
Real-Time Syst (2018) 54:389–423
https://doi.org/10.1007/s11241-018-9300-4

Patmos: a time-predictable microprocessor

Martin Schoeberl1 · Wolfgang Puffitsch1 ·
Stefan Hepp2 · Benedikt Huber3 · Daniel Prokesch3

Published online: 23 February 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Current processors provide high average-case performance, as they are opti-
mized for general purpose computing. However, those optimizations often lead to a
highworst-case execution time (WCET).WCET analysis toolsmodel the architectural
features that increase average-case performance. To keep analysis complexity man-
ageable, those models need to abstract from implementation details. This abstraction
further increases the WCET bound. This paper presents a way out of this dilemma: a
processor designed for real-time systems. We design and optimize a processor, called
Patmos, for low WCET bounds rather than for high average-case performance. Pat-
mos is a dual-issue, statically scheduled RISC processor. A method cache serves as
the cache for the instructions and a split cache organization simplifies theWCET anal-
ysis of the data cache. To fill the dual-issue pipeline with enough useful instructions,

B Martin Schoeberl
masca@dtu.dk

Wolfgang Puffitsch
wopu@dtu.dk

Stefan Hepp
hepp@complang.tuwien.ac.at

Benedikt Huber
benedikt@vmars.tuwien.ac.at

Daniel Prokesch
daniel@vmars.tuwien.ac.at

1 Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Lyngby, Denmark

2 Institute of Computer Languages, Vienna University of Technology, Wien, Austria

3 Institute of Computer Engineering, Vienna University of Technology, Wien, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-018-9300-4&domain=pdf
http://orcid.org/0000-0003-2366-382X

390 Real-Time Syst (2018) 54:389–423

Patmos relies on a customized compiler. The compiler also plays a central role in
optimizing the application for the WCET instead of average-case performance.

Keywords Real-time systems · Time-predictable architecture ·Worst-case execution
time

1 Introduction

Analyzing the timing properties of an application is of major importance for real-time
systems. Only a time-predictable platform can enable the computation of safe yet tight
bounds on the worst-case execution time (WCET). Therefore, real-time systems need
time-predictable processors.

This paper presents a time-predictable processor, Patmos, which is optimized for
real-time systems. Its design enables the computation of tight WCET bounds, while
at the same time providing good performance. First concepts of Patmos have been
presented in prior work Schoeberl et al. (2011).

The contributions of this paper and the Patmos project in general are:

(1) The design and implementation of a time-predictable processor
(2) A compiler supporting the processor
(3) A WCET analysis tool for Patmos
(4) The evaluation of the performance and size of Patmos

Processors for future embedded systems need to be time-predictable and provide
reasonable worst-case performance. We present the time-predictable processor Pat-
mos, which simplifies the usually complex WCET analysis. Patmos is a statically
scheduled, dual-issue RISC processor that is optimized for real-time systems. Instruc-
tion delays are well defined and visible through the instruction set architecture (ISA).
This design simplifies the WCET analysis and helps to reduce the overestimation
caused by imprecise information.

The dual-issue pipeline, with specially designed caches, provides good single-
thread performance. The chip-multicore version of Patmos provides a time-predictable
execution platform for multi-threaded applications.

A major challenge for the WCET analysis is the memory hierarchy with multiple
levels of caches. We tackle this issue through caches especially designed for WCET
analysis. For instructions, we adopt the method cache Schoeberl (2004), which oper-
ates on entire functions/methods and thus simplifies the modeling forWCET analysis.
Furthermore, we propose a split cache architecture for data (Schoeberl 2009; Schoe-
berl et al. 2013), offering dedicated caches for the stack Abbaspour et al. (2013) and
for other data. Patmos also supports scratchpad memories for instructions and data.

In addition to the hardware implementation of Patmos, we also present a compiler
for the development of real-time applications. As Patmos is designed to facilitate
WCET analysis, its internal operation is thus well defined in terms of timing behavior
and explicitly made visible on the ISA level. Features that are hard to predict are
avoided, instead replaced by more predictable alternatives, some of which rely on
the (low-level) programmer or compiler for achieving optimal results, i.e., low actual
WCET and good WCET bounds. We provide a WCET-aware software development

123

Real-Time Syst (2018) 54:389–423 391

environment that tightly integrates WCET tools and the compiler (Puschner et al.
2013; Brandner et al. 2013).

The processor and its software environment are intended as a platform for explor-
ing various time-predictable design trade-offs and their interaction with WCET
analysis techniques andWCET-aware compilation.We propose the co-design of time-
predictable processor features with the WCET analysis tool, like the work by Hyber
(2010) on the caching of heap-allocated objects in a Java processor. Only features for
which we can provide a static program analysis will be added to the processor.

Patmos and its tool chain are open source; the hardware implementation is available
under the BSD license.1 Detailed descriptions of the instruction set and the build
process are available in the Patmos handbook Schoeberl et al. (2014).

The presented processor is named after the Greek island Patmos, where the first
sketches of the architecture have been drawn; not in sand, but in a (paper) notebook.
If you use the open-source design of Patmos for further research, we would suggest
that you visit and enjoy the island Patmos. Consider writing a postcard from there to
the authors of this paper.

This paper is organized in 8 sections: The following section, Sect. 2, presents related
work. Section 3 provides background information on the T-CREST project, where
Patmos is the processing node for a multicore processor. Section 4 presents the design
of Patmos. Section 5 describes our adaption of the LLVM compiler for Patmos and
the integration with WCET analysis. Section 6 presents the concrete implementation
of Patmos in an FPGA. Section 7 evaluates the design. Section 8 concludes.

2 Related work

Digital hardware is in principle perfectly predictable: with the same hardware start
state and the same input data, two runs of a program will result in the same result and
execution time. However, the unknown initial hardware state makes WCET analysis
for modern processors very difficult. To solve this problem, several research groups
have started to investigate predictable processors and memory hierarchies.

Thiele and Wilhelm argue that a new research discipline is needed for time-
predictable embedded systems Thiele and Wilhelm (2004). Edwards and Lee state:
“It is time for a new era of processors whose temporal behavior is as easily controlled
as their logical function” Edwards and Lee (2007). In line with these arguments, we
consider Patmos a design that implements a time-predictable processor.

The focus of the precision timed (PRET) machine Edwards and Lee (2007) is
primarily on repeatable timing. However, repeatable timing with predictable pro-
gramming can also lead to time predictability. A deadline instruction can be used
for enforcing the repeatable timing of a task. A first simulation of the PRET archi-
tecture is presented by Lickly (2008). The first hardware implementation of PRET
implements the ARM instruction set (Liu et al. 2012; Liu 2012). PRET implements
a RISC pipeline and performs chip-level multithreading for four threads to eliminate
data forwarding and branch prediction Liu et al. (2010). Scratchpad memories are

1 See: https://github.com/t-crest/patmos.

123

https://github.com/t-crest/patmos

392 Real-Time Syst (2018) 54:389–423

used instead of instruction and data caches. The shared main memory is accessed via
a time-division multiplexing (TDM) scheme, called “memory wheel.”

PRET Edwards et al. (2009) ensures time-predictable access to SDRAM by assign-
ing each thread a dedicated bank in the memory chips. The access to the individual
banks is pipelined, and the access time is fixed. As the memory banks are not shared
between threads, thread communication must be performed via the shared scratchpad
memory.

A recent version of PRET, FlexPRET Zimmer et al. (2014), extends PRET to sup-
port mixed-criticality systems. FlexPRET supports two different thread types, hard
and soft real-time threads, directly in the hardware. Both thread types have fixed slots
assigned in the fine-grained thread scheduling. However, slots not used by a thread
(e.g., because of stalling or because a thread has finished its current release) can be
used by the soft real-time threads. FlexPRET implements the RISC V instruction set.

In contrast to the PRET approach, we use a dual-issue pipeline formaximum single-
thread performance. For multi-threaded applications, we provide a multicore version
of Patmos.

Within the FP-7 project MERASA (Multi-Core Execution of Hard Real-Time
Applications Supporting Analysability) Ungerer (2010), the real-time processor Car-
Core Mische et al. (2010) was developed. CarCore is a simultaneous multi-threading
version of the TriCore processor. The CarCore is a two-way, five-stage pipeline with
separate address and data paths. This architecture allows that the fetch stage issues
an address-related instruction (load/store) and an integer instruction within one cycle.
CarCore supports a single hard real-time thread to be executed with several non-real-
time threads running concurrently in the background. The real-time thread uses a
dynamic instruction scratchpad Metzlaff and Ungerer (2012) that caches full func-
tions. This approach is like the method cache Schoeberl (2004) used in JOP Schoeberl
(2008) and in Patmos. Stack-allocated data is stored in a data scratchpad memory. The
non-real-time threads are served by conventional instruction and data caches.

We share the same vision as the MERASA project: building hardware to support
real-time systems and WCET analysis. In contrast to the MERASA processor core,
Patmos focuses on single-thread real-time performance. To benefit from thread-level
parallelism, we replicate the simple pipeline to build a chip-multiprocessor system.
For time-predictable multi-threading, almost all resources (e.g., thread-local caches
and register files) need duplication. Therefore, we believe that a multicore system is
more efficient than simultaneous multi-threading.

The SPEAR (Scalable Processor for Embedded Applications in Real-time Environ-
ments) processor was designed to be time-predictable. SPEAR avoids caches and has
a constant execution time for each instruction Delvai et al. (2003). SPEAR supports
single-path programming with a conditional move. In contrast to SPEAR, Patmos
contains time-predictable caches and supports single-path programming with a fully
predicated instruction set.

The JOP project explored time-predictable architectures within the context of a Java
processor Schoeberl (2008). The pipeline and the microcode have been designed to
avoid timing dependencies between bytecode instructions. JOP uses split load instruc-
tions to partially hide memory latencies. Caches are designed to be time-predictable
and analyzable (Schoeberl 2004, 2009; Schoeberl et al. 2009, 2013; Huber et al. 2010).

123

Real-Time Syst (2018) 54:389–423 393

With Patmoswe build on our experiencewith JOP and implemented a similar, butmore
general, cache structure.

The FP-7 project JEOPARD (JavaEnvironment for Parallel RealtimeDevelopment)
investigated architectures and tools for real-time Java onmulticore systems.Within the
hardware architecture work package, JOP was extended to support time-predictable
execution of Java applications on a multicore. The TDM-based memory access arbi-
tration Pitter and Schoeberl (2010) was incorporated into JOP’s WCET analysis tool.
For Patmos we extended the idea of TDM-based memory arbitration to a distributed
TDM memory arbiter Schoeberl et al. (2014).

Whitham argues that the execution time of a basic block must be independent
of the execution history Whitham (2008). To reduce the WCET, Whitham proposes
implementing the time critical functions in microcode on a reconfigurable function
unit. Whitham and Audsley extend the MCGREP architecture with a trace scratchpad
Whitham and Audsley (2008), which caches microcode and is placed after the decode
stage. A software tool extracts instruction-level parallelism at the microcode level and
schedules the instructions statically.

Starke, Carminati, and Oliveira present a VLIW processor for real-time systems
(Starke 2016; Starke et al. 2016). The processor implements a four-issue pipeline,
supports static branch prediction, and predication. For the memory hierarchy, the pro-
cessor uses a direct mapped instruction cache and a scratchpad memory for data.
The processor has been implemented in a Cyclone IV FPGA, consumes 21,220 logic
cells and can be clocked at 93MHz. The processor is in the same spirit as the Pat-
mos approach by being designed for real-time system using a simple pipeline, but
supporting multiple instruction issue.

