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Abstract We describe a new algorithm, called quasi-partitioned scheduling (QPS),
capable of scheduling any feasible system composed of independent implicit-deadline
sporadic tasks on identical processors. QPS partitions the system tasks into subsets,
each of which is either scheduled by EDF on a single processor or by a set of servers
on two or more processors. More precisely, QPS uses an efficient scheme to switch
between partitioned EDF and global-like scheduling rules in response to system load
variation, providing dynamic adaptation in the system. Extensive simulation compares
QPS favorably against related work, showing that it has very low preemption and
migration overheads.
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1 Introduction

Motivation and related work The problem of optimally scheduling a set of n pre-
emptible independent real-time tasks on m identical processors has extensively been
studied. By optimal scheduling we mean producing a correct schedule (no missed
deadlines) whenever it is possible to do so. When task deadlines are equal to their
inter-release times (implicit deadlines), it is well-known that this problem can be
solved by global scheduling approaches, where the scheduler manages a global task
queue and tasks canmigrate from one processor to another, e.g.Andersson and Bletsas
(2008), Andersson and Tovar (2006), Baruah et al. (1996), Cho et al. (2006), Easwaran
et al. (2009), Funaoka et al. (2008), Funk (2010), Levin et al. (2010), McNaughton
(1959), and Zhu et al. (2003). Unfortunately, most global approaches incur an exces-
sive overhead of preemptions and migrations by subdividing and overconstraining
all tasks to run within small time intervals. Within these intervals, processor time is
divided among tasks according to some fairness criteria (Levin et al. 2010).

Run-time overhead isminimized by partitioning the system tasks so that task subsets
are entirely allocated to processors. However, it is unlikely that such a partitioned
scheduling approach can deal with systems that fully utilize the m processors (Koren
et al. 1998) and so when optimality is required, partitioned solutions are not an option.

There are also hybrid approaches offering a compromise between achievable system
utilization and run-time overhead. Semi-partitioning is carried out by assigning most
tasks to processors and by selecting a few of them to migrate between processors, e.g.
Bletsas and Andersson (2011), Burns et al. (2011), Kato et al. (2009), and Santos-
Jr et al. (2013). Task migration control mechanisms must be applied at run-time.
Dividing the system into task/processor clusters is another option, e.g. Easwaran et
al. (2009). In both cases, optimality can be achieved by some hybrid approaches by,
again, enforcing short executionwindows across the system e.g.Andersson andBletsas
(2008), Andersson and Tovar (2006), Bletsas and Andersson (2009), Easwaran et al.
(2009), causing high run-time overheads (Bastoni et al. 2011).

Two recently described global scheduling algorithms, RUN (Regnier et al. 2011)
and U-EDF (Nelissen et al. 2012), achieve optimality with low preemption and
migration overheads. Interestingly, a recent implementation of RUN on LitmusRT

(Compagnin et al. 2014) has confirmed its lowoverhead in practice.However, although
RUN provides the lowest known figures in terms of generated preemption and migra-
tion, in its current version sporadic tasks are not supportedwhereasU-EDFcanmanage
sporadic tasks.

To the best of our knowledge, the quasi-partitioned scheduling (QPS) approach
described in this paper is the first multiprocessor scheduling algorithm to date capable
of adapting its scheduling strategy as a function of system load. When dealing with
sporadic tasks in the system, for instance, the required processing resources may
fluctuate over time. Taking advantage of this fact, QPS monitors the system load at
run-time and moves from global-like to partitioned-like scheduling rules and vice-
versa in response to system load fluctuations. This dynamic adaptation drastically
reduces the number of migrations required by the scheduler.

Contribution QPS is a new algorithm capable of scheduling any feasible system
composed of independent implicit-deadline sporadic tasks on identical processors.
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Fig. 1 QPS schedule for three tasks. All tasks arrive at time 0; tasks τ1 and τ3 are activated with period 3;
but the second job of τ2 is late. Task migration occurs in the period [0, 3); partitioned scheduling is applied
during [3,6) due to a late task arrival

QPS first partitions the system tasks into subsets of two types, depending on whether
they require one ormultiple processors; we refer to these asminor andmajor execution
sets, respectively. If all subsets areminor, QPS reduces to partitioned Earliest Deadline
First (EDF). Major execution sets are scheduled either by a set of QPS servers on
multiple processors (QPS mode), or by local EDF on a single processor (EDF mode)
depending on their execution requirements. Bymonitoringmajor execution sets at run-
time, QPS is able to switch between these two modes, providing dynamic adaptation
to system load.

