
Real-Time Syst (2017) 53:812–853
DOI 10.1007/s11241-017-9286-3

High-assurance timing analysis for a high-assurance
real-time operating system

Thomas Sewell1 · Felix Kam1 · Gernot Heiser1

Published online: 27 July 2017
© Springer Science+Business Media, LLC 2017

Abstract Worst-case execution time (WCET) analysis of real-time code needs to be
performed on the executable binary code for soundness.Obtaining tightWCETbounds
requires determination of loop bounds and elimination of infeasible paths. The binary
code, however, lacks information necessary to determine these bounds. This informa-
tion is usually provided through manual intervention, or preserved in the binary by
a specially modified compiler. We propose an alternative approach, using an existing
translation-validation framework, to enable high-assurance, automatic determination
of loop bounds and infeasible paths. We show that this approach automatically deter-
mines all loop bounds andmany (possibly all) infeasible paths in the seL4microkernel,
as well as in standard WCET benchmarks which are in the language subset of our C
parser.We also design and validate an improvement to the seL4 implementation, which
permits a key part of the kernel’s API to be available to users in a mixed-criticality
setting.

Keywords Real time · Static analysis · Worst case · Timing · OS · seL4 · High
assurance · Verified · WCET

B Thomas Sewell
Thomas.Sewell@data61.csiro.au

Felix Kam
Felix.Kam@data61.csiro.au

Gernot Heiser
Gernot.Heiser@data61.csiro.au

1 Data61 and UNSW, Sydney, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-017-9286-3&domain=pdf
http://orcid.org/0000-0002-4891-0797
http://orcid.org/0000-0002-7069-0831

Real-Time Syst (2017) 53:812–853 813

1 Introduction

Real-time systems are required to meet timing constraints in addition to their func-
tional requirements. Critically important real-time systems must be assured to meet
these timing and functional correctness requirements. Functional correctness is usually
assured by traditional means such as testing, code inspection and controlled develop-
ment processes (US National Institute of Standards 1999; RTCA 1992; ISO 2011), or
more recently by formal methods RTCA (2011). The highest assurance is obtained
by formal correctness proofs based on theorem proving, as was done with the seL4
microkernel (Klein et al. 2009) and several other systems (Bevier 1989; Leroy 2009;
Alkassar et al. 2010; Yang and Hawblitzel 2010). Functional verification is generally
performed on the source-code level (i.e. the C or other implementation language),
which is then translated into a binary using a trustworthy compilation tool chain.

Timeliness requires, among other things, sound estimation of worst-case execution
time (WCET). This is generally performed by static analysis of the binary code, in
order to account for code changes by the compiler. The process typically first extracts
a control-flow graph (CFG) from the binary, which is used to generate candidate
execution paths. The execution time of a path is estimated (conservatively) with the
use of a micro-architectural model of the hardware.

However, this requires first determining safe upper bounds for all loop iterations.
Furthermore,many candidate execution paths turn out infeasible (depending on branch
conditions which are mutually exclusive) and must be eliminated to avoid an exces-
sively pessimistic WCET. Frequently, loop bound determination and infeasible path
elimination is done by manual inspection, but this is tedious, error-prone and difficult
to validate, and thus unsuitable for safety-critical code.

For high assurance, we require an entirely automatic and trustworthy means of
discovering loop bounds and path information in the binary. While there is a wealth
of literature on using static analysis to derive loop bounds on binaries, getting com-
plete coverage of all loops is impossible in theory (equivalent to the halting problem)
and difficult to approximate in practice. An alternative approach is to instrument the
compiler, and pass information across from the source side.

We propose a different approach, based on our existing work on translation valida-
tion. Translation validation (TV) is an approach to ensuring the compilation tool chain
is trustworthy. Other approaches include extensive testing and even formal verification
(Leroy 2009) of the compiler itself. In the TV approach, an unmodified optimising
compiler is used, and a separate validation tool discovers evidence that the compiler
has translated the source correctly (Sewell et al. 2013). The TV tool relates control
flow at the binary and source level, which allows our WCET analysis to make use of
source-level information missing in the binary. This source-level information includes
pointer aliasing information by default. We can also manually intervene in the process
by annotating the source code with certain special comments. These comments are
ignored by the compiler, but are part of the formal model of the C program and may
be used by the TV and WCET tools as additional assumptions.

Our target of interest is the seL4 microkernel, which has undergone comprehensive
formal verification, including proof of security enforcement and functional correctness
of the implementation (Klein et al. 2014). In the case of seL4, many useful properties

123

814 Real-Time Syst (2017) 53:812–853

have already been proved and are immediately available to the WCET analysis; any
additional annotations create new proof obligations which must be discharged in the
existing framework (and with the help of previously proved invariants). The result has
the same high assurance as the formal correctness proof.

The proposed approach is not limited to functionally-verified code such as seL4.
Any code that is in the subset understood by our C parser can be analysed. The
parser’s syntactical restrictions are that all struct declarations occur at the top level of
source files, and the prohibition of side effects in almost all expressions. Assignments
thus become statement-forms, and functions that return values may be called only
as the right hand side of an assignment. Semantically, the C program cannot contain
unspecified nor undefined behaviours, and the parser is parameterised by the archi-
tecturally dictated details of implementation-defined behaviours. This means that the
source code needs to be re-verified for each architecture. These semantic assumptions,
especially the absence of unspecified or undefined behaviour, can be verified using
model checking. Obviously, manual annotations are of lesser assurance if not formally
checked.

We apply our WCET analysis tool to the seL4 microkernel. Using our annotation
mechanism, we can discover all loop bounds necessary to compute seL4’s WCET.
We identify a number of operations in the kernel which make large contributions to
WCET. Fortunately there exist system configurations which prevent application code
from exercising these operations, leading to much improved time bounds. For one
of these operations we provide an alternative implementation, verify it functionally
correct, and demonstrate that incorporating this change can allow more of the kernel
API to be used with acceptable WCET.

We make the following contributions:

– high-assurance construction of the binary control-flow graph, with a proof of cor-
rectness of all but the final simplification (Sect. 4.1).

– WCET analysis supported by a translation-validation framework, allowing C-level
information to be used in computing provable loop bounds and infeasible paths
(Sects. 4.2–4.4);

– computation of all loop bounds needed for WCET of the seL4 kernel, with the
support of source-level assertions, but no manual inspection of the binary program
(Sect. 6.1), and similarly elimination of infeasible paths (Sect. 6.6);

– improvement of the WCET of the seL4 kernel by reimplementing one of its key
operations (Sects. 5.2 and 5.3);

– demonstration that the approach is applicable to code that is not formally verified,
by analysing a subset of the Mälardalen benchmarks (Sect. 6.5).

2 Background

This section summarises material on which we build directly. Section 3 summarises
other related work from the literature.

123

Real-Time Syst (2017) 53:812–853 815

2.1 Chronos

For WCET analysis we use the Chronos tool (Li et al. 2007), which is based on
the implicit path enumeration technique (IPET), to perform micro-architectural anal-
ysis and path analysis. The attraction of Chronos is its support for instruction and
data caches, a flexible approach to modeling processor pipelines, and an open-source
license. It transforms a simplified CFG, with loop-bound annotations, into an integer
linear program (ILP). We solve this using an off-the-shelf ILP solver – IBM’s ILOG
CPLEX Optimizer – to produce the estimated WCET. Infeasible path annotations can
generally be expressed as ILP constraints.

In earlier work (Blackham et al. 2012) we adapted Chronos to support certain ARM
microarchitectures for theWCET analysis of seL4. While seL4 can run on a variety of
ARM- and x86-based CPUs, presently only the ARM variant is formally verified (but
verification of the x86 version is in progress).We picked the Freescale i.MX 31 for our
analysis, thanks to its convenient cache pinning feature, which is unavailable in later
ARM processors. The i.MX31 features an ARM1136 CPU core clocked at 532 MHz,
has split L1 instruction and data caches, each 16KiB in size and 4-way set-associative.
The processor uses pseudo random cache-line replacement. We model the cache as
a direct-mapped cache with the size of one of the available ways (4KiB), based on
the pessimistic prediction that the other three ways contain useless data which is at
random never replaced.

In our previous work (Blackham et al. 2012) we carefully validated this model
against cycle timing on the real processor. We concluded that modeling the 4-way
cache as 1-way was pessimistic but sound, never overestimating cycle times. We
also discovered that the L2 cache degrades worst-case times substantially. When it
is enabled, the total cycle time to miss all caches and access main memory increases
significantly. In our pessimistic calculations, expected L2 hits are rare, and the time
lost outweighs the time saved. We configure the system and the Chronos model to
have the L2 cache disabled.

In this work we keep the microarchitecture model unchanged from our previous
one. The Freescale i.MX 31 is now an old architecture, however, validating the timing
model on a new architecture requires a lot of experimental work, and is not the focus
of the current project.

2.2 The seL4 operating system kernel

seL4 is a general-purpose operating system (OS) microkernel, implemented mostly in
C with a minimum of assembly code. In line with the tradition of high-performance
L4 microkernels (Heiser and Elphinstone 2016), seL4 provides only a minimal set
of mechanisms, including threads, a simple scheduler, interrupts, virtual memory,
and inter-process communication, while almost all policy is implemented by user-
mode processes. seL4 uses capability-based protection (Dennis and Van Horn 1966;
Bromberger et al. 1992) and a resource-management model which gives (sufficiently
privileged) user-mode managers control over the kernel’s memory allocation—this is
key to its strong spatial isolation.

123

816 Real-Time Syst (2017) 53:812–853

The general-purpose design of seL4 means that the verified kernel can be adapted
to support a broad class of use cases, including use as a pure separation kernel, a
minimal real-time OS, a hypervisor supporting multiple Linux instances, a full-blown
multi-server OS, or combinations of these.

Mixed-criticalityworkloads are a target of particular interest. Such systems consoli-
datemission-critical with less critical functionality on a single processor, to save space,
weight and power (SWaP), and improve software and certification re-use (Barhorst
et al. 2009). Examples include the integrated modular avionics architecture (Avionics
Application Software Standard Interface 2012), and the integration of automotive con-
trol and convenience functionality with Infotainment (Hergenhan and Heiser 2008).
These systems require strong spatial and temporal isolation between partitions, for
which seL4 is designed.

The main attraction of seL4 is that it has been extensively formally verified, with
formal, machine-checked proofs that the kernel application binary interface (ABI)
enforces integrity (Sewell et al. 2011) and confidentiality (Murray et al. 2013), that
the ABI is correctly implemented at the C level (Klein et al. 2009), and that the
executable binary produced by the compiler and linker are a correct translation of the
C code (Sewell et al. 2013). This make it arguably the world’s highest-assured OS. Its
WCET analysis (Blackham et al. 2011) is a step towards supporting mixed criticality
systems, although more work remains to be done on its scheduling model (Lyons and
Heiser 2014, 2016).

The kernel executes with interrupts disabled, for (average-case) performance rea-
sons (Blackham et al. 2012), as well as to simplify its formal verification by limiting
concurrency. To achieve reasonableWCET, preemption points are introduced at strate-
gic points (Blackham et al. 2012). These need to be used sparingly, as they may
substantially increase the code complexity and the proof burden. A configurable pre-
emption limit (presently set to 5) controls how many preemption points a kernel
execution must pass to trigger preemption. Adjusting this limit adjusts the tradeoff
between the worst-case time to switch to a higher-priority task on interrupt and the
worst-case time to complete a complex task in the presence of interruptions. The
preemption model is discussed in detail in Sect. 2.6.

This preemption mechanism fits reasonably well with the ILP approach. If we
assume that an interrupt is ready to fire shortly after kernel entry, it follows that the
preemption point function will never be called more than 5 times in a single kernel
entry. This is trivial to encode as a global ILP constraint. This constraint also implicitly
bounds those loops which include a preemption point, meaning we do not need to
calculate bounds for them. Chronos still requires such a bound, so we use a nonsense
bound (109).

To cover the case where an interrupt arrives at an arbitrary point, we must adjust
the ILP problem slightly more. We are interested in the maximum latency between
the interrupt arriving and kernel execution completing. This latency would always
be increased by the interrupt arriving one step earlier, except if the presence of the
interrupt would change the outcome of that step. The only steps at which the interrupt
affects (our model of) CPU execution are preemption points. Thus we can handle this
case by specifying that the graph of configurations within the ILP may be entered
either at the kernel entry address or immediately after any preemption point.

123

Real-Time Syst (2017) 53:812–853 817

Our previous work focussed on aggressively optimising the kernel for latency
(Blackham et al. 2011, 2012). Among other measures, we placed additional preemp-
tion points in long running operations. In contrast, our intention here is to develop
a high-assurance analysis process. Thus we apply our approach to the most recent
verified version of seL4, which lacks these unverified modifications. We note that the
number of loops to analyse is significantly larger than in our previous work (which
used a non-verified kernel fork), where we had set the preemption limit to one.

