2015) A contention-sensitive fine-grained locking protocol for multipro-

cessor real-time systems. In: Proceedings of the 23rd International Conference on Real-Time Net-
works and Systems

Lakshmanan K, Niz D, Rajkumar R (2009) Coordinated task scheduling, allocation and synchronization
on multiprocessors. In: Proceedings of the 30th IEEE Real-Time Systems Symposium

Marx D (2004) Graph colouring problems and their applications in scheduling. Period Polytech Electr
Eng 48(1–2):11–16

Mellor-Crummey J, Scott M (1991) Algorithms for scalable synchronization of shared-memory multipro-
cessors. Trans Comput Syst 9(1):21–65

Nemati F, Behnam M, Nolte T (2011) Independently-developed real-time systems on multi-cores with
shared resources. In: Proceedings of the 23rd Euromicro Conference on Real-Time Systems

Nemitz C, Amert T, Anderson J (2017) Real-time multiprocessor locks with nesting: optimizing the
common case. In: Proceedings of the 25th International Conference on Real-Time Networks and
Systems

Nemitz C, Amert T, Anderson J (2018) Using lock servers to scale real-time locking protocols: chas-
ing ever-increasing core counts. In: Proceedings of the 30th Euromicro Conference on Real-Time
Systems

Nemitz C, Amert T, Anderson J (2019a) Real-time multiprocessor locks with nesting: optimizing the
common case. Real-Time Syst 55(2):296

Nemitz C, Amert T, Goyal M, Anderson J (2019b) Concurrency groups: a new way to look at real-time
multiprocessor lock nesting. In: Proceedings of the 27th International Conference on Real-Time
Networks and Systems

Nemitz C, Amert T, Goyal M, Anderson J (2021) Concurrency groups: a new way to look at real-time
multiprocessor lock nesting (extended version). http://www.cs.unc.edu/~ander​son/paper​s.html

Palladino S (2010) Modelling graph coloring with integer linear programming. https​://manas​.tech/
blog/2010/09/16/model​ling-graph​-color​ing-with-integ​er-linea​r-progr​ammin​g.html

Rajkumar R (1990) Real-time synchronization protocols for shared memory multiprocessors. In: Pro-
ceedings of the 10th International Conference on Distributed Computing Systems

Rajkumar R (1991) Synchronization in real-time systems: a priority inheritance approach. Kluwer Aca-
demic Press, Reading, MA

Rajkumar R, Sha L, Lehoczky J (1988) Real-time synchronization protocols for multiprocessors. In: Pro-
ceedings of the 9th IEEE Real-Time Systems Symposium

SchedCAT: Schedulability test collection and toolkit (2019). https​://githu​b.com/brand​enbur​g/sched​cat
Accessed 02 July 2019

http://www.gurobi.com
http://www.cs.unc.edu/~anderson/papers.html
https://manas.tech/blog/2010/09/16/modelling-graph-coloring-with-integer-linear-programming.html
https://manas.tech/blog/2010/09/16/modelling-graph-coloring-with-integer-linear-programming.html
https://github.com/brandenburg/schedcat

226	 Real-Time Systems (2021) 57:190–226

1 3

Takada H, Sakamura K (1995) Real-time scalability of nested spin locks. In: Proceedings of the 2nd
IEEE International Workshop on Real-Time Computing Systems and Applications

Wang C, Takada H, Sakamura K (1996) Priority inheritance spin locks for multiprocessor real-time sys-
tems. In: Proceedings of the 2nd IEEE International Symposium on Parallel Architectures, Algo-
rithms, and Networks

Ward B (2015) Relaxing resource-sharing constraints for improved hardware management and schedula-
bility. In: Proceedings of the 36th IEEE Real-Time Systems Symposium

Ward B (2016) Sharing non-processor resources in multiprocessor real-time systems. Ph.D. thesis, Uni-
versity of North Carolina, Chapel Hill, NC

Ward B, Anderson J (2012) Supporting nested locking in multiprocessor real-time systems. In: Proceed-
ings of the 23rd Euromicro Conference on Real-Time Systems

Ward B, Anderson J (2013) Fine-grained multiprocessor real-time locking with improved blocking.
In: Proceedings of the 21st International Conference on Real-Time Networks and Systems

Ward B, Anderson J (2014) Multi-resource real-time reader/writer locks for multiprocessors. In: Proceed-
ings of the 28th IEEE International Parallel and Distributed Processing Symposium

Ward B, Elliott G, Anderson J (2012) Replica-request priority donation: a real-time progress mechanism
for global locking protocols. In: Proceedings of the 18th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications

Wieder A, Brandenburg B (2013) On spin locks in AUTOSAR: blocking analysis of FIFO, unordered,
and priority-ordered spin locks. In: Proceedings of the 34th IEEE Real-Time Systems Symposium

Wieder A, Brandenburg B (2014) On the complexity of worst-case blocking analysis of nested critical
sections. In: Proceedings of the 35th IEEE Real-Time Systems Symposium

Yang M, Wieder A, Brandenburg B (2015) Global real-time semaphore protocols: a survey, unified analy-
sis, and comparison. In: Proceedings of the 36th IEEE Real-Time Systems Symposium

Zhao S, Garrido J, Burns A, Wellings A (2017) New schedulability analysis for MrsP. In: Proceedings
of the 23rd IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Concurrency groups: a new way to look at real-time multiprocessor lock nesting
	Abstract
	1 Introduction
	2 Background
	3 Concurrency groups
	3.1 Offline group creation via graph coloring
	3.2 Implementation of offline component
	3.3 Group arbitration
	3.4 Implementation of online component
	3.5 Bounding blocking
	3.6 Refining the blocking bound

	4 Alternate coloring choices
	4.1 Motivation
	4.2 Minimizing blocking

	5 Mixed-type requests
	5.1 Graph creation
	5.2 Modifications to ILP

	6 Hierarchical organization
	6.1 Hierarchical request satisfaction
	6.2 Bounding blocking
	6.3 Assigning groups to slots

	7 Evaluation
	7.1 Analysis of offline component
	7.2 Schedulability study

	8 Related work
	9 Conclusion
	Acknowledgements
	References