The dynamic adaptation capability of QPS is dependent on the specific type of
partitioning used, the so-called quasi-partition. For illustration, consider a simple two-
processor system with three tasks, τ1, τ2, and τ3, where each job requires 2 units of
work over 3 units of time, and jobs have a minimum inter-arrival time of 3 (see Fig. 1).
QPS partitions the task set into major execution set P1 = {τ1, τ2} and minor execution
set P2 = {τ3}, which require 4/3 and 2/3 of a processor’s capacity, respectively.
Consequently, P2 can execute on a single processor. The remainder capacity of that
processor is used to handle the excess requirements of P1. TheQPS serversmanage the
execution of P1 during the interval [0, 3), ensuring that τ1 and τ2 run in parallel when
Processor 2 is available, and alternate on Processor 1 when it isn’t. Now let’s suppose
that τ1 and τ3 arrive periodically, but that τ2’s second job doesn’t arrive until time
5. We deactivate P1’s QPS servers, and schedule the remaining tasks of P1 (namely,
τ1) on Processor 1 using EDF during [3, 7). When τ2 arrives again, we reactivate the
QPS servers, and once again allow for the parallel execution of τ1 and τ2 as shown
in Fig. 1. To the best of our knowledge, QPS is the first multiprocessor scheduling
algorithm that provides on-line adaptation between global and partitioned scheduling
rules.

QPS was first described with a single adaptation strategy (Massa et al. 2014)
which, despite achieving the primary goal of dynamic adaptation, is very conser-
vative and sometimes remains working as a global-like scheduling while it could
be working as partitioned EDF. This behaviour causes some extra preemptions and
migrations, which could be avoided with a more accurate adaptation strategy. To
achieve this secondary goal of better accuracy, it is necessary to predict at run-
time system demand for a near future. In this paper we describe two new and more
accurate adaptation approaches, which only adopt a global-like scheduling scheme
when partitioned EDF can not successfully schedule system tasks, and compare all
the three adaptation approaches in terms of generated preemption and migration.
Additionally, we also examine in this paper the effects quasi-partitioning heuristics
cause on the performance of QPS by considering two alternative implementations of
quasi-partitioning.
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Paper structure Section 2 defines the system model and establishes the notation
used in the paper.We introduce the generalized fixed-rate server in Sect. 3, and present
the concept of a quasi-partition in Sect. 3.2. Section 4 details the QPS scheduling
algorithmandSect. 5 proves it correct. Results obtained from simulations are discussed
in Sect. 6. Final comments are given in Sect. 7.

2 System model and notations

Let � be a set of n sporadic tasks scheduled on a set of m identical processors. Each
task τ in � releases a possibly infinite sequence of jobs, or workloads. The concept of
a job is formally defined as follows:

Definition 1 (Job) A job J : (c, r, d) is a sequence of instructions that consumes up
to c units of processing time within time interval [r, d). That is, c, r , and d represent
the worst-case execution time (WCET), the release time, and the absolute deadline of
J , respectively.

We assume that all jobs require their WCET. If a job were to require less work, we
could simulate a WCET requirement by filling in the difference with idle processor
time. Our definition of tasks is more generic than what is commonly found elsewhere
since we need to represent possible task aggregations. We characterize a task τ by its
rate, denoted R(τ ), which represents the fraction of a processor required by its jobs,
namely the jobs it generates. When a task τ releases a job J : (c, r, d), its execution
time c equals R(τ )(d − r), as usual. However, different from the classical sporadic
task model, the time interval duration that a task remains active may vary for each
of its jobs. That is, d − r is not constant over the jobs of τ , and so neither is c.
Each job of the same task can have a particular duration (d − r ), which induces a
particular WCET c = R(τ )(d − r). As will be clearer latter on, the main purpose of
this definition is to address task aggretation into a single entity, namely server. Note
that this is a generalization of the typical sporadic task model. The concept is defined
more formally below.We let D(τ, t) denote the next deadline of τ occurring after time
t , and E(τ, t) the work remaining for τ ’s current job at time t .

