
Vol.:(0123456789)

Real-Time Systems (2020) 56:315–347
https://doi.org/10.1007/s11241-020-09350-3

1 3

End‑to‑end latency characterization of task communication 
models for automotive systems

Jorge Martinez1,2 · Ignacio Sañudo2   · Marko Bertogna2

Published online: 19 June 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Different communication models have been historically adopted in the automotive 
domain for allowing concurrent tasks to coordinate, interact and synchronize on a 
shared memory system for implementing complex functions, while ensuring data 
consistency and/or time determinism. To this extent, most automotive OSs provide 
inter-task communication and synchronization mechanisms based upon memory-
sharing paradigms, where variables modified by one task may be concurrently 
accessed also by other tasks. A so-called “effect chain” is created when the effect of 
an initial event is propagated to an actuation signal through sequences of tasks writ-
ing/reading shared variables. The responsiveness, performance and stability of the 
control algorithms of an automotive application typically depend on the propagation 
delays of selected effect chains. Depending on the communication model adopted, 
the propagation delay of an effect chain may significantly vary, as may be the result-
ing overhead and memory footprint. In this paper, we explore the trade-offs between 
three communication models that are widely adopted for industrial automotive sys-
tems, namely, Explicit, Implicit, and Logical Execution Time (LET). A timing and 
schedulability analysis is provided for tasks scheduled following a mixed preemptive 
configuration, as specified in the AUTOSAR model. An end-to-end latency charac-
terization is then proposed, deriving different latency metrics for effect chains under 
each one of the considered models. The results are compared against an industrial 
case study consisting of an automotive engine control system.

Keywords  Real-time · Communication models · Logical execution time · 
Automotive · Embedded systems · End-to-end latency · Amalthea

 *	 Ignacio Sañudo 
	 ignacio.sanudoolmedo@unimore.it

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7581-6862
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-020-09350-3&domain=pdf


316	 Real-Time Systems (2020) 56:315–347

1 3

1  Introduction

In recent years, the amount of electronics in automotive vehicles has risen dramati-
cally, representing a significant share of the overall cost of the vehicle. The techno-
logical reason behind such a trend in the automotive industry lies in the increased 
number of safety and control functionalities that are being integrated in modern 
cars, as well as in the replacement of older hydraulic and mechanical direct actua-
tion systems with modern by-wire counterparts, leading to an increased safety and 
comfort at a reduced unit cost. Well-known examples are anti-lock braking system 
(ASB), electronic stability program (ESP), active suspension, etc.

With the evolution of processors, several industries are facing a transition 
from single-core to multi-core systems. This kind of platforms allows application 
providers to counter the thermal and power-related limitations to the Moore law 
demand for computing power without incurring thermal and power problems. In 
the automotive domain, multi-core platforms bring major improvements for some 
applications requiring high performance such as high-end engine controllers, 
electric and hybrid powertrains, advanced driver assistance systems, etc. Moreo-
ver, the increased computational power of multi-core platforms allows integrating 
into a single controller multiple functionalities that were spread around different 
electronic control units (ECUs), reducing the number of computing units as well 
as communication overhead.

However, task-core distribution may have a significant impact over the con-
trol performance of a given application, due to the concurrency of multiple tasks 
mapped onto different cores that communicate through shared variables, aka 
shared labels. With regard to this type of intertask communication, in the auto-
motive domain we should distinguish between three different models: Explicit, 
Implicit and Logical Execution Time. Each of these communication models has 
a different impact over the communication latencies experienced by tasks access-
ing the same shared variable. In particular, automotive applications are especially 
concerned with optimizing end-to-end propagation latencies of input events that 
trigger a chain of computations leading to a control action or final actuation.

In this paper, we analyze in detail the propagation latencies of event chains 
composed of multiple tasks under different models of the above-mentioned inter-
task communication. We propose and characterize meaningful latency metrics to 
evaluate the control performance of selected event chains. For each considered 
communication model, we characterize worst-case scenarios that lead to the larg-
est latency of the event chain, deriving analytical upper bounds of the worst-case 
propagation time of an input event. We also provide valid upper bounds of the 
response time of tasks scheduled either under the preemptive or the cooperative 
scheduling policy supported in AUTOSAR. To our knowledge, this is the first 
work that provides such an analytical characterization and comparison of end-
to-end latencies under different industrial-grade communication models, for task 
systems compliant with the AUTOSAR scheduling model.

Organisation of the paper. The following section introduces the related 
work and the AUTOSAR standard. Section  3 presents the adopted scheduling 



317

1 3

Real-Time Systems (2020) 56:315–347	

model and the related response-time analyses for AUTOSAR tasks scheduled 
with preemptive and/or cooperative algorithms. Section 4 describes the consid-
ered communication models, discussing the additional memory and communica-
tion overhead implied by each model. Section 5 derives analytical upper bounds 
of meaningful end-to-end latencies for each considered communication model. 
The analytical bounds are then instantiated in Sect. 6 by means of an automotive 
industrial case study, consisting of an engine control system provided by Robert 
Bosch GmbH in Hamann et  al. (2017b), based on concurrent AUTOSAR tasks 
partitioned onto a multi-core system. Finally, Sect.  7 presents our conclusions 
and directions for future works.

2 � Background and related work

2.1 � AUTOSAR

To better understand the background where the considered communication models 
have been proposed, we hereafter provide a short summary of the AUTomotive Open 
System ARchitecture (AUTOSAR1). AUTOSAR is an open standard for automotive 
system development whose main goals are: software independence from hardware, 
modularity, scalability, functions reusability, and flexible maintenance. AUTOSAR 
looks at the different functionalities in a car network, combines them into logical 
clusters (Software Compositions), and finds functional atomic units (Software Com-
ponents) that compose these clusters. AUTOSAR establishes a uniform develop-
ment methodology for automotive control software, providing a standard interface 
between the different software layers and a hierarchical organization of the software/
hardware components deployed in the vehicle. The AUTOSAR architecture is com-
posed of three main layers: (i) Application Software (ASW), (ii) Run-Time Environ-
ment (RTE), and (iii) Basic Software (BSW), as detailed in Fig. 1a.

Fig. 1   AUTOSAR architecture (a); BSW sublayers (b)

1  https​://www.autos​ar.org/.

https://www.autosar.org/


318	 Real-Time Systems (2020) 56:315–347

1 3

1.	 The ASW consists of interconnected Software Components (SWCs) with well-
defined interfaces, described and standardized within AUTOSAR, that are pro-
vided to communicate with other SWCs.

2.	 The communication between SWCs is enabled by the RTE. This layer makes 
SWCs independent from the mapping to a specific ECU and provides different 
communication paradigms between SWCs, such as sender–receiver, client–server, 
etc. In this paper, we focus on the sender–receiver communication paradigm, that 
is the memory sharing mechanism allowing tasks to communicate by means of 
labels. For this sort of communication, the RTE supports two modes, namely 
Explicit and Implicit.

3.	 The BSW provides the infrastructural functionality for an ECU and is composed 
of the following sub-layers (see Fig. 1b): the Microcontroller Abstraction layer 
(MCAL) which provides hardware drivers making upper software layers inde-
pendent from the microcontroller; the ECU abstraction layer which provides APIs 
to access peripherals making upper software layers independent from the ECU 
hardware layout; and the Service Layer that provides operating system function-
alities, memory services, diagnostic services, etc. Drivers that are not specified 
in AUTOSAR are to be found in the Complex Drivers layer.

The characterization of end-to-end timing latencies of effect chains between com-
municating AUTOSAR tasks is an important problem for many automotive applica-
tions with tight real-time requirements.

2.2 � Related work

2.2.1 � Task chains

A task chain is a sequence of communicating tasks in which every task receives data 
from its predecessor Kloda et  al. (2018). Depending on the activation model, the 
literature distinguishes between two types of task chains: periodic chains and event-
driven chains Vincentelli et al. (2007). In the periodic case, each task is activated 
independently at a given rate, and communicates with its successor by means of 
shared variables. In the event-driven paradigm, instead, task executions are triggered 
by an event issued from a preceding task. Periodic-activated chains are also known 
as effect chains Hamann et al. (2017a), cause-effect chains Becker et al. (2017) or 
data chains Kloda et al. (2018), and are usually found in automotive systems Fei-
ertag et al. (2009). Event-driven activation is instead found in other domains, like 
avionics and aerospace Girault et al. (2018).

2.2.2 � End‑to‑end latency

In Davare et al. (2007), the authors provided upper bounds on the end-to-end latency 
of effect chains that are composed of tasks mapped onto different Electronic Con-
trol Units (ECUs), as well as messages transmitted via CAN bus. They proposed a 
mixed-integer geometric programming (MIGP) optimization approach that assigns 



319

1 3

Real-Time Systems (2020) 56:315–347	

periods to tasks and messages at design stage so that deadlines across ECUs and 
buses can be met. In Vincentelli et al. (2007), the trade-offs between periodic and 
event-driven activations of task chains are explored, showing that a purely periodic 
or event-driven activation model might not always meet the deadline constraints of a 
given distributed automotive system. Thus, the authors proposed an algorithm based 
on a mixed activation model that can meet the latency requirements of the aforemen-
tioned inter-ECU communication.

