Real-Time Syst (2017) 53:1-44 @ CrossMark
DOI 10.1007/s11241-016-9257-0

Real-time processing of streaming big data

Ali A. Safaeil

Published online: 1 August 2016
© Springer Science+Business Media New York 2016

Abstract Inthe era of data explosion, high volume of various data is generated rapidly
at each moment of time; and if not processed, the profits of their latent information
would be missed. This is the main current challenge of most enterprises and Internet
mega-companies (also known as the big data problem). Big data is composed of
three dimensions: Volume, Variety, and Velocity. The velocity refers to the high speed,
both in data arrival rate (e.g., streaming data) and in data processing (i.e., real-time
processing). In this paper, the velocity dimension of big data is concerned; so, real-time
processing of streaming big data is addressed in detail. For each real-time system, to be
fastis inevitable and a necessary condition (although it is not sufficient and some other
concerns e.g., real-time scheduling must be issued, too). Fast processing is achieved
by parallelism via the proposed deadline-aware dispatching method. For the other
prerequisite of real-time processing (i.e., real-time scheduling of the tasks), a hybrid
clustering multiprocessor real-time scheduling algorithm is proposed in which both
the partitioning and global real-time scheduling approaches are employed to have
better schedulablity and resource utilization, with a tolerable overhead. The other
components required for real-time processing of streaming big data are also designed
and proposed as real time streaming big data (R7-SBD) processing engine. Its prototype
is implemented and experimentally evaluated and compared with the Storm, a well-
known real-time streaming big data processing engine. Experimental results show
that the proposed RT-SBD significantly outperforms the Storm engine in terms of
proportional deadline miss ratio, tuple latency and system throughput.

B Ali A. Safaei
aa.safaei @modares.ac.ir

Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University,
Tehran, Iran

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-016-9257-0&domain=pdf

2 Real-Time Syst (2017) 53:1-44

Keywords Streaming big data - Hybrid multiprocessor real-time scheduling -
Clustering - Deadline-aware dispatching - Periodic continuous queries

1 Introduction

In many recent data-intensive applications, data volume and complexity are increas-
ing fast. Search engines, social networks, e-science (e.g., genomics, meteorology and
healthcare), financial (e.g., banking and mega-stores) are some examples of such appli-
cations. This, which is the major challenge of many enterprises and Internet-scale
mega-companies is known as the Big Data problem. While volume is a significant
challenge in managing big data, the focus must be on all of the dimensions of such
data sets which are Volume, Variety and Velocity (also known as 3Vs) (Chen Philip and
Zhang 2014).

e Volume—by which we mean high volume of data (i.e., increase in data volumes
and also a massive analysis)

e Variety—or in fact, high variety of data (many sources and types of data)

e Velocity—by which we mean high velocity (both how fast data is being produced
and how fast the data must be processed to meet demand)

The Volume dimension, despite that mentions an ancient problem, but the scale
has been changed nowadays (e.g., petabytes of new data each day). Also, the Variety
dimension is focused on the semi-structured and unstructured data in new applications.
NoSQL data models (e.g., key-value, columnar, document-based, and graph) and sys-
tems (e.g., MongoDB, neo4j, etc.) are provided to handle this kind of challenges.

But the Velocity dimension, which implicitly affects the volume dimension, consists
of both high speed of data arrival rate, and the need for high speed in data processing.
The most well-known instance of high-speed data is “streaming data”, and high speed
in processing (in this context) means “real-time processing”. As an example, eBay
addressing fraud from PayPal usage by analyzing real-time 5 million transactions each
day (Lehner and Sattler 2013). Regards to the importance of the velocity dimension,
this paper is concentrated on it (i.e., real-time processing of streaming big data).

1.1 Motivation

Streaming big data has some remarkable characteristics. In data stream systems,
data is received as continuous, infinite, rapid, bursty, unpredictable and time-varying
sequence. Monitoring (e.g., network traffic, sensor networks, healthcare, etc.), sur-
veillance, web-clicks stream, financial transactions, fraud and intrusion detection are
some applications of streaming big data. In most of these applications, QoS require-
ments (e.g., response time, memory usage, throughput, etc.) are extremely important;
and time-critical processing can also be generalized to QoS requirements. In other
words, most of streaming big data applications have real-time requirements (i.e., dead-
line) (Babcock et al. 2003). So, real-time processing of streaming big data (i.e., Velocity
dimension of the big data problem), which is addressed in this paper is needed in many
current real-world applications.

@ Springer

Real-Time Syst (2017) 53:1-44 3

1.2 Challenges

In Stankovic etal. (1999) eight misconceptions in real-time data management are
discussed. One of the most common and important misconceptions is: “real-time com-
puting is equivalent to fast computing.” In fact, fast processing does NOT guarantee
time constraints. In other words, although being fast is necessary but is not sufficient.
For a real-time system, there is a need for other mechanisms (real-time scheduling,
feedback control, etc.) to handle and satisfy time constraints.

Stonebraker et. al. (2005) introduced eight requirements for real-time process-
ing of data streams. Two key requirements are “fast operation” and “automatic and
transparent distribution of processing over multiple processors and machines”. The
requirements raise from the fact that single processor data stream processing systems
are not capable of processing huge volume of input streams and cannot execute query
operators continuously over them with satisfactory speed (Johnson et al. 2008; Safaei
and Haghjoo 2010). So, solutions such as parallel processing over multiple processors
have to be used for this bottleneck to reach the required processing speed for real-time
processing of streaming big data.

Parallel processing of streaming data is studied in many works, mostly based on
the MapReduce computational model (which is essentially good for batch processing)
(Condie et al. 2010). We proposed parallel processing model of data stream queries
in Safaei and Haghjoo (2010) and improved it in Safaei and Haghjoo (2012), by
employing Dispatching instead of its event-driven operator scheduling. Also, we have
discussed system architecture, practical challenges and issues for the underlying par-
allel system, as well as its implementation on multi-core processors in Safaei et al.
(2012). Moreover, a proposed MapReduce based framework for parallel processing
of data stream is presented in Safaei and Haghjoo (2014).

In this paper, fast operation necessary for real-time processing of streaming big data
is achieved via employing our parallel query processing method presented in Safaei
and Haghjoo (2010, 2012) (which is reviewed briefly in Sect. 3), and other required
mechanisms are added as presented in Sect. 3.

One of the major preliminaries for employing parallelism is in possession of mul-
tiple processing elements such as cores in a multi/many —core CPUs, GPUs besides
CPUgs, and clusters of commodity machines, or even using the Cloud infrastructure.
Besides providing required computing resources and performing parallel processing
(to achieve the required processing speed for real-time processing of streaming big
data as stated in Sect. 3), the most critical challenge is how to assign resources to the
requests with respect to their deadlines (also known as real-time scheduling). Various
real-time scheduling algorithms exist for single and multi-processor systems (Ander-
sson and Jonsson 2003; Anderson and Srinivasan 2000; Bans et al. 2002). Optimal
single processor real-time scheduling algorithms such as EDF!' and RM? are not opti-
mal for multiprocessor real-time systems (Dhall and Liu 1978; Carpenter et al. 2004).
Since our parallel query processing method proposed in Safaei and Haghjoo (2010;

' Earliest deadline first.

2 Rate monotonic.

@ Springer

4 Real-Time Syst (2017) 53:1-44

RT Sclﬁ{:l@

Fig.1 Multiprocessor real-time scheduling approaches. a The partitioning approach. b The global approach

2012 and Safaei et al. 2012 is based on multiprocessing environment, here we employ
multiprocessor real-time scheduling.

There are three approaches for real-time scheduling in multiprocessor systems: Par-
titioning, Global and Hybrid scheduling. In the partitioning approach, each processor
has its own task waiting queue. The set of tasks is partitioned and each task is assigned
to the proper processor (task waiting queue) according to the allocation algorithm.
Each processor executes tasks in its task waiting queue according to its real-time
scheduling policy (Fig. 1a). In the global approach, each task can be executed over all
processors. In fact, a task which is started in a processor can migrate to any other proces-
sor to be continued (Fig. 1b) (Holman and Anderson 2006). Generally, online real-time
scheduling in multiprocessor systems is a NP-hard problem (Carpenter et al. 2004).

The partitioning approach may not be optimal but is pragmatically suitable because:
(1) Independent real-time scheduling policies can be employed for each task queue.
Therefore, the multiprocessor real-time scheduling problem is simplified to single
processor real-time scheduling. (2) As each task only runs on a single processor, there
is no penalty in terms of migration cost; so, it has low run-time overhead which helps
for better performance (Holman and Anderson 2006). (3) If a task overruns its worst-
case execution time, then it can only affect other tasks on the same processor (Safaei
and Haghjoo 2010).

The global approach has the ability to provide optimal scheduling due the migration
capability, as well as spare capacity created when a task executes for less than its
worst-case execution time can be utilized by all other tasks, not just those on the same
processor. One the drawbacks of the Global approach is its considerable overhead.
Furthermore, to have the optimal schedule, some preconditions must be held which
is not possible in all applications (Holman and Anderson 2006). Generally, Global
scheduling is more appropriate for open systems, as there is no need to run load
balancing/task allocation algorithms when the set of tasks changes (Safaei and Haghjoo
2010).

@ Springer

Real-Time Syst (2017) 53:1-44 5

To achieve the benefits of these two multiprocessor real-time scheduling approaches
together, different Hybrid approaches have been proposed by researchers (Safaei and
Haghjoo 2010). For example, EKG (Andersson and Tovar 2006), Ehd2-SIP (Kato
and Yamasaki 2007), EDDP (Kato and Yamasaki 2008), PDMS-HPTS (Lakshmanan
et al. 2009), HMRTSA (Srinivasan and Anderson 2004), PFGN (Safaei et al. 2011)
and PDMRTS (Alemi et al. 2011) use semi-partitioning Hybrid approach which aims
at addressing the fragmentation of spare capacity in partitioning approach to split a
small number of tasks between processors (Safaei and Haghjoo 2010).

Another well-known Hybrid multiprocessor real-time scheduling approach is Clus-
tering (Safaei and Haghjoo 2010). Hybrid clustering approach can be thought of as a
generalized form of partitioning with the clusters effectively forming a smaller number
of faster processors to which tasks are allocated. Thus capacity fragmentation is less
of an issue than with partitioned approaches, while the small number of processors
in each cluster reduces global queue length and has the potential to reduce migration
overheads, depending on the particular hardware architecture. For example, proces-
sors in a cluster may share the same cache, reducing the penalty in terms of increased
worst-case execution time, of allowing tasks to migrate from one processor to another
(Safaei and Haghjoo 2010). It should be noted again that, the partitioning approach
can be considered as a special form of the hybrid clustering approach (i.e., each cluster
contains only one processor).

In this paper, processing of real-time continuous queries over streaming big data
is issued by using hybrid clustering multiprocessor real-time scheduling, and parallel
processing of query in each cluster of cores in multi-core CPU.

We have proposed parallel processing of a continuous query over processing ele-
ments (e.g., cores in a multi-core CPU) in Safaei and Haghjoo (2010), and improved
the method in Safaei and Haghjoo (2012) by performing the scheduling continuously
and dynamically (called Dispatching method, instead of the event-driven one in Safaei
and Haghjoo (2010). Practical dimensions of our parallelism method over multi-core
processors are presented in Safaei et al. (2012) (as is reviewed briefly in Sect. 3). Rely-
ing on the proposed parallel processing of a continuous query over a multi-core CPU
(Safaei and Haghjoo 2010, 2012; Safaei et al. 2012), and using the hybrid clustering
approach, in this paper, we have presented a prototype for real-time processing of con-
tinuous queries over streaming big data using multi-core processors (called RT-SBD3
proceeding engine).

In other words, the primary focus of this paper is the velocity dimension of the big
data problem which by the definition, regards to the real-time processing of streaming
big data. A major prerequisite for real-time processing is to be fast and the parallel
processing and dispatching method we have presented in previous papers are employed
for this aim; But the proposed solution is achieved by some contributions that are
designed to solve the problem objectively. Some of the most important contributions
of this paper are:

e Deadline-aware dispatching method as the parallel processing method to provide
the required fast processing, necessary to be real-time.

3 Real time-streaming big data.

@ Springer

6 Real-Time Syst (2017) 53:1-44

e Hybrid clustering multiprocessor real-time scheduling algorithm as the other pre-
requisite for real-time processing

e Proportional deadline miss ratio (PDMR) instead of the traditional DMR, as the
most important metric for evaluation of real-time (stream) processing systems.

e Also, the prototype of the proposed real-time streaming big data processing engine
is developed.

1.3 Structure of the paper

The paper is continued as follows: Real-time query processing in data stream man-
agement systems is formally defined in Sect. 2. The proposed real-time streaming big
data processing engine (RT-SBD) is presented in Sect. 3, while some of its important
properties are analyzed through this section. Details of simulation results and perfor-
mance evaluation for the presented system is discussed in Sect. 4. In Sect. 5, related
work is presented. Finally, we conclude in Sect. 6.