2.3 The seL4 verification framework

The verification of the functional correctness of seL4 comprises over 200,000 lines
of proof script, manually written and automatically checked by the theorem prover
Isabelle/HOL (Nipkow et al. 2002). The proof contains four models of the behaviour
of the kernel, as sketched in Fig. 1. The most abstract one (access control) is manually
written in Isabelle, and the most detailed one (semantic C) is derived from the C
source code of the implementation. There are three main proof components: a proof
that a number of crucial invariants are maintained, and two proofs of refinement
which establish that behaviours observed of the lower models must be subsets of those
permitted by the higher models.

The C-level model is created by a C-to-Isabelle parser (Tuch et al. 2007). This
produces a structured program in the Isabelle logic which roughly mirrors the syntax
of the input C program. The parser adds a number of assertions which make explicit
the correctness requirements of the C program, for instance involving pointer align-
ment and the absence of signed overflow. These constraints are roughly those that
are prescribed by the C standard, with some additions for formal reasons, and some
requirements of the standard relaxed to allow the kernel to implement its own memory
allocator. Note that all these assumptions are proved correct for the seL4 source.

The translation validation process extends this verification stack, but uses automatic
proofs in an SMT-based logic rather than manual proofs inside Isabelle/HOL.

Fig. 1 The seL4 functional correctness stack

123

818 Real-Time Syst (2017) 53:812–853

2.4 Decompilation of binary code

The decompiler of Fig. 1 is part of a collection of formal tools based on the Cambridge
ARMISAspecification (Fox andMyreen 2010). The specificationmodels the expected
behaviour of various ARM processors in the theorem prover HOL4 (Slind and Norrish
2008). The key feature of these models is that they have been extensively validated by
comparing their predictions to the behaviour of various real silicon implementations.

The decompiler builds on a tool which specifies what the effect of various instruc-
tions will be. This transformation also performs a HOL4 proof that the specification
is implied by the CPU model. The decompiler stitches these instruction specifications
together to produce a structured program which specifies the behaviour of a function
in the binary. Crucially, the stitching process preserves the proofs. It results in a pro-
gram specification, as well as a proof that the CPU would behave according to that
specification, if it were to start executing the given binary at the given address.

In this project we use a variant of the decompiler which produces an output program
in the graph-based language we describe below in Sect. 2.5. Each function in this
program is structurally identical to the control-flow-graph of the relevant function in
the binary, including sharing the same instruction addresses.

2.5 Translation validation

The proof of the correctness of the translation step from C to binary (Sewell et al.
2013)—the lowest level model of the seL4 functional verification—uses a translation
validation toolset that builds on the decompiler introduced above. The proof process
is sketched in Fig. 2. The starting point is the C program, parsed into Isabelle/HOL
using the semantics of Tuch et al. (2007).

The overall TV approach is to transform both the C and the binary code into rep-
resentations at the same abstraction level, i.e. a common intermediate language, and
then prove correspondence function-by-function. The C program is transformed into

Fig. 2 Translation validation structure

123

Real-Time Syst (2017) 53:812–853 819

a graph language with simpler types and control flow. The decompiler also trans-
forms the binary into the same language. Both transformations construct proofs (in
Isabelle/HOL and HOL4) that the semantics are preserved in the conversion.

Like machine code, statements in the graph language have explicit addresses and
control flow may form an arbitrary graph. A program may manipulate an arbitrary
collection of variables, with most programs having a “memory” variable in addition
to variables representing registers or local variables. The graph language provides a
mechanism for asserting a boolean property, which allows the correctness assertions
(alignment etc.) made by the C-to-Isabelle parser and the decompiler to be expressed
at this level. The C assertions, which have been proved in the previous verification
work, become assumptions of the proof process, so the TV toolset may assume non-
overflow conditions much like the compiler does. These assertions are also used by
the decompiler to check key assumptions (such as alignment of various addresses).
Assertions in the binary representation are proof obligations for the TV process.

The core of the TV process is a comparison of graph-language programs. For
acyclic (loop-free) programs, this checks that the programs produce identical outputs
(memory and return values/registers) given the same inputs (memory and argument
values/registers). The calling convention specified by theARMarchitecture defines the
expected relationship between arguments and registers, etc. When loops are present,
the tool must first search for an inductive argument which synchronises the loop
executions, then check that the argument implies the same input/output relation. Both
the check process and the search process use SMT solvers to do the heavy lifting. This
process is described in detail elsewhere (Sewell et al. 2013).

2.6 The seL4 timing and preemption model

The majority of this paper is about determining the WCET of the seL4 kernel under
various assumptions. These time bounds can then be used to answer questions about
the execution time of real-time systems built on top of the kernel. There are various
established approaches to timing analysis for such systems, some of which call for
slightly different worst-case timing measures, including worst-case response time
and worst-case interrupt latency. The WCET of the kernel (under various assumed
scenarios) is in fact a sufficient measurement, thanks to the specifics of seL4’s timing
model.

Firstly let us clarify that the WCET of the seL4 kernel is known to be finite. seL4
is an event-reactive kernel with a single kernel stack. The kernel has no thread of
execution of its own (except during initialisation) and executes in response to specific
external events. These events include system calls, hardware interrupts, and user-
level faults. Each kernel entry uses the same kernel stack to call a kernel top-level
function, e.g.handleSyscall for system calls. This C function executes atomically
to normal completion, rather than stopping abruptly (e.g. via longjmp or exit) or
being suspended (e.g. via yield). Interrupts are also disabled while these top-level
functions are executing. Thus theWCET of seL4 exists; it is just the maximumWCET
of the various entry points.

123

820 Real-Time Syst (2017) 53:812–853

We can compute theWCET of each of the kernel entry points, of which the system-
call handler will always be by far the greatest contributor. This is because seL4 follows
the microkernel philosophy, and does not fully handle faults or interrupts itself (apart
from some timer interrupts). Instead it despatches messages to user-level handlers, and
themessaging facility of the microkernel is designed to be fast. Some system calls take
much longer to complete, partly because seL4 avoids managing its internal memory
allocation itself, and instead allows user level managers to request major configuration
changes. To prevent substantial delays to other tasks, these long-running operations
include preemption points.

When a preemption point is reached, seL4 can check for pending interrupts, and if
there are any the current operation is discontinued. A configurable preemption limit
adjusts how often the actual interrupt check is performed compared to the number
of preemption-point function calls. Note that the exit process still results in a nor-
mal completion of the top-level handleSyscall function, even though the logical
operation is still incomplete. This was done for verification reasons: the model of C
semantics used to verify seL4 does not allow abrupt stops (e.g. exit) or any form
of continuation yielding. The interrupt is handled as the last step in the execution of
handleSyscall, usually resulting in a context switch to its user level handler. The
preempted operation resumes as a fresh system call the next time the preempted task
is scheduled.

In this model of kernel entry and preemption, the execution time of seL4 contributes
to the completion time of some real-time task in three ways:

1. Time spent in the kernel during the task’s timeslices, performing system calls on
behalf of this task. This includes as many attempts as are necessary to complete
any preemptible system calls.

2. Time spent in the kernel during the task’s timeslices, when the task is being inter-
rupted. This includes the timeoverhead of switching to and fromanyhigher priority
tasks which resume as the result of an interrupt. This also includes the time taken
to handle a hardware interrupt and queue a lower-priority task to be scheduled, but
not to switch to it.

3. Delays to the start of the thread’s timeslice or to delivery of its interrupts caused
by the kernel executing atomically on behalf of another task (of any priority).

While all of these execution times are important for real-time performance, the first
two contributions can be managed by system design. For the first point, a critical real-
time thread should obviously avoid expensive system calls that have a major impact
on its WCET. As all the expensive calls involve system reconfigurations, these should
not be needed during steady-state operation of a real-time task. In fact, if needed at
all, such operations should be delegated to a less-critical task that runs in slack time.
The kernel provides mechanisms that support such delegation.

Point two requires that that rates of high-priority interrupts are limited, a standard
assumption in real-time schedulability analysis.

The final kind of contribution is the most concerning. The kernel is designed for a
mixed-criticality environment, in which non-real-time and untrusted tasks can make
system calls. If the kernel takes too long to complete or preempt some of these system
calls, it may substantially degrade real-time performance. The countermeasure is to

123

Real-Time Syst (2017) 53:812–853 821

limit which kernel operations can be performed by untrusted tasks; we will discuss
the limits this imposes on system design in Sect. 2.7. The WCET figures we report
for unconstrained systems assume that an interrupt which will release a high-priority
task happens just as the kernel began the longest-running operation.

2.7 Using seL4 security features to limit WCET

Long-running operations in the seL4 kernel may substantially degrade the real-time
performance of the system. The ideal solution is to eliminate all such long-running
operations, and analyse the system afterwards to prove they no longer exist. As an
alternative, if we identify a small number of problematic operations, we can try to
restrict their use.

Use of the seL4 API is restricted through its capability-based security model. Tasks
require capabilities to individual kernel objects to perform operations on those objects.
This system can be used to constrain the set of objects a task may ever use (Sewell et
al. 2011), for instance to create spatial separation between tasks. However, the only
way to prevent a task performing a particular operation is to ensure it never has the
appropriate capabilities.

This has implications for system design. The simplest way for a trusted supervisor
to initialise the system is to distribute capabilities to untyped memory regions, which
the client tasks may then use to create kernel objects of any type. This will typically
permit client tasks to perform any kind of operation. The opposite approach is to keep
all untyped capabilities in the control of the trusted supervisor or other trusted tasks,
requiring untrusted clients to receive resources only via trusted channels. This ensures
that access to complex operations can be carefully controlled. However, the downside
of this approach is that it requires more complexity within the trusted components,
especially if they must coordinate with clients to dynamically reconfigure the sys-
tem. The trusted components may themselves need to be verified, so reducing their
complexity is highly desirable.

Hardware support for binary virtualisation is now commonplace, and provides a
useful compromise. A guest OS running within a virtual machine (VM) environment
may dynamically reconfigure its virtual environment while the external configuration
of the VM remains static. The static environment can be created by the trusted supervi-
sor, which can then provide minimal support to the guest OS, while the guest OS may
run arbitrarily complex legacy software environments. An seL4 variant supporting
such virtualisation extensions exists, and its verification has commenced. More work
remains to be done to consider the impact of such a platform on our timing analysis.

Another compromisewewill consider is an object size limit. A taskwith a capability
to an untypedmemory rangemay create any object, as long as it fits within the untyped
memory range. The initial supervisor can enforce a limit on the size of untypedmemory
ranges by first dividing the initial untyped memory objects before distributing them.
Once divided, the untyped ranges cannot be combined again. This simple restriction
permits tasks access to most of the kernel’s API but prevents some problematic cases
involving very large objects.

This gives us a number of hypothetical system configurations:

123

822 Real-Time Syst (2017) 53:812–853

– A static system, where all configuration decisions must be made at startup, before
entering real-time mode. User tasks may only use system calls to exchange mes-
sages. Various simple embedded systems running on seL4 use a static configura-
tion. Real-time separation kernels (Rushby 1981), including Quest-V in separating
mode (Li et al. 2013) andMASK (Martin et al. 2002), would enforce similar static
restrictions. Virtualisation improves the usefulness of this configuration.

– A closed system,which is a use case that we evaluated in previouswork (Blackham
et al. 2011). User tasks are not given access to untyped capabilities, and may not
create or delete kernel objects. Unlike in the static case, tasksmay have capabilities
to manipulate their address spaces.

– A general system, where all operations are permitted.
– A system with an object size limit, as discussed above. All objects and capabilities
in the system are known to fit within the maximum object size. We prove some
assertions to support this configuration, which we will discuss in Sect. 5.1.

– A managed system design has been considered, where untrusted tasks have few
capabilities themselves, but request additional operations via trusted proxies. This
design is the most general, allowing the proxy to add any additional constraints to
the kernel API. This approach may be useful in the future in implementing mixed-
criticality systems on seL4. We will revisit the implications of such a system for
timing analysis once a working example exists.

2.8 Verifying preemptible seL4 operations

The abort style of preemption used in seL4 (see Sect. 2.6) was chosen to simplify veri-
fication. Nomatterwhat style of preemption is chosen, the verification of a preemptible
operation must consider three concerns:

1. Correctness: the usual requirement that the preemptible operation is functionally
correct.

2. Non-interference: other operations that are running must not interfere with the
safety and correctness of the operation.

3. Progress: the preemptible operation must eventually run to completion.

In most approaches to concurrency verification, it is the non-interference concern
that is most complex. The key advantage of the abort style is that it avoids all concerns
about interference. There is no need to calculate the atomic components of preemptible
operations, instead, all kernel entries are fully atomic. There is no need to calculate
what variables and references an operation has in scope while preempted, or consider
the impact on these references when objects are updated or deleted elsewhere. Instead,
a preempted operation will forget all references, and will rediscover its target objects
and recheck its preconditions when it resumes.

These advantages make the verification of an abort-style preemptible operation
straightforward. Compared to the verification of a non-preemptible operation, the only
additional requirement is that the system is consistent (all system invariants hold) at
each possible preemption point.