An analysis of worst-case latencies along functional chains in critical avionic 
distributed systems is presented in Lauer et  al. (2014), proposing a mixed integer 
linear programming (MILP) formulation focusing on two end-to-end requirements, 
namely, latency and temporal consistency. In Kloda et al. (2018), a method is pre-
sented to reduce the pessimism of upper bounds on the end-to-end latency of effect 
chains consisting of periodic tasks scheduled by a partitioned fixed-priority preemp-
tive policy on a multi-core platform. In Schlatow et al. (2018), the authors addressed 
the latency analysis of multi-rate distributed effect chains considering static-priority 
preemptive scheduling of offset-synchronized periodic tasks, proposing a Mixed 
Integer Linear Program-based optimization in order to select design parameters, 
such as priorities, task-to-processor mapping, and offsets, that minimize data age. In 
Girault et al. (2018), tighter upper bounds are presented on the end-to-end latency of 
synchronous and asynchronous event-driven activated chains on a single core plat-
form. Lower bounds on these latencies are also computed to evaluate the tightness 
of the derived bounds.

2.2.3 � Task communication models

In the automotive domain, multiple communication models have been proposed, 
affecting the resulting end-to-end latencies of event chains in different ways. Beside 
the Explicit and Implicit communication models, the Logical Execution Time (LET) 
paradigm has been proposed within the time-triggered programming language Gio-
tto Henzinger et  al. (2001, 2003). This communication model allows determining 
the time it takes from reading program input to writing program output regardless of 
the actual execution time of a real-time program. As stated in Kirsch and Sokolova 
(2012), LET evolved from a highly controversial idea to a well-understood principle 
of real-time programming, motivated by the observation that the relevant behavior 
of real-time programs is determined by when inputs are read and outputs are written. 
This concept has been adopted by the automotive industry as a way to introduce a 
more deterministic behavior of concurrent applications.

To address the migration problem of automotive applications from single- to 
multi-core platforms, Kehr et  al. (2015) presented an AUTOSAR compliant com-
munication mechanism named Timed Implicit Communication (TIC) that allows leg-
acy applications to run in parallel, making them platform-independent. This adap-
tation of the Implicit communication model relies on time stamps and somewhat 
resembles the LET communication model. In Hamann et  al. (2017a), the authors 
provided an overview of the different communication models used in the automotive 
domain, highlighting the importance of the end-to-end latencies of effect chains in 
an engine management system. Moreover, a method is presented to transform LET 



320	 Real-Time Systems (2020) 56:315–347

1 3

and implicit communication into their corresponding direct communication ana-
logues. The impact on end-to-end latencies and communication overheads in terms 
of temporal determinism and data consistency is shown using the SymTA/S tool.2

In Becker et  al. (2016), a holistic end-to-end timing latency analysis for effect 
chains with specified age-constraints is presented. The analysis is based on deriving 
all possible data propagation paths. These paths are used to compute minimum and 
maximum end-to-end latencies of effect chains. Later, in Becker et al. (2017), the 
same authors extended the analysis in order to include the Implicit and LET commu-
nication models, providing techniques for deriving the maximum data age of effect 
chains. In Martinez et al. (2018), the authors presented a formal analysis of the LET 
communication model for real-time applications composed of periodic tasks with 
harmonic and non-harmonic periods, and computed their exact end-to-end latencies. 
They also showed that by introducing tasks offsets, the real-time performance of 
non-harmonic tasks may improve, getting closer to the constant end-to-end latency 
experienced in the harmonic case. To that end, they proposed a heuristic algorithm 
to obtain a set of offsets that might reduce end-to-end latencies, improving the deter-
minism of the LET communication model.

To the best of our knowledge, our work is the first complete study that combines 
three communication models: explicit,implicit, and LET, with a concise mathemati-
cal end-to-end latency timing analysis that encompasses two end-to-end timing 
semantics of paramount importance for automotive systems, namely, Age and Reac-
tion latency. To that end, we present a novel tight schedulability and timing analysis 
of a mixed preemptive-cooperative task system, that will enable us to provide upper 
bounds on the end-to-end latency of effect chains in an automotive setting. Detailed 
considerations are provided concerning the implementation and mathematical mod-
els of the aforementioned communication paradigms, comparing the resulting laten-
cies of the different semantics against an industrial case study.

3 � System model, terminology and notation

This section describes the terminology and notation adopted throughout the paper. 
The smallest functional entity in AUTOSAR is called runnable. A SWC is made up 
of one or more runnables. Runnables having the same functional period are grouped 
into the same task. In the simplest case, one functionality is realized by means of a 
single runnable. However, more complex functionalities are typically accomplished 
using several communicating runnables, possibly distributed over multiple tasks.

The model is assumed to be comprised of m identical cores, with periodic tasks 
and runnables statically partitioned to the cores, and no migration support. Each 
task �i is specified by a tuple ( Ci,Di, Ti,Pi,PTi ), where Ci stands for the worst-case 
execution time (WCET), Di is the relative deadline, Ti is the period, Pi is the prior-
ity, and PTi defines the type of preemption. Every period Ti , each task releases a job 

2  https​://auto.luxof​t.com/uth/timin​g-analy​sis-tools​/.

https://auto.luxoft.com/uth/timing-analysis-tools/


321

1 3

Real-Time Systems (2020) 56:315–347	

composed of �i subsequent runnables, where �r
i
 represents the rth runnable of �i , 

with 1 ≤ r ≤ �i . The worst-case execution time of �r
i
 is denoted as Cr

i
 . Therefore,

We also denote as C
r

i
 the cumulative execution time of runnables �1

i
,… , �r

i
 , i.e.,

Tasks are scheduled by the operating system based on the assigned (fixed) priori-
ties. The scheduling policy may be either preemptive or cooperative, as specified 
by PTi . Preemptive tasks always preempt lower priority tasks, while cooperative 
tasks preempt a lower priority one only at runnable boundaries. Preemptive tasks 
are assumed to always have a higher priority than that of any cooperative task. The 
mixed cooperative-preemptive nature allows modeling automotive systems where 
hard real-time tasks co-exist with soft and firm real-time tasks, providing a proper 
balance between preemption latency and context switch overhead according to the 
needs of each task.

Tasks communicate through shared labels in such a fashion that they abstract a 
message-passing communication mechanism implemented with a shared memory. 
Regarding the type of access, a task can be either a sender or a receiver of a label. 
A sender is a task that writes a label. We assume there is only one sender per label, 
while there may be multiple receiving tasks reading one label. Even though the typi-
cal multicore architecture used in the automotive field, i.e. TriCore AURIX,3 allows 
more than one instruction-per-cycle (IPC), the complexity of automotive software 
can make the actual average value less than that. For the sake of simplicity, we con-
sider IPC = 1 . The execution time of a runnable �r

i
 , without taking memory com-

putation into account, can then be computed as Cr
i
= Er

i
∕f  , where Er

i
 is an upper 

bound on the number of instructions for the considered runnable, and f is the core 
frequency.

The overall worst-case execution time Cr
i
 of runnable �r

i
 can then be derived by 

also taking into account the access time of each label � of �r
i
,

where Fr
i,�

 represents the number of times the label � is accessed by runnable �r
i
 , and 

�
�
 is the time it takes to access �.
In the same way, we can also obtain the best-case execution time (BCET) of run-

nable �r
i
 , br

i
 , by taking into consideration the minimum number of instructions er

i
:

(1)Ci =
∑

k∈[1,�i]

Ck
i
.

(2)C
r

i
=

∑

k∈[1,r]

Ck
i
.

(3)Cr
i
=

Er
i

f
+

∑

𝓁∈�r
i

{

Fr
i,𝓁

⋅ �
𝓁

}

3  https​://www.infin​eon.com.

https://www.infineon.com


322	 Real-Time Systems (2020) 56:315–347

1 3

Thus the best-case start time of runnable �r
i
 , sr

i
 can be computed as the sum of the 

BCETs of the preceding runnables:

3.1 � Analysis for preemptive tasks

According to the considered system model, preemptive runnables can only be 
preempted by higher priority preemptive runnables, and they can always preempt 
any lower priority task. Therefore, a preemptive task will never experience any 
blocking delay due to lower priority (preemptive or cooperative) tasks. Hence, the 
response time for preemptive tasks can be computed adapting the classic response 
time analysis for arbitrary deadlines presented in Lehoczky (1990). The arbitrary 
deadline model is used instead of the simpler analysis for constrained deadlines 
because there are configurations where the response time Ri of a task �i may be later 
than the activation of the subsequent job of the same task, i.e., Ri > Ti . Under these 
conditions, the maximum response time of a task is not necessarily given by the 
first instance released after the synchronous arrival of all higher priority tasks (also 
called critical instant), but may be due to later jobs.

For each task �i , the analysis requires checking multiple jobs until the end of the 
level-i busy period, i.e., the maximum consecutive amount of time for which a pro-
cessor is continuously executing tasks of priority Pi or higher. The longest Level-i 
active period ( Li ) can be calculated by fixed-point iteration of the following relation, 
starting with Li = Ci:

The number of �i ’s instances to check is therefore Ki =
⌈

Li

Ti

⌉

 . The finishing time of 
the k-th instance ( k ∈ [1,Ki] ) of runnable �r

i
 in the level-i busy period can be itera-

tively computed as

where the first term in the sum accounts for the higher priority interference, the sec-
ond term accounts for the (k − 1) preceding jobs of �i , and the last term considers the 
contribution of the k-th job limited to �r

i
 and its preceding runnables. The response 

time of the k-th instance of �r
i
 can then be easily found subtracting its arrival time:

(4)br
i
=

er
i

f
+

∑

𝓁∈�r
i

{

Fr
i,𝓁

⋅ �
𝓁

}

(5)sr
i
=

∑

k∈[1,r−1]

bk
i
.