2 Problem formulation

In this section, real-time query processing in data stream systems is formalized.

2.1 Data model

A data stream is a continuous, infinite, rapid, bursty, unpredictable and time-varying
sequence of data elements denoted as S = <sy, 52, ...>. For each data element, its
arrival time to the system is appended.

Definition 1 Stream Let ® denote set of data tuples and ¥ denote discrete time
domain. A stream is denoted as S = (B, <;) in which B is an infinite sequence
of tuples in form of (7, ts), where T € ® is a data tuple and ts € F is its timestamp,
and <; is a total order over B.

In this paper, we assume that deadlines are only assigned to queries (not to data
streams).

2.2 Query model

In data stream systems, queries are mainly continuous or one-time. In real-time data
stream systems, tasks are queries and queries are categorized as periodic and aperiodic.
Periodic queries are modeled as PQuery in Wei et al. (2006a). In this model, for each
registered query, instances are activated with a specified period and each instance must
provide its results on a window including w tuples within the determined deadline.
Aperiodic queries include continuous and one-time queries. In the former, instances
are activated by arrival of each input tuple whilst in the latter are activated and executed
only once. One—time query is considered as a periodic query with period value of co

@ Springer

Real-Time Syst (2017) 53:1-44 7

(Li and Wang 2007) but in this case it should be resident in the system forever which
imposes overhead to the system. Hence, in this paper we model one-time query in a
different form. Set of queries in real-time system presented in this paper consists of
combination of periodic (PQuery) and aperiodic (continuous and one-time) queries.
Properties of each query type are:

e Periodic query: resident in the system, consisting of instances, each instance acti-
vated at a given time, each instance executed over a window of tuples.

e Continuous query: resident in the system, consisting of instances, each instance
activated by arrival of the first tuple, each instance executed on one tuple.

e One-time query: not resident in the system, only one instance, activated by the
first tuple arrival, executed over a window of tuples.

In fact, what is generated in the system and executed over tuples is the instance of
query. So, we model query instance instead of the query itself.
According to the properties of query types, we define query instance below:

Definition 2 Query instance Query instance in RT-SBD is modeled as a sixtuple as
q = <i, j,D,T,w, p> in which: q is the query instance, i is the query number, j is
the instance number, D is the deadline, T is the period, w is the window size, p is the
priority

wherei, j,w, p € Ntand D,T € T.

Notice that for continuous query instances we have T = 0and w = 1,and T = o0
is used to indicate one-time query type.

A query (instance) which determines operators and their arrangements can be
depicted as query-plan graph. In this paper, we use notations introduced in Safaei
and Haghjoo (2010) for query plan. We also assume the quality of the queries can be
traded off for timeliness by dropping some of their input tuples.

2.3 Real-time data stream system model

In order to clarify the problem, here we describe the real-time data stream system
model issued in this paper.

(a) Hard, firm or soft real-time

Applications in which R7T-SBD is employed determine type of real-time system. In
database context, real-time systems are generally soft because it is often impossible
to determine query duration accurately before execution (Babcock et al. 2003;
Stankovic et al. 1999; Stonebraker et al. 2005; Johnson et al. 2008). On the other
hand, in most common data stream real-time applications such as monitoring
(health, network, etc.) and financial applications (stock exchange, etc.), results
provided after the deadline are not profitable. As a result, the real-time streaming
big data processing system presented in this paper is considered as firm real-time.
Hence, we can define the value of each query instance as:

@ Springer

8 Real-Time Syst (2017) 53:1-44

Definition 3 Query instance value For each query instance with deadline d; and fin-
ishing time f;, its value is:

Umax fi < d;
0 f>d

v; =

where vy, is the maximum value achieved by finishing without tardiness.

(b) Release of tasks
According to the RT-SBD query model, queries are released both periodically and
aperiodically.

(c) Dependency between tasks
Queries are independent of each other. Multiple query processing and optimization
is left for future work.

(d) Priority assignment
Priority assignment is dynamic, i.e., priority of query instances may change during
runtime.

(e) Preemption
Preemption of query instances is allowed i.e., a higher priority query may postpone
lower priority executing query.

(f) Static or dynamic scheduling
In order to be compatible with continuous and dynamic nature of data stream
system (streams, queries and system conditions), scheduling is performed dynam-
ically and based on system circumstances.

(g) Open or close loop scheduling
Since the whole system information about streams, queries, etc. is not available
when scheduling begins, feedback control approach (close loop scheduling) is
applied.

(h) Single-processor or multiple-processors real-time scheduling
Due to the type of parallelism in R7T-SBD, multiprocessor real-time scheduling
(hybrid clustering approach) is used.

3 The proposed real-time streaming big data processing engine

Although being fast is necessary for real-time systems but, to be fast does not mean to
be real-time. Real-time system designers employ necessary mechanisms in the system
architecture to support real-time scheduling and deadlines. The proposed architecture
of RT-SBD (see footnote 3) processing engine is depicted in Fig. 2.

User queries and their characteristics (i.e., query type, deadline and period) are
delivered to the request manger unit. It accepts queries with valid deadline, registers
and sends it to the scheduler as well as the deadline monitor unit. The scheduler
unit executes queries via the parallel query processing engine (which process each
query in parallel over a multiprocessing environment) with respect to its deadline. The
deadline monitor unit monitors system outputs continuously and restores the system
to an acceptable status when necessary (e.g., when DMR threshold violation occurs).

@ Springer

Real-Time Syst (2017) 53:1-44 9

Query
&
Deadline

v
8
Control o
= =
s e
) o -
| TnputData \| % Parallel Query Processing Engine =
Stream) - = =
= — S ~a P s
Q| e L =
=] Data
5 [Lstezem L
=] \ J
2 N)//v’.,#, Na i
e (P e SRR F
— Output Y
< o ’()\‘-‘
B X P i]'__

Fig. 2 Architecture of the proposed real-time streaming big data processing system (R7-SBD)

To do this, the deadline monitor unit sets the data admission control unit parameters
in a manner that input data stream rate (i.e., system workload) degrades.

3.1 Request manager

Users deliver queries together with their characteristics, including query type (periodic,
continuous or one-time), deadline and period (if necessary) to the request manger unit.
The request manager unit determines whether the query can be processed with respect
to its deadline or not; If so, it is accepted, registered, and its query plan is generated and
sent to scheduler as well as deadline monitor unit (along with its deadline). Otherwise,
the query is rejected.

In order to determine whether a query can be processed before its deadline or not,
we define and implement a function to compute system response time when a new
query is added to the ones resident in the system, and compare its result with the
determined deadline.

Definition 4 Query response time in RT-SBD is the result of function response(q,ss,t)
in which q is the query and ss is the system status at time t.

Note Exact definition and implementation of response(q,ss,t) is presented in Moham-
madi (2010).

3.2 Parallel query processing engine

To achieve fast operation in RT-SBD we employ parallel query processing in a multi-
processing environment as presented in our previous publications (Safaei and Haghjoo

@ Springer

10 Real-Time Syst (2017) 53:1-44

(=

Fig. 3 Dispatching in parallel query processing engine unit

2010, 2012). Parallel query processing engine of R7T-SBD contains k parallel logical
machines that execute the query plan in parallel by using dynamic and continuous
operator scheduling (i.e., dispatching). At first, a copy of the query plan is assigned
to each machine. In this way, the query plan is recognized by all machines and they
become capable of collaborating for parallel execution of operators. In this collabo-
ration, if in the query plan, an operator A sends its output tuples to operator B, then
in each particular machine P; , operator A is capable of sending its output tuples to
B of all machines (Fig. 3) (Safaei and Haghjoo 2010). In initial operator scheduling,
operators of a query plan are assigned to logical machines according to Eq. (1):

j =imodk (D

where j is the machine Id, i is the operator Id, k is the number of logical machines.

Each assigned operator should process its input tuples and then forward it to the
next selected operator (bold circles in Fig. 3), to continue operation on the tuple as
a pipeline. Selection of the next operator (machine) is done by computing workload
of machines (according to Eq. (2)*) and selecting the minimum workload machine
(Safaei and Haghjoo 2012). This is called the Dispatching of the (processed) data
stream tuples.

Va,b) e E'.a= 0% Ab

k
= O}il+1 ((u} (a,b) < Z (q_count (Ol_, Oh_) X eoh))) 2)

=1

So, in dispatching process, each operator (machine) continuously and dynamically
performs these tasks (Safaei and Haghjoo 2012):

(a) processing of an input tuple,
(b) computing destination machines’ weight and selecting the minimum weight
machine as the next operator (machine),

4 For each edge (a,b) from an operator to its immediate subsequent in the graph, the weight is processing
time of all operators running on the destination operator’s machine (i.e., aggregation of number of tuples
waiting in input queue of each operator multiplied by the corresponding operator’s execution time).

@ Springer

Real-Time Syst (2017) 53:1-44 11

(c) forwarding the processed tuple to the selected machine in order to continue
processing of the query.

We proved in Safaei and Haghjoo (2012) that this dynamic and continuous operator
scheduling (i.e., Dispatching) provides minimum tuple latency. It means that, the
parallel query processing engine of R7-SBD provides fast operation necessary for
our real-time streaming big data processing engine. In addition, dispatching leads
to degradation of fluctuations in system performance parameters (i.e., tuple latency,
memory usage, throughput and tuple loss) (Safaei and Haghjoo 2012). This feature
provides high adaptivity of the system against bursty nature of data streams.

Also, we have shown in Safaei and Haghjoo (2012) and Safaei et al. (2012) that,
using two logical machines that collaborate with each other via the proposed Dis-
patching method can provide parallel processing of a continuous query efficiently. So,
a cluster of two logical machines performing the dispatching method is considered
as a processing element (called Disp-2 engine). Of course, this setting is used as the
initial configuration of the proposed system; and the proper number of processing
elements (processors or machines) as well as optimal number of processors in each
cluster of the hybrid clustering multiprocessor real-time scheduling will be determined
via experimental evaluations.

3.3 Scheduler

The used algorithm for real-time scheduling of queries is a hybrid clustering multi-
processor real-time scheduling proposed and introduced below.

By Hybrid, we mean that both partitioning and global scheduling approaches are
used as a mixed (hybrid) approach. This is to reduce the overheads (by using the
partitioning approach) as well as to have better utilization of processors (by using the
global approach and migration), to process more tasks (i.e., processing tuples).

Also, by Clustering we mean that set of processors is clustered such that each
cluster acts as a more powerful processing element (or processor). Determination of
the proper number of processors in each cluster is discussed later. As mentioned in
Sect. 3.2, processors in a cluster use the proposed dispatching method for (parallel)
processing of the assigned task (query).

So, the proposed hybrid clustering multiprocessor real-time scheduling algorithm
consists of two major levels: selecting the highest priority query (task) in set of queries
to be scheduled and allocating it to the proper cluster of processors (based on the par-
titioning approach), and then, parallel processing of the allocated query by processors
in the cluster via the dispatching method (which preforms migrations as in the global
approach).

Detailed descriptions of these two levels are as follows.

(a) Allocation
In this phase, based on the partition approach, set of the queries (tasks) is parti-
tioned into subsets of queries which each subset assigned to a particular cluster
of processors (Fig. 4). Generally, the partitioning approach for multiprocessor
real-time scheduling consists of two phases: the allocation phase that allocates a
task among tasks set to the waiting queue of a desired processor and the real-time

@ Springer

12 Real-Time Syst (2017) 53:1-44

scheduling phase that selects the task with the highest priority for each processor,
among tasks in its waiting queue (with respect to its real-time scheduling policy)
to be processed over the corresponding processor. In real-time query schedul-
ing of RT-SBD, each processor in the partitioning approach is substituted by a
parallel query processing engine presented in Safaei and Haghjoo (2012) (i.e.,
a cluster of two logical machines that process each allocated query in parallel
using dispatching method). In other words, the set of k logical machines in the
parallel query processing unit of the R7-SBD architecture is partitioned into k/2
sets or clusters. Each one (a Disp-2 engine) contains two logical machines which
process an assigned query in parallel by our dispatching method introduced in
Safaei and Haghjoo (2012). So, from the scheduler unit point of view, each Disp-
2 engine is transparently a processing unit (a cluster of processors or cores of a
multi-core CPU). In the allocation phase, queries are allocated to waiting queue
of each Disp-2 engine. Then, in the real-time scheduling phase, for each Disp-2
engine, the highest priority query is selected to be processed over its relevant
Disp-2 engine (Fig. 4). Scheduling and executing of the selected query over a
Disp-2 engine is performed by the Disp-2 engine itself as discussed in Safaei and
Haghjoo (2012).

The scheduler unit of RT-SBD uses the First-Fit algorithm (Carpenter et al. 2004)
in its allocation phase to allocate a query (instance) to waiting queue of Disp-2
engines. Utilization factor of each query (i.e.,e;/T;) is computed and compared
with utilization factor of each of Disp-2 engines. Query is allocated to the first
Disp-2 engine with query utilization factor not greater than its utilization factor.
Also, in the real-time scheduling phase, the EDF real-time scheduling policy is
used for waiting queue of all Disp-2 engines.