Falk and Kleinsorge (2009) and Falk and Lokuciejewski (2010) developed the
WCET-driven compiler WCC, guided by the results of the aiT WCET analysis tool
Heckmann and Ferdinand (2013) WCC optimizes the worst-case path. With our
LLVM-based compiler, we also have a tight integration with the aiT WCET anal-
ysis tool.

General suggestions for future architectures of memory hierarchies are given by
Wilhelm et al. (2009). A collection of features for time-predictable systems starting
from the hardware, suggesting synchronous programming languages, and presenting
WCET-aware compilation are presented by Axer et al. (2013).

A WCET-predictable super-scalar processor that includes a mechanism to avoid
long timing effects is proposed byRochange and Sainrat (2003). Their idea is to restrict
the fetch stage to fetch multiple instructions only from the same basic block. For the
detection of basic blocks in the hardware, additional compiler-inserted branches or
special instructions are suggested.

3 T-CREST: time-predictable multicore architecture for embedded
systems

The processor Patmos we present in this paper is one component in the T-CREST2

project Schoeberl et al. (2015), funded by the European Commission. Its goal is

2 see http://www.t-crest.org/.

123

http://www.t-crest.org/

394 Real-Time Syst (2018) 54:389–423

Fig. 1 The T-CREST platform
consisting of Patmos processor
nodes that are connected via a
NoC for message passing and a
memory tree for shared memory
access NI NI

R

NI

R

Memory
Tree

Memory
Controller

SDRAM
Memory

R

Patmos
Processor

Patmos
Processor

Patmos
Processor

to develop a time-predictable multicore processor. The project aims at developing
time-predictable solutions for a processor core, the on-chip interconnect, the memory
hierarchy, and the compiler and WCET analysis. This section provides background
information on T-CREST and gives an overview of the vision of the T-CREST project.

The T-CREST approach is to design computer architectures where predictable tim-
ing is a first-order design factor Schoeberl (2012). For real-time systems, we thus
propose to design architectures with a new paradigm Schoeberl (2009):

Make the worst-case fast and the whole system easy to analyze.

Time-predictable caching and time-predictable chip-multiprocessing provide a
solution for the increased processing power needs in the real-time domain. T-CREST
covers technologies at different levels: (1) the chip level design (processor, memory,
asynchronous network-on-chip), (2) compiler technologies with WCET optimization
and single-path code generation, (3) WCET analysis tools, and (4) system evaluation.
For the system evaluation, T-CREST includes a port of a real-time operating system
and two industry use cases, one from the avionics domain and one from the railway
domain.

Figure 1 shows theT-CRESTplatform. Several Patmos processors are connected via
a memory tree Garside and Audsley (2013) to a real-timememory controller (Akesson
et al. 2007; Lakis and Schoeberl 2013; Gomony et al. 2013). The memory controller
is connected to an external SDRAM memory. Therefore, main memory is shared
between processor cores. For efficient core-to-core communication, each processor
is connected to a time-predictable network-on-chip (NoC) Schoeberl et al. (2012). A

123

Real-Time Syst (2018) 54:389–423 395

Patmos processor is connected to a network interface (NI). Each NI is itself connected
to a router (R). The routers are connected to their neighbor routers. These on-chip
communication channels reduce the pressure on the shared memory bandwidth.

Most of the T-CREST hardware is open-source under the industry-friendly simpli-
fied BSD license. The build instructions for the whole platform can be found at https://
github.com/t-crest/patmos and in more detail in the Patmos handbook Schoeberl et al.
(2014).

3.1 The interconnect

To build a chip-multiprocessor system out of Patmos processor cores, we need a suit-
able interconnect—a network-on-chip (NoC). The Patmos multi-processor platform
includes distributed local memories that are connected to each processor. The NoC
supports time-predictable data movement between these local memories.

To enable time-predictable usage of a shared resource, the resource arbitration
must be time-predictable. For a NoC, statically scheduled time-division multiplexing
(TDM) is a time-predictable solution Schoeberl et al. (2012). This static schedule is
repeated, and the length of the schedule is called the period. Like tasks in real-time
systems, the communication is also organized in periods. The T-CREST NoC uses
TDM from end to end, including the network interface. This approach also results in
an efficient implementation of the network interface Sparsø et al. (2013). The latest T-
CRESTNoC, which is called Argo, uses a globally asynchronous locally synchronous
hardware design with asynchronous routers Kasapaki et al. (2016).

3.2 Memory hierarchy

Cache memories for instructions and data are classic examples of the paradigm “make
the common case fast.” A great deal of effort has gone into researching the integration
of the instruction cache into the timing analysis Arnold et al. (1994) and the integra-
tion of the cache analysis with the pipeline analysis Healy et al. (1999). The influence
of different cache architectures on WCET analysis is described by Heckmann et al.
(2003). Within T-CREST we explore time-predictable caches for Patmos. Further-
more, we also consider the integration of program- or compiler-managed scratchpad
memories (SPMs).

Even for embedded systems, the on-chip available memory is usually too small
to hold all code and data. Therefore, an off-chip SDRAM serves as a shared main
memory for themulticore processor.Access time to theSDRAMdependson thehistory
of former accesses (e.g., open rows). This optimization improves the average case
execution time—but not the WCET. Therefore, the T-CREST team developed real-
time memory controllers (Akesson et al. 2007; Lakis and Schoeberl 2013; Gomony
et al. 2013). The cores are connected to the memory controller through a memory tree,
known as the “Bluetree” Garside and Audsley (2013). The Bluetree communication
tree is built out of two input multiplexers with arbitration. A tree out of these two input
circuits connects all processors to a single memory controller. Arbitration is priority
based, i.e., the left input has priority over the right input. That means processors

123

https://github.com/t-crest/patmos
https://github.com/t-crest/patmos

396 Real-Time Syst (2018) 54:389–423

have different priorities towards the memory, depending on their position. To avoid
starvation, the left channel is only allowed an upper bound of requests before the
right channel is served. In effect, when the system is light loaded this tree structure
allows quick service and on heavy load there is an upper bound on the waiting time till
service. The Bluetree avoids unused slots as would emerge on TDM arbitration when
one processor has no outstanding memory request.

Even on a multicore system, the combination of the time-predictable memory tree
(Garside and Audsley 2013; Schoeberl et al. 2014) and the time-predictable memory
controller allows us to provide upper bounds on memory transactions. This upper
bound enables the WCET analysis of individual tasks being executed on a multicore
system.

3.3 Compiler and WCET analysis

In addition to the hardware, the T-CREST team has developed a compiler infrastruc-
ture. The compiler for Patmos is an adaption of the LLVM compiler infrastructure
(Puschner et al. 2013; Huber et al. 2013). The time-predictable processor Patmos,
with the available timing model, allows the development of WCET-aware optimiza-
tion methods.

Within the project two WCET analysis tools that support Patmos have been used.
The commercial WCET analysis tool aiT Heckmann and Ferdinand (2013) from
AbsInt has been adapted to support Patmos. The WCET-oriented optimization in the
compiler is tightly integrated with the WCET analysis tool Puschner et al. (2013),
which provides information on the worst-case path and basic block timings for guid-
ing the optimization process. Furthermore, a tool called platin has been developed.
The role of platin is twofold: (1) being the interface between the compiler and the
aiT tool and (2) providing a set of analyses and transformations for WCET analysis
itself.

3.4 Operating systems for Patmos

Although not directly covered by the T-CREST project, three real-time operating
systems (RTOS) have been ported to Patmos: (1) the Real-Time Executive for Mul-
tiprocessor Systems (RTEMS), (2) the time-composable operating system (TiCOS)
Baldovin et al. (2012), and (3) the research prototype ofMOSSCAKluge et al. (2014).
RTEMS is an open source RTOS, popular in avionics.3 T-CREST with RTEMS has
been used for the T-CREST evaluated with an avionic use case Rocha et al. (2016).
TiCOS is based on the open-source RTOS POK Delange and Lec (2011). TiCOS and
POK implement a two-level partitioned scheduler and provide an API according to
the ARINC653 standard. Ziccardi ported TiCOS to Patmos Ziccardi et al. (2015).4

MOSSCA is an operating system for safety-critical applications on manycore proces-

3 The port of RTEMS is available at https://github.com/t-crest/rtems.
4 TiCOS is available at https://github.com/t-crest/ospat.

123

https://github.com/t-crest/rtems
https://github.com/t-crest/ospat

Real-Time Syst (2018) 54:389–423 397

sors. The port to Patmos Kluge et al. (2016) explores the multicore version of Patmos
and the usage of the SPMs.

4 The architecture of Patmos

Patmos is a 32-bit RISC-style microprocessor optimized for time-predictable execu-
tion of real-time applications. To provide high performance for single-threaded code,
we chose a two-way parallel architecture. To save hardware resources, Patmos is con-
figurable as a two-way or single-way pipeline. For multi-threaded code, we provide a
chip-multiprocessor system with TDM arbitration of the access to shared main mem-
ory.

Patmos is a statically scheduled, dual-issue RISC microprocessor. The processor
supports bundles that are 32 or 64 bits wide. All instruction delays are explicitly visible
at the ISA level. The compiler needs to respect the exposed delays from the pipeline
to generate correct code. Knowing all pipeline delays and the conditions under which
they occur simplifies the processor model required for WCET analysis and helps to
improve accuracy. Furthermore, no instruction timing depends on either an operand
value (e.g., a variable latency multiplication) or the execution of an earlier instruction,
as even all cachemisses are handled in the same pipeline stage. All instructions, except
missing in the cache, have a constant execution time. These properties greatly simplify
the computation of theWCET of basic blocks as there is no need to model the pipeline
and instruction dependencies.

The modeling of memory hierarchies with multiple levels of caches is critical for
practical WCET analysis. Patmos simplifies this task by offering caches specifically
designed for WCET analysis. Accesses to different data areas are very different with
respect toWCET analysis. Static data, constants, and stack-allocated data can easily be
tracked by static program analysis. In contrast, heap-allocated data, to be analyzable,
demands different caching techniques Hyber (2010). Therefore, Patmos contains two
data caches, one for stack cache and one for other data. As the data cache will then
cache unpredictable accesses to heap allocated data and to static data, we support cache
bypassing load and store instructions for unpredictable data accesses. The WCET
analysis tool aiT delivers the information on unpredictable data accesses back to the
compiler. On a second compile run this information is used to generate cache bypassing
load and store instructions. Furthermore, these instructions can also be used manually
by the programmer.

4.1 Fully predicated instruction set

The instruction set for Patmos is a RISC-style load/store instruction set that takes at
most three register operands. However, in contrast to common RISC architectures,
all instructions are fully predicated. While control-flow instructions and instructions
that access memory can be executed only in the first pipeline, arithmetic and logic
instructions can be executed in both pipelines.

The first instruction of an instruction bundle contains a bit to encode the length of
the bundle (32 or 64 bits). Register addresses are at fixed positions to allow reading

123

398 Real-Time Syst (2018) 54:389–423

 RF M$

IRPC

+

Dec

 S$

SP

 D$

 RF

+

Fig. 2 Dual issue pipeline of Patmos with fetch, decode, execute, memory, and write-back stages

the register file parallel to instruction decoding. The main pressure on the instruction
coding comes from the size of constant fields and branch offsets. However, as we
support fetching of up to two 32-bits words for the dual-issue pipeline, we use this
feature to support ALU operations with 32-bit constants. The constant is encoded
in the second instruction slot. Doing so enables the loading of 32-bit constants in
a single cycle. Furthermore, most ALU instructions can be performed with a 12-bit
constant operand, saving code space and leaving the second instruction slot free for
other instructions. Patmos implements conditional and unconditional branches with
a 22-bit offset. A register-indirect call instruction supports function calls to a 32-bit
address.

To reduce the number of conditional branches and to support the single-path pro-
gramming paradigm (Puschner 2005; Puschner et al. 2012), Patmos supports fully
predicated instructions. Predicates are set with compare instructions, which can also
be predicated. Patmos has 8 predicate registers.