The downside of the abort style is that it complicates the design of preemptible oper-
ations. These operationsmust completely reestablish theirworking statewhen resumed

123

Real-Time Syst (2017) 53:812–853 823

after preemption, which might have substantial performance costs for long-running
operations that are frequently preempted. The operations must also be designed to
make it possible at all to discover how much work has already been completed. For
instance, in this work, we add a preemption point to an operation which zeroes a range
of memory. There is no efficient way to examine a partly-zeroed range of memory and
decide where to resume the operation; information about progress must somehow be
tracked in another object. Our solution to this problem is discussed in Sect. 5.2.

3 Related work

3.1 WCET analysis

WCET analysis is a broad field of research with a vast wealth of literature. The field
has been broadly surveyed by Wilhelm et al. (2008), and we refer the reader to their
summary for a more comprehensive overview.

Standard strategies for WCET analysis include hierarchical timing decomposition
(Puschner andKoza 1989; Park and Shaw 1991), explicit path enumeration (Lundqvist
and Stenström 1998; Healy et al. 1999), and implicit path enumeration (Li and Malik
1995; Burguière and Rochange 2006). We reuse the Chronos tool (Li et al. 2007) in
this work, which follows the implicit approach.

Whichever core WCET approach is chosen, the analysis requires additional loop
bound and path information, usually discovered by static analysis, frequently sup-
ported by user annotations. There is a vast diversity of possible static analysis
approaches to this problem, and again we refer the reader to Wilhelm et al’s survey
(Wilhelm et al. 2008). In recent years, Rieder at al. have shown that it is straight-
forward to determine some loop counts at the C level though model checking (Rieder
et al. 2008). Other authors use abstract interpretation, polytopemodeling and symbolic
summation to compute loop bounds on high-level source code (Lokuciejewski et al.
2009; Blanc et al. 2010). These source level loop bounds must then be mapped to the
compiled binary, for instance via a trusted compiler with predictable loop optimisation
behaviour. We would like to avoid trusting the compiler as far as possible.

The aiT WCET analyser uses dataflow analysis to identify loop variables and loop
bounds for simple affine loops in binary programs (Cullmann and Martin 2007). The
SWEET toolchain (Gustafsson et al. 2006) uses abstract execution to compute loop
bounds on binaries, and is aided by tight integration with the compiler toolchain,
which improves the knowledge of memory aliasing, but this again implies relying on
the compiler. The r-TuBound tool (Knoop et al. 2011) uses pattern-based recurrence
solving and program flow refinement to compute loop bounds, and also requires tight
compiler integration.

Some of the same techniques are used for eliminating infeasible paths, e.g. abstract
execution (Gustafsson et al. 2006; Ferdinand et al. 2001), with the same limitations as
for loop-count determination.We earlier used binary-level model checking (Blackham
and Heiser 2013) to automatically compute loop bounds and validate manually spec-
ified infeasible paths. We then used the CAMUS algorithm for automating infeasible
path detection (Blackham et al. 2014). However, this work was inherently limited

123

824 Real-Time Syst (2017) 53:812–853

to information that could be inferred from an analysis of the binary, and failed to
determine or prove loop bounds that required pointer aliasing analysis.

3.2 Using formal approaches for timing

In this work we reuse our formal verification apparatus to support ourWCET analysis.
While most WCET approaches are based on static analysis tools such as abstract
interpretation (Ermedahl et al. 2007; Kinder et al. 2009), we are aware of few other
projects which address the questions of timing and functional correctness using the
same apparatus.

The ambition of combiningverification andWCETanalysiswas suggested byPrantl
et al. (2009), who propose interpreting source-level timing annotations as hypotheses
to be proven rather than knowledge to be assumed. The associated static analysis must
verify the user’s beliefs about the system’s timing behaviour. This replaces the most
error-prone aspect of the WCET analysis with a formally verified foundation. The
challenge which remains is to discover some sound static analysis which is sufficient
for verifying whatever annotations the user supplies.

Our analysis also interprets annotations/assertions as hypotheses to be proven (see
Sect. 5.1). In our case the assertions are simple logical expressions, as used in Floyd
or Hoare style program verification (Floyd 1967; Hoare 1969). It is the task of our
WCET analysis to derive temporal properties from these simple stateful assertions.
A more feature-rich version of this approach was suggested by Lisper (2005). In
their survey of WCET annotation styles, Kirner et al. (2011) place this style in their
“other approaches” category. It is interesting that this approach is considered unusual,
while for us, approaching WCET analysis coming from formal verification makes
the approach seem entirely natural. Perhaps this is because user-supplied assertions
may require user-supported interactive verification. We are accustomed to doing such
verification, but others may consider it prohibitively expensive.

The CerCo “Certified Complexity” project (Amadio et al. 2013; Ayache et al. 2012)
set out to produce a compiler that would produce provably correct binaries together
with provably correct specifications of their execution time. The project followed in
the footsteps of the CompCert certifying compiler (Leroy 2009), building a compiler
directly within a formal apparatus complete with proofs of correct translation and
timing equivalence. The resulting execution time contracts can be extremely precise,
especially since the project mostly targets simple microprocessors with predictable
timing behaviour. Unfortunately this designmakes compiler optimisations particularly
complex to implement.

3.3 Verification

This paper discusses the design and verification of a simple preemptible algorithm (see
Sect. 5.2), with substantial design effort put into simplifying verification. Preemptible
and concurrent algorithms have been of great interest to the field of formal verification
for some while. This is partly because the verification of preemptible algorithms is
challenging (Schlich 2010; Andronick et al. 2015) and the verification of fully con-

123

Real-Time Syst (2017) 53:812–853 825

current algorithms is extremely challenging (de Roever et al. 2001; Feng et al. 2007;
Cohen and Schirmer 2010; Turon et al. 2014; Gammie et al. 2015).

OS kernels are also an attractive target for formal verification, given their small size
and critical importance. Starting with UCLA Secure UNIX (Walker et al. 2010) and
the KIT OS (Bevier 1989), a number of OS-verification projects have been attempted,
see Klein (2009) for detailed survey. In addition to seL4 (Klein et al. 2009), recent
projects include the Verisoft project (Alkassar et al. 2010), the Verve kernel (Yang
and Hawblitzel 2010) and the CertiKOS project (Gu et al. 2016). Of these projects,
the Verisoft and CertiKOS project are implemented in a similar manner to seL4,
using restricted C-like languages, whereas Verve experiments with much higher-level
language features. Using a high-level language simplifies producing a verified OS,
but probably means that the timing behaviour of the system will be too unpredictable
for real-time applications. The initial Verisoft project made very different simplifying
design decisions. The project sought to develop and verify a complete system stack,
including silicon architecture, operating system, compiler and end-user applications.
To accomplish this, Verisoft implemented simplified versions of all of these layers,
which introduces performance issues that would be an impediment in real-time use.
The recent CertiKOS project has similar goals and design to seL4, and also tackles
multicore design issues. Timing analysis forCertiKOS, including analysis of inter-core
timing issues, would be an interesting and challenging project.

4 WCET analysis

The design of the WCET analysis process is shown in Fig. 3. We extend the TV
framework to extract the control-flow graph (CFG) of the binary, and to provably
discover loop bounds. Chronos then reduces the WCET problem to an integer linear
program.We solve the ILP and pass the worst-case path of execution to the infeasible-
path module to be refuted. Given any refutations, we find a new worst-case path,
continuing until the candidate path cannot be refuted.

This repeated process of examining a candidate worst-case path and refuting infea-
sible ones was performed by hand in some of our former work (Blackham et al. 2011),
and generally reflects the “counterexample guided” approach to static analysis (Clarke
et al. 2003; Henzinger et al. 2003). The approach has also previously been used by
Knoop et al. (2013).

The rest of this section explains the various components in detail.

4.1 CFG conversion

In general, reconstructing a safe and precise binary CFG is difficult and error prone
due to indirect branches (Bardin et al. 2011; Kinder et al. 2009). In previous work,
we reconstructed the CFG from seL4’s binary using symbolic execution (Blackham
et al. 2011). The soundness of the CFG so obtained, and thus the resulting WCET
estimation, depended on the correctness of the symbolic execution analysis.

We now present a high-assurance approach to construction of the CFG. The decom-
piler generates the graph-language representation of the binary program, together with

123

826 Real-Time Syst (2017) 53:812–853

Fig. 3 Overview of dataflow in the analysis

a proof (in HOL4) that the representation is accurate. The representation consists of a
collection of graphs, one per function, with both the semantics and the binary control
flow embedded in the graph, and with function calls treated specially.

Chronos, in contrast, expects a single CFG in which function-call and -return edges
are treated specially. The two representations are logically equivalent, and we perform
the conversion automatically.The conversion alsogathers instructions into basic blocks
and removes some formal features, such as assertions that are not relevant to the binary
control flow.

In principle, the conversion could be done inside the decompiler, and we could
formalise the meaning of the CFG and prove it captured the control paths of the binary.
However, thismakes the relationship between the decompiler and TV frameworkmore
complicated, and we leave this to future work. Instead we perform the simplification
inside the TV framework for now.While this means that the CFG is not proved correct,
it is still highly trustworthy, since the most difficult phases have been performed with
proof.

4.2 Discovering and proving loop bounds

We employ two primary strategies for discovering loop bounds on the binary, both
utilise features of the existing TV toolset. The first constructs an explicit model of
all possible iterations of the loop, while the second abstracts over the effect of loop
iteration.

Consider this simple looping program:

for (i = 0; i < BOUND; i ++) {
x += val[i];
/* ... */
}

123

Real-Time Syst (2017) 53:812–853 827

The explicit strategy for discovering a loop bound is to have the TV toolset build an
SMTmodel1 of the program including values of i, x, etc, for each iteration of the loop
up to some bound. The model includes state variables for each step in the program,
and also a path condition. Loop bounds can be tested by testing the satisfiability of
various path conditions, e.g. a bound of 5 will hold if the path condition of the first
step of the 6th iteration of the body of the loop is unsatisfiable.

This approach is simple and fairly general. We can analyse complex loops by
considering, in SMT, all possible paths through them. However the size of the SMT
model expands linearly with the size of the hypothetical bound. As SMT solving
is, in general, exponential in the size of the problem, this approach is limited to
loops with small bounds. In practice we have been able to find bounds up to 128 this
way.

If we suppose BOUND in the loop above is 1024, the explicit approach would be
impractical. However, it is intuitively clear that this simple loop stops after 1024 steps,
because variable i equals the number of iterations (minus 1) and must be less than
1024. The abstract strategy replicates this intuition.

For this strategy we have the TV toolset generate an SMTmodel for loop induction.
This includes all the program up to and including the first iteration of the loop, and
then fast-forwards to some symbolic n-th iteration, and includes the next iteration or
two after that. The variable state at the n-th iteration is unknown. In the above example
we can prove that i is one less than the iteration count. We prove that it is true in the
initial iteration, and then, assuming that it is true at the symbolic iteration n, we prove
it is true at iteration n + 1. This is a valid form of proof by induction, and is closely
related to the induction done by the TV toolset for matching related loops in the source
and binary.

This strategy applies equally well at the binary level. Consider this disassembled
binary code fragment:

e1a00004 mov r0, r4
ebfffffe bl 0 < f >
e2844004 add r4, r4, #4
e3540c01 cmp r4, #256 ; 0x100
1afffffa bne 4568 < test+0x8 >

This code is a loop which increments register r4 by 4 at every iteration. We can
prove by induction in the above manner that the expression r4−4n is a constant,
where n is the iteration count as above.2 We reuse a preexisting TV feature which
discovers these linear series and sets up the inductive proofs.

The above example is complicated by the looping condition, which is r4 != 256
rather than r4 < 256. We show the additional invariant r4 < 256 by induction.
The abstract strategy contains a feature for guessing inequalities of this form that may

1 Here and later we use “SMT model” to mean a set of definitions in the SMT language, used to phrase a
satisfiability query, rather than a satisfying model of such a query.
2 This expression is constant at each address in the loop. If the initial value of r4 were 4, the expression
would be evaluate to the constant 0 whenever execution was at the first two instructions, but 4 after the add
instruction.

123

828 Real-Time Syst (2017) 53:812–853

be invariants. It assembles these inequalities by inspecting the linear series and the loop
exit conditions, and then discovers which of its guesses can be proved by induction.
In this example, the proof requires the knowledge that the initial value of r4 was less
than 256 and divisible by 4.

Once we have the inequality r4 < 256, the loop bound of 64 can be proved
easily. Any larger bound will also succeed, which is convenient, because it allows us
to refine any bound we guess down to the best possible bound by means of a binary
search. The SMT model does not change from query to query during this search, only
the hypothesis that fixes n to some constant. SMT solvers supporting incremental
mode can answer these questions very rapidly.

These two strategies do all the work of finding loop bounds, but as presented are not
powerful enough for all loops. We extend them in three ways to cover the remaining
cases: (i) using C information, (ii) using call-stack information, and (iii) moving the
problem to the C side.