Note execution time of each query (which is needed for computing utilization factor)
is taken from the request manger unit. Since it computes query execution time via the
response(q,ss,t), it is not necessary for user to determine query execution time.

(b) Deadline-aware dispatching

Atthis level, in each cluster, the task (query) which is assigned to that cluster is exe-
cuted (processed) on cluster’s processors. Each cluster, as a Dispatching-engine
uses the proposed dispatching method for (parallel) processing of the assigned
query. Through the dispatching process, a tuple is processed by a processor and
then forwarded to the best next processor to continue the processing of the tuple.
Therefore, dispatching leads to the distribution of the steps of processing a query,
over the processors in the cluster (i.e., Migration). Of course, in the global mul-
tiprocessor real-time scheduling approach, task is not decomposed for migration
but instead, the time required for completion of the task is decomposed and shared
by different processors.

In other words, in the classic task migration, the task as a whole, follows up
its remained execution in another processor each time. But, in context of query
processing over data stream, the proposed dispatching will result in migration;
regards to the continues nature of the streams and queries, and with respect to
this fact that a job of a task (which should migrate) is composed of operators and

@ Springer

Real-Time Syst (2017) 53:1-44 13

Fig. 4 Edges to next operators
located in machines (workload
of machine M when running
some operators concurrently
must be taken into account in
weight updating by operator a)

data, a job in processing a continues query can be the execution of an operator of
the query on a data stream tuple.

Accordingly, a job of a task (i.e., execution of an operator of the query on a data
stream tuple) is migrated among different processors in the cluster, while dis-
patching method is used for (parallel) processing of the assigned query by the
cluster’s processors. Therefore, what is performed by the processors in a cluster
(i.e., a Disp-engine) for (parallel) processing of the assigned query, will result in
migration of the jobs in the scheduled task.

But, in the dispatching method proposed previously in Safaei and Haghjoo (2012)
(also discussed in Sect. 3.2 and shown in Fig. 4), processing costs of the destina-
tion processor is the only criteria used for migration (which does not take jobs’
deadline into the account). In order to resolve this defect, a deadline-aware dis-
patching method should be substituted that consider job’s deadline when selecting
the next processor to forward the processed tuple. In other words, in the dead-
line aware dispatching method, each processor in the cluster continuously and
dynamically performs these tasks:

(a) processing of an input tuple,

(b) computing destination processors’ weight, and selecting the best next processor
based on the used forwarding policy,

(c) forwarding the processed tuple to the selected machine in order to continue
processing of the query.

Computing the processing costs (weight) of the destination processors is done
according to the Eq. (3).

V(a,b) e E' -.a = O;Ab

= O}il+1 ((w (a,b) < Z; (q_count (Of, 0;) X e”h)))

3

@ Springer

14 Real-Time Syst (2017) 53:1-44

ORS Parallel Query Processor

g
| %D Lozgical machine 2] |
| O'—Dlogimim:iﬁmul |

=

-

(b)

Fig. 5 Levels of the proposed hybrid clustering multiprocessor real-time scheduling. a Allocation level, b
deadline-aware dispatching level

The forwarding policy must check that job’s deadline will not be missed. Also, it is
better to select the best next processor. Checking for meeting the deadline is performed
when the predicate w(a, b) + e,y < di (in which e; ; denotes execution time of
tuple ¢ of task k while distands for task’s deadline), holds for the next processor. If
there is no such a processor, it means that the deadline may be missed; in this case, the
tuple can be discarded or forwarded anyway (in case of firm or soft real-time systems,
respectively).

There are some alternatives for selecting the best next processor; the best processor
here may mean the fastest one (i.e., the processor with the minimum processing costs).
Finding such processor is costly and similar to the worst-fit algorithm (with respect to
processors’ capacity). So, since the best-fit and first-fit (while are near identical) are
generally better alternatives, it is more efficient to use the first-fit algorithm. Hence,
the preferred forwarding policy can be such as this: select the first next processor in
which the predicate w(a,b)+e; < di holds. The other alternatives are also studied
and compared in the experimental evaluation of the proposed system (Sect. 4).

So, as stated, scheduling in R7-SBD consists of two levels: allocation of queries
to the proper cluster, and deadline-aware dispatching of the allocated query; at the
allocation level (using the portioning approach), queries are partitioned via the first-
fit algorithm and assigned to the proper Disp-2 engine cluster. Each cluster selects
from its waiting queue of queries based on the EDF algorithm. The selected query is
processed by processors of that cluster via the proposed deadline-aware dispatching
method (migration of jobs of the task, as in the global approach). The two levels of the
proposed hybrid clustering multiprocessor real-time scheduling is depicted in Fig. 5.

To schedule aperiodic queries (continuous and one-time), a virtual query instance
named server is created. Its execution time is dedicated to aperiodic query instances

@ Springer

Real-Time Syst (2017) 53:1-44 15

(Kato and Yamasaki 2008). A virtual deadline is computed according to Eq. (4) and
assigned to each aperiodic query instance (Li and Wang 2007; Kato and Yamasaki
2008).

vd (i) = max (a (i) . vd (i — 1)) + <& (4)
Ua

vd(;y is virtual deadline for instance i, a (i) is its arrival time, e(;) execution time,
and U, is utilization factor for aperiodic queries (Li and Wang 2007). So, aperiodic
query instances and their virtual deadlines behave as periodic query instances and their
deadlines.

After determining virtual deadline for aperiodic query instances, query instances are
allocated to the waiting queue of relevant cluster (Disp-engine) based on the First-Fit
algorithm. Then, the scheduler unit selects the highest priority query instance among
its waiting queue with respect to their deadline or virtual deadline. A cluster processes
each selected query instance in parallel using the proposed deadline-aware dispatching
method.

3.3.1 Analysis

The goal of analyzing a real-time scheduling algorithm is determining its essential
characteristics and analyzing its functionality in scheduling of tasks in the task system.
The most important characteristics of a real-time scheduling algorithm are introduced
below and the proposed hybrid clustering real-time scheduling algorithm is analyzed
with respect to them.

In the real-time scheduling literature, a task system is correct if the release and
eligibility times of all of its jobs are specified, and is feasible if there exist a schedule
in which no job deadline is missed (Leontyev 2010). A hard real-time task system is
called schedulable under a scheduling algorithm on a given platform if no deadline
is missed, while for soft real-time task system, if the maximum task tardiness is
bounded (Carpenter et al. 2004). For analyzing a real-time scheduling algorithm, we
must consider task systems’ utilization bound. Upper and lower bonds of utilization
for different classes of real-time scheduling algorithms are categorized based on two
important dimensions, degree of migration allowed and the complexity of the priority
scheme (Table 1) (Carpenter et al. 2004).

Since the proposed real-time scheduling algorithm is a hybrid algorithm using two
levels with two distinct approaches, its analysis is divided into two levels: analyzing
allocation level and then deadline-aware dispatching level.

Note that, in both of the levels, the task system ¢ = <i, j, D, T, w, p> has an
identical priority mechanism which is job level dynamic; while has different migration
degree: at the allocation level (based on partitioning approach) has the degree of
no migration (i.e., partitioned), and at the deadline-aware dispatching level (based
on global approach) has the degree of restricted migration. (Migration inside the
corresponding cluster at the operator’s boundary).

Accordingly, it is in class of (2-1) (i.e., job level dynamic, partitioning) at its first
level (with utilization bound of U (t) < @) while is in class of (2-2) (i.e.,

@ Springer

16 Real-Time Syst (2017) 53:1-44

Table 1 Known bounds on worst case achievable utilization (denoted U) for the different classes of
scheduling algorithms (Carpenter et al. 2004)

3: full migration M <y < MEL MD_ o M4l U=M
2: restricted Ule M—aM—-1)<U< ;’l M—a(M—l)fo#
migration
1: partitioned («/E— 1) M<U< U= TH U= TH
M+1
1420751
1: static 2: job-level dynamic 3: unrestricted dynamic

Jjob level dynamic, restricted migration) at its second level (with utilization bound of
M-—aM-1) <U =< MH),

So, as discussed before, at the first level, after clustering of the processors (each
cluster working as a Disp-engine), tasks of the task system g = <i, j, D, T, w, p>
are scheduled and allocated to the clusters via the First-Fit and then EDF algorithms.

So, the proposed hybrid clustering multiprocessor real-time scheduling algorithm
has the following characteristics for its first level.

Theorem 1 A query system modeled as q = <i, j, D, T, w, p> is schedulable upon
the RT-SBD.

Proof for a task (query) system to be schedulable, total utilization factor of periodic
and aperiodic tasks must not be greater than one (Eq. 5) (Li and Wang 2007).

Up+Us =<1 5)
In RT-SBD, utilization factor of periodic and aperiodic tasks is computed as follows

(see Sect. 3.4):
For periodic query instances ¢ = <i, j, D, T, m, p>:

e; n n e;
ui=— and Up = E Couj E =
T; i=1 i=1T;

and for continuous query instances ¢ = <i, j, D,T,1,0> or one-time query
instances g = <i, j, D, T, m, 0o>:

Us=1-Up (6)

So, according to Eq. 6, condition Up + U4 < 1 holds and query system modeled
asq = <i, j, D, T, m, p> is schedulable in RT-SBD. |

Theorem 2 Query system modeled as g = <i, j, D, T, m, p> on M Disp-2 engines
is feasible under the hybrid clustering real-time scheduling approach.

@ Springer

Real-Time Syst (2017) 53:1-44 17

Proof The set of k logical machines are partitioned into M = k/2 subsets, each
one as a Disp-2 engine. They process the query instance selected by the real-time
scheduling algorithm (i.e., FF+EDF) in parallel. In other words, the system consists
of M processing units (clusters of cores) for executing real-time queries (tasks) by
applying the partitioning approach.

In Lopez et al. (2000), it is proved that for task system T on M processors using the
partitioning approach ((job-level dynamic priorities, no migration)-restricted schedul-
ing class), if U (1) < (M2+ D , then 7 is feasible. Since, the following condition holds
for queries utilization (Eq. 5):

Us+Up <1

Therefore, utilization is less than (or equal to) one (i.e., U (t) < 1). Also, M (i.e.,
number of processors) is an integer value (and greater than one, in a multiprocessor
system). So, for all values of M, condition U (t) < @ will be held. For example,

3

for the least value for the number of processors M = 2, we have U (1) < 5. Generally

speaking, since that increasing the number of processors causes value of %ﬂ) to be
increased, thus for all M >2, condition U (1) < L;rl) will be held, too.

(VM eN, M=) AU @ <) =>U @@= MTD

So, query systemmodeled as ¢ = <i, j, D, T, m, p> on M Disp-2 processing engine
and using the hybrid clustering real-time scheduling is feasible. O

In real-time systems context, in addition to system’s logical correctness and timeli-
ness which are essential, Fairness is interesting in multiprocessor real-time scheduling,
too (Tatbul et al. 2003). Fairness is regularly mooted in the global multiprocessor real-
time scheduling approach, as the Proportional Fair (PFair) scheduling and algorithms
such as PF (Baruah et al. 1995), PD Anderson and Srinivasan (2004) and PD? (Srini-
vasan 2003). Periodic task systems can be optimally scheduled on multiprocessors
using PFair scheduling algorithms. Under PFair scheduling, each task must execute
at a uniform rate, while respecting a fixed-size allocation quantum. Uniform rates
are ensured by requiring the allocation error for each task to be always less than one
quantum, where “error” is determined by comparing to an ideal fluid system (Tatbul
et al. 2003).

In global multiprocessor real-time scheduling which support PFairness, a task’s
weight (i.e., utilization) determines amount of the processor share it requires (Tatbul
et al. 2003). In other words, roughly speaking, supporting proportional fairness in
multiprocessor real-time scheduling means that “the more the processor’s utilization
capacity, the more the workload assigned’. So, workload is assigned proportional to
the processors’ utilization capacity (e.g., a subtask with weight § is assigned to the
processor with utilization capacity of §).

Although in RT-SBD the hybrid clustering approach is employed as multiproces-
sor real-time scheduling, but PFairness can be supported via employing the Best-Fit
algorithm in the allocation phase of its multiprocessor real-time scheduling.

@ Springer

18 Real-Time Syst (2017) 53:1-44

Theorem 3 Using the Best-Fit algorithm in allocation phase of real-time scheduling
in RT-SBD supports PFairness.

Proof scheduling in RT-SBD is performed in to levels: real-time scheduling of queries
and parallel scheduling of the selected query operators. Employing the Best-Fit algo-
rithm in the allocation phase of the first scheduling level means that a query is assigned
to processor such that less utilization capacity would be remained empty. In other
words, Best-Fit attempts to fill processor’s utilization capacity as much as possible
and to leave the least empty capacity amount (Carpenter et al. 2004). Therefore, a
processor with higher capacity will have more assigned workload; this functional-
ity exactly matches the PFairness in global multiprocessor real-time scheduling. For
example, for a processor with utilization capacity of 5 units, a query with weight of
either 5 units or the greatest value less than 5, will be assigned.