Access to the different data areas (e.g., stack data) is explicitly encodedwith the load
and store instructions. This feature helps the WCET analysis to distinguish between
the different data caches. Furthermore, which cache will be accessed can be detected
earlier in the pipeline.

4.2 Dual-issue pipeline

Patmos contains 5 pipeline stages: (1) instruction fetch, (2) decode and register read, (3)
execute, (4) memory access, and (5) register write-back. Figure 2 shows an overview
of the Patmos pipeline.

The register file with 32 registers is shared between the two pipelines. Full for-
warding between the two pipelines is supported. The basic features are like a standard
RISC pipeline.

Figure 2 shows an overview of the Patmos pipeline. To simplify the diagram, for-
warding and external memory access data paths are omitted. We can identify the

123

Real-Time Syst (2018) 54:389–423 399

program counter PC which delivers the fetch address for the method cache (M$). The
M$ delivers the instruction and is the fetch stage. The instruction word(s) are stored
in the instruction register (IR) for decoding in Dec. Furthermore, the register address
fields from the instruction are input to the register file (RF). The RF is read in parallel
with the instruction decoding. Instruction decoding and RF reading are the decode
stage. The values of the register file and the instruction move to the next stage, the
execution stage. In the execution stage, up to two ALU operations are computed or
a memory address is computed. The next stage is the memory stage where a load or
store operation is performed. The memory stage contains the stack cache (S$), the
data cache (D$), and the scratchpad memory (SP). In the final stage, the write back
stage, a computed result or a loaded word is written back into the RF.

Due to the dual-issue pipeline, the register file needs four read ports and two write
ports. Such amemory is not available in an FPGA. In the current design, we implement
the register file with FPGA registers and use multiplexers for the read ports. If Patmos
is configured with a single-issue pipeline, on-chip memory is used for the register file.

As Patmos provides full forwarding from both pipelines, this forwarding network
consumes a lot of resources. If the full power of dual issue is not needed, Patmos can
be configured as a single-issue pipeline.

4.3 Local memories

Patmos contains three caches (method, data, and stack cache) and two scratchpad
memories (SPM) for data and instructions. All caches are configurable in the size.
To distinguish between the different caches, Patmos implements typed load and store
instructions. The type information is assigned by the compiler (for the stack cache) or
by the programmer (for the data SPM).

4.3.1 Boot ROM and scratchpad memories

Patmos contains on-chip ROMs for instructions and data and a small SPM dedicated
to bootstrapping, such that small applications and test cases do not need to access
external memory. For larger applications, the boot ROM contains a boot loader that
loads the application from a non-volatile memory (or, during development, from a
serial line) into the main memory.

Patmos also contains (optional) SPMs for instructions and data. When code and/or
data caching is under program control, these SPMs can be used in addition to caches
or instead of caches. The usage of SPM is under programmer control. The multicore
research operating system MOSSCA explored the usage of SPMs under operating
system control Kluge et al. (2016).

4.3.2 Method cache

Patmos contains a method cache that stores entire functions. The term “method cache”
applies because this form of caching was originally introduced for a Java processor
Schoeberl (2004). Caching entire functions means that functions may be loaded on a

123

400 Real-Time Syst (2018) 54:389–423

call or on a return. All other instructions are guaranteed cache hits. Our assumption
is that those few possible miss points allow for an easier and more precise WCET
analysis. Further details of the method cache for Patmos and its analysis appear in
Degasperi et al. (2014). An average-case comparison between a method cache and
a direct mapped instruction cache shows that the winner depends on the external
memory properties Schoeberl (2004). With shorter latency and lower bandwidth, a
standard cache performs better. With longer latencies and higher burst bandwidth, as
found in modern SDRAM memories, a method cache performs better as it benefits
from the higher bandwidth.

The assumption of a method cache is that the cache is larger than all individual
functions in a program. However, this assumption cannot be guaranteed at the source
code level. Furthermore, an optimizing compiler will inline functions to avoid the call
and return overhead, leading to even bigger functions. To mitigate this issue, we have
implemented a function splitting pass in the compiler that splits overly large functions
into smaller (sub)functions that fit into the cache.

4.3.3 Stack cache

For cache hit and miss classification, the address for the load or store instruction needs
to be known. Some addresses, e.g., access to static data and stack access, are relatively
easy to predict statically Jordan et al. (2013). Addresses of heap-allocated data are
known only at runtime and are therefore not statically predictable. Moreover, access
to an unknown address destroys abstract information for one way in all sets of a cache
in the cache analysis. Therefore, we split the cache into two caches: one for stack
allocated data Abbaspour et al. (2013) and one for other data. Load and stores for the
different caches are different instructions.

However, it is also possible to dynamically allocate data on the stack and further-
more pointers to stack allocated data can leak out of the function. In both cases we use
a second stack, called the shadow stack, and those data are allocated on the shadow
stack, which is cached by the standard data cache.

The stack cache Abbaspour et al. (2013) provides a window into the main memory
address space. Tomanipulate the stack cache, Patmos has three instructions: (1) reserve
reserves space in the stack cache, (2) free frees space on the stack cache, and (3) ensure
enforces data to be in the stack cache. Only the reserve and ensure instructions may
trigger a possible exchange with the main memory (spill and fill). All load and store
instructions into the stack area are guaranteed hits. Stores into the stack area access
only local memory; the write-back to main memory occurs when a reserve instruction
causes a spill.Which stackmanipulation instructionsmay lead tomemory transactions
can be statically predicted Jordan et al. (2013). As stacks are usually shallow, even a
small stack cache provides good hit rates.

4.3.4 Data cache

The current implementation of the data cache is a direct-mapped cache with write-
through and no allocation on a write. Write-through was chosen, because WCET
analysis tools do not track the state of a dirty bit in a write-back cache and therefore

123

Real-Time Syst (2018) 54:389–423 401

assume that a cachemiss also needs awrite back of this cache line. The design decision
to use a write-through policy is yet another example of howWCET analyzability influ-
ences the hardware design for a time-predictable processor. For statically unknown
load and store addresses, Patmos has load and store instructions that bypass all
caches.

To mitigate the performance effects of the write-through policy, we implemented
a small buffer that combines writes into bursts. Furthermore, the Patmos compiler
includes a pass that replaces unpredictable accesses to the data cache with bypass load
and store instructions.

Access to global (static) data should be easy predictable and a specialized cache
for static data would be beneficial. In Java bytecode access to static data is performed
with its own instructions, and we have implemented such a cache for static data in the
Java processor JOP Schoeberl (2008). However, to distinguish between static and heap
allocated data is not trivial in C. We consider providing compiler support to classify
load and store instructions to static data as future work.

4.3.5 Miss detection and pipeline stalling

The cache configuration of Patmos is unique with respect to miss detection: for all
three caches, misses are detected (and the pipeline stalled) in the memory stage. This
is normal for a data cache, but a standard instruction cache misses in the fetch stage.
However, the method cache performs miss detection just on call and return. Therefore,
these instructions can also stall in the memory stage.

The consequences of a single stalling pipeline stage are twofold: (1) The hardware
implementation of stalling is simplified, and (2) cache analysis becomes simpler. As
instructions that access memory are allowed only in the first pipeline, only one such
instruction can be in the memory stage at one time. Therefore, no two instructions can
trigger a cache miss in the same clock cycle for two caches. This feature contributes
to a timing-composable architecture. Different caches can be analyzed independently
and the results merged.

4.3.6 Interrupts and exceptions

Patmos supports interrupts and exceptions with an exception unit that is mapped into
the IO space. The general principle of operation is that the exception unit requests the
execution of an exception from the pipeline, and the pipeline acknowledges when it
starts the execution of the respective exception handler.

The exception unit supports 32 exception vector entries, where exceptions 0 and
1 are reserved for the “illegal operation” and “illegal memory access” faults. While
exceptions 2 to 15 can be used freely (e.g., by the operating system), exceptions 16 to 32
are attached to external interrupts, triggered by I/O devices. The default configuration
of Patmos contains a programmable timer interrupt to support a real-time operating
system, such as TiCOS ported to Patmos Ziccardi et al. (2015).

Instructions that stall the pipeline (loads, stores, calls, etc.) delay the triggering
of interrupts until the pipeline resumes execution. Therefore, method cache fills or
stack spills cannot be interrupted. Control-flow instructions delay the triggering of

123

402 Real-Time Syst (2018) 54:389–423

interrupts such that interrupts are never triggered inside a delay slot or while executing
instructions speculatively. Multiplications delay the triggering of interrupts such that
no multiplications are “in flight” when an interrupt handler is entered.

The return information for an exception, which is the base address of the method
cache and the offset within the method cache (like a program counter), are stored in
two special registers. No other hardware state needs to be stored by the processor on
an interrupt. The interrupt handler must store and restore registers that it needs.

4.4 Multicore architecture

Several Patmos processors share the main memory via a memory arbiter. Three ver-
sions of the arbiter are available: the Bluetree memory tree Garside and Audsley
(2013), a simple pseudo round-robin memory arbiter, and a distributed TDM arbiter
Schoeberl et al. (2014). The round-robin arbiter is a pseudo round-robin arbiter, as
it does not perform the arbitration decision in a single clock cycle. The combina-
tional decision in a single clock cycle does not scale to many cores. Instead, the
arbiter sequentially “polls” each core for access. Therefore, for each core that does
not need access to main memory, one clock cycle is “wasted.” However, with enough
cores the memory bandwidth is fully utilized, and all cores are basically memory
bounded.

For external memory, we have implemented two different memory controllers for
synchronous and asynchronous SRAMs and a time-predictable SDRAM controller
Lakis and Schoeberl (2013).

5 Compiling and worst-case execution time analysis for Patmos

Exposing the micro-architecture at the ISA level and requiring the application to
manage local memories leads to a small and fast hardware design. It also simplifies
the WCET analysis, because changes to the hardware state can be explicitly observed
at the ISA level. The application code, and thus the compiler, must ensure the efficient
use of the available resources. While the compiler has a static view of the executed
application, it also has a more high-level view than the processor. Together with less
stringent resource and runtime requirements (as compilation is done at design time),
the compiler can thus use more powerful optimizations.

The compiler supports the WCET analysis by supplying meta-information (about
the program) that is available in the compiler but lost in the final binary to the analysis.
Examples of such meta-information are indirect branch targets or possible addresses
accessed by memory instructions. The compiler also uses feedback from the WCET
analysis for optimization. For example, memory accesses—for which the value anal-
ysis of the WCET analyzer cannot determine the accessed address—are replaced by
accesses directly to the external memory, so that such accesses do not introduce impre-
cision in the cache analysis.

123

Real-Time Syst (2018) 54:389–423 403

5.1 Dual-issue support

The dual-issue architecture of Patmos requires the compiler to schedule instructions
without hazards and to allocate instructions to the second pipeline. In our compiler, we
use a standard bottom-up instruction scheduler to perform this task. Scheduling is per-
formed after the insertion of register spill code and function prologues and epilogues.
To break false dependencies between instructions, the compiler can use register renam-
ing during scheduling. Depending on the number of instructions available for filling
control flow delay slots, the compiler issues either delayed or non-delayed control
flow instruction variants.

Supporting both delayed and non-delayed control flow instruction variants provides
performance benefits in exchange for very little hardware cost. On the one hand, a
fully filled delay slot provides better performance than a branch predictor can. On
the other hand, even trivial “predict-not-taken” non-delayed branching provides better
performance than executing onlyNo-Ops.Our non-delayed branch instruction predicts
non-taken, the simple version of just continuing instruction fetching after the branch.
Combining the two variants provides better performance than either variant can alone.
Compared to supporting only delayed branches, our approach also reduces the code
size by suppressing No-Ops. The reduced code size, in turn, can reduce the method
cache misses, thereby improving performance.