(6)Li =
∑

j∶Pj≥Pi

⌈

Li

Tj

⌉

Cj.

(7)f
r,k

i
=

∑

j∶Pj>Pi

⌈

f
r,k

i

Tj

⌉

Cj + (k − 1)Ci + C
r

i
,



323

1 3

Real-Time Systems (2020) 56:315–347	

The worst-case response time (WCRT) of runnable �r
i
 can be found by taking the 

maximum among all Ki jobs in the level-i busy period:

Finally, the worst-case response time of task �i is computed in the following way:

3.2 � Analysis for cooperative tasks

While the main advantage of preemptive scheduling is real-time response, cooperative 
scheduling limits the number of preemptions between cooperative tasks, reducing the 
kernel overheads and simplifying re-entrance problems. Moreover, in classic automo-
tive platforms based on single core technologies, cooperative scheduling was a way to 
provide implicit data consistency at runnable level, avoiding the need for mutual exclu-
sion primitives.

The analysis for cooperative tasks is somewhat more complicated, since it needs to 
take into account (i) the blocking delays due to lower priority cooperative tasks that can 
be preempted only at runnable boundaries; (ii) the interference due to higher priority 
cooperative tasks that can preempt the considered task only at runnable boundaries; 
(iii) the interference of preemptive tasks that may preempt even within a runnable. To 
tackle this problem, we will modify and merge the analysis for limited-preemption sys-
tems with Fixed Preemption Points (FPP) and for Preemption Threshold Scheduling 
(PTS), both summarized in Buttazzo et al. (2013). The outcome will be a necessary and 
sufficient response-time analysis for the considered mixed preemptive-cooperative task 
model.

Under this model, a preemption threshold is assigned to cooperative tasks. This pri-
ority is higher than that of any cooperative task, but lower than that of any preemptive 
tasks. When a cooperative task �i is executing one of its runnables, its nominal priority 
Pi is raised to the threshold �i , so that cooperative tasks cannot preempt it. The nominal 
priority is restored when the runnable is completed, allowing cooperative preemptions 
from higher priority tasks.

As with preemptive tasks, it is also necessary to consider multiple jobs within a busy 
period. However, the busy period must also include the blocking due to lower priority 
tasks. The longest Level-i active period can be calculated adding a blocking factor to 
the recurring relation of Eq. (6):

(8)R
r,k

i
= f

r,k

i
− (k − 1)Ti.

(9)Rr
i
= max

k∈[1,Ki]
{Rr,k

i
}.

(10)Ri = R
�i
i
.

(11)Li = Bi +
∑

j∶Pj≥Pi

⌈

Li

Tj

⌉

Cj.



324	 Real-Time Systems (2020) 56:315–347

1 3

Since a task can only be blocked once by lower priority instances, Bi corresponds to 
the largest execution time among lower priority runnables:4

The starting time ŝr,k
i

 of the k-th instance of runnable �r
i
 can be iteratively computed 

by taking into consideration the blocking time Bi , the interference produced by 
higher priority tasks before �i,r can start, the preceding (k−1) instances of �i , and the 
execution time of the preceding runnables of �i,r:

The worst-case finishing time f r,k
i

 is calculated by adding to the worst-case starting 
time ŝr,k

i
 , the execution time of the considered runnable Cr

i
 , along with the interfer-

ence of the tasks that can preempt �r
i
 , i.e., the preemptive tasks which have a nomi-

nal priority higher than the preemption threshold of any cooperative task. To com-
pute this last interfering term, we compute the higher priority instances that arrive 
from the critical instant until the finishing time, and subtract those that arrived 
before the starting time:

Equations  (8),  (9) and  (10) can then be identically used to compute the worst-case 
response time of the considered runnable and task, respectively.

4 � Inter‑task communication

In line with the multi-core complexity trend, automotive applications are evolv-
ing towards more complicated task and runnable settings. As tasks communicate 
across the memory hierarchy, data consistency problems may arise. On the other 
hand, as control algorithms need deterministic timing, non-deterministic behavior, 
such as task jitter, might cause different levels of control performance degradation 
that might even lead to system instability. Thus, in the automotive domain distinct 
communication models have been proposed in order to provide different levels of 
determinism and consistency: (i) Explicit, (ii) Implicit and (iii) Logical Execution 
Time (LET). 

(12)Bi = max
j,r∶Pj<Pi

{Cr
j
}.

(13)ŝ
r,k

i
= Bi +

∑

j∶Pj>Pi

(⌊

ŝi
r,k

Tj

⌋

+ 1

)

Cj + (k − 1)Ci + C
r−1

i
.

(14)f
r,k

i
= ŝ

r,k

i
+ Cr

i
+

∑

j∶Pj>𝜃i

(⌈

f
r,k

i

Tj

⌉

−

(⌊

ŝ
r,k

i

Tj

⌋

+1

))

Cj.

4  Since the lower priority task must have already arrived before the critical instant, the actual blocking 
term is actually an infinitesimal amount smaller. We neglect infinitesimal amounts to simplify the for-
mula.



325

1 3

Real-Time Systems (2020) 56:315–347	

1.	 Explicit communication means that a runnable makes an explicit RTE API 
call in order to directly write or read labels, i.e., a runnable or a task may have 
unrestricted access to variables at any point during its execution. To avoid data 
inconsistency issues, accesses must be protected through explicit synchronization 
or locking constructs. A memory-aware analysis of Explicit communication is 
proposed in Sañudo et al. (2016).

2.	 Implicit communication aims at data consistency and defines two kinds of opera-
tions: Implicit Read and Implicit Write. The former implies that if a runnable 
reads a label, a copy of this label, instead of the original, should become available 
for the runnable at the latest when its execution starts. The RTE ensures that this 
copy does not change during the execution of the runnable. Implicit write means 
that a label modified by a runnable should be made available to other runnables 
at the earliest when the runnable execution is over. The RTE makes sure that this 
update is done by means of a copy mechanism. One way to implement this is that 
tasks accessing shared labels work on task-local copies instead of the original 
labels. To avoid data inconsistency, each task instance gets a copy of the required 
labels at the beginning of its execution. After working on local copies in an 
exclusive way, it then publishes its results at the end of its execution. Consistency 
between variables, i.e. data coherency, is not covered in this journal. If needed, 
extra buffers or locking support might be used. The latter is only required at the 
beginning of a reading task, and at the end of a writing task, which signifies a 
much lighter synchronization overhead than in the explicit model.

3.	 As mentioned above, the Logical Execution Time (LET) is a hard real-time pro-
gramming abstraction that was introduced by the Giotto programming model. As 
the relevant behavior of real-time tasks is determined by when inputs are read 
and outputs are written, the LET semantics requires that inputs and outputs be 
logically updated at the beginning and at the end of the so called Logical Execu-
tion Time. Henceforth, we assumed that the LET of a task equals its period. This 
allows deterministically fixing the time it takes from reading an input to writing 
an output regardless of the actual response time of the involved communicating 
tasks.

The LET implementation we consider in this paper adopts a lock-free paradigm that 
tries to closely resemble the above-mentioned ideal behavior at the cost of a slightly 
higher use of local buffers, as will be shown in Sect. 4.2. An implementation of the 
Implicit communication model that tries to duplicate its behavior is presented in the 
following section.

4.1 � Implicit communication

Let Ii and Oi be the set of all shared labels read and written by task �i , respectively. Ii 
and Oi therefore represent the inputs and outputs of the considered task. Our imple-
mentation for Implicit communication assumes that any task �i accessing a shared label 
works on a copy instead of the original label. Copies are created, statically allocated 
to the task-local memory and inserted in runnables at compile time. Furthermore, two 



326	 Real-Time Systems (2020) 56:315–347

1 3

task-specific runnables �0
i
 and � (�i+1)

i
 (also called � last

i
 for simplicity) are to be inserted 

at the beginning and at the end of the task. Runnable �0
i
 is responsible of reading shared 

labels to the local copies, while � last
i

 will write the local copies to the corresponding 
shared variables. If İi and Ȯi represent the set of �i-local copies of the labels contained 
in Ii and Oi , respectively, runnable �0

i
 updates İi , whereas runnable � last

i
 publishes its 

updates by writing Ȯi to the corresponding shared variables in Oi . See Fig. 2. Observe 
that if a task writes and reads the same label, only one copy is created.

For example, suppose a task �i reads shared label L1 and writes shared label L2 . Let 
Li,1 and Li,2 represent the �i-local copies of L1 and L2 respectively. This model dictates 
that Li,1 is to be updated by runnable �0

i
 at the beginning of task �i . After that, �i reads 

Li,1 and writes Li,2 , never accessing the original labels L1 and L2 . In the end, runnable 
� last
i

 writes the latest value of Li,2 to L2 . It does not need to publish L1 , since it did not 
modify it. See Fig. 3.

An upper bound on the overhead introduced by the copy-in ( �0
i
 ) and copy-out ( � last

i
 ) 

runnables can be easily computed as

and

where the sum is extended over all shared labels read (resp. written) by the consid-
ered task �i . The total execution time of �i is computed as

The additional memory occupancy in the Implicit model is given by the local copies 
created for shared labels, i.e., all labels in Ii ∪ Oi for all tasks �i.