Definition 2 (Fixed-rate task) A fixed-rate task (henceforth simply “task”) τ , with
rate R(τ ) ≤ 1, releases a possibly infinity sequence of jobs. A job J : (c, r, d) of
τ released at time r will have d = D(τ, r) and c = E(τ, r) = R(τ )(d − r). In the
particular case when a task τ has constant minimum inter-release time T , we represent
it as a tuple τ : (R(τ )T, T ).

A job J : (c, r, d) of τ is said to be active during [r, d) and inactive otherwise.
Accordingly, τ is active when it has an active job, and is inactive otherwise. If � is
a set of tasks, we use R(�) = ∑

τ∈� R(τ ) to denote the total rate of tasks in �. If
� is a set of active tasks, we also define D(�, t) as the next deadline after t of its
active jobs. Formally, D(�, t) = minτ∈�{D(τ, t)}. A job can be preempted at any
time on a processor and may resume its execution on another processor. We make
the incorrect but standard simplifying assumption that there is no cost associated with

123



570 Real-Time Syst (2016) 52:566–597

such preemptions or migrations. We also assume that a task can only release a new
job at or after the deadline of its previous job.

Finally, we say that a processing system has processing resource ρ if it can execute
a system of tasks for ρδ in any interval of length δ.

3 Fixed-rate servers and quasi-partitions

A server is a scheduling mechanism used to reserve processing bandwidth on a set of
processors for a set of tasks or other servers, known as its clients. More precisely, we
say that a server σ (resp. a scheduling algorithm A) provides processing bandwidth
up to ρ to a task set � in a time interval of length δ if tasks in � can execute up to
ρδ when scheduled by σ (resp. A) during the interval on a system with ρ processing
resources.

A server will present itself as a task to some external scheduling mechanism, like
EDF, andwill release a series of virtual jobs.When that schedulingmechanismchooses
to execute the server, the serverwill, in turn, use its allocated execution time to schedule
its own clients. After defining our servers, we introduce the concept of a particular
type of partitions of tasks/servers, called quasi-partitions, and illustrate how servers
are used in QPS to schedule a quasi-partitioned set of tasks.

3.1 Fixed-rate servers

Definition 3 (Fixed-rate EDF server) A fixed-rate EDF server σ (henceforth simply
“server”) is a scheduling mechanism instantiated to regulate the execution of a set
of active tasks or other servers �, known as its clients. A server σ , denoted σ =
σ(R(σ ), �), has a rate R(σ ) ≤ 1 which is the processing bandwidth it reserves for its
clients. The following rules define the attributes and behavior of a server:

Deadline The next deadline of a server σ after time t is denoted D(σ, t). These
deadlines will include, but may not be limited to, the deadlines of σ ’s clients.

Job releaseA job J : (c, r, d) released by server σ at time r satisfies c = R(σ )(d−
r) and d = D(σ, r).

Execution order Whenever a job J of server σ executes, σ schedules the jobs of
its clients for execution in EDF order.

The server mechanism used in QPS generalizes the one used in RUN (Regnier et al.
2011). RUN servers have rates equal to their clients’ summed rates, and have exactly
the same release times and deadlines as all their clients. QPS servers are more flexible.
Two QPS servers may share a set of clients, or cooperatively schedule a larger set of
clients. ThusQPS servers have rates no larger than their summed client rates, andwhile
they will share all the release times and deadlines of their clients, they may include
other release times and deadlines as well. QPS servers are only used to schedule active
tasks, so if a server’s sporadic client ever arrives late, that server will be deactivated.

We note that the above concept of a server is a generalization of a task. Indeed, a
task can be seen as a server which schedules a single entity and just has one active
client job at a time. Further, a server behaves similarly to a task, releasing jobs whose
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execution time is a function of its rate. Hence, hereafter we use the term “server” to
refer to both servers and tasks when there is no need to distinguish them; � is often
referred to as a server set.

3.2 Quasi-partition

QPS partitions the system task set in a particular way, called quasi-partition, which
is formally defined below.

Definition 4 (Quasi-partition) Let � be a task set or server set to be scheduled on m
identical processors. A quasi-partition of �, denotedQ(�,m), is a partition of � such
that:

(i) |Q(�,m)| ≤ m
(ii) ∀P ∈ Q(�,m), 0 < R(P) < 2; and
(iii) ∀P ∈ Q(�,m), ∀σ ∈ P , R(P) > 1 ⇒ R(σ ) > R(P) − 1

Each element P inQ(�,m) is either aminor execution set (if R(P) ≤ 1) or amajor
execution set (if R(P) > 1).