The compiler uses the fully predicated ISA to perform “if-conversion,” i.e., the
compiler converts small conditionally executed basic blocks into predicated straight-
line code to avoid the overhead of branches. Our compiler can also eliminate all
input-data dependent branches to generate single-path code.

5.2 Stack and method cache support

The stack cache provides a fast way of storing temporary data without necessarily
writing the data back to global memory. The compiler automatically uses the stack
cache for spilling registers and for stack-allocated data. Stack cache management
instructions are inserted in the prologue and epilogue of functions, as well as after all
call sites, to reserve and free stack frames in the stack cache Abbaspour et al. (2013).
However, pointers to data allocated to the stack cache cannot be passed to callees.
Therefore, the compiler maintains a separate shadow stack in global memory. The
shadow stack is used for dynamically allocated stack data and for data that can escape
the function in which it is defined.

The method cache requires the compiler to split large functions into smaller sub-
functions that fit into the cache. The compiler contains a function splitter pass that
partitions functions into sub-functions of a predefined size. This feature enables the
processor to execute arbitrarily large functions. Furthermore, when large functions are
split into smaller sub-functions, the cache cost of larger functions, where not all code
is executed, is reduced.

123

404 Real-Time Syst (2018) 54:389–423

5.3 Single-path code generation

The execution time of a given piece of code is determined by two factors: the sequence
of actions along an execution path and the durations of these actions. Sources of
uncertainty in execution time stem fromboth the software and the underlyinghardware.
Typically, different program inputs result in different execution paths. The duration of
the instructions on these paths depends on the hardware state that has built up in the
execution history.

The single-path approach removes the uncertainty on the software side. The key
idea is to eliminate all input-data dependent control flow alternatives, and to construct
a singleton execution path that is taken independent of the program inputs (Puschner
2005; Puschner et al. 2012). The transformation is based on if-conversion Allen et al.
(1983), which turns input-data dependent control-flow alternatives into a straight-line
sequence of predicated instructions.

The Patmos compiler can generate single-path code in an automated way Prokesch
et al. (2015). It implements the single-path code transformation in the backend and
operates on the control flow graph representation rather than on the source code. A
guard predicate is computed for each basic block based on control dependences. The
instructions of the basic blocks are then predicated with the corresponding guard. The
guards are defined at the branch conditions of the original graph, and these defining
instructions are predicated themselves. The basic blocks are put into topological order,
and the branch instructions are removed.

This procedure is performed individually for each loop scope in the graph. There-
fore, the forward control-flow graph of the loop (the graph without back edges) is
considered. For loops with an input-data dependent iteration count, a new loop counter
is introduced. This counter forces the code to be executed as many times as given by
the local loop bound. The guards are defined in such a way that they are false for
these excess iterations. The composition of the complete control-flow graph from the
single-path loops is performed in a recursive manner: Inner loops are treated like sin-
gle basic blocks and assigned guards. The sketched transformation is general in that
it can handle unstructured code (e.g., by break and goto statements) if the con-
trol flow graph is reducible Prokesch et al. (2014). The single-path transformation is
applied on the level of functions. By specifying an entry function (a single-path root),
the selected function itself and copies of all functions below in the call-graph are
converted to single-path code. This limits the single-path transformation to programs
without direct or indirect recursion. Note that recursion is discouraged or even prohib-
ited in most coding standards for safety-critical software (e.g., MISRA C, DO178-B,
ISO 26262-6).

The Patmos processor presents itself as a suitable target platform for single-path
code, not only because of its predictable, fully predicated pipeline and the instructions
for predicate register manipulation, but also because the timing-composable architec-
ture allows for easy analysis and enables the generation of code with stable timing
behavior.

Special instructions allow reading and writing a single bit within a 32-bit register.
Furthermore, predicate live ranges coincide with the nesting depth of the control-flow
graph. During successive loop iterations, the predicates of the code outside the loop do

123

Real-Time Syst (2018) 54:389–423 405

not need to be accessed. Therefore, the compiler allocates predicate registers within
loop scopes. When a loop is entered, the whole set of live predicate registers is stored
such that the registers are available for the predicates inside the loop. When the loop is
left, the set is restored. Patmos supports storing and restoring of the complete predicate
register file at once by making it accessible as a special register.

Obtaining theWCET for single-path code on Patmos is straightforward. The latency
of an instruction (except for pipeline stalls at memory accesses) is independent of the
value of its operands, its predicate operand. To obtain the WCET, the memory access-
related worst-case costs must be added to the number of instructions on the singleton
execution path.

In single-path code, function calls and the corresponding stack cache allocations
are performed unconditionally. Thus, both the sequence of (sub-)functions loaded into
the method cache and the sequence of stack cache control operations is invariant. The
related worst-case latencies can be obtained by simulation with a simple hardware
model.

If a data cache is used, the memory access costs of a conventional data cache
analysis performed on the original (not single-path converted) control-flow graph can
be added. A more suitable alternative to the data cache would be the usage of the data
SPM, where single-cycle access costs are given once the data is loaded to the local
SPM, and the costs for memory write-through are avoided. In this case, the costs for
the (explicit) transfer of the data between the local SPM and the global memory must
be added.

The single-path approach is an orthogonal approach to code predictability. The
knowledge of one execution of a single-path task accurately predicts every execution
of the task. Tasks generated as single-path code exhibit a predictable and stable timing
behavior with little or no execution time jitter. This is a stronger property than WCET
predictability, and certainly, it comes at a higher cost. Depending on the program
structure, the overall length of the singleton execution pathmay be increased compared
to any path through the original, conventionally compiled program. The programmer
specifies the tasks to be generated as single-path code either by function attributes in
the source code or by passing the names of the functions to the compiler. Because of
the cost, they will only apply single-path code generation for tasks for which such a
predictable, stable timing behavior is desired.

5.4 Worst-case execution time analysis

Static WCET analysis has been an integral part of the Patmos toolchain since its early
developmental stages. In addition to precise WCET bounds, an important goal was to
reuse existing platform-independent program analyses, to benefit from advances in the
rapidly evolving static analysis field. To achieve this goal, all information necessary for
WCET analysis should be provided by the compiler and by analysis tools that operate
on the platform-independent bitcode representation ofLLVM. In this approach, amajor
challenge is the transformation and combination of compiler and analysis information.
The platin tool that was developed for Patmos Puschner et al. (2013) performs these
transformations and combinations.

123

406 Real-Time Syst (2018) 54:389–423

The platin tool supports the transformation of platform-independent flow infor-
mation to machine code, using an approach that ensures sound results Huber et al.
(2013). Furthermore, it prepares relevant analysis information for external binary-
level WCET analysis tools, e.g., the well-known industrial tool aiT Heckmann and
Ferdinand (2013). The platin tool communicates with the compiler using PML
(Platin Metainfo Language) files, which contain all information (about the analyzed
program) relevant forWCET analysis. A distinguished feature of PML is that it allows
to store information about both the platform-independent intermediate representation
and the platform-dependent machine code.

Figure 3 illustrates the integration of the compiler, WCET analysis, and external
tools into our framework. The application code is translated into bitcode and linked at
this intermediate level by the compiler (patmos-clang). At this point the compiler has a
complete view of the application. The compiler (patmos-llc) and linker (patmos-gold)
produce the executable binary file and additional produces a PML, which contains
structural information and flow information derived from bitcode analyses and pro-
gram annotations. With platin this information can be extended. For example, our
toolchain supports the external tool SWEET Lisper (2014) to obtain more precise
flow-information. To this end, the bitcode is translated to ALF, the input format of
SWEET. The tool generates target-independent flow facts that are added to the PML
file. platin translates the available flow information to the machine code represen-
tation. A set of exporters (e.g., platin-aiT and platin-otawa) exists, which output the
information to a format suitable as input to external WCET analysis tools, like the aiT
Heckmann and Ferdinand (2013) or OTAWA Ballabriga et al. (2010).

Additionally, platin provides a WCET analysis tool on its own (platin-wca),
thereby taking advantage of three features that are characteristic for the Patmos archi-
tecture:

First, our static analysis operates (almost) exclusively on information that was
provided by the compiler and platform-independent analyses. We therefore avoid
duplicating efforts of the compiler and do not need to model the semantics of machine
code in detail.

Second, the Patmos design ensures that the timing of hardware components can be
analyzed independently. This feature allows us to decouple different cache analyses
and the pipeline timing analysis, and to use global cache analyses (e.g., persistence
analyses) that avoid costly virtual loop-peeling.

Third, the Patmos design prevents the need for excessive context sensitivity for
hardware timing analysis. This feature avoids scalability problems and allowsmodular
analyses. For example, stack accesses cached by a conventional data cache do not pose
a problem if the value of the stack pointer is known, but they are unpredictable if full
virtual inlining is intractable. In contrast, our analysis of the stack cache Jordan et al.
(2013) does not require full context sensitivity.

The platin tool, including the WCET analysis, is easy to adapt for different
research experiments, and is deployed as part of the open-source Patmos compiler.

123

Real-Time Syst (2018) 54:389–423 407

AIS Files

WCET

Binary-Level WCET Tools

aiTWCET
Analysis

otawaWCET
Analysis

WCET

Bitcode Analyses

Input for Program
Analysis Tools

(ALF)

Bitcode-Level
Flow Facts

SWEETFlow Analysis

PML-based tools

Low-Level Compiler

Sources

Application Code
 Flow Annotations System Libraries

Linked Bitcode

patmos-clang
LLVM

Machine-Code Representation

Binary File

Program Description (PML)

platin-aiT
platin-otawa

WCET

platin-wca

Frontend
IR-Level Linker

IR-Level Optimizer

patmos-llcBackend

patmos-goldLinkerplatin-transform
Transform

Flow Facts

Fig. 3 The T-CREST approach to compilation and integration with WCET analysis

6 Implementation

A software simulator of the architecture is the first, important step for exploring ideas
and for serving as a reference design for the compiler and the hardware design. There-
fore, we provide a software simulator and a hardware implementation of Patmos.

6.1 Simulator

At the start of the development of Patmos, we developed a cycle-accurate software
simulator. This simulator serves as the reference for the hardware implementation of

123

408 Real-Time Syst (2018) 54:389–423

Patmos, for the development of the compiler, and the porting of real-time operating
systems. Furthermore, the simulator provides variants of caches andmemory controller
models, and can thus be used for design space exploration of caches.

6.2 Hardware implementation

We use Chisel Bachrach et al. (2012) for the implementation and simulation of the
core design. Chisel, developed at UC Berkeley, is a hardware-construction language,
embedded in the programming language Scala. Consequently, Chisel allows the pro-
grammer to design efficient hardware components in a high-level language. Scala,
and therefore Chisel, are object-oriented and functional languages, enabling hardware
design in an object-oriented way.

The Chisel back-end can generate both Verilog and C++ code. While Verilog is
used to implement a design on an ASIC or FPGA, the C++ code implements a fast
high-level simulation of the hardware and provides a test environment. We call the
Chisel-generated C++ simulation the “emulator”, to distinguish it from the software-
based simulator.

We adapted the top-level class of the emulator and added a model of an external
SRAM memory. Furthermore, an executable file can be loaded into the memory (or
optionally into the scratchpad memory of the model) to start the execution. The emu-
lator produces a precise model of the system behavior and also the possibility of easily
inserting debug information for explicit testing.

Because the Patmos emulator is auto-generated from the hardware description, it
lends itself to the high-level debugging and testing of the processor implementation.
In contrast to the simulator, the individual registers and signals of the hardware design
are emulated. We use the emulator to verify the cycle-accurate behavior of the Patmos
simulator.