(15)C0

i
=
∑

�∈Ii

�
�
,

(16)Clast
i

=
∑

�∈Oi

�
�
,

(17)Ci = C0

i
+ Clast

i
+

∑

r∈[1,�i]

Cr
i
,

Fig. 2   Implicit communication 
implementation

Fig. 3   Implicit communication implementation example



327

1 3

Real-Time Systems (2020) 56:315–347	

4.2 � LET communication

Differently from the Implicit case, LET enforces task communication at deter-
ministic times, corresponding to task activation times. In our implementation, 
each reader creates one or more local copies of the shared label. Since the consid-
ered model allows just one writer task for each label, the writer task is allowed to 
directly modify the original label, updating the readers copies at well-determined 
times.

For instance, let us consider the communication between the writer with period 
TW = 2 and one of the readers with period TR = 5 , as in Fig.  4a: while �W may 
repeatedly write the considered label, these updates are not visible to the concur-
rently executing reader, until a publishing point Pn

W,R
 , where the value is updated 

for the next reader instance. This point corresponds to the first upcoming writer 
release that directly precedes a reader release, i.e., where no other write release 
appears before the arrival of the following reader instance. We call publishing 
instance the writing instance that updates the shared value for the next reading 
instance, i.e., the writer’s job that directly precedes a publishing point. Note that 
not all writing instances are publishing instances. See Fig.  4, where publishing 
instances are marked in bold red.

It is also convenient to define reading points Qn
R,W

 , which correspond to the 
arrival of the reading instance that will first use the new data published in the 
preceding publishing point Pn

R,W
 . Figure 4b shows publishing and reading points 

for a case where TW = 5 and TR = 2 . If we define the hyperperiod of two com-
municating tasks as the least common multiple ( LCM ) of their periods, the next 
theorem shows how publishing and reading points of two communicating tasks 
can be computed.

Theorem  1  Given two communicating tasks �W and �R , the publishing and the 
reading points can be computed as

(18)Pn
W,R

=

⌊

nTmax

TW

⌋

TW

(19)Qn
W,R

=

⌈

nTmax

TR

⌉

TR

Fig. 4   Publishing and reading points when the reader has a larger (a) or smaller (b) period than the 
writer



328	 Real-Time Systems (2020) 56:315–347

1 3

where Tmax = max(TW , TR).

Proof  If the writer �W has a smaller or equal period than the reader �R , i.e., TW ≤ TR 
as in Fig. 4a, there is one publishing and one reading point for each reading instance. 
Reading points trivially correspond to each reading task release, i.e.,

while publishing points correspond to the last writer release before such a reading 
instance, i.e.,

Otherwise, when the writer �W has a larger period than the reader �R , i.e., TW ≥ TR 
as in Fig. 4b, there is one publishing and one reading point for each writing instance. 
Publishing points trivially correspond to each writing task release, i.e.,

while reading points correspond to the last reader release before such a writing 
instance, i.e.,

It is easy to see that, in both cases TW ≤ TR and TW ≥ TR , the formula for Pn
W,R

 
and Qn

W,R
 are generalized by Eqs. (18) and (19). Note that, when TW = TR , 

Pn
W,R

= Qn
W,R

= nTW . 	�  ◻

Let IW,R denote the set of labels written by �W and read by �R . For each of these 
labels, the reading task �R creates a local copy to which it has exclusive access. Let 
İW,R denote the set of �R-local copies of the labels contained in IW,R . Depending on 
the harmonicity of TW and TR , İW,R is to be updated either by �W or �R as shown in the 
next section.

4.2.1 � Harmonic synchronous communication (HSC)

Two communicating tasks �W and �R have harmonic periods if the period of one of 
them is an integer multiple of the other. When a harmonic synchronous communica-
tion (HSC) is established, the following relations hold: LCM(TW , TR) = Tmax , and 
Pn
W,R

= Qn
W,R

= nTmax , i.e., publishing and reading points are integer multiples of the 
largest period of the communicating tasks.

Consider the example in Fig. 5, where two tasks �l and �s , with Tl = 2Ts , both read 
shared labels L1 and L2 . Moreover, �l writes L1 , while �s writes L2 . The proposal sug-
gests that �s and �l are to read Ls,1 and Ll,2 instead of the original labels. Notice that �l 
and �s directly modify L1 and L2 , respectively, instead of working with local copies. 

Qn
W,R

= nTR,

Pn
W,R

=

⌊

nTR

TW

⌋

TW .

Pn
W,R

= nTW

Qn
W,R

=

⌈

nTW

TR

⌉

TR.



329

1 3

Real-Time Systems (2020) 56:315–347	

These copies are to be updated by a communication-specific runnable, either � last
s

 or 
� last
l

 , depending on whichever job finishes last before the next publishing point. In 
other words, the responsibility to update the copies is given either to the reader or to 
the writer, depending on which one completes last in the communication. The first 
reader instance after the publishing point is the first one that accesses the updated 
value. Such a value will be used by all reading instances until the next reading point. 
Unlike the Implicit communication, only one task pays the overhead for maintaining 
the determinism in the communication.

4.2.2 � Non‑harmonic synchronous communication (NHSC)

When two communicating tasks do not have harmonic periods, a non-harmonic syn-
chronous communication (NHSC) is established. The general formulas of Sect. 4.2 
apply.

Like in the HSC case, the reading task of a shared label accesses a local copy 
instead of the original label. However, due to the misaligned activations of the com-
municating tasks, at least two copies of the same shared label are needed. A task-
specific runnable is to be inserted at the end of the writer in order to update the 

Fig. 5   LET harmonic communication

Fig. 6   Non harmonic (NHSC): 2TR = 5TW



330	 Real-Time Systems (2020) 56:315–347

1 3

copies of IW,R before the publishing point. If only one copy was used, a task could 
be writing it while the reader is reading it, leading to an inconsistent state. With two 
copies, instead, a reader reads a local copy, while the writer may freely write a new 
value for the next reading instance in a different buffer.

For example, consider a reading task �R and a writing task �W communicating 
through a shared variable L2 , with 2TR = 5TW as in Fig. 6. There are two �R-local 
copies, LR,2,1 and LR,2,2 , of the shared label L2 . The reading task �R reads from one of 
these copies instead of the original label. These copies are to be updated by the last 
runnable � last

W
 of the writing task. Note that �W directly writes to L2 instead of a local 

copy.
There might also be cases where three copies per labels are needed in order to ful-

fill the required determinism. Consider Fig. 7 where 5TR = 2TW . Note that �W may 
directly access L1 , while �R reads from one of the three copies LR,1,1 , LR,1,2 or LR,1,3 , 
which are to be updated by runnable � last

W
 . An extra copy of L1 is needed because the 

value computed by the second writing instance may be available either before or 
after the next reading point Q1

R,W
 , depending on the response time of �W . If the sec-

ond instance of �W finishes before (resp. after) Q1

R,W
 , the reading instance after Q1

R,W
 

would read the data of the second (resp. first) writing instance. Therefore, the value 
read at Q1

R,W
 is not deterministic, as it might correspond either to the first or to the 

second writing instance. Introducing a third buffer allows obtaining a deterministic 
behavior, where the values published by the first and second writing instances are 
always read at Q1

R,W
 and Q2

R,W
 , respectively.

In general, this happens when a publishing instance has a best-case finish-
ing time that precedes the next reading point. Let us define wn

W,R
 as the window of 

time between a publishing point Pn
W,R

 and the next reading point Qn
W,R

 . Then, using 
Eqs. (18) and (19),

It is worth pointing out that if a HSC is established, then wn
W,R

= 0 . Furthermore, if 
the best-case response time of a publishing instance is smaller than the correspond-
ing wn

W,R
 , a third buffer is needed to store the new value.

As the type of LET communication is defined by the periods of the communicat-
ing task pair, a given tasks Ti can establish a HSC with one task and a NHSC with 

(20)wn
W,R

= Qn
W,R

− Pn
W,R

=

⌈

nTmax

TR

⌉

TR −

⌊

nTmax

TW

⌋

TW .

Fig. 7   Non harmonic (NHSC): 5TR = 2TW



331

1 3

Real-Time Systems (2020) 56:315–347	

another. Thus, depending on the type(s) of estabished communication, the additional 
memory occupancy is given by the total number of local copies created for each 
label in Ii .

5 � End‑to‑end latency characterization

In this section, we propose a method for computing the end-to-end propagation 
delay of effect chains taking into consideration different communication models.

An effect chain, EC, is a producer/consumer relationship between runnables 
working on shared labels. Effects chains are assumed to be triggered by an event 
or a task release. The first task in the chain produces an output (i.e., writes to a 
shared label) for another task following in the event chain. This second task reads 
the shared label to write an output to a different shared label, which may be then 
read by a third task, and so on. When the last task produces its final output, the event 
chain is over.

Depending on the application requirements, different end-to-end delay metrics 
can be of interest. Control systems driving external actuators are interested in the 
“age” of an input data, i.e., for how long a given sensor data will be used to take 
actuation decisions. For example, how long a radar or camera frame will be used as 
a valid reference by a localization or object detection system to perceive the envi-
ronment: the older the frame, the less precise is the system. Similar considerations 
are valid for an engine control or a fuel injection system, where correct actuation 
decisions depend on the “freshness” of sensed data. Another metric of interest is the 
“reaction” latency to a change of the input, i.e., how long it takes for the system to 
react to a new sensed data. Multiple body and chassis automotive applications are 
concerned with this metric. For example, for a door locking system, it is important 
to know the time it takes to effectively lock or unlock the doors after receiving the 
corresponding signal.