The first extension, using C information, exploits correctness conditions in the C
programwhile reasoning about the binary. Thisworks because theTVproof establishes
that each call to a binary symbol in the trace of execution of a binary program has a
matching C function call in a matching trace of C execution.

Consider, for instance, these C and binary snippets:

int
f (int x, int y) {
x += 12;
/* ... */
return 2;
}

0000f428 < f >:
f428: e92d4038 push {r3, r4, r5, lr}
f42c: e1a05001 mov r5, r1
f430: e280400c add r4, r0, #12
...
f464: e3a00002 mov r0, #2
f468: e8bd4038 pop {r3, r4, r5, lr}
f46c: e12fff1e bx lr

The calling convention relates visits to the two functions f. A binary trace in which
address0xf428 is visited three timeswill bematched by a C trace inwhich f is called
at least three times, with the register values r0, r1 matching the C values x, y at the
respective calls.3 The TV proof has already established this, so the WCET analysis
can consider this C execution trace simultaneously with the binary execution trace.
Concretely this means that SMT problems will contain models of both binary f and

3 The story is a little more complex. Some calls to f in the source code may not be present in the binary
thanks to inlining, and functions which are known not to inspect memory may be moved across memory
updates. The TV tool picks a particular concrete input relation for each binary function, and proves that
this holds at all its call sites.

123

Real-Time Syst (2017) 53:812–853 829

the matching C f. The correctness conditions of the C fwill be taken as assumptions.
The x += 12 line in f above, for instance, tells us that adding 12 to either x or r0
must not cause a signed overflow.

The second extension, use of call-stack information, is useful in the case where
the bound on a loop in a function is conditional on that function’s arguments. Com-
mon examples include memset and memcpy, which take a size parameter, n, which
determines how many bytes to loop over. To bound the loop in memset, we must
look at the values given to n at each of its call sites. We might in fact have to consider
all possible call stacks that can lead to memset. Concretely this means that the SMT
model will also include a model of the calling function up to the call site, and the input
values to memset will be asserted equal to the argument values at the call site. This
additional information then feeds into the two core strategies above.

The final extension,moving the problem to the C side, maximises the use of the TV
framework, by asking it to relate the binary loop to some loop in the C program. If the
TV toolset can prove a synchronizing loop relation, that implies a relation between
the C bound and the binary bound. The explicit and abstract strategy can then be
applied to the C loop to discover its bound. It is convenient that both programs are
expressed in the same language inside the TV framework, so we can use exactly the
same apparatus. Finding the C bound will sometimes be easier because dataflow is
more obvious in C. It also ensures that assertions placed in the body of the C loop will
be directly available in computing the loop bound.

Bydefault the apparatuswill set up anSMTmodelwhich includes the target function
and the matching C function. If the function is called at a unique site, we also include
its parent and its parent’s matching C function. If no bound is found directly, we try
to infer a bound from C. If this also fails, we add further call stack information as
necessary, by considering all possible call stacks that can lead to our loop of interest.

4.3 Refuting infeasible paths

Refuting an impossible execution path amounts to expressing the conditions that must
be satisfied for the execution to follow that path, and testing whether all those con-
ditions are simultaneously satisfiable. The TV toolset reasons about path conditions
by converting them into boolean propositions in the underlying SMT logic. It is then
straightforward to have the SMT solver test whether a collection of path conditions is
possible.

To narrow the search space, we only attempt to refute path combinations that appear
in a candidate execution trace. The final ILP solution produced by running Chronos
and CPLEX specifies the number of visits to each basic block, and the number of
transitions from each basic block to its possible successors. Since some basic blocks
will be visited many times, with multiple visits to their various successors, we may
not be able to reconstruct a unique ordering of all blocks in the execution. Instead, we
collect a number of smaller arcs of basic blocks that must have been visited together
in a single call to a function. We can also link some of these arcs with arcs that must
have occurred in their calling context.

123

830 Real-Time Syst (2017) 53:812–853

The refutation process then considers each of these arc sections, and checkswhether
they are simultaneously satisfiable as described above. If the combination is unsatis-
fiable, we reduce it to a single minimal unsatisfiable combination, and export an ILP
constraint equivalent to this refutation.

This approach is simpler than our previous work, where we consider much larger
sets of path conditions and use the CAMUS algorithm to find all minimal conflicts
(Blackham et al. 2014). The trade-off is that, after eliminating refuted paths, we have
to re-iterate the process on the next candidate ILP solution. We believe this approach
will usually be more efficient, since the candidate solutions will probably converge on
the actual critical path quickly and we will consider only a small fraction of the path
combinations of the binary. There is however the possibility, which we have not yet
encountered, that the cost of repeated ILP solving will outweigh the benefits of this
approach.

4.4 Manual intervention: using the C model

The techniques described in the two preceding subsections discover loop bounds and
refute infeasible paths automatically. In cases where these fail, we can manually add
(and prove) relevant properties at the C level. Besides the assurance gained by the for-
mal, machine-checked proofs, our ability to leverage properties that can be established
at the C level is a powerful tool that most distinguishes our approach from previous
work, including our own (Blackham et al. 2014).

In Sect. 4.2 we discussed how C correctness conditions, such as integer non-
overflow, can be assumed in the WCET process, by constructing simultaneous SMT
models of theC and binary programs.Manual assertions added to theCprogramappear
in exactly the same manner as assertions arising from the C standard. However, the
manual assertions we supply can be directly related to the WCET problem.

For ordinary (application) programs, such as the Mälardalen benchmarks, we
assume that the source conforms to theC standard, specifically that it is free of unspeci-
fied or undefined behaviour. This allows theTV toolset to assume somepointer-validity
and non-aliasing conditions which derive from the C standard, but would be hard to
discover from the binary alone. While this implies a potentially incorrect WCET
for non-standard conformant programs, standard conformance is essential for safety-
critical code, and can (and should!) be verified with model-checking tools. In fact,
industry safety standards, such as MISRA-C (MISRA 2012), which is mandatory in
the transport industry, impose much stronger restrictions.

Additionally, the C-to-Isabelle parser provides syntax for annotations in the form
of specially-formatted comments, which add assertions to the C model. This feature is
used occasionally in seL4 for technical reasons to do with the existing verification. We
can reuse this mechanism to explicitly assert facts which we know will be of use to the
loop-bound and infeasible-path modules. The assertions create proof obligations in
the existing proofs, whichmust be discharged, typically by extending the hand-written
Isabelle proofs about the kernel. We will describe our changes to the kernel, and its
verification, in the following section.

123

Real-Time Syst (2017) 53:812–853 831

This samemechanism can be used for application code, if an assertion can be known
with certainty (eg. by proving it through model checking).

5 Improving seL4 WCET

The seL4 kernel is designed for a number of use cases, including a minimal real-
time OS. While the kernel’s design broadly supports this use case, a number of non-
preemptible operations are known to have long running times, which is a problem for
timeliness. We have previously shown that by adding further preemption points to the
kernel we can reduce its WCET to a level competitive with a comparable real-time OS
(Blackham et al. 2012). Unfortunately some of these modifications increase the code
complexity of some operations dramatically, impacting average-case performance and
complicating verification.

This section describes two modifications we have made to verified seL4 to improve
itsWCET bound. Firstly, we add a number of assertions to the source code, supporting
ourWCET analysis as described above. These changes have all been incorporated into
the official verified seL4 as of its release at version 2.1 of January 2016. Secondly, we
pick one of the preemption points added in our previous work (Blackham et al. 2012),
adapt it to the current kernel design, and adjust the formal verification accordingly.
This is a significant step toward competitive WCET for the verified seL4 kernel.

5.1 Assertions

We add 23 source assertions to the kernel source to support the WCET analysis. With
these manual interventions, we can calculate and prove all loop bounds4 in the seL4
kernel binary, and eliminate the WCET-limiting infeasible paths. We add assertions
of five kinds.

1. We add an assertion that the “length” field of a temporary object is at maximum
16. This information actually exists in the binary, but to find it the WCET process
would have to track this information across several function calls. Instead, we
propagate this information through the preconditions of several proofs about the
C program. While manual, this process is not particularly difficult.
– There are 4 annotations of this kind.

2. We assert that each iteration of a lookup process resolves at least one bit of the
requested lookup key. The kernel uses a guarded page table (Liedtke 1994) for
storing user capabilities, in which each level of the table resolves a user-configured
number of bits. It is an existing proved kernel invariant that all tables are configured
to resolve a positive number of bits, thus, the loop terminates. The assertion is trivial
to prove from this invariant. Thus, the assertion transports the invariant into the
language of the WCET apparatus.
– There is 1 annotation of this kind.

4 Some loops in the binary are preemptible and do not have bounds.

123

832 Real-Time Syst (2017) 53:812–853

3. We assert that a capability cleanup operation performed during the exchange of
so-called reply capabilities cannot trigger an expensive recursive object cleanup.
Capability removal is the trigger for all object cleanup in seL4, however, this
cleanup operation targets a dedicated reply slot which can only contain reply
capabilities. This is the same information that we have in previous work provided
to the compiler to improve optimisation (Shi et al. 2013).
– This requires 7 annotations, six at the call sites of the capability cleanup oper-
ation, and one within the operation.

4. We assert that the number of bytes to be zeroed in a call to memzero is divisible
by 4 (the word length on our 32-bit platform). This implementation of memzero
writes words at a time and decrements the work remaining by the word length. The
stopping condition is that the work remaining is zero, which requires divisibility
to be reached.
– This is the only annotation of this kind.

5. Weassert that various objects are smaller than a configurablemaximumsize param-
eter.We do not specify in the seL4 source code what this parameter is. In particular
we establish that a number of zeroing and cache-cleaning operations cover fewer
bytes than this maximum size.
– There are 10 annotations of this kind.

The final assertion above is needed to address a WCET issue with the present
verified kernel version. The seL4 kernel allows a user level memory manager to use
the largest available super-page objects (16MiB) if it has access to sufficiently large
blocks of contiguous memory. Zeroing or cache-cleaning these pages are very long
running operations. The (trusted) initial user-level resource manager can avoid this
issue, by intentionally fragmenting all large memory regions down to chunks of some
given size.

This fragmentationmay addmodest overheads. Subsequent resourcemanagers will
have to perform more operations, and cannot employ super-pages. However this will
not create any further complications for application code.

We argue that the initial manager can ensure a size limit. To formalise this argument,
we prove as an invariant across all kernel operations that all objects are smaller than
the configurable size limit, which establishes the assertions. This invariant holds for
any given size limit, onwards from the first point in time that it is true. Thus, once
the initial resource manager configures the system appropriately, the invariant remains
true for the system lifetime. The resource manager may choose what size limit to set.
For the WCET analysis, we will assume a particular value for the limit, in this case
64KiB.

This configurable value, and our assertion that it equals 64KiB, are “ghost data”
added to the C program. The actual C program and binary do not manipulate this
variable anywhere, but the Isabelle model contains all the assertions about it.

Should the initial configuration violate the constraint, the system’s operation will
still be functionally correct, but the WCET bounds are no longer guaranteed.

Note that since all four types of manual assertions are specified at the source level,
they will still be available if the kernel is re-compiled. We do not expect to have to
add further annotations until major code changes require them. The compiler might,

123

Real-Time Syst (2017) 53:812–853 833

however, move information out of scope by changing the inlined structure of the
binary, which might require further manual intervention. Clearly, in any case, the
WCET analysis must be rerun on each actually-deployed binary.

5.2 Design of preemptible zeroing

We want to achieve the best possible WCET for a fully verified kernel. Ideally we
would accomplish this by incorporating all the prototype changes we previously made
to seL4 (Blackham et al. 2012) into the verified version. As a first step towards this, we
incorporate and verify one major change: making object creation preemptible. This
allows the kernel to create large objects (e.g. 16MiB super pages) without compro-
mising its WCET.

Objects are created as part of the seL4 invokeUntyped_Retype operation.
This is an operation on a so-called untyped memory region, a range of kernel memory
available to user-level resource allocators to create various kinds of kernel objects.
The Retype operation may both remove old objects from an untyped region and create
new ones. Creating new objects mainly involves zeroing the relevant memory. The
removal of old objects only impacts the verification picture of the kernel memory, as
the objects must be unreachable to the implementation already.

To make the Retype operation preemptible, we split the creation phase into two
phases, the first zeroing all the relevant memory, the second doing the necessary
object setup. The preemption point is inserted in the zeroing phase. Object setup given
zeroed memory is fast enough even for large objects. Zeroing a large range of memory
in blocks and adding a preemption point is straightforward except for the problem of
ensuring progress.

Ensuring progress is the challenging aspect of seL4’s abort-style preemption model
(see Sect. 2.8). Some long-running operations, such as emptying a linked list, can be
preempted and resumed easily. The resumed operation continues unlinking elements
from the list in exactly the samemanner as the initially aborted operation. In fact, there
is no need to detect that the operation was previously begun and aborted. Zeroing
a large region, however, cannot be efficiently resumed without some knowledge of
how much memory has already been zeroed. Adding preemption points to operations
of this kind requires storing more information about the progress of the operations
within the objects being manipulated. This additional information, and its consistency
requirements, then complicates the rest of the implementation and verification.