The use of Chisel facilitates the configuration of the hardware implementation.
Cache sizes, the number of pipelines (dual- or single-issue), and other features can
be controlled through a single XML configuration file. Moreover, I/O devices can be
added to the processor through this configuration file. Parsing the configuration is done
in Chisel, making code generation steps or manual editing of the code unnecessary.

6.3 Co-simulation

When building a complex hardware, such as the Patmos processor, testing, having
good test coverage—and checking the outcome of the tests—is very important. The
software simulator can serve as the gold reference for the hardware implementation
of Patmos.

We execute test cases on both the simulator and the emulator and compare the
execution traces of both executions on a cycle-by-cycle base. To compare the two
simulations, we consider the most important state of a processor: the register file.
Although a difference in another program visible state (program counter, predicate
registers, main memory) might also be interesting, a difference there will at some
point (i.e., some cycles later) show up in the register file. If not, the failure would not

123

Real-Time Syst (2018) 54:389–423 409

be visible during a normal program execution. As all loads and stores pass through
the register file, separately monitoring the state of the main memory is unnecessary.
A collection of assembler programs is co-simulated automatically every night.

6.4 Testing and validation

Apart from a small set of test cases written in assembly, we use an extensive test
suite with test cases written in C for testing and validation. This testing ensures
that the compiler, the simulator, and the hardware consistently implement the
ISA. The test suite includes the MiBench5 and the Mälardalen Mälardalen Real-
Time Research Center (2009) benchmarks. Furthermore, the test suite includes the
gcc.c-torture/execute test cases from GCC’s test suite, which covers a wide
range of corner cases for compilation and execution. In total, the test suite contains
more than 1000 test programs, yielding to more than 2000 individual test cases. As
the test suite is executed every night, we will quickly notice regressions in the code
base.

7 Evaluation

In addition to a processor’s being time-predictable, it has two other important prop-
erties: (1) its size and (2) its performance. We present results of Patmos from an
implementation in a low-cost FPGA.

7.1 Resource consumption

Patmos is highly configurable with respect to the resource consumption. In this sec-
tion, we show results for Patmos in four different configurations: (1) the standard
configuration, (2) with large caches, (3) single issue, and (4) minimal.

All results are from synthesizing Patmos for an Altera Cyclone IV FPGA
(EP4CE115F29C7) and with a memory interface to the 16-bit asynchronous SRAM
on the Altera DE2-115 FPGA board. All configurations include several IO devices
and an exception unit. The maximum clock frequency is reported for the slow timing
model at 1200 mV core voltage and at 85 C core temperature. For synthesize we used
Quartus Prime Lite Edition version 15.1.0. Every synthesize option is set to the default
values.

Table 1 compares the results for the four configurations of Patmos. The table shows
hardware resource consumption in logic cells (LC) and on-chip memory. An LC of the
Cyclone IV FPGA contains a 4-bit lookup table and a register. The last column shows
the maximum frequency. The resource consumption shown is for a full system with
several caches and SPMs, IO devices, and a memory controller, not just the processor
pipeline.

5 http://www.eecs.umich.edu/mibench/.

123

http://www.eecs.umich.edu/mibench/

410 Real-Time Syst (2018) 54:389–423

Table 1 Resource consumption and maximum clock frequency of different Patmos configurations

Configuration Resources (LC) Memory (KB) fmax (MHz)

Standard 15,320 13.6 78.4

Large caches 16,395 38.5 80.1

Single issue 9,193 13.9 84.6

Minimal 7,602 5.7 81.7

The standard configuration of Patmos is dual-issue execution, a method cache of
4 KB with maximum 16 methods, a direct-mapped data cache of 2 KB, a 2 KB stack
cache, an instruction SPM of 2 KB, a boot ROM of 1 KB, a data SPM of 2 KB, and a
memory controller for the external asynchronous SRAM.

The large configuration is the configuration used for the average case benchmarking
with CoreMark. The caches are increased to a 16 KBmethod cache, a 8 KB data stack,
and a 8 KB stack cache. Compared to the standard configuration of Patmos, we can
see the increase in on-chip memory usage and about 1000 additional LCs, which are
needed for the larger caches.

The third configuration of Patmos is the same as the standard configuration, but
configured with a single-issue pipeline. We see that the single-issue version of Patmos
reduces the footprint by 44%. The main savings are in the decode stage and the
execution stage. The register file, which is included in the decode stage, can now be
implemented in on-chip memory. Therefore, we can see a small increase in memory
consumption (0.25 KB).With a single-issue configuration, the biggest resource saving
comes from the simpler forwarding network. In the execution stage, only a single ALU
is needed.

For the minimal configuration of Patmos, we reduced all caches to 1 KB and all
SPMs to 0 KB, thereby reducing the amount of on-chip memory. In the minimal
configuration, the method cache is also restricted to cache only two methods. As
the tag memory for the method cache is implemented in LCs, the number of LCs is
therefore also reduced. This configuration also contains only a single-issue pipeline.

In Table 1 we can see that the single issue-pipeline results in the highest clock
frequency. At at first look, it seems counterintuitive that a configuration with larger
caches can lead to a higher clock frequency. However, larger caches might lead to a
better alignment of on-chip memory blocks resulting in a slightly higher frequency
(about 2 %). Similar, the minimal configuration has a slightly lower clock frequency
than the standard version. Maximum clock frequency in FPGAs is not directly corre-
lated to the size of a design. Sometimes larger designs force a denser packing of logic
elements, resulting in a higher clock frequency.

Table 2 shows the resource consumption of the individual components in the stan-
dard configuration in logic cells (LC) and on-chip memory (KB). We can see 4 of
the 5 pipeline stages as dedicated components: Fetch, Decode, Execute, and Memory.
Write-back is merely the write port of the register file and therefore not visible as a
hardware component.

123

Real-Time Syst (2018) 54:389–423 411

Table 2 Resource consumption
of Patmos components in the
standard configuration

Component Resources (LC) Memory (KB)

Fetch 716 3

Decode 4,681 0

Execute 4,409 0

Memory 589 0

Data cache 649 2.3

Stack cache 957 2

Method cache 1,998 4

IO 1,066 2

Exception unit 477 0.2

SRAM controller 495 0

Total 15,370 13.6

The fetch stage is relative small, containing just the program counter and some
multiplexing supporting unaligned fetch of a 64-bit dual-issue instruction word. It also
contains the 2 KB instruction SPM and the 1 KBROM for the boot loader. The decode
stage contains the register file. As this register file is built out of LCs for the dual-
issue version of Patmos and we support full forwarding between the two pipelines,
the resource consumption is high. It is mainly dominated by the forwarding paths.
Related to the dual-issue configuration is the size of the execution stage, as it contains
the full forwarding from the memory and write back-stages of both pipelines to both
execution stages. The memory stage contains just the addressing and multiplexing of
various caches and input/output (IO) components mapped into memory.

The data and stack cache each contain a 2 KB memory; the data cache additional
0.3 KB for the tag memory. The stack cache has no tag memories as the content is
determined by twopointers into the stackmemory.Another component that contributes
significantly to the resource consumption is the method cache. As the tag memory for
16 methods is fully associative, it is build out of dedicated registers.

The IO component includes interfaces to switches and LEDs, a timer, a UART, and
the 2 KB data SPM. The exception unit supports interrupts and runtime exceptions.
The SRAM controller interfaces to a 16-bit SRAM. However, the standard interface
to Patmos is a 4-word burst interface according to the Open Core Protocol specifica-
tion. Therefore, the memory controller also contains the translation between the burst
interface and the memory interface.

Note, that the total number of LCs is less than the sum of LCs for all compo-
nents. This can be explained by some components, e.g., the forwarding logic in the
decode stage, uses more LUTs and less registers, but another component, e.g., the tag
memory of the method cache, uses more registers. Therefore, LCs are shared between
components.

7.2 Average-case performance

Toevaluate the average-case performance of Patmos,weuse theCoreMark benchmark.
We selected CoreMark as this is a popular benchmark for embedded processors and

123

412 Real-Time Syst (2018) 54:389–423

Table 3 CoreMark scores for Patmos, LEON3, MicroBlaze, and NIOS II

Processor CoreMark/MHz CoreMark Frequency (MHz) FPGA

Patmos, dual-issue 2.19 175 80 Cyclone II

Patmos, single-issue 1.97 158 80 Cyclone II

LEON3 1.96 196 100 Spartan-6

MicroBlaze 1.75 175 100 Virtex 4

MicroBlaze 1.90 238 125 Virtex 5

NIOS II 1.29 64 50 Cyclone III

NIOS II 1.49 119 80 –

NIOS II/f 1.87 187 100 –

because the web site of CoreMark contains many scores from different processors.6

We compare the results to other FPGA-based processors. We compare Patmos to the
Aeroflex Gaisler LEON3, Xilinx MicroBlaze, and Altera NIOS II processors.

Most of the available CoreMark scores for these processors were obtained with
16 KB instruction cache and 16 KB data cache. We use a comparable configuration
of Patmos for this evaluation, with a 16 KB method cache that can hold 16 methods,
an 8 KB data cache, and an 8 KB stack cache. The SPMs are disabled. We used the
DE2-70 FPGA board with the Cyclone II FPGA for the average case performance
measurement. With such a setup, the CoreMark benchmark fits into the caches, so
that the benchmark evaluates the processor pipeline rather than the efficiency of the
memory subsystem.

Table 3 shows CoreMark scores relative to the operating frequency, the absolute
CoreMark score, the operation frequency, and theFPGA type used for Patmos and three
other softcore processors. The results for Patmos, LEON3, NIOS II, and MicroBlaze
were obtained on different FPGAs. Therefore, the operation frequency and the absolute
CoreMark scores are incomparable and we also show the CoreMark/MHz measure to
evaluate the efficiency of the instruction set and the compiler. However, for the last
two results no information on the used FPGA is available.

We can see that Patmos performs in the same range as the other processors. Just
comparing the relative performance, Patmos can beat all the other processors. We con-
clude that the performance of the Patmos pipeline is in the same range as comparable
processors that are not optimized for time predictability. This is expected as all pro-
cessors have a similar pipeline structure as a RISC processor. Therefore, we conclude
that with our pipeline architecture we did not reduce average case performance by
optimizing for the WCET.

The speedup of the dual-issue version of Patmos relative the single-issue is merely
10.8%.As the benchmarkfits into the cache, this benchmark is notmemorybound.This
means that the second pipeline is underutilized. The result indicates that there is room
for improvements in the compiler, especially in the instruction scheduler.Only a simple

6 CoreMark scores for LEON3,MicroBlaze, and NIOS II are from http://www.eembc.org/coremark/index.
php, last accessed 29 November 2016.

123

http://www.eembc.org/coremark/index.php
http://www.eembc.org/coremark/index.php

Real-Time Syst (2018) 54:389–423 413

Table 4 Maximum clock
frequency of Patmos in different
FPGAs

FPGA Frequency (MHz)

Cyclone IV 94.2

Cyclone V 110.6

Stratix IV 167.8

Stratix V 206.9

instruction scheduler for the dual-issue feature of Patmos has been developed. Within
this project most of the compiler work has been focused on integration with worst-case
execution time analysis (Puschner et al. 2013; Huber et al. 2013), single-path code
generation Prokesch et al. (2015), and function splitting Hepp and Brandner (2014).
Futurework on the compiler is necessary for using the second pipelinemore efficiently,
e.g., by software pipelining Lam (1988) and trace Fisher (1981) or superblock Hwu
et al. (1993) scheduling.