Also, in the second level (parallel scheduling of query operators), operators are
initially assigned to all of the processors (i.e., logical machines in the Disp.) manually
and according to Eq. (1). So, the algorithm is work-conserving® (Devi 2006); also, since
in Dispatching (Safaei and Haghjoo 2012) each operator sends its processed to the next
operator (machine) which has the minimum workload (Eq. 2), hence scheduling in this
level is also done absolutely proportionally fair with respect to processor’s workload.
Therefore, PFairness can be provided via using Best-Fit algorithm as allocation phase
in RT-SBD’s scheduler. O

Similarly, the second level of the proposed hybrid clustering multiprocessor real-
time scheduling algorithm can be analyzed.

3.4 Deadline monitor

Before delivering each result tuple to the user (or application), it is investigated by the
deadline monitor unit, and its processing time (difference between current time and
tuple’s timestamp) is compared with the corresponding deadline.

Since RTDBSs are generally soft real-time (Babcock et al. 2003; Stankovic et al.
1999; Stonebraker et al. 2005; Johnson et al. 2008), improving the average performance
is the main goal. Deadline investigating units mainly consider DMR and enforce proper
policy (mechanism) when DMR threshold is violated (feedback control approach).
There are two drawbacks in this approach:

(a) In data stream context, computing DMR is partially different. Generally, DMR
(as the most important parameter of a real-time system) is computed as:

number of rejected tasks + number of missed tasks
DMR = @)
total number of tasks

5 An algorithm is said to be work conserving if it does not idle any processor when one or more jobs are
pending, and non- work conserving, otherwise.

@ Springer

Real-Time Syst (2017) 53:1-44 19

For each missed deadline task, number of missed tasks is incremented by one.
However, in real-time data stream systems, when a query instance misses its
deadline the value that must be incremented is different. In fact, since a query
instance must be executed over a window of tuples (Golab 2004; Kramer 2009;
Kontaki 2010), the processing stage in which deadline is missed is important.
For example, suppose that a query instance has missed its deadline when it has
processed only one tuple of its window, but another one has missed its deadline
when it has processed all of its window tuples except one. These two must not have
equal effect on computing DMR. So, in computing DMR, we increase proportion
of missed queries with respect to number of tuples in corresponding window
which are not processed due to missing deadline (instead of increasing blindly by
one). Hence, we define and useProportional Deadline Miss Ratio as follows.

Definition 5 Proportional deadline miss ratio (PDMR) is equal to ratio of deadline
missing query instances (ratio of non-processed tuples within the window) (rejected)
to total number of query instances:

Z 1+ z (w—number of tuples processed withinthe deadline)
rejected missed

> ®)

total number of query instances

PDMR =

(b) Undesirable system status is notified after some tasks have missed their dead-
lines. In R7-SBD, in addition to investigating PDMR threshold violation, deadline
missing estimation mechanism is provided for periodic query type. The goal of
deadline missing estimation mechanism is to provide an early estimation of dead-
line miss ratio in order to prevent missing deadlines.

According to definition of periodic query type (PQuery model), each query instance
should be executed over a window of w tuples before the determined deadline (Wei
et al. 2006a). So, the deadline monitor unit computes processing time of one tuple of
the window and multiplies it by @ to estimate missing of deadline:

rt (w) = tuple_latency (o) *xw O]

The query instance would miss its deadline if the computed processing time is
greater than its deadline (rf(w) > d) . In other words, if the measured tuple latency
is greater than d/w (estimating that deadline would be missed), the deadline monitor
unit sends proper parameters to the data admission control unit. The data admission
control unit uses these parameters to adjust systems’ input tuple admission rate. In fact,
in case that deadline missing is estimated, the deadline monitor unit forces the data
admission control unit to discard (drop) more input tuples. Decreasing the workload
causes the system to degrade response time (tuple latency) and satisfy deadlines.

Corollary 1 Increasing the rate of dropping input tuples leads to decreasing system
tuple latency.

Proof Operator path that a tuple should traverse to be processed is a path in query
plan graph [Query Mega Graph (Safaei and Haghjoo 2010)] (Babcock et al. 2004).

@ Springer

20 Real-Time Syst (2017) 53:1-44

Cost of this path which determines tuple latency is the summation of cost of nodes
(operators) and edges (operator input queues) in this path (Safaei and Haghjoo 2010).

Vt € data_stream_tuples (tuple_latency)

- Zl§i§|V| cost (Oi—) + ZISiSIVI (Buffer_size (Oi_))

Since set of operators is the same for different operator paths of one query, decreasing
the total length of operators input queues leads to decreasing tuple latency. So, by
increasing the drop rate of input tuples, number of tuples entering the system and
waiting in operators input queues is decreased and hence tuple latency is degraded. O

Corollary 2 Increasing the rate of dropping input tuples leads to decreasing proba-
bility of missing deadlines.

Proof According to the above, increasing input tuples drop rate decreases tuple
latency. With respect to Eq. (9), decreasing tuple latency causes decreasing of the
response time for the whole widow (rf(w)) and the condition (rf(w) < d) is more
probable to hold. In other word, probability of missing deadline for the corresponding
query instance would be decreased. O

Although system circumstances and tuple latency may change at each time instance,
but this computation for each output tuples causes overhead to the system. In order
to degrade this overhead, we perform deadline missing estimation for multiple tuples
instead of one tuple as follows.

Definition 6 Estimation Interleaving Factor (EIF) Interleaving factor for estimating
deadline missing in a window of w tuples, denoted as EIF, indicates how many tuples
are interleaved between each two deadline missing estimations. For instance, EIF=1
means that estimation is done for half of the tuples (one interleaved).

Corollary 3 The more the EIF value, the less the system result quality.

Proof As an example, assume that ETF: :% in which estimation is done only twice (i.e.,
at the beginning and middle of the window). In this scenario, we have lost half of input
tuples. To compensate and to decrease probability of missing the deadline, we should
drop more tuples from the remaining half of the window (corollary 2). Therefore,
discarding the input tuples leads to degrade quality of system’s output results. O

As a result, it is very important to determine a proper value for EIF and make a
tradeoff between decreasing deadline missing probability as well as estimation over-
head and the quality of output results. Effect of different values of EIF to PDMR is
analyzed via experimental evaluation of R7-SBD in Sect. 4.

3.5 Data admission control

Generally, there are two main approaches for dealing with overload situations and
decreasing the workload: load shedding and data admission control.

@ Springer

Real-Time Syst (2017) 53:1-44 21

Load shedding is often performed via the query plan [e.g., by applying load shedding
operators within the query plan as in the Aurora (Abadi et al. 2003)]. Despite the fact
that the load shedding helps to decrease system’s workload more effectively, it has
some drawbacks for real-time systems as well as a considerable complexity. One
major drawback of load shedding approach for a real-time DSMS® is that tuples are
selected to be discarded in a stage of the query plan in which they have passed a portion
of processing. Discarding tuples in this stage wastes the processing time consumed
for providing these intermediate results. This time wasting is not acceptable for a
real-time DSMS. Also, in many real-time applications, intermediate results are even
more worthy than missing deadlines (Wei et al. 2006a). Roughly speaking, earlier
load shedding (i.e., in the earlier stages of the query plan) would be more effective
(Babcock et al. 2004).

In data admission control approach which is query independent and simpler, excess
tuples are discarded before entering the query plan. Although in this approach excess
tuples are discarded almost blindly but it does have less complexity and overhead.
Also, discarded tuples are not processed, so no time is wasted for processing them.

In fact, load shedding is substituted by dynamic load balancing in RT-SBD since
in each Disp-2 engine, tuples waiting in input queues of an overloaded operator are
redirected to the corresponding operator in another under-utilized machine (Safaei and
Haghjoo 2010, 2012). So, in RT-SBD, overload situation is handled by data admission
control, in addition to decreasing its probability (via dynamic load balancing).

The data admission control unit simply is a dropper. Its tuple dropping (discarding)
rate is adjustable by parameters Upand U 4, cumulative utilization factor of processor
for periodic and aperiodic queries respectively. Static setup of these parameters is not
suitable because system status will change during runtime (Wei et al. 2006a; Li and
Wang 2007). So, using the feedback control mechanism, these parameters are adjusted
dynamically by the deadline monitor unit (using PDMR as the measured variable for
tuning input tuple drop rate). For real-time DSMS, classic PID’ controller is not suit-
able due to irregular data arrival rate as well as variable selectivity of queries (Wei et al.
2006a, 2006b). In data admission control unit of R7-SBD, the PI® controller is used
which is simple, and provides an acceptable response time to workload fluctuations (Li
and Wang 2007). The proportional deadline miss ratios (PDMRs) are sampled periodi-
cally and compared against target value. The differences are passed to the PI controller
to generate the data admission control signal A P4c, which is subtracted from the cur-
rent data admission ratio. The A P4¢ is derived using Eq. (10) (Li and Wang 2007).

APac = Pppur X (PDMRst — PDM Rypreshold)
+1Ippur X (PDMR 7 — PDM R;pyeshoid) (10)

In Eq. (10), PDMRsT and PDMR T are the short-term and long-term proportional
deadline miss ratios sampled in the last sampling period. PDMRjreshota 1 the spec-

6 Data stream management system.
7 Proportional-integral-derivative.

8 Proportional-integral.

@ Springer

2 Real-Time Syst (2017) 53:1-44

ified maximum proportional deadline miss ratio allowed by the application; Ppprr
and Ippy g are two controller parameters which control the weights that short-term
and long-term proportional deadline miss ratios have on the data admission control
signal. How to tune the PID (also PI) controller to suit different system responses has
different methods (e.g., manual tuning, Ziegler—Nichols, Tyreus Luyben, Cohen—Coon,
using software tools, etc.) (Marisol et al. 2014; Astrom and Hagglund 1995). In this
paper, the two controller parameters are handpicked to give the best system response.

Usually, a real-time system is expected to be predictable. Predictability in real-
time systems means that it should be possible to show, demonstrate, or prove that
requirements are met subject to any assumption made (Stankovic and Ramamritham
1990). Of course, predictability is in fact a property required for the Hard Real-Rime
(HRT) systems and not so necessary for soft or firm real-time systems. Moreover, data
stream is unpredictable in its nature (Babcock et al. 2003). But, the proposed R7-SBD
potentially can provide desired predictability in terms of timing constraints by the
contributed feedback-control mechanism [i.e., EIF adjustment, cost prediction and
computation as is performed in deadline-aware dispatching (Elliott et al. 2013), etc.].

According to the discussions about RT-SBD’s architecture, a high level description
of its operation is illustrated in Fig. 6. Corresponding to the main components of
RT-SBD’s architecture, request manager, scheduler, parallel query processing, and
deadline monitor are considered as the main components, with sub-routines stated in
the form of pseudo code.

4 Performance evaluation
4.1 Experimental setup

The contributed real-time streaming big data processing engine prototype (R7-
SBD) is implemented in Java (Java SE 8 Update 66) on Linux (Ubuntu 14.04).
Also,Virtualization is used to emulate the needed underlying multiprocessor system.
Machine virtualization allows a single physical machine to emulate the behavior of
multiple machines, with the possibility to host multiple and heterogeneous operating
systems (also known as guest OSs) on the same hardware. A Virtual Machine Monitor
(VMM), or hypervisor, is the software infrastructure running on (and having full con-
trol of) the physical host and which is capable of running such emulation. However,
in order to have an efficient access to the physical platform through the VMM, you
should use real-time hypervisors which typically may allow applications to access to
the physical machine, in virtualized environments (Beloglazov et al. 2012). So, ESX6-
update01-3029758 — x86_64a VMware (which is known as a real-time hypervisor) is
used as the VMM, running on SuperMicro server (X8DTL) machine with Intel Xeon
E5620 2.4GHz processor (with 8 Xeon cores) and 30GB RAM.

Each logical machine of parallel query processing engine is considered as a core
of the multi-core CPU. RT-SBD with clusters performing parallel query processing
via the deadline-aware dispatching with (M processing machines in which M is
determined via experimental evaluation) is evaluated and compared with the most
popular real-time streaming big data processing engine, Storm (https://storm.apache.