To more formally characterize age and reaction latencies, consider Fig.  8a, 
showing an event chain triggered by a periodic sensor (incoming green arrows). 
The upper task reads the sensor data, elaborates it, and shares the result with the 
next task. And so on, until the end of the event chain. Green arrows denote when 
an input is propagated to the next task. In this case, we call it a valid input. Red 

Fig. 8   Age and reaction latency



332	 Real-Time Systems (2020) 56:315–347

1 3

arrows correspond to elaborations that are not propagated, also called invalid inputs, 
because they are overwritten before being read by the next task in the chain.

The age latency is defined as the delay between a valid sensor input until the 
last output related to this input in the event chain. This data age metric is particu-
larly important for control applications, such as, fuel injection control. The reaction 
latency is defined as the delay between a valid sensor input until the first output of 
the event chain that reflects such an input. It measures how much time it takes for 
a new event to propagate to the end of the event chain. This metric allows estimat-
ing the reactivity to new inputs and has great importance for the automotive body 
domain, where the first reaction is paramount. Depending on tasks alignments, the 
reaction latency may significantly vary. In Fig. 8b, the first sensor input arrives just 
a bit after the runnable that is responsible of elaborating it (marked as a green dot 
in the first job of �i ). This causes the reaction latency to increase substantially, as 
the output task �k will continue working with an older input for three further jobs 
(marked as A, B and C in the figure). In Feiertag et  al. (2009), age and reaction 
latencies are also referred to as last-to-last (L2L) and first-to-first (F2F) delay, 
respectively.

Before proceeding to compute end-to-end age and reaction latencies of an effect 
chain, we first compute an upper bound on the delay �r

i
 between two operations on 

the same variable executed by two consecutive instances of the same runnable �r
i
 . 

Assuming the first and the second runnable instance access the shared label at the 
beginning and at the end of their execution respectively, see Fig. 9, �r

i
 is derived as 

a function of the best-case start time sr
i
 and the worst-case response time Rr

i
 of run-

nable �r
i
:

In the following, we first examine the Explicit communication in detail, since it 
establishes the basis for the latency characterization of its Implicit counterpart.

5.1 � Explicit communication

Consider an effect sub-chain, where a runnable � i
W

 with �i
W

 writes a label, which is 
in turn read by another runnable � j

R
 with �j

R
 . We hereafter compute an upper bound 

on the worst-case sub-chain age latency �i,j

W,R
 and worst-case sub-chain reaction 

(21)�r
i
= Ti − sr

i
+ Rr

i
.

Fig. 9   Calculation of �r
i



333

1 3

Real-Time Systems (2020) 56:315–347	

latency �i,j
W,R

 . To do this, we consider different worst-case settings where the follow-
ing conditions hold: 

C1.	� � i
W

 updates L right after � j
R
 started loading it.

C2.	� Two subsequent read operations are �j

R
 time-units apart.

C3.	� Two subsequent write operations are �i
W

 time-units apart.

Theorem 2  An upper bound on the worst-case sub-chain age latency of two com-
municating tasks �W and �R is

Proof  To compute the age latency �i,j

W,R
 , we separately consider the cases with 

�
j

R
≥ �i

W
 and 𝜙j

R
< 𝜙i

W
 . When �j

R
≥ �i

W
 , the worst-case situation is that of Fig. 10a, 

where �i,j

W,R
= �i

W
 . Shifting the reading instance of �R earlier would cause a propor-

tional decrement in the age latency, while postponing it right after the second update 
of �W would cause a sudden drop of the age latency to zero, as the read would refer 
to the new writing update. When instead 𝜙j

R
< 𝜙i

W
 , the worst-case scenario is that of 

Fig. 10b, where the latest instance of �R reads just before the next update of �W . In 
this case, an upper bound on the age latency is �i

W
 . Shifting the reading instance to 

the left would proportionally decrement the age latency, whereas postponing it right 
after the update would decrease the age latency by one reading period.

In both considered cases, an upper bound on the age latency is �i,j

W,R
= �i

W
 , prov-

ing the theorem. 	�  ◻

Theorem 3  An upper bound on the worst-case sub-chain reaction latency of two 
communicating tasks �W i �R is

Proof  To compute the reaction latency �i,j
W,R

 , we again separately consider the cases 
with �j

R
≥ �i

W
 and 𝜙j

R
< 𝜙i

W
 . When �j

R
≥ �i

W
 , the worst-case situation is shown in 

(22)�
i,j

W,R
= �i

W

(23)�
i,j

W,R
= �

j

R

Fig. 10   Upper bound on the worst-case sub-chain age latency �i,j

W,R
 when �j

R
≥ �i

W
 (a) and 𝜙j

R
< 𝜙i

W
 (b)



334	 Real-Time Systems (2020) 56:315–347

1 3

Fig. 11a, where an upper bound on the reaction latency is equal to �j

R
 . Shifting ear-

lier the reading instance would cause a proportional decrease of the reaction latency, 
while moving it later would make it refer to the last write update, leading to a null 
reaction latency. Note that earlier writing instances within the considered window do 
not need to be considered for the reaction latency because they are overwritten, i.e., 
they do not cause any “reaction” in the system. When instead 𝜙j

R
< 𝜙i

W
 , the worst-

case scenario is that of Fig. 11b, where �i,j
W,R

= �
j

R
 . Shifting the writing instance to 

the right would cause a proportional decrement in the reaction latency, while mov-
ing it a bit earlier would cause a sudden drop of the reaction latency to zero.

In both considered cases, an upper bound on the reaction latency is �i,j
W,R

= �
j

R
 , 

proving the theorem. 	�  ◻

For simplicity, we will drop the apexes of �i,j
W,R

 , �i,j

W,R
 , �i

W
 and �j

R
 when we do not 

need to explicitly refer to the communicating tasks. An upper bound on the overall 
end-to-end age latency of an effect chain �(EC) can therefore be computed as

where � is the number of tasks constituting the effect chain EC.
Similarly, if we assume that the first task in the EC misses the event that trig-

gers the chain, then an upper bound on the overall end-to-end reaction latency of an 
effect chain �(EC) can be computed as:

5.2 � Implicit communication

As explained in Sect. 4.1, our Implicit communication model introduces two extras 
runnables at task boundaries in charge of reading and publishing the shared labels. 

(24)�(EC) =

�−1
∑

h=1

�h,h+1 =

�−1
∑

h=1

�h,

(25)�(EC) = �1 +

�−1
∑

h=1

�h,h+1 = �1 +

�−1
∑

h=1

�h+1 = �1 +

�
∑

h=2

�h =

�
∑

h=1

�h.

Fig. 11   Upper bound on the worst case sub-chain reaction latency �i,j
W,R

 when �j

R
≥ �i

W
 (a) and 𝜙j

R
< 𝜙i

W
 

(b)



335

1 3

Real-Time Systems (2020) 56:315–347	

From an end-to-end latency perspective, the Implicit communication can be consid-
ered as a particular case of its Explicit counterpart, considering � last

W
 and �0

R
 as writ-

ing and reading runnables, respectively. For instance, an upper bound on the worst-
case sub-chain propagation delay �i,j

W,R
 for any pair of communicating runnables � i

W
 

and � j
R
 is equal to �last,0

W,R
 , plus an extra delay �R due to the fact that �R publishes all its 

shared labels at the end of its execution. For any task �i , �0

i
 and �last

i
 can be calcu-

lated as �0

i
= Ti + R0

i
 and �last

i
= Ti − slast

i
+ Ri.

Figure  12 shows an upper bound on the worst-case sub-chain reaction latency 
with 𝜙0

R
< 𝜙last

W
 . It is easy to see that �R = RR − R0

R
 . A similar situation has been 

verified to happen in all other possible settings. Upper bounds on sub-chain age 
and reaction latencies for the Implicit model can then be simply computed adding 
�R to the corresponding explicit counterparts given by Eqs. (22) and (23). Thus, 
�
i,j

W,R
= �

last,0

W,R
+ �R = �last

W
+ �R and �i,j

W,R
= �

last,0

W,R
+ �R = �0

R
+ �R.

An upper bound on the overall end-to-end age and reaction latency can then be 
computed as

5.3 � LET communication

If we define the hyperperiod HEC of an EC as the LCM of the periods of the tasks 
composing the chain, i.e., HEC = LCM

�

i=1
(Ti) , then there is a fixed number of possible 

communication paths in a hyperperiod, starting from the end of the period of the first 
task and finishing with the release of the last one in the EC. We call these chains basic 

(26)�(EC) =

�−1
∑

h=1

�h,h+1 =

�−1
∑

h=1

(�last
h

+ �h+1)

(27)�(EC) =�1 +

�−1
∑

h=1

�h,h+1 =

�
∑

h=1

(�0

h
+ �h).

Fig. 12   Upper bound on the worst-case sub-chain reaction latency ( 𝜙0

R
< 𝜙last

W
 ) for the Implicit commu-

nication



336	 Real-Time Systems (2020) 56:315–347

1 3

paths. For example, in the EC of Fig. 13a, there are two basic paths in the highlighted 
hyperperiod HEC = 10 : [30,36] and [34,40]. Note that if all tasks in the EC have har-
monic periods then there is only one basic path.