The code size for the single-issue executable is 355KBand thedual-issue executable
is 359 KB. This executable also includes compiler support library code (e.g., software
division) and standard library code (e.g., printf()).We see only a slight increase in code
size in the range of 1% for the dual-issue executable. For comparison, CoreMark com-
piled under Intel 64-bit Linux is 263 KB. Besides possible differences in the libraries
and different compilers (LLVM versus gcc) it is expected that the executable size for
the Intel processor is smaller than the executable size for a RISC style instruction set.

To make Patmos easily accessible, we support in the standard configuration the rel-
ative cheap FPGA boards DE2-70 andDE2-115. These board contain FPGAs from the
low-cost Cyclone series form Intel/Altera. To get an idea on the possible performance
of Patmos in different FPGAs from Intel/Altera we synthesized the core for different
FPGA families. To measure the limits of the maximum clock frequency we configured
the PLL to produce a 200MHz clock, selected the fastest speed grade of the FPGA,
set optimize for performance, and let the tool select the device. Setting the PLL to
200MHz tells the synthesize tool that this is the minimum requested frequency. For
three out of the four FPGA this is over constraining the design.

In Table 4 we report the maximum frequency using the slow timing model at 85 C.
We can see that by optimizing for performance and using the fastest speed grade
it is possible to increase the clock frequency on the Cyclone IV FPGA from about
80 to 94MHz. Using the newest supported version7 of the high-performance FPGA
family from Intel/Altera, the Stratix V we can clock Patmos at about 207MHz, easily
achieving the minimum clock frequency constraint of 200MHz. Ignoring the memory
subsystem, this would increase the CoreMark for Patmos by a factor of 2.5.

7.3 Worst-case execution time

Patmos is designed as an easy target for worst-case execution time analysis. For our
evaluation, we used the static WCET analysis tool of the platin toolkit.

7 Stratix 10 is not (yet) supported in the latest Quartus version.

123

414 Real-Time Syst (2018) 54:389–423

Table 5 PapaBench WCET analysis results with conservative data cache analysis

Benchmark/task WCET bound WCET tests MOET tests Number of calls

papa_auto/altitude_control 12, 883 4781 4256 25

papa_auto/climb_control 58, 889 31, 851 21, 229 200

papa_auto/link_fbw_send 670 628 544 3

papa_auto/navigation 522, 606 137, 059 69, 082 25

papa_auto/radio_control 155, 825 159 159 1

papa_auto/receive_gps 193, 679 621 432 1

papa_auto/reporting 79, 251 9493 6511 1

papa_auto/stabilisation 49, 949 22, 954 16, 822 1

papa_fbw/check_failsafe 72, 289 8165 7913 12

papa_fbw/check_mega128 72, 612 8445 8151 16

papa_fbw/send_data 30, 768 8737 7183 16

papa_fbw/servo_transmit 7944 7857 2796 2

papa_fbw/test_ppm 133, 515 42, 155 30, 365 16

For theWCET evaluation, we used the standard configuration of Patmos with dual-
issue execution, a method cache of 4 KBwith maximum 16 methods, a direct-mapped
data cache of 2 KB, a 2 KB stack cache, an instruction SPM of 2 KB, a boot ROM of
1 KB, a data SPM of 2 KB, and a memory controller for the external asynchronous
SRAM of the DE2-115 board with 21 clock cycle latency for a 4-word burst transfer.
The information emitted by the compiler already allows for a fully automatic WCET
analysis, i.e., without the need formanually adding loop bounds.We use a scope-based
method cache analysis Huber et al. (2014) and an analysis of the stack cache Jordan
et al. (2013), which are implemented in the WCET tool of platin. For the data
cache, we use a conservative analysis (assume always-miss).

We use PapaBench for the evaluation of the WCET analysis, as this is a very
popular benchmark in the WCET analysis community. Furthermore, PapaBench is
derived from a real application. Table 5 summarizes the results of the WCET analysis
of the PapaBenchWCET benchmark. PapaBench consists of two application binaries,
fly_by_wire (abbr. fbw) and autopilot (abbr. auto). Each binary schedule
several real-time tasks that need to be analyzed. The column WCET Bound shows
the statically computed WCET bound for the corresponding task, without adding any
additional flow information other than provided by the compiler. To allow us to obtain
some numbers on the actual (average) execution time, we created some tests where
we execute the tasks with different values for the global variables, which determine
the runtime behavior of the tasks. The maximum observed execution time (MOET)
for the tests is shown in the fourth column MOET Tests. Finally, to compare static
analysis and measurements, we also computed a WCET bound for the execution time
of a task’s test run.We did not explore which state of the variables will cause the worst-
case path to be executed. Instead, we obtain the WCET for the test runs by limiting
the execution frequency of each basic block to the maximum execution frequency
observed during testing, which are recorded by the trace-analysis tool of platin.

123

Real-Time Syst (2018) 54:389–423 415

This reduces the over-approximation caused by the uncertainty of the program flow.
Therefore, the column WCET Tests provides a sound upper bound for the maximum
observed execution time during testing. In addition, columnNumber of Calls of Table 5
shows how often each task was called during testing.

The results in Table 5 show that the gap between WCET Tests and MOET Tests is
in the range from no gap to +180%. To gain a deeper understanding of the sources of
the over-approximation, we also evaluated the benchmark with a setup using an ideal
data cache and otherwise identical configuration. This allows to mask the pessimism
of the conservative data cache analysis. Table 6 shows the results of this evaluation. In
this configuration, for a third of the tasks the numbers WCET Tests and MOET Tests
match, and for more than half of the tasks the over-approximation of the upper bound
is below 5%. Tasks with a higher gap between the test-specific WCET bound and the
observed worst case include the navigation and climb_control tasks. For these tasks,
information about mutually exclusive program paths would benefit the analysis but is
not included in the flow facts recorded from the trace analysis. The effect is amplified
as for the computations in the different paths floating-point arithmetic is performed,
which is done in software for Patmos. Tasks stabilization and receive_gps were called
only once each. The gap in this case indicates the over-approximation caused by the
method cache and stack cache analyses.

It is worth emphasizing that the flow-information emitted by the compiler is deter-
mined independently from the target. The information from high-level analyses on
bitcode (which were already present in LLVM) is transformed by platin to the
machine-code representation. In this benchmark, they are sufficient to performWCET-
analysis without additional manual annotations. Also, the results with the data cache
are expected to become better when more precise data cache analyses are added to
the platin toolkit. We plan to add a standard data cache analysis, such as Ferdinand
and Wilhelm (1999), to platin in future work.

7.4 Single-path code

Patmos is a suitable target for single-path code, due to its fully predicated instruction
set, its predictable pipeline, and its controllablememory architecture. In our evaluation
for the code produced by the single-path code generator, we assume that all global
data is available locally. Stack allocated data is still cached in the stack cache. In this
regard, the setup is identical to the one used in Sect. 7.3 with the ideal data cache.
We compare the execution time behavior of single-path code to the execution time
behavior of the conventional code in the worst case and the execution time jitter.

Table 7 shows the comparison between the conventionally compiled code and the
single-path code. The statically computed worst case bound for the tasks compiled
conventionally is shown in column WCET Bound. The range of their observed exe-
cution times is shown in column Exec-Time (Conv.). The column Single-Path shows
the execution time for the single-path code. The execution time is identical for every
execution run, i.e., it constitutes the worst-case execution time. This is achieved by
construction, as the execution follows only one path and the method cache and of the
stack cache are put in a well-defined state by flushing them before the task’s execution.

123

416 Real-Time Syst (2018) 54:389–423

Table 6 PapaBench WCET analysis results, assuming an ideal data cache

Benchmark/task WCET bound WCET tests MOET tests

papa_auto/altitude_control 9778 3857 3668

papa_auto/climb_control 44,243 23,251 16,568

papa_auto/link_fbw_send 40 40 40

papa_auto/navigation 380,678 116,143 62,068

papa_auto/radio_control 105,770 117 117

papa_auto/receive_gps 135,097 495 306

papa_auto/reporting 25,460 4537 4327

papa_auto/stabilisation 36,594 17,830 13,840

papa_fbw/check_failsafe 50,239 6191 6191

papa_fbw/check_mega128 50,352 6303 6303

papa_fbw/send_data 20,142 4999 4789

papa_fbw/servo_transmit 1308 1305 822

papa_fbw/test_ppm 97,077 23,579 20,243

Table 7 Single-path code evaluation

Benchmark/task WCET bound (conv.) Exec-time (conv.) Single-path exec-time Ratio

papa_auto/altitude_control 9778 [29,3668] 9076 0.928

papa_auto/climb_control 44,243 [88,16568] 67,738 1.531

papa_auto/link_fbw_send 40 [11,40] 50 1.250

papa_auto/navigation 380,678 [4636,62068] 2,966,730 7.793

papa_auto/radio_control 105,770 [117,117] 137,165 1.297

papa_auto/receive_gps 135,097 [306,306] 186,842 1.383

papa_auto/reporting 25,460 [4327,4327] 26,230 1.030

papa_auto/stabilisation 36,594 [13840,13840] 45,824 1.252

papa_fbw/check_failsafe 50,239 [37,6191] 66,254 1.319

papa_fbw/check_mega128 50,352 [161,6303] 66,398 1.319

papa_fbw/send_data 20,142 [26,4789] 19,414 0.964

papa_fbw/servo_transmit 1308 [822,822] 1175 0.898

papa_fbw/test_ppm 97,077 [213,20243] 112,246 1.156

The last column, Ratio, shows the ratio of the execution time of the single-path task
to the worst-case execution time of the task compiled conventionally, i.e., Single-Path
Exec-Time/WCET Bound (Conv.).

While in most of the cases the (worst-case) execution time of the single-path code
is higher than the computed WCET bound for the conventional code, in some cases it
is lower. This can be attributed to one of the following reasons. The basic blocks
of single-path code are larger, such that the VLIW scheduler has more opportu-
nity to bundle instructions and increase the ILP. Also, there is no overhead caused

123

Real-Time Syst (2018) 54:389–423 417

by over-approximation in the analysis for the single-path code. One of the main
advantages of single-path code is that on predictable architectures like Patmos its
execution time behavior is almost trivial to obtain. The most limiting drawback is the
performance impact of single-path code generation, if applied blindly. For example,
the papa_auto/navigation benchmark either calls a function nav_home()
or nav_update(), depending on the current operating mode. The latter function
implements a multi-level state machine. In the single-path variant, all actions of this
state machine are serialized, resulting in an almost 7.8 times higher execution time
than the statically computed bound for the conventional variant.

For this evaluation, we assume an ideal data cache to eliminate uncertainty in
execution time behavior due to data accesses. In practice, the data SPMwould be used
for fast and time-invariant data access during the execution of the single-path task. At
the time of writing, this can be achieved only by the programmer by explicitly moving
data from and to the data SPM. Ideally, a compiler pass would allocate data to the data
SPM automatically, but unfortunately this has not been implemented yet.

Automatic allocation of data in SPM is not trivial due to pointer aliasing. How-
ever, with some hardware support to translate main memory addresses to SPM
addresses, this aliasing problem can be solved. The scratchpad memory management
unit Whitham and Audsley (2009) introduces this mechanism as an enhancement to
an SPM. This proposed solution does not require whole-program pointer analysis and
makes load and store operation time-predictable.

8 Conclusion

The basis for time-predictable computing systems is a time-predictable processor. This
paper presented such a time-predictable processor, the open-source design Patmos. To
support real-time systems, all architectural features of Patmos are optimized for the
worst-case execution time instead of the average-case execution time.

Patmos contains a statically scheduled dual-issue pipeline for good performance
without the unpredictability of dynamic instruction issuing. Patmos contains a method
cache, a stack cache, and adata cache, therebyproviding caches that are easy to analyze.

We have compared the average case performance of Patmos with other RISC pro-
cessors targeting an FPGA. Although those processors are optimized for average-case
performance, Patmos provides similar performance for the CoreMark benchmark.