The Retype operation can scan a capability-related structure to determine whether
all the objects in the untyped region have become unreachable. The first-ever Retype
implementation would check the region was reusable, then fill the region with newly
initialised objects in a single step. In previous work (Blackham et al. 2012) we adjusted
this process to be preemptible by using a spareword to store a count of howmuch of the
untyped region had been zeroed out. The Retype operation would preemptibly expand
this zero region and then fill it with new objects. This implementation is sketched on
the left side of Fig. 4.

Unfortunately this spare word is no longer spare. The seL4 API has been updated to
allow untyped regions to be used incrementally, and the additional word nowmeasures

123

834 Real-Time Syst (2017) 53:812–853

Fig. 4 Preemptible Retype designs from previous and current work. Previous steps (left): Starting state
is junk data. 1–3: Preemptibly zero the region. 4 Complete zeroing and create new objects. 5–6 Objects
become unreachable over time. New steps (right): Starting state is zeroed region. 1–4 Objects are created
in separate system calls, and may also expire. 5 All remaining objects expire. 6–9 Preemptible zeroing of
the region, one chunk at a time

the amount of space still available. The incremental Retype implementation allocates
new objects from the start of this available space, except in the case where it can detect
that all objects previously in the untyped range have expired, in which case it resets
the untyped range and begins from the start.

We want to support both incremental allocation and incremental initialisation, but
we have only one spare word available. The key insight to solving this problem is to
make the available space and the zeroed space the same. Untyped objects continue to
track the amount of space available for new objects, but now the space available (for
use) is also the part that is known to be zeroed – a new system invariant. The special
case of the Retype operation where the untyped range can be reset must now zero the
contents of the untyped range as well as marking it available. The zero bytes are also
flushed from the cache to main memory.

A peculiarity of this design is that the zeroing happens backwards. The existing API
specifies that objects are created forward from the beginning of the untyped range, so
the available range is always at the end. Thus the zeroing process, which expands the
available range, must begin at the end of the range and proceed towards the start. In
fact we subdivide the region to be zeroed into chunks (with a default size of 256 bytes)
and zero the chunks in reverse order but each individual chunk in forwards order, for
better expected cache performance.

5.3 Verification of preemptible zeroing

The implementation of the preemptible zero operation is straightforward, requiring
the addition of 62 lines to seL4’s C code and the removal of 56. Roughly half (32
lines of C) of the addition is the new preemptible zero function, and roughly half (24
lines) of the lines removed were memory zero and cache clean function calls within

123

Real-Time Syst (2017) 53:812–853 835

the creation routines for various specific object types. We make similar modifications
to the two higher-level specifications of seL4.

The verification of these changes, however, is farmore involved. The final changeset
committed to the proofs requires roughly 20,000 lines of changes (diff reports 147
files changed, 11,805 insertions, and 9,390 deletions.) This required 9 weeks of work
for a verification engineer with extensive experience with the seL4 proofs.

The main reason the verification is so complex is that the Retype process has some
of the most involved proofs in the kernel. Most operations manipulate one or two
objects at a time, preserving the types of all objects, whereas Retype not only changes
types, but it requires several component operations to accomplish this (clearing the
region of old objects, updating the untyped range, creating new objects, issuing caps
to them, etc). The new proof of invariant preservation for Retype, for instance, is
assembled from 31 different sub-lemmas about the component operations. One of
these sub-lemmas concerns the new preemptible zero operation. In addition to adding
this lemma, the proof structure had to be substantially modified.

We must also verify a new invariant, that the available section of each untyped
range of memory is zeroed. Similar invariants in seL4 are proven at the specification
levels, and apply to the implementation thanks to the functional correctness proof.
Unfortunately this is impossible for this invariant, since the specifications do not
accurately track the contents of the relevant memory. Different regions of memory
are treated differently in the kernel’s specifications. Memory shared with user tasks
is represented as-is. Memory used by kernel objects is represented by abstractions of
those objects, so the specifications do not need to specify the in-memory layout of
these objects.

However, the memory in the available untyped ranges is neither covered by kernel
objects nor sharedwith users. Thuswe cannot prove anything about it using the existing
specifications. To address this, we add a field to the specification state which tracks
the locations of the untyped ranges expected to be zeroed, and require memory there
be zeroed as an additional component of the state relation between the specification
state and C memory model. This complex approach then requires numerous changes
to the proofs.

After the verification of this change was completed, it was included in the offi-
cial seL4 development version (see https://github.com/seL4/seL4/commits/03c71b6).
This change also appears in official seL4 relases from 4.0.0 onwards.

6 Evaluation and discussion

6.1 Loop bounds in seL4

We successfully compute the bounds of all 69 bounded loops in seL4 version 3.1.0,
which is in contrast to our earlier work, which only succeeded on 18 of 32 loops5 (56%)
(Blackham andHeiser 2013). A further 5 loops in the binary contain preemption points

5 Note that the total number of loops here is higher than in our earlier work. This results from this work
targeting the verified kernel, and thus using preemption points less aggressively, see Sect. 2.2.

123

https://github.com/seL4/seL4/commits/03c71b6

836 Real-Time Syst (2017) 53:812–853

and have no relevant bound, these are bounded by the preemption limit, as discussed
in Sect. 2.2.

Computing all the bounds in the kernel demonstrates that our approach is sufficient
for a real-world real-time OS.

To more thoroughly investigate ourWCET apparatus and our kernel modifications,
we go on to analyse three different versions of seL4, and six differentWCETproblems:

– 3.1.0-64K: The standard verified kernel, as of version 3.1.0, with all system calls
enabled and a 64KiB object size limit (see Sect. 5.1).

– 3.1.0-static: The standard verified kernel, version 3.1.0, in a “static” system con-
figuration with most complex system calls forbidden.

– preempt-64K: Our branch of the kernel, with preemptible zeroing for object cre-
ation, as discussed in Sect. 5.2, with a 64Kib object size limit.

– preempt-nodelete: Our branch of the kernel, with no object size limit. This is
not exactly a “static” variant, since creation of new objects of arbitrary size is
allowed. However deletion of objects, and various cache management operations,
are forbidden.

– rt-branch-64K: The “RT” branch of seL4 as of version 1.0.0. This is an officially
maintained but experimental version of seL4 which introduces a more powerful
and principled scheduling and timing model (Lyons and Heiser 2016), designed
to provide better support for mixed-criticality systems. We assume a maximum of
10 scheduling contexts and also impose a 64KiB object size limit. As scheduling
contexts represent independent (asynchronous) threads of execution, 10 seems a
reasonable limit for most critical real-time systems, although it is likely too restric-
tive for mixed-criticality systems.We will revisit these bounds when analysing the
advanced real-time features more thoroughly.

– rt-branch-static: The same RT branch, version 1.0.0, in a “static” configuration
without complex system calls, and with a maximum of 10 scheduling contexts.

We want to demonstrate a number of points through these studies. Firstly, we want
to show that the WCET apparatus we have built works for a number of cases and
a realistic system. We also want to show that the current kernel can achieve modest
WCET performance goals if some limits are placed on the way its API is used, and that
planned adjustments to the scheduling API will not invalidate this. Finally, we show
that the verification we have done of new preemption points can be used to allowmore
of the kernel’s API to be exercised without compromising WCET. In future work we
hope to complete and combine all of these endeavours, resulting in a verified OS with
a general API, predictable real-time scheduling behaviour and a competitive WCET.

Note that the “static” and “nodelete” variants have identical source and binary to
the more permissive environments. For the latter, we exclude a large fraction of the
binary from analysis by assuming that certain functions in the binary will never be
reached. Thanks to seL4’s capability-based access control, it is possible for the initial
supervisor to enforce these restrictions (this was discussed in Sect. 2.7). The loop
analysis and infeasible path analysis use these limitations to quickly exclude loops
and refute paths.

In all these configurations, we also make one change to the kernel’s standard build-
time configuration, to adjust a configurable limit called the “fan-out limit” to the

123

Real-Time Syst (2017) 53:812–853 837

minimum. We make this change everywhere, but it is irrelevant for the “static” con-
figurations. This avoids an issue involving a nested loop with a complex bounding
condition.6 We compile the kernel with gcc-4.5.1 with optimisation setting -O2,
which is the default for building the kernel.7 Finally, we remove the static keyword
from a small number of sites. This preventsGCC from inlining somany other functions
into a single symbol that the resulting block runs for several thousand instructions and
dominates the analysis time.

The success rates of the strategies discussed in Sect. 4.2 are listed in Table 1. The
explicit strategy typically discovers smaller bounds, and the abstraction strategy finds
all the higher bounds, which vary from 16 up to 8192. The exception is a bound of
32 discovered by the explicit strategy on the C program. This is the capability lookup
loop, manually annotated, which we discussed in Sect. 4.4. This bound is transferred
across the TV relation to bound the binary loop implicitly. A small number of loops
cannot be boundedwithout considering each case of their calling contexts individually.
This is reported in our framework as a fourth strategy, and the subproblems are always
solved by the two main strategies. We have not investigated which solvers solve the
(small collection of) subproblems.

The “static” and “nodelete” variants exclude far more loops as unreachable. Loops
containing preemption points are also detected and excluded by the same mechanism.

Some of the loops in the “RT” branch of the kernel are limited by the number of
scheduling contexts, or other limits related to system configuration. These bounds
could be discovered if appropriate annotations were added, using similar configurable
limits to the object size limit. However, the “RT” branch is still in a rapid development
phase, with further major code changes expected. Once the branch is more mature and
verification is underway, we will carefully address the loop bound issue. Until then,
we let the bound discovery process fail, and manually add appropriate loop bounds
based on the symbol names of the binary functions in which the loops appear.

6.2 Loop analysis timing

The analysis time for each loop differs greatly, with the explicit strategy discovering
small bounds in under a second in some cases and some analysis attempts taking
several minutes. To investigate this further, we have timed the loop analysis for the six
configurations above.

The overall running time for the six variants varies enormously, between 20 and 90
minutes for the versions similar to seL4 3.1.0, and far longer for the experimental RT
branch. Themajority of the running time is spent in the various loop analysis strategies,
as listed in Table 2, with a smallminority of the timemeasured spent preparing analysis
problems in the TV framework and otherwise unaccounted for. All timing is done on
a desktop machine with an Intel i7-4770 CPU running at 3.40GHz and 32GiB RAM.

6 The minimum setting, 1, eliminates the outer loop entirely.
7 Higher optimisation settings usually result in larger binaries, and instruction cache pressure is known to
be an important factor in microkernel performance.

123

838 Real-Time Syst (2017) 53:812–853

Ta
bl
e
1

L
oo

p
bo

un
ds

fo
un

d
by

di
ff
er
en
ts
tr
at
eg
ie
s

se
L
4
ve
rs
io
n

3.
1.
0

Pr
ee
m
pt
ib
le

R
T

C
on
fig

ur
at
io
n

G
en
er
al

St
at
ic

G
en
er
al

N
od
el
et
e

G
en
er
al

St
at
ic

E
xp

lic
it
m
od

el
20

28
%

8
11

%
18

29
%

11
17

%
19

24
%

7
8%

A
bs
tr
ac
tio

n
42

60
%

5
7%

35
56

%
8

12
%

42
53

%
5

6%

Fr
om

C
1

1%
1

1%
1

1%
1

1%
1

1%
1

1%

C
al
lc
as
es

1
1%

0
0%

0
0%

0
0%

3
3%

2
2%

Sk
ip
pe
d
(p
re
em

pt
io
n
et
c)

6
8%

56
80

%
8

12
%

42
67

%
8

10
%

58
74

%

N
ot

fo
un

d
0

0%
0

0%
0

0%
0

0%
5

6%
5

6%

To
ta
l

70
70

62
62

78
78

123

Real-Time Syst (2017) 53:812–853 839

Ta
bl
e
2

L
oo
p
an
al
ys
is
tim

e
br
ea
kd
ow

n

St
ra
te
gi
es

Se
tu
p

U
na
cc
ou
nt
ed

To
ta
l

3.
1.
0-
64

K
40

55
s

84
.0
%

20
1
s

4.
2%

57
3
s

11
.9
%

4,
82

8
s

(1
:2
0:
28

)

3.
1.
0-
st
at
ic

75
7
s

53
.4
%

10
2
s

7.
2%

56
0
s

39
.4
%

1,
41

9
s

(0
:2
3:
39

)

Pr
ee
m
pt
-6
4K

2,
83

5
s

63
.8
%

18
5
s

4.
2%

14
24

s
32

.0
%

4,
44

4
s

(1
:1
4:
04

)

Pr
ee
m
pt
-n
od

el
et
e

10
78

s
62

.3
%

10
6
s

6.
1%

54
6
s

31
.6
%

17
30

s
(0
:2
8:
50

)

rt
-b
ra
nc
h-
64

K
12

,0
14

s
58

.5
%

34
9
s

1.
7%

81
64

s
39

.8
%

20
,5
27

s
(5
:4
2:
07

)

rt
-b
ra
nc
h-
st
at
ic

98
49

s
54

.1
%

24
8
s

1.
4%

81
01

s
44

.5
%

18
,1
97

s
(5
:0
3:
17

)

123

840 Real-Time Syst (2017) 53:812–853

 0.1

 1

 10

 100

 1000

 1 10 100

T
im

e
(s

ec
on

ds
)

Loop size (instructions)

 10 100 1000

Function size (instructions)

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

T
im

e
(s

ec
on

ds
)

Context size (instructions)

3.1.0-static
3.1.0-64K

preempt-nodel
preempt-64K

rt-branch-static
rt-branch-64K

Fig. 5 Correlation of loop, function and context size to analysis time

The analysis time is dominated by the execution time of the explicit and abstract
strategies, which is itself dominated by time spent running the SMT solvers. SMT
solving time is known to be exponential in the worst case and otherwise difficult to
estimate. The analysis runs on each loop separately, with broadly linear complexity
in the number of loops to be analysed. However, the analysis time varies enormously
between loops. We hypothesise that larger and more complex loops, and larger and
more complex SMT problems, are contributors to analysis time. More complex SMT
problems are in turn created by complex loop contexts: the total size of the function
the loop is in and any other functions from the calling context. Small bounds found by
the explicit strategy are also discovered more quickly than larger bounds found by the
abstract strategy, and falling back to the more complex strategies takes longer again.