Let us define Ṗn
W,R

 (resp. Q̇n
W,R

 ) as the publishing (resp. reading) point between two 
tasks �W and �R in the n-th basic path of an EC. Then, the n-th basic path in the EC 
starts at Ṗn

1,2
 and ends at Q̇n

𝜂−1,𝜂
 . See Fig. 13a. Note that Ṗn

W,R
 and Q̇n

W,R
 are not necessar-

ily equal to Pn
W,R

 and Qn
W,R

.

 

 Algorithm 1 returns the publishing point Ṗn
i,j

 that corresponds to a given reading 
point Q̇n

i,j
 . Similarly, Algorithm 2 returns the reading point Q̇n

i,j
 and its corresponding 

publishing point Ṗn
i,j

 that precedes a given publishing point, Ṗn
j,k

 . By applying Algo-
rithm 1 to the last pair in the EC, and Algorithm 2 to every other pair of consecutive 
tasks composing the EC, the boundaries Ṗn

1,2
 and Q̇n

𝜂−1,𝜂
 of the n-th basic path of an 

EC can be obtained. The length �n
EC

 of the n-th basic path of the EC can then be 
computed as 𝜃n

EC
= Q̇n

𝜂−1,𝜂
− Ṗn

1,2
 . Paths starting with the same publishing point Ṗn

1,2
 

of a previous path are not to be considered.

(28)�(EC) = max
∀n∈HEC

�n.

Fig. 13   End-To-End latency characterization of the LET communication: Age latency (a) Reaction 
latency (b)



337

1 3

Real-Time Systems (2020) 56:315–347	

If we assume the EC is triggered by the release of the first task in the chain, the 
age latency �n associated to the n-th basic path can then be computed by adding to 
the basic path length (i) the period T1 of the first task in the EC, and (ii) the distance 
to the end of the next (n + 1)-th basic path, where the output of the EC will eventu-
ally reflect a new input signal. That is,

The worst-case age latency �(EC) of the EC is then given by the maximum �n over 
all basic paths in a hyperperiod of the EC.

In the example of Fig. 13a, �1 = 12 and �2 = 14 . Therefore, �(EC) = 14.
With regard to the reaction latency �n associated to the n-th basic path, the worst-

case scenario occurs when the event that triggers the EC arrives right after the 
release of the first task �1 in the EC as shown in Fig. 13b. Thus, �n can be computed 
by appending the period T� of the last task in the EC to the corresponding �n , i.e., 
�n = �n + T� . In the example of Fig. 13b, �1 = 14 and �2 = 16 . The worst-case end-
to-end reaction latency, �(EC) of the EC is then given by the maximum �n over all 
basic paths in a hyperperiod of the EC.

6 � End‑to‑end latency analysis

In this section, we apply our end-to-end worst-case latency analysis to a repre-
sentative automotive application taken from a real industrial use case presented 
in Hamann et  al. (2016, 2017b) (Refer to Table 1). The application represented 
in Fig. 15 was formalized using the AMALTHEA5 model, an open-source XML-
based document format for modeling multi-core applications, supporting the 

(29)𝛼n = T1 + 𝜃n
EC

+ Q̇n+1
𝜂−1,𝜂

− Q̇n
𝜂−1,𝜂

.

(30)�(EC) = max
∀n∈HEC

�n.

5  http://www.amalt​hea-proje​ct.org/.

http://www.amalthea-project.org/


338	 Real-Time Systems (2020) 56:315–347

1 3

AUTOSAR standard. The hardware described in the given AMALTHEA model 
consists of 4 cores, running at 300 MHz, 4 core-local RAMs, and one global 

Fig. 14   Hardware model with tasks already partitioned

Table 1   FMTV industrial use case, system description (cooperative tasks are highlighted in bold)

Core Task WCRTExplicit (us) WCRTImplicit (us) Period (us) Priority

CORE0 ISR_10 21.21 21.22 700.0 40
ISR_5 195.66 195.68 9000.0 39
ISR_6 217.32 217.37 1100.0 38
ISR_4 464.50 464.57 1500.0 37
ISR_8 669.06 669.13 1700.0 36
ISR_7 1083.22 1083.35 4900.0 35
ISR_11 1309.71 1309.90 5000.0 34
ISR_9 2247.27 2247.57 6000.0 33

CORE1 Task_1 ms 531.90 528.24 1000.0 15
Angle_Sync 5833.74 5784.25 6660.0 14

CORE2 Task_2 ms 280.35 280.35 2000.0 13
Task_5 ms 909.53 909.53 5000.0 12
Task_20 ms 9986.17 9986.17 20000.0 9
Task_50 ms 13257.42 13257.42 50000.0 8
Task_100 ms 31621.64 31621.64 100000.0 7
Task_200 ms 31717.13 31717.13 200000.0 6
Task_1000 ms 31821.88 31821.88 1000000.0 5

CORE3 ISR_1 25.23 25.24 9500.0 32
ISR_2 37.97 37.98 9500.0 31
ISR_3 55.37 55.38 9500.0 30
Task_10 ms 8053.49 8019.39 10000.0 11



339

1 3

Real-Time Systems (2020) 56:315–347	

DRAM. Non-local RAMs and the GRAM are accessible via a cross-bar inter-
connection network. Tasks are distributed among the four cores with different 
preemption schemes and types of activations. Notice that all cooperative tasks 
(Task_20, Task_50, Task_100, Task_200 and Task_100) run on the same core. 
See Fig. 14.

The first effect chain under analysis (EC1 in Fig. 15) is composed of three run-
nables mapped onto three ( � = 3 ) different tasks �1 , �2 and �3 with the following 
harmonic periods: 100 ms, 10 ms, and 2 ms, respectively. The second effect chain 
(EC2 in Fig. 15) is also composed of three runnables mapped onto three tasks. 
However, while the last two tasks have periods of 2 ms and 50 ms, respectively, 
the first task is sporadic with an inter-arrival time between 700 and 800 μ s. In 
the following we characterize the end-to-end latency of the first effect chain for 
the three communication patterns discussed in this article. Note that there exists 
previous work (Gemlau and Schlatow 2017; Boniol and Forget 2017; Rivas and 
Gutiérrez 2017; Biondi and Pazzaglia 2017; Martinez and Sañudo 2017) that 
deals with the aforementioned industrial use case; however, either they do not 
take the cooperative scheduling into consideration or they assume that the EC 
is triggered by the release of the first task in the chain for the age and reaction 
semantics.

6.1 � Explicit communication

Since no sensor information is given, we assume that the EC starts at the release 
time of the task that initiates the chain. Therefore, we append the best-case 
start time of the runnable that initiates the effect chain EC, sI

1
 , to (24) and (25). 

From (5), (9), (10), and (24),

From (21),

�(EC) = sI
1
+ �

r100ms_7

1
+ �

r10ms_19

2
= 70, 333 μs + �

r100ms_7

1
+ �

r10ms_19

2
.

Fig. 15   Proposed ECs. In the figure the subindex of each runnable uses the task_runnable notation. For 
instance, r100ms_7 denotes runnable number 7 of the 100 ms task



340	 Real-Time Systems (2020) 56:315–347

1 3

Thus,

Similarly, from (25), we obtain

From (21),

Then,

6.2 � Implicit communication

As the sensor information is unknown, we likewise add the best-case start time of 
the copy-out runnable, slast

1
 , to (26) and (27).

Thus, from (5), (9), (10), (26) and (27),

Moreover,

and

Then,

In a similar way,

�
r100ms_7

1
=T1 − s

r100ms_7

1
+ R

r100ms_7

1
= 100000 μs − 70, 333 μs

+ 13294, 876 μs = 113225 μs, and �
r10ms_19

2
= T2 − s

r10ms_19

2

+ R
r10ms_19

2
= 10000 μs − 196, 366 μs + 619, 43 μs = 10423 μs.

�(EC) = 70, 333 μs + 113225 μs + 10423 μs = ���, �����.

�(EC) = �
r100ms_7

1
+ �

r10ms_19

2
+ �

r2ms_8

3
= 123648 μs + �

r2ms_8

3
.

�
r2ms_8

3
= T3 − s

r2ms_8

3
+ R

r2ms_8

3
= 2000 μs − 36, 053 μs + 99 μs = 2062 μs.

�(EC) = ���, �����

�(EC) = slast
1

+ �last
1

+ �2 + �last
2

+ �3.

slast
1

= 2191, 530 μs,

�last
1

= T1 − slast
1

+ R1 = 100000 μs − 2191, 530 μs + 31556, 579 μs = 129365, 049 μs,

Δ2 = R2 − R0

2
= 8019, 393 μs − 73, 523 μs = 7945, 87 μs, �last

2
= T2 − slast

2
+ R2 =

10000 �s − 2812, 369 μs + 8019, 393 μs = 15207, 024 μs,

�3 = R3 − R0

3
= 279, 596 μs − 0, 3 μs = 279, 296 μs.

�(EC) =2191, 530 μs + 129365, 049 μs + 7945, 87 μs + 15207, 024 μs

+ 279, 296 μs = ���, �����.