The first condition in the above definition rules out partitions with more execution
sets than the number of processors. Condition (ii) means that each execution set in a
quasi-partition does not require more than two processors to be correctly scheduled.
Whenmore thanoneprocessor is needed to schedule some P inQ(�,m), condition (iii)
establishes that the extra processing bandwidth required is less than what is demanded
by any server in P . It is worth mentioning that this last property is a cornerstone in
QPS for dealing with sporadic tasks, as will be detailed in Sect. 4.2.

There are numerous possible ways of quasi-partitioning a given server set �. We
define below two possible strategies.

FFD It starts by runningFirst-FitDecreasing bin packing. That is, the objects (tasks)
are packed into bins (execution sets) so that no bin contains objects with summed sizes
(rates) exceeding one. FFD packs each object, one at a time in decreasing size order,
into the first bin into which it fits, or opens a new bin if the object does not fit into any
old one. The number of bins is limited to m. If an object does not fit into any of these
m bins, we “overpack” it into the bin which has the largest room remaining so as to
minimize what exceeds the bin size.

EFD Aiming at distributing objects onto bins in a more evenly fashion, we cre-
ated the Evenly-Fit Decreasing bin-packing strategy. Like FFD, objects are sorted in
decreasing size order. With all m bins open, the first object is packed into the first
bin, the second object into the second bin and so on. After using m bins, we start
over the iteration considering the i-th object to be packed into the first bin it fits,
i = m + 1, . . . , n. If during this packing procedure some object does not fit into any
bin, we over-pack the first under-packed bin by placing such an object into it and then
return to the packing iteration.

In both heuristics, we observe that if no bin is overpacked, thenwe have a successful
packing, and a proper partitioning of our n tasks ontom processors. Also, overpacking
all bins is not possible since this would lead to a partition of� intom subsets each with
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summed rate exceeding one; wewould then haveR(�) > m, and an unfeasible system.
Further, we note that conditions (i)–(iii) of Definition 4 are satisfied. In particular,
(iii) holds because the smallest object in a bin is the last one added (we pack in
decreasing order), and the size of that object is larger than the amount by which the
bin is overpacked, i.e., R(σ ) > R(P) − 1. Thus, the described implementation leads
to a correct quasi-partition and requires O(n log n + nm) steps, with O(n log n) steps
being necessary for sorting the task set. We denote a quasi-partition implementation
as function Q(.) in the following sections.

3.3 QPS servers

We describe now how servers are managed in QPS so that a valid schedule is generated
on a multiprocessor platform.

Definition 5 (QPS Servers) Let P be a major execution set, as defined in Definition
4, with execution requirement 1+ x , where x < 1 represents the exceeding execution
requirement of P regarding its execution on a single processor. Given a bi-partition
{PA, PB} of P with PA �= ∅ and PB �= ∅, we define four QPS servers associated with
P as σ A : (R(PA) − x, PA), σ B : (1 − R(PA), PB), σ S : (x, P) and σ M : (x, P).
At any time t , all QPS servers associated with P share the same deadline D(P, t). σ A

and σ B are dedicated servers associated with PA and PB , respectively. σ M and σ S

are the master and slave servers, respectively.

The execution requirement 1 + x of P in the above definition is time dependent
varyingwith the load of servers in P . This requirement could be conservatively defined
as its maximum value R(P), as it was the case in Massa et al. (2014). In this paper we
extend the definition to provide alternative adaptation strategies. The details of how
to compute the effective rate to serve P will be given in Sect. 4.2.2.

Servers σ A and σ B dealwith the non-parallel execution of PA and PB , respectively,
while σ M and σ S deal with their parallel execution. As R(σ A)+R(σ B)+R(σ S) = 1,
σ A, σ B and σ S can execute on a single processor. Server σ M , meanwhile, executes on
a different processor. Further, whenever σ M is scheduled to execute, σ S also executes,
which explains their names. Also, whenever σ M and σ S execute, one task from PA

and one task from PB execute in parallel; the choice of which executes on behalf of
σ M or σ S is only a matter of efficiency.

Example 1 illustrates how servers are managed in QPS.

Example 1 Let � be a set of periodic tasks that fully utilizes two processors and
consider P = {τ1 : (6, 15), τ2 : (12, 30), τ3 : (5, 10)} a subset of �.