The scatter plots in Fig. 5 test these hypotheses. They compare loop analysis running
time to the number of instructions in each loop, in its function and in its whole calling
context. These correlations go some way toward explaining expected running times.

The clearest indicators of the analysis time variation are the eventually discovered
bound and the eventually successful strategy. The plots in Fig. 6 clearly indicate this.
Small bounds can be discovered by the explicit strategy with only a couple of SMT
solver invocations. The abstract strategy must first discover and prove a number of
inductive invariants before making further progress. The TV transfer strategy is more

123

Real-Time Syst (2017) 53:812–853 841

3.1.0-static
3.1.0-64K

preempt-nodel
preempt-64K

rt-branch-static
rt-branch-64K

0.1

1

10

100

1000

1 10 100 100010000 None

T
im

e
(s

ec
on

ds
)

Bound discovered (loop iterations)
Explicit

Abstra
ct

From C
None

Successful strategy

Fig. 6 Correlation of loop bound and successful strategy to analysis time

complex again, as is considering various possible calling contexts. Not only are these
final strategies more expensive, they are run only once the previous strategies have run
and failed. Considering calling context cases does not appear in Fig. 6 as the relevant
statistics contain timing for each of the subproblems instead. The most consistently
expensive strategy is failure: running all strategies and failing to discover a bound
explains many of the most expensive outliers.

We have not yet provided source annotations to the “RT” branch to bound some
loops whose iteration limit depends on system configuration. Once the “RT” branch
matures further and verification begins, we will add the relevant annotations. Until
then we allow the process to fail. The time cost of failure of all the available strategies
largely explains the slow analysis time for the “RT” branch.

It is a downside of our implementation that analysis time is reasonable once the pro-
gram is sufficiently annotated, but the initial process of discovering which annotations
to add can be far more expensive.

6.3 Binary-only analysis and comparison to previous work

For comparison to previous work, we reran the analysis of the “static” case of seL4
3.1.0 with all C-level information discarded, only using information available in the
binary. The results are in Table 3. This mode makes more use of the last-resort strategy
of finding loop bounds by considering multiple calling contexts. We speculate that this
approach was needed less often in the previous analysis because assertions we provide
through the C code usually make this step redundant. In total we find 48 of 69 bounds
(70%) using only information from the binary. This is a slight improvement on the
level of coverage we achieved in our earlier work (56%), possibly because the abstract
strategy can discover some large bounds more easily than our previous approach, or
because of differences in the placement of preemption points. The reason the binary-

123

842 Real-Time Syst (2017) 53:812–853

Table 3 Loop bounds found without C-level information

This work Prior work

Full analysis Binary-only Blackham and Heiser (2013)

Explicit model 25 35% 16 22% N/A

Abstraction 42 60% 27 38% N/A

From C 1 1% 0 0% N/A

Call cases 1 1% 5 7% N/A

Excluded 1 1% 0 0% N/A

Total found 70 100% 48 69% 18 56%

Not found 0 0% 22 31% 14 44%

only strategies fail to find the remaining bounds are the same as in our earlier work:
inability to perform a memory aliasing analysis on the binary and the lack of an
invariant maintained by a loop’s environment.

6.4 Annotation reuse

The advantages of source-level annotation became obvious when re-running the anal-
ysis repeatedly. We began our work on a development version of seL4 prior to version
2.1.0, and have now repeated our analysis for a variety of successive versions, with
many intermediate changes. This includes a major maintenance patch which adjusts
over 500 source lines. The source level annotations were preserved across this adjust-
ment, so,whenwe switched versions, the automatic analysis immediately rediscovered
all but one of the expected loop bounds. The failure was because we had rebuilt the ker-
nel binary having forgotten to adjust the kernel build parameters as mentioned above.
This failure is also somewhat reassuring: the process is robust, in that the analysis
checks the assumptions we are making and will report failures if changes to the code
base invalidates them.

6.5 Loop bounds in the Mälardalen suite

We use the Mälardalen WCET benchmark suite (Gustafsson et al. 2010) to further
characterise the effectiveness of our approach. As in our previous such evaluation
(Blackham and Heiser 2013), we compile the C sources for the ARMv6 architecture,
with gcc (4.5.1) and the -O2 optimisation setting, and omit benchmarks using float-
ing point arithmetic. Floating point arithmetic is not presently supported by our C
semantics nor the Cambridge processor model (see Sect. 6.9).

The results are listed in Table 4. We must also omit a number of benchmarks which
we attempted in our previous work. The current design depends on the C parser and
TV toolset to handle both the C and binary resulting from each test problem. We
skipped some tests which employed the goto statement, took references to local
variables, or made extensive use of side-effecting operators such as «=, *p++, none

123

Real-Time Syst (2017) 53:812–853 843

Table 4 Mälardalen loop
bounds

Benchmark Loops Bounds Failures

BS 1 1 0

BSORT100 2 1 1

COVER 3 3 0

FDCT 2 2 0

FIBCALL 1 1 0

JFDCTINT 2 2 0

STATEMATE 1 0 1

of which are in our verification C subset. We also skipped some tests which involve
nested loops, which our TV toolset does not yet handle, or involve recursion8. The
TV toolset also rejects some use of padding in memory, but this was not an issue for
the remaining benchmarks. Finally, we skip the ndes test, which exposes an issue in
the decompiler’s stack analysis causing it not to terminate.

This highlights the tradeoff inherent in our approach. The TV apparatus is clearly
worth making use of, if we assume that it has already been successfully applied to our
target program. Likewise if there is a proof document, we should be making use of
the facts in it. The more tools we depend on, however, the more constraints we put on
the target program for all the tools to succeed. The seL4 kernel was designed with the
source verification in mind, and only needs slight adaptations for the TV process.

We discovered an interesting anomaly with the “bs” and “bsort100” benchmarks.
By default the tool discovers loops with a bound of zero, which defies common sense.
Restricting the use of the calling context or information from the C level results in
the correct bound, for “bs”, and a search failure for “bsort100”. Further investigation
reveals that the main function in the two benchmarks does not have a return
statement, despite having return type int. Reaching the end of a non-void function
is invalid C and the C parser forbids it. The WCET analysis makes use of exactly the
restrictions that the C parser checks, and so, since this failure occurs unconditionally
whenever main is entered, the system decides that main must be unreachable.

We could take additional care to avoid making use of C parser restrictions which
the programmer knowingly ignored. Since our tool is designed for a case where the
checks in the C model are proven true, we are confident that we can use them without
further analysis. Compilers must be more cautious, as even confident programmers
misunderstand theC standard, asDietz et al. (2012) have convincingly shown.We think
this is a strong argument for themerits of pairingWCETandTVanalysiswith a source-
level proof of safety [e.g. through static analysis, as required by MISRA-C (MISRA
2012)], as no safety-critical code should depend on invalid language constructs.

8 The TV toolset handles some very simple cases of limited recursion.

123

844 Real-Time Syst (2017) 53:812–853

Table 5 Infeasible path analysis statistics

seL4 version 3.1.0 Preemptible RT

Configuration General Static General Nodelete General Static

Initial est. (k cycles) 6894 1193 6888 1191 8256 781

Final est. (k cycles) 6349 532 6347 525 7397 682

Improvement 7.9% 55.4% 7.8% 55.9% 10.4% 12.6%

Analysis iterations 7 11 6 10 10 9

Total refutations 1854 2873 1887 3333 3814 2371

ILP solving time 708s 488s 642s 443s 2476s 942s

0:11:48 0:08:08 0:10:42 0:07:23 0:41:16 0:15:42

Unique contexts 1418 1456 1232 1331 4623 1937

Refutation time 5410s 8002s 5813s 10,775s 31,566s 5588s

1:30:10 2:13:22 1:36:53 2:59:35 8:46:06 1:33:08

Note the “RT” statistics were impacted by hand workarounds

6.6 Eliminating infeasible paths

We evaluate infeasible path elimination on the six seL4 configurations from above.
Note that the “static” and standard configurations of seL4 3.1.0 broadly match the
open and closed use cases that we evaluated in previous work (Blackham et al. 2011).
In the open systems all kernel operations are allowed. In the static/closed system,
user tasks are not given capabilities that would allow creation, deletion or recycling
of kernel objects (such as address spaces or thread-control blocks) once the system
is initialised. Our current “static” system restricts more operations than our previous
“closed” system because the previous analysis considered an seL4 variant with more
preemption points and fewer long-running operations.

The “static” and “nodelete” systems also forbid three particular operations for
cancelling message sends which have no satisfactory WCET in the currently verified
version of seL4. These problematic operations are also long-running for small target
objects, so the object size limitation does not help. We plan to eventually make these
operations preemptible, as we did in our previous work (Blackham et al. 2011), but
this time we plan to verify the preemptible implementations. Unfortunately we have
not yet had time for such a major verification effort. For the time being we perform
our WCET analysis as though these operations already contained preemption points.

The automated process iteratively identifies the worst-case execution trace and
eliminates paths within it, until no refutable paths are found. In all scenarios, a large
number of infeasible paths are found, with varying impact. The “static” variants see
a greater improvement, as shown in Table 5. The more general variants are typically
dominated by instances of a cleanup operation on a 64KiB sized object, which con-
tributes over 80% of the cycles spent. Refinement of paths outside the hot loop makes
little difference to the headline WCET. In the restricted variants, more of the kernel
code contributes to the WCET, creating more productive work for the infeasible path
analysis to do. The improvement is typically steady for a small number of iterations,

123

Real-Time Syst (2017) 53:812–853 845

as shown in Fig. 7, before continuing for a number of further iterations without a
significant change in WCET estimate.

The expensive cleanup operation which dominates the WCET is the same in each
of the general variants, with identical C code. Chronos produces a slightly higher
estimate of its cycle cost in the “RT” case. It seems likely that the variation is due to
differences in placement of the binary code across cache lines, although we have not
confirmed this.

We have inspected the worst-case paths by examining which binary function sym-
bols are called. The restricted cases all seem feasible in this regard, and we conclude
that the bounds are fairly tight. In the general cases, the function call graph is feasible,
however, the estimate is still not tight. The number of calls to the expensive cleanup
operation is too high. It is called from the capability cleanup process, a complex nested
loop bounded by preemption points. The discovered worst case path moves between
the outer and inner loops in a manner that calls twice as many object cleanup opera-
tions as preemption points. This path is not feasible, but our trace refutation process
cannot currently refute a path entangled in a loop in this manner.

Wecould improve the general estimates bymanually specifying amaximumnumber
of calls to the object cleanup mechanism, with the usual concerns about soundness.
We could also in principle extend the trace refutation process to handle these loops.
Encoding infeasible paths that interact with loops as ILP constraints can be complex,
but effective approaches have been found by others (Kim et al. 2010; Pascal 2014).
Discovering these refutations would also be challenging for us, for various reasons
involving the loop structure itself, alias-analysis for key variables stored on the stack,
and differences between the C and binary loop structures. We have not attempted to
solve these challenges. We plan in the future to add more preemption points to the
deletion processes, which will solve the problem indirectly.

The “RT” branch introduces a performance problem for our analysis. Not only does
it contain a few more loops, its function call graph is more connected, and contains
significantly more arcs through which loops can be reached. Chronos creates unique
ILP variables for each visit to each function through each possible context, which
means the “RT” branch is significantly more difficult for Chronos, the ILP solver,
and also the trace refutation process. This is seen in Table 5, which lists the number
of unique function calling contexts which are encountered in candidate traces during
the refutation process. These differences initially resulted in effective timeouts of
both Chronos and trace refutation, i.e. no results after 24 hours. We worked around
these problems by running Chronos on a different machine with more than 32GiB
RAM, by manually directing the refutation process to skip certain calculations, and
by manually excluding some paths in the initial problem. For this reason the times of
the “RT” column are not directly comparable to the others.