@ Springer

https://storm.apache.org/

Real-Time Syst (2017) 53:1-44 23

RT Scheduler()

1. { if (enquened flag(query_set_queue)){

2. q; «dequene(query_set_queue);

3, ke firse_fir(utilization_factor(q;),utilizarion_facter(Disp — 3;));
4. enquene(q;,query_waiting_quene(Disp — 3));

5 enqueued_flag(guery_set_gueue)j=FALSE;

6. 2}

7}

Parallel_Query_Processing()
1. { For each query processing engine Disp-3; do in paraliel:
2. {readv_querve— EDF (query_waiting_queue(Disp-3,));
// processing of selected query in parallel via the dispatching method

» 0,) . tho 3 5 o] ,
3. generate query plan for the registered quer
4. generate k identical copies of query plan and send each one to a logical machine
R) generate the Query Mega Graph (OMG)

0. initial scheduling: assign the first operator of the guery plan to the first machine
7. repeat in parallel by each machine

8. select the edge with minimum weight (i.e., minimum workioad machine)
9 repeat

10. process tuple in front of the input queue

11 send result tuple and (operator_Id+1) to destination machine of the selected edge
12, Increment counter

13. wuntil counter> w

14, buffer and sort output tuple and deliver to user or application

13, until there is no more input tuple OR query is expired

16. }

7.}

Deadline_Monitor()

1. { foreach output resulit tuple t;:

2. if (current_time=deadline_query_instance(t;))

3. missed_deadline_counter+=(Ftuples_missed_their_deadline)/ (window_size);

4. elsef

5. if (estimation_time) /lestimation interleaving is passed

6. iftwindow_size*(current_time-timestamp(t;))=>deadline_query_instance(t;)) {
7 compute data admission control parameters w.r.t. equation (VII) and send them to it;
8. update estimation_time related parameters;

9. }

10. }

1. }

Fig. 6 Pseudo code of different components in RT-SBD architecture

org/). In the comparison, the contributed RT-SBD engine with the proposed clus-
tering multiprocessor real-time scheduling approach which uses First-Fit algorithm
(Carpenter et al. 2004) in its allocation phase (named RT-SBD-FF), EDF algorithm
for selection of a query instance among the cluster’s waiting queue to execute, and
the contributed deadline-aware dispatching method for the selected query instance
is evaluated. Moreover, in order to show how the other alternatives affect the sys-
tem, the Best-Fit, Next-Fit and Worst-Fit algorithms (Carpenter et al. 2004) are also
used as RT-SBD’s deadline-aware dispatching phase (named R7-SBD-BE, RT-SBD-NF
and RT-SBD-WF, respectively). Also, the case with sequential hybrid multiprocessor

@ Springer

https://storm.apache.org/

24 Real-Time Syst (2017) 53:1-44

Table 2 Range of selectivity

values for some of the operators Min Max Average
Filter 0.002046 1.0 0.4843909
Join 1.164173 4.910254 2.9286148
Project 1.0 1.0 1.0

real-time scheduling (as we have introduced previously in Safaei et al. (2011) named
PFGN?) is evaluated and compared. By default, EDF is used as the single proces-
sor real-time scheduling algorithm and in the allocation level of the proposed hybrid
real-time scheduling algorithm.

To evaluated whatever discussed and analyzed theistically in Sect. 3.3.1 in an exper-
imental manner, effects of the input dropping rate and the ETF value, are measured and
discussed. Moreover, the system’s operation is compared in different situations (e.g.,
by emitting each of the admission control and deadline monitor components, which
changes the closed-loop control to open-loop).

The Linear Road Benchmark (Arasu et al. 2004) is used for determining data set
and query set. Data set is generated using MIT traffic simulator (MITSIM) (Yang and
Koutsopoulos 1996) (about 12e+6 streaming data tuple).

The query set consists of 17 different types (containing 4 operators to single operator
queries). The operators are query operators mostly used in data stream applications
(including selection, projection, aggregation, stream-to-relation and stream-to-stream
windowed join, etc.). Table 2 shows selectivity values for some of these operators:

Deadline and period of queries are set as k times of the estimated query execution
time (I < k < 10). Evaluation duration is about 450 min (~27,000,000 ms). 5
different runs of the above scenarios are made and their average value is measured
and computed.

The most important evaluated parameters are:

PDMR: proportional deadline miss ratio according to Eq. (8).

Tuple Latency: difference between each tuple’s arrival and departure time.
Throughput: number of query instances processed in a time unit.

Memory Usage: total amount of memory space consumed.

Tuple Loss: number of discarded tuples.

Overheads such as communication or context-switching are negligible because the
employed machines are cores of a multi-core CPU.

4.2 Experimental results

Experiment 1 Configuration of the contributed system in term of number of process-
ing machines in each cluster.

Charts in Fig. 7 show efficiency of RT-SBD in terms of the measured parameters
in different cases of the number of processing machines in a cluster (i.e., single, dual,
quad, octal, and hexa).

9 Single real-time disp.

@ Springer

Real-Time Syst (2017) 53:1-44 25

As can be inferred from charts in Fig. 7, the best case for the RT-SBD is using
two processing machines in each of clusters (named as QRS-Dual); because it is
performing more effectively in this case, by having minimum PDMR, minimum tuple
latency, and maximum throughput, acceptable tuple loss, especially in their steady
state.

Accordingly, the proposed RT-SBD processing engine prototype is set up and con-
figured with clusters with two cores (i.e., using Disp-2 engines) that process the
allocated query in parallel by using the (deadline-aware) dispatching method. By

! (T T T T T T T T T T T T O T T I I T I T IT ITITIT I
+ ~ QRS-single . & P

[X] 5 B Proportional Deadline Miss Raio —
—— QRS-quad

08 QRS-octal 4
+ GRS-hex I

07

06—

=

=1 05—

a

04—
E
03 \ " i oy . 2
oo R T Lo N P]
il “:*”K%,s"d' '“"-‘-o,.f & Q’s.pﬁ‘?"‘*@/’?y»»_lv _
0 =
<
fﬁflHIHIHIHIIHHIHIIHHI L L
0 0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
Duration (Minute)

1000 ML T T T T IO T I T I ooe

~+ - GRS-single

900 — o QRS-dual Tuple Latancy -

—+— QRS-quad
800 QRS-octal B et
+ - GRS-hex - +7 e TR,

700 — g TR LY =
> 600~ ""’»,:—:\“\
£ e ®
S ol B e NN ¥
@

O a0
300— =
200~ A ot . o
s po
«4 m,.,uwww
1001~ ,«J‘ Peesc -
0 \IIHHIHIIHHIHIHHIIHHIHIHII\IHIIHHIHIlHHIHHIIHIHHIIHlHHIHHHHIHHIIHHIHIIHHIHIHI!HHIHHHHIHHIHIIHHIHIHIHIHIHIHHIHI
] 10 20 30 50 50 7 80 90 100 110 120 130 140 150 160 170 180
Duration (Minute)
B L RN RN RN RN R R RN RR R R RN RRR R RN RRR R RN R LR RN R R R AR RN R RN R RN RN R AR AR AR ARRRRRRN]
~+ - QRS-single
| |-+ ohsun Throughput
N —+— QRS-quad 555,
GRS-octal gw"‘) %N oo g
§zs ¥ RS he <3 " i e s
§ } o‘*""{ .».N Soo—. 4. o0
z % 3
= o ,&3 ¥
5
& . +
= 15
£ F
3 r
R 1ol
@
s il
0 LT L]
0 20 30 40 50 50 0 80 90 100 110 120 130 140 150 160 170 180

Duration (Minute)

Fig.7 RT-SBD’s efficiency parameters for different cases as number of processing machines in a cluster

@ Springer

26 Real-Time Syst (2017) 53:1-44

45000000 [T I T T T T oI oo oY
QRS-single Memory Usage
40000000 [— @ QRS-dual 7
—— GRSs-quad
35000000 H aRs-octal a
+~ QRS-hex
30000000 3" -
s P e SR
& 25000000 P PR w0y ’ng" «&%0
a —t g 00 o =
= IR B35 VRS o Rt
5 Py ¥
£ 20000000 Qoo e, =
2 ey \4..‘
B _— - hy
15000000 /»/,rg‘& et g
10000000 j‘x.«,ww' =
5000000 —
n‘Q‘THHHHHHHHHHIIIIIIIIIIIIIIIIIIIIIIIIIIHHHHHH\HHHH\HH\HHIIIIlIIIIIIIIIIIIIIIIIIIIIIHHHHHHHHHH\HH\HHIIII!IIIIIIIIIIIIIIIIIIIIHH\HHHH\H
0 0 2 30 40 0) 70 80 100 10 120 130 140 150 160 170 180
Duration (Minute)
120,000 AT T T T T T T T T T T I T T I T T T I T T T IO T T oo ToveT
GRS-single Tuple Loss
=" QRS-dual
100,000 (| —— qRs-quaa o 0 b
QRS-octal ‘D—{ R
+ - aRs-hex P s Y
4 80,000~ -
8
=
]
5 ool "
5
2
£
5
Z 40,000~ =~
20,000 — ot
4 R E
|

Lt T
10 20 30 40 50 60 70 80 30 100 110 120 130 140 150 160 170 160
Duration (Minute)

Fig. 7 continued

this configuration, the proposed RT-SBD prototype (named as QRS'?, with First-Fit,
Best-Fit, Next-Fit and Worst-Fit Deadline-aware dispatching, QRS-FF and QRS-BF,
ORS-NF, and QRS-WE respectively) are compared with the Storm (https://storm.
apache.org/) and the PFGN (Safaei et al. 2011).

Experiment 2 Measuring performance parameters for the contributed system and
comparison.

Figures 8, 9, 10, 11, and 12 illustrate evaluation charts of PDMR, tuple latency,
system throughput, memory usage and tuple loss in RT-SBD (with different configu-
rations), PFGN and the Storm, respectively.

Deadline miss ratio (DMR) is the most important parameter in each real-time sys-
tem. But as discussed in Sect. 3.4, in real-time streaming big data processing engines
it is hanged into Proportional Deadline Miss Ratio (PDMR). According to Fig. 8, the
proposed system, nearly in all configurations, outperforms Storm andPFGN in steady
state.

Since the contributed R7-SBD is also evaluated in other cases that each of the
deadline monitor and admission control units of R7-SBD’s architecture are emitted
(reported in the next figures), this case is explicitly distinguished by the label “(with
Deadline Monitor & Admission Control)”.

10" Quick Real-time Stream processor.

@ Springer

https://storm.apache.org/
https://storm.apache.org/

Real-Time Syst (2017) 53:1-44 27

—&— QRSEBF Proportional Deadline Miss Ratio
k- QRS-FF (With Deadline Monitor & Admission Controlt 7
QRS-NF P e e
—— QRSWF . e %[\ Eqif_ﬂi ﬁﬁ@-@j :
——— STORM i R e "’:@"@ .

PFGN A5 R e I R

0 3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000
Duration (Milisecond)

Fig. 8 PDMR in RT-SBD vs Storm and PFGN

1009 T T T T T T T I T e T T T T T e T I e T T T T T I T I oo

aol] M povent Tuple Latancy i

it (with Deadline Monitor & Admission Control)

800 H —H— ORSWF -
5 storu

pron

e RS
e - S S S D i

Delay (ms)
8
T

old ALCOLLE LR
o 3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000
Duration (Milisecond)

Fig. 9 Tuple latency in R7-SBD vs Storm and PFGN

60 [—

Throughput B

s (with Deadline Monitor & Admission Control)

40
30—

20—

Executed Query Instancces

LLLLELLELED UL UL L LU LU L OO LU LA LL P LD
0 3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000
Duration (Milisecond)

Fig. 10 Throughput in R7-SBD vs Storm and PFGN

In order to have more complete and accurate evaluation, R7-SBD is compared with
Storm andPFGN in terms of other important and influencing parameters (Figs. 9, 10,
11, 12).

By these time-varing vlaues charts, it may be hard to judge about the performance
of the compared alternatives. So, the average value of each parameter for each of the
compared configurations and systems, are computed and represented in Figs. 13, 14,
15, and 16. But before that, as stated before, lets see what is the effect of feedback
control mechanism used in the R7-SDB. In order to evaluate the contributed system

@ Springer

28 Real-Time Syst (2017) 53:1-44

50,000,000 L R R

Memory Usage 7
(with Deadline Monitor & Admission Control) i

45,000,000
40,000,000
35,000,000

)
>
& 30,000,000

2 25,000,000 —
S

£ 20,000,000 &
P B (e

=
15,000,000
10,000,000
5,000,000

NP 1
0 3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000
Duration (Milisecond)

0

Fig. 11 Memory usage in RT-SBD vs Storm and PFGN

R I R I i

TupleLoss
(with Deadline Monitor & Admission Control)

—&— ORS-BF
00000 [~ | —*— ORS-FF
ORS-NF

@
§ —&— ORSWF

£ soooo |- | = STORM

z PFGN

o o &
§ o = S !
3 & _Ben, NGy - it W

3 e B s Ty Haeog

g wom - = g By — -
k B e W

—
R — “""ﬁ

20000

0 3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000
Duration (Milisecond)

Fig. 12 Tuple loss in RT-SBD vs Storm and PFGN

in such other configurations, parameters are measured in the case that the deadline
monitor unit, the admision control unit, and also both of them are emmited, and the
closed-loop control becomes open-loop (charets are presented in the appendix).