As R(P) = 1 + 0.3, a bi-partition of P may be defined as PA = {τ1, τ2} and
PB = {τ3}. QPS servers σ A, σ B , σ M , and σ S can be defined as σ A : (0.5, PA),
σ B : (0.2, PB), σ M : (0.3, P) and σ S : (0.3, P). Figure 2 illustrates how these
servers would be scheduled within [0, 10). Servers σ A, σ B and σ S are allocated to the
same processor while σ M executes on another processor. Whenever σ M is scheduled
to execute (by EDF on its processor), σ S also executes. Task migration decisions are
carried out on-line and depend on which task is active when its server executes.
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Fig. 2 Illustration of a QPS
schedule for the tasks in
Example 1. When Processor k
schedules σM , then σ S is
scheduled on Processor k, and
PA and PB are executed in
parallel. When Processor j is
running other tasks, Processor k
schedules σ A or σ B

j P

σM

k P A

Γ\P

P B

Γ\P

P

σSσA σB

4 Quasi-partitioned scheduling

The QPS algorithm has three basic components: the Partitioner, the Manager, and
theDispatcher. The Partitioner is responsible for quasi-partitioning tasks/servers into
execution sets and for allocating those sets to processors. The Manager activates
and deactivates QPS servers (Definition 5) in response to system load changes. The
Dispatcher is responsible for scheduling the active servers in the system.

4.1 The partitioner

ThePartitioner is an off-line procedurewhich allocates execution sets to processors, as
specified by Algorithm 1. It uses quasi-partitioning from Definition 4 as a subroutine;
more precisely, letQ(�,m) be the quasi-partition generated for � onm processors via
FFD or EFD heuristics. Starting with a quasi-partition of a set of n tasks (line 1), the
Partitioner allocates an entire processor to any major execution set P and defines an
external serverσn+ j responsible for reservingprocessor capacity time for the execution
of P on another processor (lines 5–6). Note that the quasi-partition/allocation routine
is actually iterative. The external servers from major execution sets are added to the
pool � (line 6) of tasks/servers fromminor execution sets (lines 8–9); this pool is itself

Algorithm 1: QPS Partitioner
Input: Set of n servers �0 and m ≥ 	R(�0)
 processors
Output: Association between processors and execution sets

1 P ← Q(�0,m); j ← 0
2 while ∃P ∈ P,R(P) > 1 do
3 � ← ∅
4 foreach P ∈ P such that R(P) > 1 do
5 j ← j + 1; x ← R(P) − 1
6 � ← � ∪ {σn+ j : (x, P)}
7 Allocate dedicated processor j to P

8 foreach P ∈ P such that R(P) ≤ 1 do
9 � ← � ∪ P

10 P ← Q(�,m − j)

11 foreach P ∈ P do
12 j ← j + 1
13 Allocate dedicated processor j to P
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quasi-partitioned (line 10), and the process is iterated. Once no major execution sets
remain, each minor execution set may be given its own processor (lines 11–12). Note
that when the initial execution ofQ(�0,m) in line 1 returns only minor execution sets,
QPS reduces to Partitioned EDF.

We highlight that if P is amajor execution set, it is explicitly allocated to a processor
that is entirely dedicated to P (line 7), called its dedicated processor. The remaining
R(P) − 1 processing bandwidth is reserved by the external server on another proces-
sor. This server, in turn, could become part of another major execution set, and as
a result, P could actually end up running on more than two processors, namely the
shared processors of P . Although the allocation of shared processors does not appear
explicitly in Algorithm 1, it is carried out in lines 7 or 13 whenever the execution set
considered contains an external server created in line 6.

Example 2 Let � = {σ1, σ2, . . . , σ5} be a server set with R(σi ) = 0.6 for i =
1, 2, . . . , 5 scheduled on three processors.

The behavior of the Partitioner is better illustrated with Example 2. Let P =
{{σ1, σ2}, {σ3, σ4}, {σ5}} be the initial quasi-partition defined in line 1. As there are two
major execution sets in P , the loop in lines 4–7 executes twice. The first and second
processors are dedicated to the major execution sets P1 = {σ1, σ2} and P2 = {σ3, σ4},
respectively. External serversσ6 = (0.2, {σ1, σ2}) andσ7 = (0.2, {σ3, σ4}) are defined
in line 6. At the end of the first iteration of the while loop, P = {{σ5, σ6, σ7}}. Since
P contains no major execution sets, the while loop exits, and lines 11–12 assign the
single remaining minor execution set to the third processor. Thus, at the end of the
procedure, processors 1 and 2 are said to be dedicated to major execution sets P1 and
P2, respectively, and processor 3 is dedicated tominor execution set P3 = {σ5, σ6, σ7}.
Processor 3 is also said to be shared regarding P1 and P2.