6.7 Performance

We studied the performance of the loop bound analysis in detail in Sect. 6.2. The trace
refutation process has some broadly similar characteristics. For instance, it focuses
individually on each function context with some calling context included, so it should

123

846 Real-Time Syst (2017) 53:812–853

3.1.0-64K
3.1.0-static

preempt-64K
preempt-nodelete

rt-branch-64K
rt-branch-static

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2 4 6 8 10 12

W
C

E
T

 b
ou

nd
 (

k
cy

cl
es

)

Iteration

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12

N
um

be
r

of
 r

ef
ut

at
io

ns
 fo

un
d

Iteration

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12

IL
P

 s
ol

vi
ng

 ti
m

e
(s

ec
on

ds
)

Iteration

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12

T
ra

ce
 r

ef
ut

at
io

n
tim

e
(s

ec
on

ds
)

Iteration

Fig. 7 WCET bound at each iteration, number of refutations discovered, ILP solving time, and trace
analysis time. Note again that manual intervention in the “RT” branch prevents direct comparison

scale linearly to cover a larger codebase with similar functions. However the total
running time is highly sensitive to the number of necessary iterations, which is deter-
mined by the number of paths through the binary that have WCET similar to that of
the critical path.

This variation is displayed in Fig. 7, which graphs the time taken during ILP solving
and path refutation for each iteration of each process. Broadly speaking, the ILP
solving phase is usually cheap, and the refutation process usually becomes faster as
the candidate path stabilises on the critical path. Substantial variation exists, including
an outlying refutation iteration for the “RT” branch which took nearly six hours to
complete.

There is substantial room for improvement in these performance characteristics.
The refutation phase employs sophisticated mechanisms to refute trace fragments,
but has no particular strategy in how to employ them. Figure 7 demonstrates that the
system discovers thousands of refutations which make little or no difference to the
estimated WCET. In the future we plan to extract data from the ILP problem as well
as the solution, and use this to prioritise trace fragments which are likely to have an
impact on the solution.

We also anticipate that the performance problem with the “RT” branch will be
resolved. This code will be verified as it matures, and the verification process itself
is likely to result in changes which make the codebase more amenable to analysis
in general. We may also make changes with the explicit intent of improving WCET,
which may include minor changes designed to improve analysis time.

123

Real-Time Syst (2017) 53:812–853 847

The seL4 3.1.0 kernel consists of about 9,000 source lines of code (SLOC) and
compiles to about 14,000 instructions in about 2,100 basic blocks. After virtual inlin-
ing by Chronos, this increases to an ILP problem for about 650,000 basic blocks.
Hypothetically the ILP solving phase, which is currently the cheapest phase, would
dominate the analysis for very large code bases. The analysis is helped by the small
average size of functions in seL4. If instead we analysed a codebase with a few very
large functions, we would produce much larger SMT problems. Our experience with
the Mälardalen benchmarks is that the size (number of statements) of the largest loops
has a heavy impact on the performance of the TV apparatus.

6.8 API availability and future work

The final WCET estimates for the preemption modified kernel and seL4 3.1.0 were
listed in Fig. 7. The key accomplishment of our verification is that the final WCET
estimate for the preempt-nodelete and 3.1.0-static variants are nearly identical. This
is despite the fact that the 3.1.0-static kernel is restricted to an entirely static system
configuration, whereas with the preemption change, new objects can be created while
the system is in real-time mode. This includes the creation of objects larger than the
64KiB maximum permitted in the 3.1.0-64K variant, even though the time taken to
complete the creation of these objects may be substantially longer.

This change already simplifies the construction of modular real-time systems on
seL4. In the 3.1.0-static use case, the initial supervisor task must coordinate the setup
of all address spaces and kernel objects itself, and it must complete this task before
the system becomes static and the real-time guarantees hold. In the preempt-nodelete
case, the supervisor can set up tasks in priority order, or delegate task setup to trusted
initialisation routines within each component. Since the object creations performed
during setup do not impair responsiveness, the high priority tasks can operate in a
real-time setting while lower priority tasks are still doing setup.

Unfortunately the supervisor cannot yet delegate setup to untrusted modules. As
we discussed in Sect. 2.7, seL4’s security API does not provides only coarse-grained
control over which operations a taskmay perform. An untrusted taskwith the authority
to create kernel objects can always create for itself a means to trigger deletion events.

This is only afirst step. The clear next step is to split up the long-running components
of the object deletion and cache management operations, which would allow a fully
dynamic task to run at low priority alongside a high-priority real-time application.
In the longer term, incorporating and verifying features of the seL4 real-time branch
will allow more complex real-time and mixed-criticality system designs. We hope
that future work will eventually result in a verified OS with a general API, flexible
real-time scheduling behaviour and a competitive WCET.

6.9 Limitations

We build on a number of existing tools and inherit their limitations. For instance,
the C-to-Isabelle parser does not support floating point arithmetic, string constants, or
taking the address of a local variable. It also requires the program to be single-threaded

123

848 Real-Time Syst (2017) 53:812–853

and to be written in clean C which strictly conforms to some aspects of the standard.
The HOL4 ARM model does not specify floating point or division operations (which
are optional on the relevant ARM cores). The TV framework does not discover loop
relations for nested loops, though it handles loops with multiple exit conditions.

None of these affect the analysis of seL4, which is unsurprising, as the parser
has been co-developed with seL4, and the HOL4 ARM model was enhanced to sat-
isfy the needs of the seL4 translation validation. Hence, the kernel code satisfies all
those limitations. Furthermore, nested loops can be accommodated if the inner loop
is encapsulated into a function.

While we use the proof apparatus from the TV framework extensively, we make
relatively little use of the TV proofs themselves; we only use the loop relations for a
few challenging loop bound problems. In principle, we could use the TV relation to
map every candidate binary execution trace back into a trace through the C program,
and therefore convert any path constraint we could discover in the C program into
a binary equivalent. Such an approach would be both theoretically and practically
attractive. It would allow us to always derive a binary control flow analysis as strong
as the best available source analysis.

There are two reasons we did not pursue this. Firstly it would be computationally
very expensive to map every binary branch back to its C counterpart (or lack thereof)
rather than just the looping conditions. Secondly, seL4 (like any OS kernel) contains a
small number of hardware-control routines that use in-line assembly. As these are not
C, our C-to-Isabelle parser cannot understand them. This creates a number of “blind
spots” for the TV framework – functions which must simply be assumed to match
the semantics of the relevant binary routine. When the compiler is permitted to inline
aggressively (we use gcc -O2), it occasionally moves these simple routines upwards
into the loops they are called from. This means we depend on binary-only loop bound
analysis to operate within these blind spots.

7 Conclusions

We propose aWCET analysis approach supported by the functional correctness appa-
ratus used on the same program. In particular we build on a C source semantics used
for manual verification and a translation validation framework used for checking the
translation of the C source to the binary. Together these give us a convenient envi-
ronment for reasoning about binary execution and adding source level annotations if
necessary, without trusting either the compiler or the annotation author.

We apply this approach to the seL4 microkernel, and determine (tight) bounds on
all of the loops in its binary. The majority of bounds are found without providing any
additional information, while a few required adding extra assertions (which needed to
be proved) at the C level. After this one-off manual interference, all remaining loop
bounds are found and proved. All the discovered loop bounds seem to be tight.

Similarly, the tool chain (provably) refutes infeasible paths. While in this case there
is no guarantee that all such paths have been refuted, the result is comparable to earlier
work (which identified infeasible paths by manual inspection). The identified worst-

123

Real-Time Syst (2017) 53:812–853 849

case execution trace that remains after refutation concludes seems possible, though
this is laborious to confirm by inspection.

We have also shown via the Mälardalen benchmarks that the approach works,
in principle, for other real-time code that has not been formally verified, although
restrictions in our present toolchain limit the class of programs that can be analysed.
Obviously, without being able to leverage formal verification artefacts, the analysis is
less complete than in the case of seL4. However, the support for manual code annota-
tions to specify assertions can compensate for this, especially where such assertions
have been proved by other means, e.g. model checking.

Finally, we have used our framework to clearly enumerate the remaining real-time
deficiencies in the verified seL4 kernel as of version 3.1.0. We have implemented and
verified an improvement to the single largest deficiency, the object creation operation.
While plenty of work remains to be done before seL4 is a full-featured real-time oper-
ating system with complete verification and competitive WCET, this is a substantial
step in that direction.

In summary, we believe that the WCET analysis framework based on our
translation-validation toolchain constitutes a promising approach for establishing
WCET bounds on high-assurance software. In the specific case of the seL4 micro-
kernel, it constitutes a big step towards reaching a similar level of confidence in its
timeliness as already exists in its functional correctness.

Availability

The present analysis extends, and is integrated with, the existing TV framework.
The complete framework is available as open source (see https://ts.data61.csiro.au/
software/TS/ and https://github.com/SEL4PROJ/graph-refine).

Acknowledgements This material is based on research sponsored by Air Force Research Laboratory
and the Defense Advanced Research Projects Agency (DARPA) under agreement number FA8750-12-9-
0179. The U.S. Government is authorised to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory, the Defense Advanced Research Projects
Agency or the U.S. Government.

References

Amadio RM, Ayache N, Bobot F, Boender JP, Campbell B, Garnier I, Madet A, McKinna J, Mulligan DP,
Piccolo M, et al Certified complexity (CerCo) (2013) In: International workshop on foundational and
practical aspects of resource analysis. Springer, Berlin, pp 1–18

Ayache N, Amadio R, Régis-Gianas Y (2012) Certifying and reasoning on cost annotations in C programs.
In: FMICS 2012—17th international workshop on formal methods for industrial critical systems,
Paris, France, Aug 2012

Andronick J, Lewis C, Morgan C (2015) Controlled owicki-gries concurrency: reasoning about the pre-
emptible eChronos embedded operating system. In: van Glabbeek RJ, Groote JF, Höfner P (eds)
Workshop on models for formal analysis of real systems (MARS 2015), Suva, Fiji, pp 10–24, Nov
2015

123

https://ts.data61.csiro.au/software/TS/
https://ts.data61.csiro.au/software/TS/
https://github.com/SEL4PROJ/graph-refine

850 Real-Time Syst (2017) 53:812–853

Alkassar E, Paul W, Starostin A, Tsyban A (2010) Pervasive verification of an OS microkernel: inline
assembly, memory consumption, concurrent devices. In: O’Hearn P, Leavens GT, Rajamani S (eds)
VSTTE 2010. LNCS, vol 6217, Edinburgh, UK. Springer, pp 71–85, Aug 2010

Avionics Application Software Standard Interface (2012) ARINC Standard 653
Barhorst J, Belote T, Binns P,Hoffman J, Paunicka J, Sarathy P, Scoredos J, Stanfill P, Stuart D,Urzi R (2009)

A research agenda for mixed-criticality systems. http://www.cse.wustl.edu/~cdgill/CPSWEEK09_
MCAR/

Bevier WR (1989) Kit: a study in operating system verification. Trans Softw Eng 15(11):1382–1396
Bromberger AC, Peri Frantz A, Frantz WS, Hardy AC, Hardy N, Landau CR, Shapiro JS (1992) The

KeyKOS nanokernel architecture. In: USENIX WS Microkernels & other Kernel Arch. Seattle, WA,
US, pp 95–112

Blackham B, Heiser G (2013) Sequoll: a framework for model checking binaries. In: Tovar E (ed) RTAS,
Philadelphia, USA, pp 97–106, Apr 2013

Blanc R, Henzinger TA, Hottelier T, Kovács L (2010) ABC: algebraic bound computation for loops. In:
16th international conference on logic programming, artificial intelligence & reasoning. Springer, pp
103–118

Bardin S,HerrmannP,Védrine F (2011)Refinement-basedCFG reconstruction fromunstructured programs.
In: International conference on verification,model checking& abstract interpretation. Springer, Berlin,
pp 54–69

Blackham B, Liffiton M, Heiser G (2014) Trickle: automated infeasible path detection using all minimal
unsatisfiable subsets. In: West R (ed) RTAS, Berlin, Germany, pp 169–178, Apr 2014

Burguière C, Rochange C (2006) History-based schemes and implicit path enumeration. In: 6th WS worst-
case execution-time analysis

Blackham B, Shi Y, Chattopadhyay S, Roychoudhury A, Heiser G (2011) Timing analysis of a protected
operating system kernel. In: RTSS, Vienna, Austria, pp 339–348, Nov 2011

BlackhamB, ShiY,Heiser G (2012) Improving interrupt response time in a verifiable protectedmicrokernel.
In: EuroSys, Bern, Switzerland, pp 323–336, Apr 2012

Blackham B, Tang V, Heiser G (2012) To preempt or not to preempt, that is the question. In: APSys, ACM,
Seoul, Korea, p 7, July 2012

Clarke E, Grumberg O, Jha S, Yuan L, Veith H (2003) Counterexample-guided abstraction refinement for
symbolic model checking. J ACM 50(5):752–794

Cullmann C, Martin F (2007) Data-flow based detection of loop bounds. In: 7th WS worst-case execution-
time analysis

Cohen E, Schirmer N (2010) From total store order to sequential consistency: a practical reduction theorem.
In: Kaufmann M, Paulson L (eds) 1st ITP. LNCS, vol 6172. Springer, Edinburgh, UK, pp 403–418,
July 2010

Dietz W, Li P, Regehr J, Adve V (2012) Understanding integer overflow in C/C++. In: Proceedings of the
34th international conference on software engineering, ICSE ’12. IEEE Press, Piscataway, NJ, USA,
pp 760–770

de Roever WP, de Boer F, Hanneman U, Hooman J, Lakhnech Y, Poel M, Zwiers J (2001) Concurrency
verification: introduction to compositional and non-compositional methods. Cambridge Tracts in The-
oretical Computer Science

Dennis JB, Van Horn EC (1966) Programming semantics for multiprogrammed computations. CACM
9:143–155

Ermedahl A, Sandberg C, Gustafsson J, Bygde S, Lisper B (2007) Loop bound analysis based on a
combination of program slicing, abstract interpretation, and invariant analysis. In: WS worst-case
execution-time analysis

Feng X, Ferreira R, Shao Z (2007) On the relationship between concurrent separation logic and assume-
guarantee reasoning. In: ESOP. Springer, pp 173–188

Ferdinand C, Heckmann R, LangenbachM,Martin F, SchmidtM, Theiling H, Thesing S,Wilhelm R (2001)
Reliable and precise WCET determination for a real-life processor. In: EMSOFT. Springer, London,
UK, pp 469–485

Floyd RW (1967) Assigning meanings to programs. Math Asp Comput Sci 19:19–32
Fox A, Myreen M (2010) A trustworthy monadic formalization of the ARMv7 instruction set architecture.