As is shown in charts, value of PDMR and tuple latency are increased in the case
of emitting one of the mentioned components. This is an obvious effect since the
contributed feedback control mechanisms final goal is to reduce the PDMR as the
most important measure. Also, this result confirms that the contributed parallel query
processing (i.e., deadline-aware dispatching) is really deadline-aware; by ignoring
systems PDMR and deadlines of tuples, dispatching is not working perfectly and
tuple latency increases (Corollary 1).

These charts presented momentarily changes of the parameters’ values. In order
to have a more accurate analysis, average value of each parameter for each of the
compared configurations and systems, are computed and represented in Figs. 13, 14,
15, 16, and 17.

Performance evaluation charts illustrated in Figs. 13, 14, 15, 16, and 17 generally
show that R7-SBD makes a considerable improvement in terms of PDMR as well
as tuple latency and system throughput whilst requires more system resources (e.g.,
memory space). In other words, compared alternatives can be ranked from the best to
the worst as follows: QRS-FF, QRS-BF, QRS-NF, QRS-WF, PFGN, and the Storm. RT-
SBD with First-Fit deadline-aware dispatching method as the best and recommended
configuration has improvement in PDMR (~50 % of the Storm), tuple latency (~66 %

@ Springer

Real-Time Syst (2017) 53:1-44 29

Average value of PDMR

0.7

0.6

0.5

0.4

0.3

Admission Control & Deadline Monitor Admission Control Deadline Monitor None

EIQRS-FF % QRS-BF 2 QRS-NF =QRS-WF @PFGN #STORM

Fig. 13 Average value of PDMR in R7-SBD vs Storm and PFGN

Average value of Tuple Latency

600.00
500.00

400.00

2
g
g
/
.
/
.

300.00

200.00

100.00

Admission Control Deadline Monitor None

EIQRS-FF % QRS-BF ZQRS-NF =QRS-WF @PFGN #STORM

Fig. 14 Average value of tuple latency in R7-SBD vs Storm and PFGN

of the Storm), and throughput (~1.4 of the Storm), while has some penalties in terms
of memory usage (~1.2 of the Storm) and tuple loss (~1.9 of the Storm).

So, Experimental results illustrated that R7T-SBD significantly outperforms the most
popular streaming big data processing system, Storm (https://storm.apache.org/). Also,
RT-SBD processing engine with First-Fit algorithm in its deadline-aware dispatch-
ing (i.e., QRS-FF) has the best performance win terms of PDMR, tuple latency and
throughput. Furthermore, the First-Fit algorithm is more efficient than the Best-Fit
since it does not perform selecting the best one. But, on the other hand, the RT-SBD
with Best-Fit supports fairness (Theorem 3).

As shown in Figs. 14 and 18, achieving improvements of PDMR and tuple latency
cause some overheads and costs, for example in term of more memory space required.
However, experimental evaluation results show that the ratio of improvements in terms

@ Springer

https://storm.apache.org/

30 Real-Time Syst (2017) 53:1-44

Average value of Throughput

25

20

15

ine Monitor

EIQRS-FF # QRS-BF 2 QRS-NF = QRS-WF @PFGN #STORM

Fig. 15 Average value of system throughput in R7-SBD vs Storm and PFGN

Average value of Memory
30,000,000.00

25,000,000.00
20,000,000.00
15,000,000.00
10,000,000.00

5,000,000.00

0.00

Admission Control & Deadline Monitor Admission Control Deadline Monitor

E7QRS-FF % QRS-BF 2 QRS-NF =QRS-WF @PFGN #STORM

Fig. 16 Average value of memory usage in R7-SBD vs Storm and PFGN

of PDMR, tuple latency, and system throughput is very high compared to the costs
and overheads.

Experiment 3 Monitoring overhead versus timeliness (deadline missing estimation
overhead versus PDMR).

The other thing that should be noted is that, although tuple loss ratio may increase,
but according to corollary 4, amount of tuple loss ratio depends on the value of the
EIF. So, we can make a tradeoff between tuple loss ratio and other parameters such
as the estimations overheads via setting proper value for EIF.

Figure 19 shows the average value of PDMR (for QRS-FF and QRS-BF) versus
different EIF settings.

@ Springer

Real-Time Syst (2017) 53:1-44 31

Average value of Tuple Loss
70000

60000
50000
40000
30000
20000

10000

Admission Control & Deadline Monitor Admission Control Dead: Monitor

EIQRS-FF # QRS-BF 2 QRS-NF = QRS-WF MPFGN 3 STORM

Fig. 17 Average value of tuple loss in RT-SBD vs Storm and PFGN

Average value of PDMR_QRS

0.6
0.5
0.4
0.3
0.2

01

EIF=0% EIF=20% EIF=40% EIF=60% EIF=80% EIF=100%

£1QRS-FF & QRS-BF

Fig. 18 PDMR versus EIF values

The results of Fig. 18 show PDMR’s growth by increasing of EIF value; the more
the EIF value, the less the system result quality (in term of timeliness) as stated and
proven in corollary 3.

Experiment 4 Data quality versus timeliness (input tuple dropping rate versus
PDMR).

Also, in order to analyze what was stated and proven in corollary 2 about the
relationship between input tuple drop rate (data completeness as a data quality metric)
and PDMR (timeliness), Fig. 19 shows the average value of PDMR (for QRS-FF and
ORS-BF) versus different input tuple drop rates.

As illustrated in Fig. 19, increasing the input tuple drop rate (performed by the
admission control unit, based on the deadline monitor unit’s signal), causes PDMR to
be decreased.

@ Springer

32 Real-Time Syst (2017) 53:1-44

Average value of ‘Drop rate of input tuples’

0.6

0.5

0.4

0.3

0.2

0.1

£1QRS-FF & QRS-BF

Fig. 19 PDMR versus input tuple drop rate

Experimental results (Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19) show that
RT-SBD significantly outperforms the most popular streaming big data processing sys-
tem, Storm (https://storm.apache.org/). Also, RT-SBD processing engine with First-Fit
algorithm in its deadline-aware dispatching (i.e., QRS-FF) has the best performance
win terms of PDMR, tuple latency and throughput, while these improvements has
some tolerable system resource requirements (e.g., memory usage). Also, it is shown
that emitting the contributed feedback control mechanism (and even each of its com-
ponents), dramatically degrades systems performance.

5 Related work

A considerable research activity pertains to stream systems. Real-time query process-
ing is essential in most streaming big data applications (e.g., surveillance, healthcare or
network monitoring) (The STREAM Group 2003). Although a number of DSMS pro-
totypes have been developed including STREAM (Ma et al. 2009) and Aurora (Abadi
et al. 2003), but none of them satisfy real-time requirements. Aurora as a full-fledged
DSMS aims to provide quality of service which is different from real-time require-
ments, it doesn’t have any mechanisms for defining deadline, scheduling based on
deadlines, etc. (Abadi et al. 2003). RTSTREAM (Wei et al. 2006a) claims to extend
STREAM (Ma et al. 2009) to satisfy real-time requirements, but this extension is
limited to periodic query model [PQuery), EDF real-time scheduling policy (not suf-
ficient for a real-time DSMS (Bestavros and Nagy 1996)], and adding some phrases
to the CQL language to declare deadline and period of queries (Wei et al. 2006a).
We employ PQuery as well as aperiodic query type (i.e., continuous and one-time)
in RT-SBD. There are many other systems and engines developed for processing of
streaming big data. For example, S4 (Neumeyer et al. 2010) which is a general pur-
pose, distributed, scalable, fault-tolerant, and pluggable platform written in Java and
initially released by Yahoo!, but to be real-time was not the concern. Apache Hadoop

@ Springer

https://storm.apache.org/

Real-Time Syst (2017) 53:1-44 33

(Bu et al. 2010), known as the king of big data analytics, use the Map-Reduce com-
putational model (Condie et al. 2010; Yang et al. 2007) and is essentially for batch
processing. Storm (https://storm.apache.org/) is a free and open-source distributed
and fault-tolerant engine for real-time computing of streaming big data (in fact, is a
CEP'! engine). Also, there are frameworks for developing applications for fast data
processing such as Muppet (Wang et al. 2012; Safaei and Haghjoo 2014) and Esper
(http://www.espertech.com/esper/). Storm is recently replaced by Twitter Heron; a
new platform for real-time analytics to provide the required size scalability, has better
debug-ability, better performance, and to be easier to manage—all while working in
a shared cluster infrastructure (Kulkarni et al. 2015).

In Kleiminger et al. (2011) eight requirements are presented for real-time DSMSs.
Fast processing, transparent and automatic distribution of processing across multi-
ple processors and machines are the most important ones. Serial query processing in
existing DSMS prototypes is not capable of executing continuous queries over contin-
uous data streams with a satisfactory speed. We have presented parallel processing of
continuous queries over logical machines in Safaei and Haghjoo (2010). The schedul-
ing method employed in Safaei and Haghjoo (2010) is dynamic but event-driven (in
overload situation). Considering the continuous nature of continuous queries and data
streams, compatibility with this nature and adaptivity with time varying characteris-
tics of data streams is very important. In Safaei and Haghjoo (2012), we introduced a
dynamic continuous scheduling method (dispatching) to substitute the even-driven one
presented in Safaei and Haghjoo (2010). Also, we have discussed system architecture,
practical challenges and issues for the underlying parallel system, as well as its imple-
mentation on multi-core processors in Safaei et al. (2012). Employment of dispatching
instead of event-driven scheduling provided system performance improvement as well
as fluctuations reduction (Safaei and Haghjoo 2012). Although it is necessary for a
real-time system to be fast, but it is not sufficient. Mechanisms such as defining dead-
lines, deadline-based scheduling and deadline satisfaction investigation are required
(Kleiminger et al. 2011). Accordingly, in this paper, we added mechanisms for request
management, parallel query processing, real-time scheduling, deadline monitoring and
input data admission control to RT-SBD.

Request admission strategies are inspected in Jamin et al. (1993). In most paradigms
it is assumed that execution requirements of requests are pre-specified (Bestavros
and Nagy 1996). In Wei et al. (2007) an admission paradigm is proposed in which
a compensating request is used for each unsuccessful one. This (compensation or
even rollback) is not applicable for data stream due to its append-only nature. Query
processing time estimation for QoS management of real-time streams is argued in
Yang et al. (2007). Request manager unit of R7-SBD uses response time computation
function proposed in Mohammadi (2010).

Parallelism in database systems is covered in Graefe et al. (1994). Parallel process-
ing of continuous queries over data streams are vastly covered in Safaei and Haghjoo
(2010, 2012).

n Complex-event processing.

@ Springer

https://storm.apache.org/
http://www.espertech.com/esper/

34 Real-Time Syst (2017) 53:1-44

The main contribution in a real-time system design is its real-time scheduling. His-
tory of important events and key results in real-time scheduling is reviewed in Baruah
etal. (1996). Multiprocessor real-time scheduling which is totally different from tradi-
tional single processor real-time scheduling is classified into three approaches: global,
partitioning and hybrid. Problems and algorithms related to these approaches are dis-
cussed in Carpenter et al. (2004). Despite optimality of PFair scheduling algorithms
[such as PF (Baruah et al. 1995), PD (Anderson and Srinivasan 2004) and PD? (Srini-
vasan 2003)], partitioning is currently favored (Safaei et al. 2011). The reasons are: (a)
PFair scheduling algorithms have excessive overhead due to frequent preemptions and
migrations (b) PFair scheduling are limited to periodic tasks (c) though partitioning
approaches are not theoretically optimal, they tend to perform well in practice (Safaei
etal. 2011).

To achieve the benefits of these two multiprocessor real-time scheduling approaches
together, different Hybrid approaches have been proposed by researchers (Safaei and
Haghjoo 2010). For example, EKG (Andersson and Tovar 2006), Ehd2-SIP (Kato
and Yamasaki 2007), EDDP (Kato and Yamasaki 2008), PDMS-HPTS (Lakshmanan
et al. 2009), HMRTSA (Srinivasan and Anderson 2004), PFGN (Safaei et al. 2011)
and PDMRTS (Alemi et al. 2011) use semi-partitioning hybrid approach which aims
at addressing the fragmentation of spare capacity in partitioning approach is to split
a small number of tasks between processors (Safaei and Haghjoo 2010). In Safaei
et al. (2011), we discussed different alternatives of hybrid multiprocessor real-time
scheduling algorithms derived from mixing the partitioning and global approaches;
these two approaches can be employed sequentially or concurrently. The scheduling
algorithm we introduced in Safaei et al. (2011) was a sequential one in which partition-
ing approach is used entirely and after that, global approach will be used for scheduling
of the remained tasks. In contrast, the proposed hybrid clustering multiprocessor real-
time scheduling is a concurrent one; at the allocation level, it uses partitioning approach
while at the deadline-aware dispatching level it uses global approach for the same task
which is under scheduling.