341

1 3

Real-Time Systems (2020) 56:315–347	

and

Finally,

6.3 � LET communication

Again, due to the lack of sensor information, we assume P1

1,2
= 0ms . Since the three 

tasks composing the EC have harmonic periods, then there is only one basic path. Since

using Algorithm 1 and Algorithm 2 in conjunction with  (29), yields

and

Even though the characterization of EC2 is similar to that of the other EC, it is worth 
mentioning that the worst-case scenario for the Explicit and Implicit communication 
model occurs when the sporadic task releases jobs that are spaced 800 μ s apart, as 
this value maximizes the delays computed through Eqs. (24),   (25), (26) and (27). 
For the LET communication, instead, the effect chain length computed with (30) is 
maximized for 799 μ s. Results of the characterization of both ECs are summarized 
in Table 2.

As expected, the end-to-end latencies with the implicit model are somewhat 
larger than those of its explicit counterpart, due to the copy-related overhead intro-
duced to guarantee data consistency. Moreover, age and reaction latencies may 

�0

1
=T1 + R0

1
= 100000 μs + 13043, 313 μs = 113043, 313 μs,

�0

2
=T2 + R0

2
= 10000 μs + 73, 523 μs = 10073, 523 μs,

�0

3
=T3 + R0

3
= 2000 μs + 0, 3 μs = 2000, 3 μs

�1 = R1 − R0

1
= 31556, 579 μs − 13043, 313 μs = 18513, 266 μs.

�(EC) =�0

1
+ �1 + �0

2
+ �2 + �0

3
+ �3 = 113043, 313 μs + 18513, 266 μs

+ 10073, 523 μs + 7945, 87 μs + 2000, 3 μs + 279, 296 μs = ���, �����

�1
EC

= Q1

2,3
− P1

1,2
= 10 ms − 0 ms = 10 ms,

𝛼(EC) = T1 + 𝜃1
EC

+ Q̇2

2,3
− Q̇1

2,3
= 100ms + 10ms + 110 − 10 = �����

�(EC) = �(EC) + T3 = 210ms + 2ms = �����.

Table 2   End-to-End latency 
characterization of EC1 and 
EC2

Semantics Explicit (ms) Implicit (ms) LET (ms)

Age (EC1) 123,718 154,988 210
Reaction (EC1) 125,710 151,855 212
Age (EC2) 2,844 6,54 53,597
Reaction (EC2) 64,894 66,33 103,597



342	 Real-Time Systems (2020) 56:315–347

1 3

significantly differ, depending on the parameters of the tasks building the effect 
chain. The LET paradigm introduces much larger latencies, especially when tasks 
have non-harmonic periods, as is the case with EC2. It is also worth pointing out 
that there are studies, like the ones by Bradatsch et al. (2016) and Martinez et al. 
(2018), that aim at reducing the latency introduced by the LET model.

The FMTV challenge presented only three effect chains. Therefore, in order to 
obtain a better characterization of the latency introduced by the communication models 
on a much larger number of chains, we synthetically created additional effect chains 
based on the considered AMALTHEA model. To this extent, we considered all pro-
ducer/consumer relationships between runnables in the FMTV task set, leading to a 
set of more than 1000 ECs spanning between 2 and 6 tasks. While the considered ECs 
may not correspond to functional effect chains of the original AMALTHEA applica-
tion, they are however representative of the latencies introduced with typical producer/
consumer communication in a realistic automotive task set. We therefore computed the 
age and reaction latencies for each considered EC, using the formulas derived for each 
communication model. The results are summarized in Fig.  16a, b for each group of 
ECs with a given number of communicating tasks. Box plots show the minimum, 25% 
percentile, average, 75% percentile, and worst-case age and reaction latencies within 
each considered group of tasks. Results are normalized with respect to the worst-case 
latency, which is always given by the maximum latency in the LET case.

The latencies for the LET case are about twice those found in the explicit and 
implicit cases. The latencies of the last two communication models are also compa-
rable, with the implicit case providing only a slightly higher latency than the explicit 
case, in most considered chains. Absolute values are not shown, but, as a general 
rule, the longer the chain, the longer the latency. It is interesting to notice that the 
relative performance of the different semantics are rather independent from the 
number of tasks building the chain.

It is worth reminding that race conditions arise when two or more tasks may concur-
rently modify the same label. In the automotive domain, this so-called multiple-writer 
scenario is often discouraged, since data consistency cannot be guaranteed through 
copies. In this case, a lock-based Explicit communication model is more suited to guar-
antee data consistency. This latter has typically a shorter end-to-end latency and it does 
not introduce extra memory footprint due to copies. However, it requires properly pro-
tecting the access to shared resources via explicit synchronization constructs.

Fig. 16   Normalized End-To-End latencies: Age latency (a) Reaction latency (b)



343

1 3

Real-Time Systems (2020) 56:315–347	

Another important factor to consider is the variation of the end-to-end latency 
of an effect chain throughout the execution. As shown in Marti et  al. (2001) and 
Lampke et  al. (2015), a deterministic and stable effect chain latency may be very 
important for control algorithms. The improved latency determinism is the big-
gest advantage of the LET communication, especially in the HSC case where the 
end-to-end latency is always constant. Moreover, since task communication takes 
place at deterministic points in time, there is no need to use locks to guarantee data 
consistency. The price to pay for these valuable features is however a significantly 
larger age and reaction latency than those of the implicit and explicit counterparts, 
as shown in Fig. 16a, b. In Fig. 17, we show the end-to-end jitter for each of the 
presented communication paradigms. We computed the end-to-end jitter as the dif-
ference between the best- and worst-case end-to-end latency for a given effect chain. 
As it can be observed, the end-to-end jitter of the LET model is significantly smaller 
than that of the other two communication models. This result highlights the ability 
of LET for improving the predictability of control processes depending on effect 
chains of tasks concurrently executing on the same platform.

7 � Conclusion

This paper presented a study motivated by the industrial need to characterize the end-
to-end latencies of effect chains of automotive real-time tasks communicating through 
shared variables in a multi-core system. A tight schedulability analysis for coopera-
tive and preemptive tasks that are concurrently scheduled on the same partitioned plat-
form was presented. Moreover, different communication models adopted to ensure a 
consistent task communication were analyzed from a memory and timing perspective, 
characterizing the overhead introduced. Then, a formal implementation was proposed 
for two of them, namely Implicit and LET, analyzing the impact introduced in terms of 
memory footprint and communication delay. Furthermore, an analytical characteriza-
tion was presented to compute valid upper bounds of end-to-end propagation delays 

Fig. 17   Mean end-to-end jitter



344	 Real-Time Systems (2020) 56:315–347

1 3

of age and reaction latencies for all the considered communication models. Pros and 
cons of explicit, implicit and LET semantics were discussed in order to assess which 
paradigm may suit best the need of an automotive application. A detailed experimental 
characterization was also provided based on an automotive industrial use case com-
posed of multiple real-time tasks partitioned on a four-core setting.

As a future work, we plan to extend the presented analysis to deal with real-time 
applications that require not only periodic but also aperiodic task sets. Moreover, 
we plan to propose task-to-core partitioning strategies to improve, i.e., reduce, the 
latency metrics of selected effect chains.

Acknowledgements  This work was partly supported by the I-MECH (Intelligent Motion Control Plat-
form for Smart Mechatronic Systems), funded by European Union’s Horizon 2020 ECSEL JA 2016 
research and innovation program under grant agreement No. 737453.

References

Becker M, Dasari D, Mubeen S, Behnam M, Nolte T (2016) Synthesizing job-level dependencies for 
automotive multi-rate effect chains. In: The 22th IEEE international conference on embedded and 
real-time computing systems and applications. http://www.es.mdh.se/publi​catio​ns/4368-

Becker M, Dasari D, Mubeen S, Behnam M, Nolte T (2017) End-to-end timing analysis of cause-effect 
chains in automotive embedded systems. J Syst Archit 80:104–113. https​://doi.org/10.1016/j.sysar​
c.2017.09.004

Biondi A, Pazzaglia P, Balsini A, Di Natale M (2017) Logical execution time implementation and mem-
ory optimization issues in autosar applications for multicores

Bradatsch C, Kluge F (2016) Ungerer T. Data age diminution in the logical execution time model. In: 
International conference on Architecture of computing systems. vol 9637, pp 173–184. https​://doi.
org/10.1007/978-3-319-30695​-7_13

Buttazzo GC, Bertogna M, Yao G (2013) Limited preemptive scheduling for real-time systems. a survey. 
IEEE Trans Ind Inform 9(1):3–15. https​://doi.org/10.1109/TII.2012.21888​05

Boniol FCP, Forget J (2017) Waters industrial challenge 2017 with prelude
Davare A, Zhu Q, Natale MD, Pinello C, Kanajan S, Sangiovanni-Vincentelli A (2007) Period optimiza-

tion for hard real-time distributed automotive systems. In: 2007 44th ACM/IEEE design automation 
conference, pp 278–283

Feiertag N, Richter K, Nordlander J, Jonsson J (2009) A compositional framework for end-to-end path 
delay calculation of automotive systems under different path semantics. In: IEEE real-time systems 
symposium: 30/11/2009-03/12/2009, IEEE Communications Society

Gemlau KB, Schlatow J, Mostl M, Ernst R (2017) Compositional analysis of the waters industrial chal-
lenge 2017

Girault A, Prévot C, Quinton S, Henia R, Sordon N (2018) Improving and estimating the precision of 
bounds on the worst-case latency of task chains. IEEE Trans Comput-Aid Des Integr Circ Syst 
37(11):2578–2589. https​://doi.org/10.1109/TCAD.2018.28610​16