We have shown WCET analysis results with our open-source toolkit on the
popular PapaBench benchmark, focusing on hardware predictability. The timing-
compositional nature allows for separate, specialized analyses. We also evaluated the
performance of automatic single-path code generation.Applied carefully, a predictable
and stable code timing can be obtained at acceptable additional cost.

Acknowledgements Wewould like to thank TommyThorn for the ongoing discussions on computer archi-
tecture, processor design, and optimization for an FPGA implementation. We would like to thank Florian
Brandner for discussions on the Patmos instruction set, the initial implementation of the software simulator
of Patmos, and the initial port of LLVM for Patmos. We would like to thank Sahar Abbaspour for helping
on a first VHDL version of the pipeline. This work was partially funded under the European Union’s 7th
Framework Programme under Grant Agreement No. 288008: Time-predictable Multi-Core Architecture

123

418 Real-Time Syst (2018) 54:389–423

for Embedded Systems (T-CREST). This work is part of the project “Hard Real-Time Embedded Multipro-
cessor Platform - RTEMP” and received partial funding from the Danish Research Council for Technology
and Production Sciences under Contract No. 12-127600.

References

Abbaspour S, Brandner F, Schoeberl M (2013) A time-predictable stack cache. In: Proceedings of the 9th
workshop on software technologies for embedded and ubiquitous systems

Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable sdram memory controller. In:
CODES+ISSS ’07: proceedings of the 5th IEEE/ACM international conference on hardware/software
codesign and system synthesis. ACM, New York, pp 251–256. https://doi.org/10.1145/1289816.
1289877

Allen J, Kennedy K, Porterfield C, Warren J (1983) Conversion of control dependence to data dependence.
In: Proceeding of the 10th ACM symposium on principles of programming languages, pp 177–189

Arnold R, Mueller F, Whalley D, Harmon M (1994) Bounding worst-case instruction cache performance.
In: IEEE real-time systems symposium, pp 172–181

Axer P, Ernst R, Falk H, Girault A, Grund D, Guan N, Jonsson B, Marwedel P, Reineke J, Rochange C,
SebastianM, Hanxleden RV,Wilhelm R, YiW (2013) Building timing predictable embedded systems.
ACM Trans Embed Syst 13(4):82

Bachrach J, Vo H, Richards B, Lee Y, Waterman A, Avizienis R, Wawrzynek J, Asanovic K (2012) Chisel:
constructing hardware in a scala embedded language. In: The 49th annual design automation confer-
ence (DAC 2012, Groeneveld P, Sciuto D, Hassoun S (eds). ACM, San Francisco, pp 1216–1225

Baldovin A, Mezzetti E, Vardanega T (2012) A time-composable operating system. In: Vardanega T (ed.)
12th international workshop on worst-case execution time analysis, WCET 2012, July 10, 2012, Pisa
OASICS. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik vol 23, pp 69–80

BallabrigaC, CasséH,RochangeC, Sainrat P (2010)OTAWA: an open toolbox for adaptiveWCETanalysis.
Springer, Heidelberg, pp 35–46. https://doi.org/10.1007/978-3-642-16256-5_6

Brandner F, Hepp S, Jordan A (2013) Criticality: static profiling for real-time programs. Real-Time Syst
50:1–34. https://doi.org/10.1007/s11241-013-9196-y

Degasperi P, Hepp S, Puffitsch W, Schoeberl M (2014) A method cache for Patmos. In: Proceedings of the
17th IEEE symposium on object/component/service-oriented real-time distributed computing (ISORC
2014). IEEE, Reno, pp 100–108. https://doi.org/10.1109/ISORC.2014.47

Delange J, Lec L (2011) POK, an ARINC653-compliant operating system released under the BSD license.
In: 13th Real-Time Linux Workshop, vol 10

Delvai M, Huber W, Puschner P, Steininger A (2003) Processor support for temporal predictability—the
SPEAR design example. In: Proceedings of the 15th Euromicro international conference on real-time
systems

Edwards SA, Kim S, Lee EA, Liu I, Patel HD, Schoeberl M (2009) A disruptive computer design idea:
architectures with repeatable timing. In: Proceedings of IEEE international conference on computer
design (ICCD 2009). IEEE, Lake Tahoe

Edwards SA, Lee EA (2007) The case for the precision timed (PRET) machine. In: DAC ’07: Proceedings
of the 44th annual conference on design automation. ACM, New York, pp 264–265. https://doi.org/
10.1145/1278480.1278545

Falk H, Kleinsorge JC (2009) Optimal static WCET-aware scratchpad allocation of program code. In: DAC
’09: Proceedings of the conference on design automation, pp 732–737

Falk H, Lokuciejewski P (2010) A compiler framework for the reduction of worst-case execution time.
Real-Time Syst 46:1–50

Ferdinand C, Wilhelm R (1999) Efficient and precise cache behavior prediction for real-time systems.
Real-Time Syst 17(2–3):131–181

Fisher JA (1981) Trace scheduling: a technique for global microcode compaction. IEEE Trans Comput
C–30(7):478–490. https://doi.org/10.1109/TC.1981.1675827

Garside J, Audsley NC (2013) Investigating shared memory tree prefetching within multimedia noc archi-
tectures. In: Memory architecture and organisation workshop

Gomony MD, Akesson B, Goossens K (2013) Architecture and optimal configuration of a real-time multi-
channel memory controller. In: Design, automation test in Europe conference exhibition (DATE), pp
1307–1312 . https://doi.org/10.7873/DATE.2013.270

123

https://doi.org/10.1145/1289816.1289877
https://doi.org/10.1145/1289816.1289877
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/s11241-013-9196-y
https://doi.org/10.1109/ISORC.2014.47
https://doi.org/10.1145/1278480.1278545
https://doi.org/10.1145/1278480.1278545
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.7873/DATE.2013.270

Real-Time Syst (2018) 54:389–423 419

Healy CA, Arnold RD, Mueller F, Whalley DB, Harmon MG (1999) Bounding pipeline and instruction
cache performance. IEEE Trans. Comput 48(1):53–70

Heckmann R, Ferdinand C (2013) Worst-case execution time prediction by static program analysis. Tech-
nical report, AbsInt Angewandte Informatik GmbH. [Online, last accessed November 2013]

Heckmann R, Langenbach M, Thesing S, Wilhelm R (2003) The influence of processor architecture on the
design and results of WCET tools. Proc IEEE 91(7):1038–1054

Hepp S, Brandner F (2014) Splitting functions into single-entry regions. In: Chatha KS, Ernst R, Raghu-
nathan A, Iyer R (eds) 2014 International conference on compilers, architecture and synthesis for
embedded systems, CASES 2014, Uttar Pradesh, October 12-17, 2014, ACM. pp 17:1–17:10. https://
doi.org/10.1145/2656106.2656128

Huber B, Hepp S, Schoeberl M (2014) Scope-based method cache analysis. In: Proceedings of the 14th
international workshop on worst-case execution time analysis (WCET 2014), . Madrid, pp 73–82.
https://doi.org/10.4230/OASIcs.WCET.2014.73

Huber B, Prokesch D, Puschner P (2013) Combined WCET analysis of bitcode and machine code using
control-flow relation graphs. In: Proceedings of the 14th ACM SIGPLAN/SIGBED conference on
Languages, compilers and tools for embedded systems (LCTES2013). TheAssociation for Computing
Machinery, pp 163–172. https://doi.org/10.1145/2499369.2465567

Huber B, Puffitsch W, Schoeberl M (2010) WCET driven design space exploration of an object cache.
In: Proceedings of the 8th international workshop on java technologies for real-time and embedded
systems (JTRES 2010). ACM, New York, pp 26–35. https://doi.org/10.1145/1850771.1850775

Hwu WMW, Mahlke SA, Chen WY, Chang PP, Warter NJ, Bringmann RA, Ouellette RG, Hank RE,
Kiyohara T, Haab GE, Holm JG, Lavery DM (1993) The superblock: an effective technique for vliw
and superscalar compilation. J Supercomput 7(1):229–248. https://doi.org/10.1007/BF01205185

JordanA,BrandnerF, SchoeberlM(2013)Static analysis ofworst-case stack cachebehavior. In: Proceedings
of the 21st international conference on real-time networks and systems (RTNS2013).ACM,NewYork,
pp 55–64. https://doi.org/10.1145/2516821.2516828

Kasapaki E, SchoeberlM, SørensenRB,Müller CT,GoossensK, Sparsø J (2016)Argo: a real-time network-
on-chip architecture with an efficient GALS implementation. IEEE Trans Very Large Scale Integr
(VLSI) Syst 24:479–492. https://doi.org/10.1109/TVLSI.2015.2405614

Kluge F, Gerdes M, Ungerer T (2014) An operating system for safety-critical applications on manycore
processors. In: 17th IEEE international symposium on object oriented real-time distributed computing
(ISORC), IEEE, pp 238–245

Kluge F, Schoeberl M, Ungerer T (2016) Support for the logical execution time model on a time-predictable
multicore processor. In: 14th international workshop on real-time networks. ACM SIGBED Review,
Toulouse

Lakis E, Schoeberl M (2013) An SDRAM controller for real-time systems. In: Proceedings of the 9th
workshop on software technologies for embedded and ubiquitous systems

Lam,M (1988) Software pipelining: an effective scheduling technique for VLIWmachines. In: Proceedings
of the ACM SIGPLAN 1988 conference on programming language design and implementation, PLDI
’88. ACM, New York, pp 318–328 https://doi.org/10.1145/53990.54022

Lickly B, Liu I, Kim S, Patel HD, Edwards SA, Lee EA (2008) Predictable programming on a precision
timed architecture. In: Altman ER (ed) Proceedings of the international conference on compilers,
architecture, and synthesis for embedded systems (CASES 2008). ACM, Atlanta, pp 137–146

Lisper B (2014) SWEET: a tool for WCET flow analysis. In: Steffen B (ed) 6th International symposium
on leveraging applications of formal methods, verification and validation. Springer, pp 482–485.