Acceleration of big data processing was already shown in the past with middleware
technologies such as iland (Valls et al. 2013). Big data processing applied in surveil-
lance and remote object tracking for critical spaces monitoring proved to be appro-
priately handled (meeting timing deadlines) with mainstream middleware. In order to
implement and employ the contributed system and components, proper frameworks
can be used. There are different frameworks with various capabilities to support real-
time task; For example, RTSJ (Bollella and James 2000) as a secure platform with rich
functionalities for real-time Java applications is extended in Kwon et al. (2012) to sup-
port various multiprocessor real-time scheduling algorithms. Also, ExSched (Asberg
et al. 2012) is developed as an external real-time scheduler framework which enables
different schedulers to be developed using a uniform developing interface. Some other
frameworks are developed for validation, test and analysis of real-time scheduling algo-
rithms and scheduler implementation (Golatowski et al 2002). Hierarchical schedulers
are also supported in frameworks such as HLS (Regehr and Stankovic 2001). Adaptiv-
ity for tasks which may frequently require significant share changes in multiprocessor
real-time systems is issued in Block et al. (2008). Moreover, there are frameworks for
managing GPUs in a real-time system e.g., GPUSync (Elliott et al. 2013).

@ Springer

Real-Time Syst (2017) 53:1-44 35

Virtualization allows for server consolidation in data centers, where multiple oper-
ating systems that would leave their underlying hosts under-utilized can be moved to
the same physical resources. This enables the achievement of a reduction of the num-
ber of required physical hosts (Beloglazov et al. 2012). But, despite the success of
cloud computing for general-purpose computing, existing cloud computing and virtu-
alization technology face tremendous challenges in supporting emerging soft real-time
applications (Marisol et al. 2014). Machine virtualization (also referred to as processor
virtualization) allows a single physical machine to emulate the behavior of multiple
machines, with the possibility to host multiple and heterogeneous operating systems
(called guest operating systems or guest OSs) on the same hardware. A virtual machine
monitor (VMM), or hypervisor, is the software infrastructure running on (and having
full control of) the physical host and which is capable of running such emulation.

For our multiprocessor real-time scheduling problem, using virtualization can be
beneficial specially in experimental and practical issues.

6 Conclusion

Big data is the current challenge of data management, in research, academia, industry
and technology. Velocity, as on the 3Vs in big data problem, refers to both high speed
data (e.g., streaming data) and high speed (i.e., real-time) processing. In order to be
real-time, it is inevitable to be fast. Most often, a single processor is not capable of
processing query’s operators continuously over infinite, continuous and rapid stream-
ing data tuples with a satisfactory speed. In order to solve this shortcoming, we have
presented parallel processing of continuous queries in a multiprocessing environment
in Safaei and Haghjoo (2010) and enhanced it in Safaei and Haghjoo (2012). Fast oper-
ation is a necessary but not sufficient condition for real-time systems. Generally, there
are two main approaches to task scheduling on multiprocessor platforms; partition-
ing and global scheduling. Under global scheduling a higher utilization bound can be
achieved, but in practice the overheads of migrating tasks is high. On the other hand,
under partitioned scheduling, besides simplicity and efficiency, existing scheduling
and synchronization methods developed for uniprocessor platforms can more easily
be extended.

The main contribution of this paper is handling of the Velocity characteristic of big
data (i.e., real-time processing of streaming big data, as described in the introduction).
To deal with this problem, its challenges are issued and proper solutions (preferably,
using our previous works) are provided. A real-time streaming big data processing
engine (named R7-SBD) is proposed in which required components are designed. It
uses our parallelism method for fast processing of queries. Set of the processors is
clustered such that processors in each cluster can process the assigned query in parallel,
using the proposed (deadline-aware) dispatching method. Assignment of queries to the
clusters is done via the allocation level of the proposed hybrid clustering multiprocessor
real-time scheduling algorithm; a submitted query is accepted if its determined dead-
line can be satisfied. Each accepted query is assigned to the first processing unit with
utilization factor not less than the query’s utilization (i.e., First-Fit algorithm). Each
cluster selects the highest priority query instance among its waiting queue according

@ Springer

36 Real-Time Syst (2017) 53:1-44

to the EDF policy and then, processes the selected query in parallel via the (deadline-
aware) dispatching method (Safaei and Haghjoo 2012). Since the two levels of the
multiprocessor real-time scheduling algorithm uses both the partitioning (at the allo-
cation level, by FF+EDF allocation of queries to the proper cluster) and the global
approaches (at the deadline-aware dispatching level, by migration of the operators
of the assigned query among the processors in the cluster), the proposed real-time
scheduling algorithm is categorized as a hybrid clustering multiprocessor real-time
scheduling algorithm. Proportional Deadline Miss Ratio is computed and compared
with its threshold as well as performing deadline missing estimation. So, input data
tuple arrival rate (system workload) is reduced to decrease the probability of missing
deadlines. RT-SBD prototype is implemented and its performance is evaluated and
compared with the Storm (https://storm.apache.org/) and PFGN (Safaei et al. 2011)
in terms of PDMR, tuple latency, system throughput, memory usage and tuple loss.
Experimental results show that using First-Fit as deadline-aware dispatching level of
multiprocessor real-time scheduling in R7-SBD has the best performance in terms of
PDMR and tuple latency and throughput (even compared to the case with the Best-
Fit). RT-SBD (for both of the cases) outperform Storm, and also PFGN. Generally,
experimental results show that the presented real-time streaming big data processing
engine provides significant improvements in terms of PDMR, tuple latency, through-
put, memory usage and tuple loss.

So, the primary focus of this paper is the velocity dimension of the big data problem,
which by the definition, regards to the real-time processing of streaming big data. A
major prerequisite for real-time processing is to be fast and the parallel processing and
dispatching method we have presented in previous papers are employed for this aim;
But the proposed solution is achieved by some contributions that are designed to solve
the problem objectively. Some of the most important contributions of this paper are:

e Deadline-aware dispatching method as the parallel processing method to provide
the required fast processing, necessary to be real-time.
e Hybrid clustering multiprocessor real-time scheduling algorithm as the other pre-
requisite for real-time processing
— In this proposed real-time scheduling algorithm, both the partitioning and
global real-time scheduling approaches are employed to have better schedula-
blity and resource utilization, with a tolerable overhead.
e PDMR (Proportional Deadline Miss Ratio) instead of the traditional DMR, as the
most important metric for evaluation of real-time (stream) processing systems.
e Also, the prototype of the proposed real-time streaming big data processing engine
is developed.

Since there is a growing need for real-time streaming big data processing systems in
industrial applications (e.g., smart cities, oil and gas, industrial automation, cyberse-
curity, and telecommunication), development of some commercial products relying
on the proposed R7T-SBD may be useful for such applications.

Anyway, some of the future works can be as follow:

e Extension of RT-SBD for concerning other dimensions of big data rather than
velocity (such as variety)

@ Springer

https://storm.apache.org/

Real-Time Syst (2017) 53:1-44 37

e Supporting fault-tolerance and dependability in R7-SBD, as most of the time crit-
ical applications require to support

e An integrated analysis and formal specification and verification of the proposed
hybrid clustering multiprocessor real-time scheduling algorithm e.g., using real-
time calculus

e Design and development of a cloud-based version of RT-SBD (RT-SDB proceeding
-As-A-Service) since the 3™ generation of stream processing systems are mostly
based on the Cloud infrastructure

Appendix: performance evaluation for different configuration of the con-
tributed system

Experiment 5 measuring performance parameters for the contributed system with
different configuration and components.

A stated in Sect. 4.2—Experimental results, by time-varing vlaues charts (Figs.
8,9, 10, 11, 12), it may be hard to judge about the performance of the compared
alternatives. So, the average value of each parameter for each of the compared con-
figurations and systems, are computed and represented in Figs. 13, 14, 15, and 16.
As a complementary experiment, what is the effect of feedback control mechanism
used in the R7-SDB is issued; e.g., how is the systems performance while eminitin
feedback control mechanism. In order to evaluate the contributed system in such other
configurations, parameters are measured in the case that the deadline monitor unit, the
admision control unit, and also both of them are emmited (Fig. 20a—c, respectively),
and the closed-loop control becomes open-loop.

@ Springer

38

Real-Time Syst (2017) 53:1-44

Proportional Deadline Miss Ratio o
i = T ":;ETE‘E A

(Without Deadline Monitor)
P

s
f

0 3000000

6000000 9000000 12000000 15000000

Duration (Milisecond)

18000000 21000000 24000000 27000000

8

3

Executed Query Instancces
@& &

50,000,000
45,000,000
40,000,000
35,000,000

2 30,000,000

<

25,000,000

2

§

& 20,000,000
16,000,000
10,000,000

5,000,000

of

Tuple Latancy B
(without Deadline Monitor)

R
- 3 b o
f‘f)'hlinullnn—(mE\I»l}F S e

got

000000

000000 E 0 10000000 21000000 26000000

2000000 E
Dutation (Misecond)

Throughput o
(without Deadline Monitor) A

et g

3000000

6000000 9000000 12000000 15000000

Duration (Milisecond)

18000000 21000000 24000000 27000000

L | —©— arser
%~ QRS.FF
r QRS.NF
L | —&— arswr
£ STORM

r < PFGN

Memory Usage B
(without Deadline Monitor) 4

0 3000000

6000000 9000000 12000000 15000000

Duration (Milisecond)

18000000 21000000 24000000 27000000

100000

80000

60000

Executed Query Instancees

20000

TupleLoss
(without Deadline Monitor)

3000000

6000000

9000000 18000000 21000000 24000000 27000000

12000000 15000000
Duration (Milsecond)

(a)

Fig. 20 Parameters when a the admission control unit, b deadline monitor unit, and ¢ both of them in
RT-SBD are emitted. a Parameters when the deadline monitor unit of R7-SBD is emitted, b parameters
when the admission control unit of R7-SBD is emitted, ¢ parameters when both (the admission control and
deadline monitor units) of R7-SBD are emitted

@ Springer

Real-Time Syst (2017) 53:1-44

39

Proportional Deadline Miss Ratio
(Without Admission Control)

0 3000000

9000000 12000000 15000000 18000000 21000000 24000000

Duration (Milisecond)

6000000

Tuple Latancy
(without Admission Control)

27000000

oocoo 15000000
Duraton (Milsecond)

—&— ars8F
¥ QRSFF
QRS-NF

&

IS
&

8

8

Executed Query Instancces
3 & 8 8§

Throughput
(without Admission Monitor)

3000000

50,000,000

9000000 12000000 15000000 18000000 21000000 24000000

Duration (Miisecond)

6000000

~—S—— QRS-BF
%~ QRS.FF
QRSNF

45,000,000

40,000,000

35,000,000

2 30,000,000
&

% 25,000,000
£
£ 20,000,000
15,000,000
10,000,000
5,000,000

Memory Usage
(without Admission Control)

o
0 3000000

9000000 12000000 15000000 18000000 21000000 24000000

Duration (Milisecond)

6000000

Executed Query Instancces

TupleLoss
(without Admission Control)

3000000

Fig. 20 continued

21000000

200000 12000001 00000 18000000 24000000

000000 o 50
Duration (Miisecond)

2700000

27000000

27000000

27000000

@ Springer

40 Real-Time Syst (2017) 53:1-44

Proportional Deadline Miss Ratio

os
LI L LULLLEA UL CL L ALELELLERLLLLLEAEOLEEELLALLEAEEELELLLL
0 3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000

Duration (Milisecond)

00y T T T T T T T T T T T I IvT I

00 Tuple Latancy 4
(without Deadline Monitor & Admission Control) 05 oy]

Delay (ms)
g

t 200000 2000000 300000 000000 “enoomed “acomon 2100000 24000000 27000000
Ouraton (Misecond)

50 T T T T T oo TITTTTTTTITTIITT LR R ARURE R R R LR LA R LR R

45 | S arRseF Throughput =

o I g::; (without Deadline Monitor & Admission Control) i

51 | —FB— arswr 4
—5— STORM
PFGN

w

w

8
T
|

n
&
T
1

N

Executed Query Instancces

0 3000000 6000000 9000000 12000000 15000000 18000000 21000000 224000000 27000000
Duration (Milisecond)

Fig. 20 continued

@ Springer

Real-Time Syst (2017) 53:1-44 41

60,000,000 (TyrTITTTITTITTITTTIITTITTTTTITTT T AT T T T T T T T T T Ir I bIv
—5— QRSBF Memory Usage
50,000,000 [~ | 7 GRSFF (without Deadline Monitor & Admission Control) 1

B

40,000,000

30,000,000

Memory (Byte)

20,000,000

10,000,000

3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000
Duration (Milisecond)

120000
TupleLoss
(without Deadline Monitor & Admission Control)
100000 [~ -
" By
8 4
S 80000 [~ ” o
H Bcsscmg, 1m<umrrnmhmmb,‘%wm
H A Bomegy,
& 60000 - & ef* ot WIS e T,
¢ .@vﬁ@?m #a) %
B X N 274
H
8 40000 — -
£
I
20000 (~ -
o LLLL LU0 LA CELL LA EELLEOLEL
o 3000000 6000000 9000000 12000000 15000000 18000000 21000000 24000000 27000000