Hamann A, Ziegenbein D, Kramer S, Lukasiewyz M (2016) Demo abstract: demonstration of the FMTV 
2016 timing verification challenge. In: 2016 IEEE real-time and embedded technology and applica-
tions symposium (RTAS), pp 1–1. https​://doi.org/10.1109/RTAS.2016.74613​30

Hamann A, Dasari D, Kramer S, Pressler M, Wurst F (2017a) Communication Centric Design in Com-
plex Automotive Embedded Systems. In: Bertogna M (ed) 29th Euromicro conference on real-time 
systems (ECRTS 2017), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 
Leibniz International Proceedings in Informatics (LIPIcs), vol  76, pp 10:1–10:20. https​://doi.
org/10.4230/LIPIc​s.ECRTS​.2017.10, http://drops​.dagst​uhl.de/opus/vollt​exte/2017/7162

Hamann A, Ziegenbein D, Kramer S, Lukasiewycz M (2017b) 2017 formals methods and timing verifica-
tion (FMTV) challenge. pp 1–1. https​://water​s2017​.inria​.fr/chall​enge/

http://www.es.mdh.se/publications/4368-
https://doi.org/10.1016/j.sysarc.2017.09.004
https://doi.org/10.1016/j.sysarc.2017.09.004
https://doi.org/10.1007/978-3-319-30695-7_13
https://doi.org/10.1007/978-3-319-30695-7_13
https://doi.org/10.1109/TII.2012.2188805
https://doi.org/10.1109/TCAD.2018.2861016
https://doi.org/10.1109/RTAS.2016.7461330
https://doi.org/10.4230/LIPIcs.ECRTS.2017.10
https://doi.org/10.4230/LIPIcs.ECRTS.2017.10
http://drops.dagstuhl.de/opus/volltexte/2017/7162
https://waters2017.inria.fr/challenge/


345

1 3

Real-Time Systems (2020) 56:315–347	

Henzinger TA, Horowitz B, Kirsch M (2001) Embedded control systems development with giotto. In: 
Proceedings of the ACM SIGPLAN workshop on languages, compilers and tools for embedded sys-
tems, ACM, New York, LCTES ’01, pp 64–7., https​://doi.org/10.1145/38419​7.38420​8

Henzinger TA, Horowitz B, Kirsch CM (2003) Giotto: a time-triggered language for embedded program-
ming. Proc IEEE 91(1):84–99. https​://doi.org/10.1109/JPROC​.2002.80582​5

Kehr S, Quiñones E, Böddeker B, Schäfer G (2015) Parallel execution of autosar legacy applications on 
multicore ecus with timed implicit communication. In: 2015 52nd ACM/EDAC/IEEE design auto-
mation conference (DAC), pp 1–6. https​://doi.org/10.1145/27447​69.27448​89

Kirsch C, Sokolova A (2012) The logical execution time paradigm. In: Advances in real-time systems, pp 
103–120

Kloda T, Bertout A, Sorel Y (2018) Latency analysis for data chains of real-time periodic tasks. In: 2018 
IEEE 23rd international conference on emerging technologies and factory automation (ETFA), 
vol 1, pp 360–367. https​://doi.org/10.1109/ETFA.2018.85024​98

Lampke S, Schliecker S, Ziegenbein D, Hamann A (2015) Resource-aware control-model-based co-engi-
neering of control algorithms and real-time systems. SAE Int J Passeng Cars-Electron Electr Syst 
8:106–114

Lauer M, Boniol F, Pagetti C, Ermont J (2014) End-to-end latency and temporal consistency analysis in 
networked real-time systems. IJCCBS 5(3/4):172–196. https​://doi.org/10.1504/IJCCB​S.2014.06466​7

Lehoczky JP (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: Real-
time systems symposium, 1990. Proceedings., 11th, pp 201–209. https​://doi.org/10.1109/
REAL.1990.12874​8

Marti P, Villa R, Fuertes JM, Fohle G (2001) On real-time control tasks schedulability. In: 2001 Euro-
pean control conference (ECC), pp 2227–2232

Martinez J, Sañudo I (2017) End-to-end latency characterization of implicit and let communication 
models

Martinez J, Sañudo I, Bertogna M (2018) Analytical characterization of end-to-end communication 
delays with logical execution time. IEEE Trans Comput-Aid Des Integr Circ Syst 37(11):2244–
2254. https​://doi.org/10.1109/TCAD.2018.28573​98

Rivas JM, Gutiérrez JJ (2017) Comparison of memory access strategies in multi-core platforms using mast
Sañudo I, Burgio P, Bertogna M (2016) Schedulability and timing analysis of mixed preemptive-cooperative 

tasks on a partitioned multi-core system. In: Proceedings of the 7th international workshop on analysis 
tools and methodologies for embedded and real-time systems (WATERS’16), in conjuction with the 
28th Euromicro conference on real-time systems (ECRTS 2016), Toulouse, France, July 2016

Schlatow J, Mostl M, Tobuschat S, Ishigooka T, Ernst R (2018) Data-age analysis and optimisation for 
cause-effect chains in automotive control systems. In: 2018 IEEE 13th international symposium on 
industrial embedded systems (SIES), pp 1–9. https​://doi.org/10.1109/SIES.2018.84420​77

Vincentelli AS, Giusto P, Pinello C, Zheng W, Natale MD (2007) Optimizing end-to-end latencies by 
adaptation of the activation events in distributed automotive systems. In: 13th IEEE real time 
and embedded technology and applications symposium (RTAS’07), pp 293–302. https​://doi.
org/10.1109/RTAS.2007.24

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1145/384197.384208
https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1145/2744769.2744889
https://doi.org/10.1109/ETFA.2018.8502498
https://doi.org/10.1504/IJCCBS.2014.064667
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/TCAD.2018.2857398
https://doi.org/10.1109/SIES.2018.8442077
https://doi.org/10.1109/RTAS.2007.24
https://doi.org/10.1109/RTAS.2007.24


346	 Real-Time Systems (2020) 56:315–347

1 3

Jorge Martinez  is a doctoral candidate at the University of Modena 
in Italy working in close co-operation with Robert Bosch GmbH in 
Germany, where he used to work as a software architect. He earned 
his B.Sc. in Electronic Engineering from the National University of 
Engineering, Peru, and received his M.Eng. in Electrical Engineer-
ing and Embedded Systems from the Ravensburg-Weingarten Uni-
versity of Applied Sciences, Germany. His main interests are real-
time systems and artificial intelligence. His favorite place to do 
research is his home, which opens to the German Black Forest.

Ignacio Sañudo  received his B.Sc. in Computer Science Engineer-
ing from the University of Cantabria, Spain, in 2014, and his Ph.D. 
in Computer Science from the University of Modena and Reggio 
Emilia, Italy, in 2018. He is currently a Post-Doctoral Researcher at 
the High-Performance Real-Time (HiPeRT) Lab (University of 
Modena and Reggio Emilia). His current research interests include 
hard real-time systems, autonomous and intelligent systems, as well 
as safety, reliability, and software engineering.

Marko Bertogna  is Associate Professor at the University of Modena 
(Italy), where he leads the High-Performance Real-Time (HiPeRT) 
Lab. His main interests are in Real-Time systems for multi- and 
many-core devices, autonomous driving and industrial automation 
systems, with particular relation to related timing and safety require-
ments. Previously, he was Assistant Professor at the Scuola Superi-
ore Sant’Anna of Pisa, where he received a PhD in Computer Sci-
ences with a dissertation awarded with the “Giovanni Spitali” 
award. He has authored more than 100 papers, receiving the 2009 
Best Paper Award for the IEEE Transactions on Industrial Informat-
ics, and 7 other Best Paper Awards in first level international confer-
ences. He has been Member of the Program Committee of several 
major conferences on real-time and embedded computing, and 
Member of the Editorial Board of three international journals. He is 
Senior Member of the IEEE, and Stakeholder Member of the Euro-
pean Network of Excellence on High Performance and Embedded 
Architecture and Compilation (HiPEAC).



347

1 3

Real-Time Systems (2020) 56:315–347	

Affiliations

Jorge Martinez1,2 · Ignacio Sañudo2   · Marko Bertogna2

	 Jorge Martinez 
	 JorgeLuis.MartinezGarcia@de.bosch.com; jorgeluis.martinezgarcia@unimore.it

	 Marko Bertogna 
	 marko.bertogna@unimore.it

1	 Robert Bosch GmbH, Stuttgart, Germany
2	 University of Modena, Modena, Italy

http://orcid.org/0000-0001-7581-6862

	End-to-end latency characterization of task communication models for automotive systems
	Abstract
	1 Introduction
	2 Background and related work
	2.1 AUTOSAR
	2.2 Related work
	2.2.1 Task chains
	2.2.2 End-to-end latency
	2.2.3 Task communication models


	3 System model, terminology and notation
	3.1 Analysis for preemptive tasks
	3.2 Analysis for cooperative tasks

	4 Inter-task communication
	4.1 Implicit communication
	4.2 LET communication
	4.2.1 Harmonic synchronous communication (HSC)
	4.2.2 Non-harmonic synchronous communication (NHSC)


	5 End-to-end latency characterization
	5.1 Explicit communication
	5.2 Implicit communication
	5.3 LET communication

	6 End-to-end latency analysis
	6.1 Explicit communication
	6.2 Implicit communication
	6.3 LET communication

	7 Conclusion
	Acknowledgements 
	References