Liu I (2012) Precision timed machines. Ph.D. thesis, EECS Department, University of California, Berkeley
Liu I, Reineke J, Broman D, Zimmer M, Lee EA (2012) A PRET microarchitecture implementation with

repeatable timing and competitive performance. In: Proceedings of IEEE international conference on
computer design (ICCD 2012)

Liu I, Reineke J, Lee EA (2010)A PRET architecture supporting concurrent programswith composable tim-
ing properties. In: Signals, systems and computers, 2010 conference record of the forty-four asilomar
conference on

Mälardalen Real-Time Research Center: WCET benchmarks. Available at http://www.mrtc.mdh.se/
projects/wcet/benchmarks.html (accessed 2009)

Metzlaff S,UngererT (2012)Replacement policies for a function-based instructionmemory: a quantification
of the impact on hardware complexity and wcet estimates. In: Real-time systems (ECRTS), 2012 24th
Euromicro conference on, pp 112 –121. https://doi.org/10.1109/ECRTS.2012.22

123

https://doi.org/10.1145/2656106.2656128
https://doi.org/10.1145/2656106.2656128
https://doi.org/10.4230/OASIcs.WCET.2014.73
https://doi.org/10.1145/2499369.2465567
https://doi.org/10.1145/1850771.1850775
https://doi.org/10.1007/BF01205185
https://doi.org/10.1145/2516821.2516828
https://doi.org/10.1109/TVLSI.2015.2405614
https://doi.org/10.1145/53990.54022
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
https://doi.org/10.1109/ECRTS.2012.22

420 Real-Time Syst (2018) 54:389–423

Mische J, Guliashvili I, Uhrig S, Ungerer T (2010) How to enhance a superscalar processor to provide
hard real-time capable in-order smt. In: 23rd International conference on architecture of computing
systems (ARCS 2010). Springer, University of Augsburg, pp 2–14. https://doi.org/10.1007/978-3-
642-11950-7_2

Pitter C, Schoeberl M (2010) A real-time Java chip-multiprocessor. ACM Trans. Embed. Comput. Syst.
10(1):1–34. https://doi.org/10.1145/1814539.1814548

Prokesch D, Hepp S, Puschner PP (2015) A generator for time-predictable code. In: IEEE 18th international
symposium on real-time distributed computing, ISORC 2015, Auckland 13-17 April, 2015. IEEE
Computer Society, pp 27–34. https://doi.org/10.1109/ISORC.2015.40

Prokesch D, Huber B, Puschner P (2014) Towards automated generation of time-predictable code. In:
International workshop on worst-case execution time analysis, OASIcs, vol 39, pp 103–112. Schloss
Dagstuhl

Puschner P (2005) Experiments with WCET-oriented programming and the single-path architecture. In:
Proceeding of the 10th IEEE international workshop on object-oriented real-time dependable systems

Puschner P, Kirner R, Huber B, Prokesch D (2012) Compiling for time predictability. In: Ortmeier F,
Daniel P (eds) Computer safety, reliability, and security. Lecture Notes in Computer Science. vol
7613, Springer, Berlin, pp 382–391

Puschner P, Prokesch D, Huber B, Knoop J, Hepp S, Gebhard G (2013) The T-CREST approach of compiler
and WCET-analysis integration. In: 9th workshop on software technologies for future embedded and
ubiquitious systems (SEUS 2013), pp 33–40

Rocha A, Silva C, Sørensen RB, Sparsø J, Schoeberl M (2016) Avionics applications on a time-predictable
chip-multiprocessor. In: 24th Euromicro international conference on parallel, distributed, and network-
based processing (PDP 2016). IEEE Computer Society, pp 777–785. https://doi.org/10.1109/PDP.
2016.36

Rochange C, Sainrat P (2003) Towards designingWCET-predictable processors. In: Proceedings of the 3rd
international workshop on worst-case execution time analysis, WCET 2003, pp 87–90

SchoeberlM (2004)A time predictable instruction cache for a Java processor. In: On themove tomeaningful
internet systems 2004: workshop on java technologies for real-time and embedded systems (JTRES
2004), LNCS, vol 3292. Springer, Agia Napa, pp 371–382. https://doi.org/10.1007/b102133

Schoeberl M (2008) A Java processor architecture for embedded real-time systems. J Syst Archit 54(1–
2):265–286. https://doi.org/10.1016/j.sysarc.2007.06.001

SchoeberlM (2009)Time-predictable cache organization. In: Proceedings of the first internationalworkshop
on software technologies for future dependable distributed systems (STFSSD 2009). IEEE Computer
Society, Tokyo, pp 11–16. https://doi.org/10.1109/STFSSD.2009.10

Schoeberl M (2009) Time-predictable computer architecture. EURASIP Journal on Embedded Systems,
vol 2009, Article ID 758480, p 17. https://doi.org/10.1155/2009/758480

Schoeberl, M.: Is time predictability quantifiable? In: International conference on embedded computer
systems (SAMOS 2012). IEEE, Samos

SchoeberlM, Abbaspour S, Akesson B, Audsley N, Capasso R, Garside J, Goossens K, Goossens S, Hansen
S, Heckmann R, Hepp S, Huber B, Jordan A, Kasapaki E, Knoop J, Li Y, Prokesch D, Puffitsch W,
Puschner P, Rocha A, Silva C, Sparsø J, Tocchi A (2015) T-CREST: time-predictable multi-core
architecture for embedded systems. J Syst Archit 61(9):449–471. https://doi.org/10.1016/j.sysarc.
2015.04.002

Schoeberl M, Brandner F, Hepp S, Puffitsch W, Prokesch D (2014) Patmos reference handbook. Technical
University of Denmark, Technical report

Schoeberl M, Brandner F, Sparsø J, Kasapaki E (2012) A statically scheduled time-division-multiplexed
network-on-chip for real-time systems. In: Proceedings of the 6th international symposium on
networks-on-chip (NOCS). IEEE, Lyngby, pp 152–160. https://doi.org/10.1109/NOCS.2012.25

Schoeberl M, Chong DV, Puffitsch W, Sparsø J (2014) A time-predictable memory network-on-chip. In:
Proceedings of the 14th international workshop on worst-case execution time analysis (WCET 2014).
Madrid, pp 53–62. https://doi.org/10.4230/OASIcs.WCET.2014.53

Schoeberl M, Huber B, PuffitschW (2013) Data cache organization for accurate timing analysis. Real-Time
Syst 49(1):1–28. https://doi.org/10.1007/s11241-012-9159-8

Schoeberl M, Puffitsch W, Huber B (2009) Towards time-predictable data caches for chip-multiprocessors.
In: Proceedings of the seventh IFIP workshop on software technologies for future embedded and
ubiquitous systems (SEUS 2009), no. 5860 in LNCS, Springer, pp 180–191

123

https://doi.org/10.1007/978-3-642-11950-7_2
https://doi.org/10.1007/978-3-642-11950-7_2
https://doi.org/10.1145/1814539.1814548
https://doi.org/10.1109/ISORC.2015.40
https://doi.org/10.1109/PDP.2016.36
https://doi.org/10.1109/PDP.2016.36
https://doi.org/10.1007/b102133
https://doi.org/10.1016/j.sysarc.2007.06.001
https://doi.org/10.1109/STFSSD.2009.10
https://doi.org/10.1155/2009/758480
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1109/NOCS.2012.25
https://doi.org/10.4230/OASIcs.WCET.2014.53
https://doi.org/10.1007/s11241-012-9159-8

Real-Time Syst (2018) 54:389–423 421

Schoeberl M, Schleuniger P, Puffitsch W, Brandner F, Probst CW, Karlsson S, Thorn T (2011) Towards
a time-predictable dual-issue microprocessor: the Patmos approach. In: First workshop on bringing
theory to practice: predictability and performance in embedded systems (PPES 2011). Grenoble, pp
11–20

Sparsø J, Kasapaki E, Schoeberl M (2013) An area-efficient network interface for a TDM-based network-
on-chip. In: Proceedings of the conference on design, automation and test in Europe, DATE ’13. EDA
Consortium, San Jose, pp 1044–1047

StarkeRA(2016)Design and evaluation of a vliwprocessor for real-time systems. Ph.D. thesis,Universidade
Federal de Santa Catarina

Starke RA, Carminati A, Oliveira RSD (2016) Evaluating the design of a VLIW processor for real-time
systems. ACM Trans Embed Comput Syst 15(3):46:1–46:26. https://doi.org/10.1145/2889490

Thiele L, Wilhelm R (2004) Design for timing predictability. Real-Time Syst 28(2–3):157–177
Ungerer T, Cazorla F, Sainrat P, Bernat G, Petrov Z, Rochange C, Quiñones E, Gerdes M, Paolieri M, Wolf

J (2010) Merasa: Multi-core execution of hard real-time applications supporting analysability. Micro
IEEE 30(5):66–75. https://doi.org/10.1109/MM.2010.78

Whitham J (2008) Real-time processor architectures for worst case execution time reduction. Ph.D. thesis,
University of York

Whitham J, Audsley N (2008) Using trace scratchpads to reduce execution times in predictable real-time
architectures. In: Proceedings of the real-time and embedded technology and applications symposium
(RTAS 2008), pp 305–316. https://doi.org/10.1109/RTAS.2008.11

Whitham J, Audsley N (2009) Implementing time-predictable load and store operations. In: Proceedings
of the international conference on embedded software (EMSOFT 2009)

Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Memory hierarchies,
pipelines, and buses for future architectures in time-critical embedded systems. IEEE Trans CAD
Integr Circuits Sys 28(7):966–978

Ziccardi M, Schoeberl M, Vardanega T (2015) A time-composable operating system for the Patmos proces-
sor. In: The 30th ACM/SIGAPP symposium on applied computing, embedded systems track. ACM
Press, Salamanca

Zimmer M, Broman D, Shaver C, Lee EA (2014) FlexPRET: a processor platform for mixed-criticality sys-
tems. In: Proceedings of the 20th ieee real-time and embedded technology and application symposium
(RTAS). Berlin

Martin Schoeberl received his PhD from the Vienna University of
Technology in 2005. From 2005 to 2010 he has been Assistant Pro-
fessor at the Institute of Computer Engineering. He is now Associate
Professor at the Technical University of Denmark. His research inter-
est is on hard real-time systems, time-predictable computer architec-
ture, and real-time Java. Martin Schoeberl has been involved in a
number of national and international research projects: JEOPARD,
CJ4ES, T-CREST, RTEMP, PREDICT, FORA, and the TACLe COST
action. He has been the technical lead of the EC funded project T-
CREST. He has more than 100 publications in peer reviewed journals,
conferences, and books.

123

https://doi.org/10.1145/2889490
https://doi.org/10.1109/MM.2010.78
https://doi.org/10.1109/RTAS.2008.11

422 Real-Time Syst (2018) 54:389–423

Wolfgang Puffitsch was a postdoc researcher at DTU Compute in
Copenhagen, Denmark, working on time-predictable computer archi-
tectures in the scope of the RTEMP project. From May 2012 to May
2013, he was a postdoc researcher at the DTIM group of ONERA
in Toulouse, France, in the scope of the TOAST project. Before that,
since January 2008, he worked as research and teaching assistant at
the Institute of Computer Engineering at the Vienna University of
Technology in Vienna, Austria, where he defended his PhD thesis on
real-time garbage collection in March 2012.

Stefan Hepp received his MSc in computer engineering from Vienna
University of Technology in 2011, where he is currently working
toward his PhD under the supervision of Professor Jens Knoop. His
research interests include worst-case execution time oriented code
optimizations, cache analysis techniques and time-predictable archi-
tectures.

Benedikt Huber received his MSc in computational intelligence
from Vienna University of Technology in 2009. Since then, he
worked as a research and teaching assistant at the same university’s
real-time systems group. His research focus is on WCET analysis in
the context of time-predictable system design.

123

Real-Time Syst (2018) 54:389–423 423

Daniel Prokesch received his MSc in computer engineering from
Vienna University of Technology in 2011. Currently, he is a PhD can-
didate under supervision of Professor Peter Puschner at the same uni-
versity. His research interests include time-predictable system design,
WCET analysis and code generation techniques.

123

	Patmos: a time-predictable microprocessor
	Abstract
	1 Introduction
	2 Related work
	3 T-CREST: time-predictable multicore architecture for embedded systems
	3.1 The interconnect
	3.2 Memory hierarchy
	3.3 Compiler and WCET analysis
	3.4 Operating systems for Patmos

	4 The architecture of Patmos
	4.1 Fully predicated instruction set
	4.2 Dual-issue pipeline
	4.3 Local memories
	4.3.1 Boot ROM and scratchpad memories
	4.3.2 Method cache
	4.3.3 Stack cache
	4.3.4 Data cache
	4.3.5 Miss detection and pipeline stalling
	4.3.6 Interrupts and exceptions

	4.4 Multicore architecture

	5 Compiling and worst-case execution time analysis for Patmos
	5.1 Dual-issue support
	5.2 Stack and method cache support
	5.3 Single-path code generation
	5.4 Worst-case execution time analysis

	6 Implementation
	6.1 Simulator
	6.2 Hardware implementation
	6.3 Co-simulation
	6.4 Testing and validation

	7 Evaluation
	7.1 Resource consumption
	7.2 Average-case performance
	7.3 Worst-case execution time
	7.4 Single-path code

	8 Conclusion
	Acknowledgements
	References