In: Kaufmann M, Paulson LC (eds) 1st ITP. LNCS, vol 6172. Springer, Edinburgh, UK, pp 243–258,
July 2010

123

http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR/

Real-Time Syst (2017) 53:812–853 851

Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Mälardalen WCET benchmarks—past, present
and future. In: 10th WS worst-case execution-time analysis. OCG, Brussels, BE, pp 137–147, July
2010

Gustafsson J, Ermedahl A, Sandberg C, Lisper B (2006) Automatic derivation of loop bounds and infeasible
paths for WCET analysis using abstract execution. In: RTSS. IEEE Computer Society, Washington,
DC, US, pp 57–66

Gammie P, Hosking T, Engelhardt K (2015) Relaxing safely: verified on-the-fly garbage collection for x86-
TSO. In: Blackburn S (ed) PLDI 2015: the 36th annual ACM SIGPLAN conference on Programming
Language Design and Implementation. ACM, Portland, Oregon, United States, p 11, June 2015

Gu R, Shao Z, Chen H, Wu X, Kim J, Sjöberg V, Costanzo D (2016) An extensible architecture for building
certified concurrent OS kernels. In: OSDI, CertiKOS

Healy CA, Arnold RD,Müller F,Whalley DB, HarmonMarion G (1999) Bounding pipeline and instruction
cache performance. Trans Comput 48:63–70

Heiser G, Elphinstone K (2016) L4 microkernels: the lessons from 20 years of research and deployment.
Trans Comput Syst 34(1):1:1–1:29

Hergenhan A, Heiser G (2008) Operating systems technology for converged ECUs. In: 6th embedded
security in cars conference (escar), Hamburg, Germany, Nov 2008

Henzinger TA, Jhala R, Majumdar R (2003) Counterexample-guided control. In: 30th ICALP, Eindhoven,
The Netherlands, pp 886–902, July 2003

Hoare CAR (1969) An axiomatic basis for computer programming. CACM 12:576–580
ISO (2011) ISO26262: road vehicles—functional safety
Klein G, Andronick J, Elphinstone K, Murray T, Sewell T, Kolanski R, Heiser G (2014) Comprehensive

formal verification of an OS microkernel. Trans Comput Syst 32(1):2:1–2:70
Kim TH, Bang HJ, Cha SD (2010) A systematic representation of path constraints for implicit path enu-

meration technique. Softw Test Verif Reliab 20(1):39–61
Klein G, Elphinstone K, Heiser G, Andronick J et al (2009) seL4: formal verification of an OS kernel. In:

SOSP, Big Sky, MT, US, pp 207–220, Oct 2009
Kirner R, Knoop J, Prantl A, Schordan M, Kadlec A (2011) Beyond loop bounds: comparing annotation

languages for worst-case execution time analysis. Softw Syst Model 10(3):411–437
Knoop J, Kovács L, Zwirchmayr J (2011) Symbolic loop bound computation for WCET analysis. In:

International Andrei Ershov memorial conference
Knoop J, Kovács L, Zwirchmayr J (2013) WCET squeezing: On-demand feasibility refinement for proven

preciseWCET-bounds. In: Proceedings of the 21st international conference on real-time networks and
systems, RTNS ’13. ACM, New York, NY, USA, pp 161–170

Klein G (2009) Operating system verification—an overview. Sādhanā 34(1):27–69
Kinder J, Zuleger F, Veith H (2009) An abstract interpretation-based framework for control flow recon-

struction from binaries. In: 10th International conference on verification, model checking & abstract
interpretation. Springer, pp 214–228

Lokuciejewski P, Cordes D, Falk H, Marwedel P (2009) A fast and precise static loop analysis based on
abstract interpretation, program slicing and polytope models. In: 7th symposium code generation &
optimization. IEEE Computer Society, Washington, DC, US, pp 136–146

Leroy X (2009) Formal verification of a realistic compiler. CACM 52(7):107–115
Lyons A, Heiser G (2014) Mixed-criticality support in a high-assurance, general-purpose microkernel. In:

Davis R, Cucu-Grosjean L (eds) WS mixed criticality system, Rome, Italy, pp 9–14, Dec 2014
Lyons A, Heiser G (2016) It’s time: OS mechanisms for enforcing asymmetric temporal integrity. arXiv

preprint
Liedtke J (1994) Page table structures for fine-grain virtual memory. In: IEEE Technical Committee on

Computer Architecture Newsletter, Oct 1994
Lisper B (2005) Ideas for annotation language (s). Technical report, Technical Report Oct. 25, Department

of Computer Science and Engineering, University of Mälardalen
Li X, Liang Y, Mitra T, Roychoudhury A (2007) Chronos: a timing analyzer for embedded software. Sci

Comput Program Spec Issue Exp Softw Toolkit 69(1–3):56–67
Li Y-T, Malik S (1995) Performance analysis of embedded software using implicit path enumeration. In:

Proceedings of the 32nd ACM/IEEE design automation conference. ACM, pp 456–461, June 1995
Lundqvist T, Stenström P (1998) Integrating path and timing analysis using instruction level simulation

techniques. In: Proceedings of the ACM SIGPLAN workshop on languages, compilers and tools for
embedded systems. LNCS. Springer, Montreal CA, June 1998

123

852 Real-Time Syst (2017) 53:812–853

Li Y, West R, Missimer ES (2013) The quest-V separation kernel for mixed criticality systems. In: WS
mixed criticality system, pp 31–36, Dec 2013

MISRA (2012) Guidelines for the Use of the C language in critical systems
Murray T, Matichuk D, Brassil M, Gammie P, Bourke T, Seefried S, Lewis C, Gao X, Klein G (2013) seL4:

from general purpose to a proof of information flow enforcement. In: S&P, San Francisco, CA, pp
415–429, May 2013

Martin WB, White PD, Taylor FS (2002) Creating high confidence in a separation kernel. Autom Softw
Eng 9(3):263–284

Nipkow T, Paulson L, Wenzel M (2002) Isabelle/HOL—a proof assistant for higher-order logic. LNCS, vol
2283. Springer, Berlin

Puschner P, Koza C (1989) Calculating the maximum execution time of real-time programs. Real-Time
Syst 1(2):159–176

Prantl A, Knoop J, Kirner R, Kadlec A, SchordanM (2009) From trusted annotations to verified knowledge.
In: WS worst-case execution-time analysis, Dublin, IE, pp 35–45, June 2009

Park CY, Shaw AC (1991) Experiments with a program timing tool based on source–level timing schema.
Trans Comput 24(5):48–57

Raymond P (2014) A general approach for expressing infeasibility in implicit path enumeration technique.
In: Proceedings of the 14th international conference on embedded software. ACM, pp 8

Rieder B, Puschner P, Wenzel I (2008) Using model checking to derive loop bounds of general loops within
ANSI-C applications for measurement based WCET analysis. In: 2008 International Workshop on
intelligent solutions in embedded systems, pp 1–7, Jul 2008

RTCA (1992) DO-178B: Software Considerations in Airborne Systems and Equipment Certification
RTCA (2011) DO-178C: Software Considerations in Airborne Systems and Equipment Certification
Rushby J (1981) Design and verification of secure systems. In: SOSP, Pacific Grove, CA, USA, pp 12–21,

Dec 1981
Shi Y, Blackham B, Heiser G (2013) Code optimizations using formally verified properties. In: OOPSLA,

Indianapolis, USA, pp 427–442, Oct 2013
SchlichB (2010)Model checking of software formicrocontrollers. ACMTrans EmbedComput Syst 9(4):36
Sewell T, Myreen M, Klein G (2013) Translation validation for a verified OS kernel. In: PLDI. ACM,

Seattle, Washington, USA, pp 471–481, Jun 2013
Slind K, Norrish M (2008) A brief overview of HOL4. In: Mohamed OA, Muoz C, Tahar S (eds) TPHOLs.

Springer, Montral, Canada, pp 28–32, Aug 2008
Sewell T, Winwood S, Gammie P, Murray T, Andronick J, Klein G (2011) seL4 enforces integrity. In: van

Eekelen M, Geuvers H, Schmaltz J, Wiedijk F (eds) ITP. Springer, Nijmegen, The Netherlands, pp
325–340, Aug 2011

Tuch H, Klein G, Norrish M (2007) Types, bytes, and separation logic. In: Hofmann M, Felleisen M (eds)
POPL. ACM, Nice, France, pp 97–108, Jan 2007

TuronA,VafeiadisV,DreyerD (2014)GPS: navigatingweakmemorywith ghosts, protocols, and separation.
In: ACM SIGPLAN notices, vol 49. ACM, pp 691–707

US National Institute of Standards (1999) Common criteria for IT security evaluation. ISO Standard 15408.
http://csrc.nist.gov/cc/

Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann
R, Mitra Tulika, Mueller Frank, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The worst-
case execution-time problem—overview of methods and survey of tools. Trans Embed Comput Syst
7(3):1–53

Walker BJ, Kemmerer RA, Popek GJ (1980) Specification and verification of the UCLA Unix security
kernel. CACM 23(2):118–131

Yang J, Hawblitzel C (2010) Safe to the last instruction: automated verification of a type-safe operating
system. In: 2010 PLDI. ACM, Toronto, Ont, CA, pp 99–110, Jun 2010

123

http://csrc.nist.gov/cc/

Real-Time Syst (2017) 53:812–853 853

Thomas Sewell is a verification engineer at UNSW, where he has
just completed his PhD. His research interests include formal meth-
ods, theorem proving, translation validation, high-assurance analy-
sis and reasoning about concurrency.

Felix Kam is a software engineer and entrepreneur. He recently
completed his bachelor’s degree at UNSW, studying electrical engi-
neering and law. His interests include smart contracts, game theory
and operating systems.

Gernot Heiser is a Scientia Professor and the John Lions Chair for
operating systems at UNSW. His research interests include operat-
ing systems, microkernels and building truly trustworthy embedded
systems.

123

	High-assurance timing analysis for a high-assurance real-time operating system
	Abstract
	1 Introduction
	2 Background
	2.1 Chronos
	2.2 The seL4 operating system kernel
	2.3 The seL4 verification framework
	2.4 Decompilation of binary code
	2.5 Translation validation
	2.6 The seL4 timing and preemption model
	2.7 Using seL4 security features to limit WCET
	2.8 Verifying preemptible seL4 operations

	3 Related work
	3.1 WCET analysis
	3.2 Using formal approaches for timing
	3.3 Verification

	4 WCET analysis
	4.1 CFG conversion
	4.2 Discovering and proving loop bounds
	4.3 Refuting infeasible paths
	4.4 Manual intervention: using the C model

	5 Improving seL4 WCET
	5.1 Assertions
	5.2 Design of preemptible zeroing
	5.3 Verification of preemptible zeroing

	6 Evaluation and discussion
	6.1 Loop bounds in seL4
	6.2 Loop analysis timing
	6.3 Binary-only analysis and comparison to previous work
	6.4 Annotation reuse
	6.5 Loop bounds in the Mälardalen suite
	6.6 Eliminating infeasible paths
	6.7 Performance
	6.8 API availability and future work
	6.9 Limitations

	7 Conclusions
	Availability
	Acknowledgements
	References