Duration (Milisecond)

(©
Fig. 20 continued

References

Abadi D et al (2003) Aurora: a new model and architecture for data stream management. VLDB J 12(2):120-
139

Alemi M, Safaei AA, Hagjhoo MS, Abdi F (2011) PDMRTS: multiprocessor real-time scheduling consid-
ering process distribution in data stream management system. In: International conference on digital
information and communication technology and its applications, pp 166—179

Anderson J, Srinivasan A (2000) Early release fair scheduling. In: Proceedings of the euromicro conference
on real-time systems. IEEE Computer Society Press, Stockholm, pp 35—43

Anderson J, Srinivasan A (2004) Mixed Pfair/ERfair scheduling of asynchronous periodic tasks. J Comput
Syst Sci 68(1):157-204

Andersson B, Jonsson J (2003) The utilization bounds of partitioned and pfair static-priority scheduling
on multiprocessors are 50 percent. In: 15th euromicro conference on real-time systems (ECRTS’03),
Porto, Portugal, 02—04 July

Andersson B, Tovar E (2006) Multiprocessor scheduling with few preemptions. In: Proceedings of the
international conference on embedded and real-time computing systems and applications (RTCSA)

Arasu A et al (2004) Linear road: a stream data management benchmark. In: Proceedings of the thirtieth
international conference on very large data bases, vol 30. VLDB Endowment

Asberg M et al (2012) Exsched: an external cpu scheduler framework for real-time systems. In: 2012
IEEE 18th international conference on embedded and real-time computing systems and applications
(RTCSA). IEEE

Astrom KJ, Hagglund TH (1995) New tuning methods for PID controllers. In: Proceedings of the 3rd
European control conference

Babcock B et al (2003) Models and issues in data stream systems. In: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on principles of database systems

Babcock B et al (2004) Load shedding for aggregation queries over data streams. In: International conference
on data engineering (ICDE)

Babcock B et al (2004) Operator scheduling in data stream systems. VLDB J 13(4):333-353

@ Springer

42 Real-Time Syst (2017) 53:1-44

Bans JM, Arenas A, Labarta J (2002) Efficient scheme to allocate soft-aperiodic tasks in multiprocessor
hard real-time systems. In: PDPTA, pp 809-815

Baruah N et al (1996) Proportionate progress: a notion of fairness in resource allocation. Algorithmica
15:600-625

Baruah S, Gehrke J, Plaxton C (1995) Fast scheduling of periodic tasks on multiple resources. In: Proceed-
ings of the 9th international parallel processing symposium, April 1995, pp 280-288

Beloglazov A, Abawajy J, Buyya R (2012) Energy-aware allocation heuristics for efficient management of
data centers for cloud computing. Future Gener Comput Syst 28:755-768

Bestavros A, Nagy S (1996) An admission control paradigm for real-time databases. Technical Report
BUCS-TR-96-902, Computer Science Department, Boston University, Boston

Bestavros A, Nagy S (1996) Value-cognizant admission control for RTDB systems. In: IEEE 16th real-time
systems symposium, December 1996

Block A et al (2008) An adaptive framework for multiprocessor real-time system. In: Euromicro conference
on real-time systems (ECRTS’08). IEEE

Bollella G, James G (2000) The real-time specification for Java. Computer 33(6):47-54

Bu Y et al (2010) HaLoop: efficient iterative data processing on large clusters. Proc VLDB Endow 3(1-
2):285-296

Carpenter J et al (2004) A categorization of real-time multiprocessor scheduling problems and algorithms.
In: Handbook on scheduling: algorithms, models and performance analysis

Chen Philip CL, Zhang C-Y (2014) Data-intensive applications, challenges, techniques and technologies:
a survey on big data. Inf Sci 275:314-347

Condie T et al (2010) MapReduce Online.In: NSDI, vol. 10, no. 4

Devi UC (2006) Soft real-time scheduling on multiprocessors. Ph.D. Thesis, University of North Carolina
at Chapel Hill

Dhall S, Liu C (1978) On a real-time scheduling problem. Oper Res 26:127-140

Elliott GA, Ward BC, Anderson JH (2013) GPUSync: a framework for real-time GPU management. In:
2013 IEEE 34th real-time systems symposium (RTSS). IEEE

Golab L (2004) Querying sliding windows over on-line data streams. In: Proceedings of ICDE/EDBT Ph.D.
workshop, March, pp 1-10

Golatowski F et al (2002) Framework for validation, test and analysis of real-time scheduling algorithms
and scheduler implementations. In: Proceedings of the 13th IEEE international workshop on rapid
system prototyping, 2002. IEEE

Graefe G et al (1994) Extensible query optimization and parallel execution in volcano. Query processing
for advanced database systems, Morgan Kafman

Holman P, Anderson J (2006) Group-based pfair scheduling. Real Time Syst 32(1-2):125-168

http://www.espertech.com/esper/. Accessed 20 May 2016

https://storm.apache.org/. Accessed 20 March 2015

Jamin S et al (1993) An admission control algorithm for predictive real-time service. LNCS 712(1993):347—
356

Johnson T et al (2008) Query-aware partitioning for monitoring massive network data streams. In: SIGMOD

Kato S, Yamasaki N (2007) Real-time scheduling with task splitting on multiprocessors. In: Proceedings
of the international conference on embedded and real-time computing systems and applications, pp
441-450

Kato S, Yamasaki N (2008) Portioned EDF-based scheduling on multiprocessors. In: Proceedings of the
international conference on embedded software, pp 139-148

Kato S, Yamasaki N (2008) Scheduling aperiodic tasks using total bandwidth server on multiprocessors.
EUC, vol 1, pp 82-89

Kleiminger W, Kalyvianaki E, Pietzuch P (2011) Balancing load in stream processing with the cloud.In:
2011 IEEE 27th international conference on data engineering workshops (ICDEW). IEEE

Kontaki M (2010) Continuous processing of preference queries in data streams. In: 36th international
conference on current trends in theory and practice of computer science (SOFSEM)

Kramer J (2009) Continuous queries over data streams- semantics and implementation. kra

Kulkarni S et al (2015) Twitter heron: stream processing at scale. In: Proceeding of the ACM SIGMOD’ 15,
pp 239-250

Kwon J, Cho H, Ravindran B (2012) A framework accommodating categorized multiprocessor real-time
scheduling in the RTSJ. In: Proceedings of the 10th international workshop on java technologies for
real-time and embedded systems. ACM

@ Springer

http://www.espertech.com/esper/
https://storm.apache.org/

Real-Time Syst (2017) 53:1-44 43

Lakshmanan K et al (2009) Partitioned fixed-priority preemptive scheduling formulti-core processors. In:
Proceedings of the euromicro conference on real-time systems, pp 39-248

Lam W etal (2012) Muppet: MapReduce-style processing of fast data. Proc VLDB Endow 5(12):1814-1825

Lehner W, Sattler K-U (2013) Web-scale data management for the cloud. Springer, Berlin

Leontyev H (2010) Compositional analysis techniques for multiprocessor soft real-time scheduling. Ph. D.
Thesis, University of North Carolina at Chapel Hill

Li X, Wang HA (2007) Adaptive real-time query scheduling over data streams. VLDB *07,23-28 September,
Vienna

Lopez J, Garcia M, Diaz J, Garcia D (2000) Worst-case utilization bound for EDF scheduling on real-time
multiprocessor systems. In: Proceedings of the 12th euromicro conference on real-time systems, June,
pp 25-33

Ma L et al (2009) Real-time scheduling for continuous queries with deadlines. SAC’09, Honolulu, HI

Marisol G-V, Tommaso C, Chenyang L (2014) Challenges in real-time virtualization and predictable cloud
computing. J Syst Architect 60:726-740

Mohammadi S (2010) Continuous query response time improvement based on system conditions and stream
featuress. M.Sc. Thesis, Iran University of Science and Technology

Neumeyer L et al (2010) S4: distributed stream computing platform. 2010 IEEE international conference
on data mining workshops ICDMW). IEEE

Regehr J, Stankovic JA (2001) HLS: a framework for composing soft real-time schedulers. In: Proceedings
of the 22nd IEEE real-time systems symposium (RTSS 2001). IEEE

Safaei AA, Haghjoo MS, Abdi F (2011) PFGN: a hybrid multiprocessor real-time scheduling algorithm for
data stream management systems. In: Proceeding of international conference on digital information
and communication technology and its applications, pp 180-192

Safaei AA, Alemi M, Haghjoo MS, Mohammadi S (2011) Hybrid multiprocessor real-time scheduling
approach. Int J Comput Sci Issues 8(2):171

Safaei AA, Sharif-Razavian A, Sharifi M, Haghjoo MS (2012) Dynamic routing of data stream tuples
among parallel query plan running on multi-core processors. J Distrib Parallel Databases 30(2):145—
176. doi:10.1007/s10619-012-7090-6

Safaei AA, Haghjoo MS (2010) Parallel processing of continuous queries over data streams. Distrib Parallel
Databases 28(2-3):93-118. doi:10.1007/s10619-010-70663

Safaei AA, Haghjoo MS (2012) Dispatching of stream operators in parallel execution of continuous queries.
J Supercomput 61(3):619-641. doi:10.1007/s11227-011-0621-5

Safaei AA, Haghjoo MS (2014) Parallel processing of data streams. J Comput Sci Eng 11(2):11-29

Srinivasan A (2003) Effcient and flexible fair scheduling of real-time tasks on multiprocessors. Ph.D. Thesis,
University of North Carolina, Chapel Hill

Srinivasan A, Anderson JH (2004) Efficient scheduling of soft real-time applications on multiprocessors. J
Embed Comput 1(3):1-14

Stankovic JA et al (1999) Misconceptions about real-time databases. J] Comput 32(6):29-36

Stankovic JA, Ramamritham K (1990) What is predictability for real-time systems? Real Time Syst
2(4):247-254

Stonebraker M et al (2005) The 8 requirements of real-time stream processing. SIGMOD Rec 34(4):42-47

Tatbul N et al (2003) Load shedding in a data stream manager. In: Proceedings of VLDB, pp 309-320

The STREAM Group (2003) STREAM: the Stanford stream data manager. IEEE data engineering bulletin,
March 2003

Valls MG, Lopez IR, Villar LF (2013) iLAND: an enhanced middleware for real-time reconfiguration of
service oriented distributed real-time systems. IEEE Trans Ind Inform 9(1):228-236

Wei Y et al (2007) QoS management of real-time data stream queries in distributed environments. In: IEEE
international symposium on object-oriented real-time distributed

Wei Y, Son SH, Stankovic JA (2006a) RTSTREAM: real-time query processing for data streams. In: 9th
IEEE international symposium on object/component/service-oriented real-time distributed computing,
pp 141-150

Wei Y, Prasad V, Son SH, Stankovic J (2006b) Prediction-based QoS management for real-time data stream.
In: Proceedings of IEEE real-time systems symposium (RTSS’06), December

Yang, H et al (2007) Map-reduce-merge: simplified relational data processing on large clusters. In: Pro-
ceedings of the 2007 ACM SIGMOD international conference on management of data. ACM

Yang Q, Koutsopoulos HN (1996) A microscopic traffic simulator for evaluation of dynamic traffic man-
agement systems. Transp Res C 4(3):113-129

@ Springer

http://dx.doi.org/10.1007/s10619-012-7090-6
http://dx.doi.org/10.1007/s10619-010-70663
http://dx.doi.org/10.1007/s11227-011-0621-5

44

Real-Time Syst (2017) 53:1-44

@ Springer

Ali A. Safaei was born in Semnan, Iran, in 1979. He received the
B.Sc. and M. Sc. degrees in computer engineering in 2001 and 2004,
respectively. He also received the Ph.D. degree in computer engi-
neering from the Iran university of Science and Technology, Tehran,
Iran, in 2011. From 2012 to 2014 Dr. Safaei served at Computer
Engineering department of K. N. Toosi University of Technology, as
an Assistant Professor. In 2014, he joined the Department of Bio-
Medical Informatics, Tarbiat Modares University as an Assistant Pro-
fessor. His current research interests include parallel and real-time
processing of data streams, complex-event processing, big data man-
agement, medical data management, and crowdsourcing in informa-
tion retrieval. He has published two books and more than 40 papers
in the field of data management.

	Real-time processing of streaming big data
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Structure of the paper

	2 Problem formulation
	2.1 Data model
	2.2 Query model
	2.3 Real-time data stream system model

	3 The proposed real-time streaming big data processing engine
	3.1 Request manager
	3.2 Parallel query processing engine
	3.3 Scheduler
	3.3.1 Analysis

	3.4 Deadline monitor
	3.5 Data admission control

	4 Performance evaluation
	4.1 Experimental setup
	4.2 Experimental results

	5 Related work
	6 Conclusion
	Appendix: performance evaluation for different configuration of the contributed system
	References