Note that the Partitioner defines a hierarchy on processors. For Example 2, the two
(dedicated) processors to which servers are allocated are linked to the third (shared)
processor via external servers. See Fig. 3 for illustration.

The Partitioner procedure runs in polynomial time. The worst-case size of P is
|P| = 	R(�)
 ≤ m, which corresponds to the largest quasi-partition by Definition
4. When defining servers, the rate of P is decreased by at least 1 (lines 5–6) at each
iterationof thewhile-loopwhich takesO(m) steps.As the quasi-partitioningprocedure
can be implemented in O(n log n + nm), the while-loop runs in O(nm log n + nm2).
Also, lines 11–12 takes |P| < n steps. Taking the initial quasi-partitioning in line 1
into consideration, the whole procedure runs in O(nm log n + nm2), and so it takes
O(mn2) steps.

We observe the following property:

Fig. 3 Illustration of the
hierarchy of processors defined
by Algorithm 1 for Example 2.
Servers σ6 and σ7 are external
and define reserves for
allocating master servers for
major execution sets P1 and P2

P3 σ6 σ7 σ5

P2 σ3 σ4P1 σ1 σ2
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Lemma 1 Any server set �0 with 	R(�0)
 ≤ m will be allocated no more than m
processors by Algorithm 1.

Proof In each pass through the while loop, the value of R(P) is decreased by the
number of calls to lines 5–7 (each major execution set P is replaced with σn+ j :
(R(P) − 1, P), and minor execution sets are unchanged); this is also the number of
processors allocated by the pass through the while loop. The condition of the while
loop requires that lines 5–7 be called at least once, so the while loop can execute at
most �R(�0)� times. Suppose lines 5–7 have been called a total of j times when the
while loop exits, so that j processors have been allocated, and R(�) = R(�0)− j ≤
m − j .

From Definition 4(i), it is known that the number of execution sets generated by
the final call to Q(�,m − j) in line 10 is at most m − j . Since the while loop
is exiting, they must all be minor execution sets. Thus when they are assigned their
own processors by line 13, they will not require more than the m − j processors
remaining. ��

4.2 The manager

Let P be a major execution set with a dedicated processor and an external server
responsible for its execution on a shared processor. According to our sporadic task
model, it may be possible that servers in P can be safely executed during a given time
interval on P’s dedicated processor, i.e., with no need of its shared processor. This
may happen when some task is not active, for instance. In such a case, the Manager
deactivates the QPS servers (Definition 5) in charge of P so that P is simply managed
by local EDF during the interval, similarly to a minor execution set.

On the other hand, whenever P is being scheduled by EDF, the arrival of a sporadic
job may make necessary the use of part or all of the execution time reserved on P’s
shared processor via its external server. In such a case, the Manager activates the QPS
servers for P , using the reserve defined by its external server to define the master
server in charge of P . Thus, a major execution set P can be scheduled according to
two modes, EDF and QPS. In QPS mode, QPS servers schedule servers in P on two
or more processors while in EDF mode, servers in P are simply scheduled by EDF on
a single processor. The transition from one mode to another is called mode change.

Note that a mode change carried out for a major execution set can cause mode
changes on other major execution sets. This happens when activating/deactivating the
master server associated with a major execution set which is part of another major
execution set.

Algorithm 2 outlines the main procedure executed by the Manager. At all deadline
and release instants t of servers in a major execution set P defined by Algorithm 1,
Algorithm 2 determines which mode should be used, QPS or EDF, by calling function
qps_mode(P, t) in line 2. This function returns Truewhenever it is detected that more
than one processor is necessary to safely schedule P and QPS mode should be used,
and False otherwise.

Upon the activation of QPS mode at time t , P is bi-partitioned into PA and PB ,
choosing for PA a single server among those arrived at t (lines 6–7). Note that, as
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Algorithm 2: QPS manager

Input: Major execution set P; release time or deadline of some server in P
Output: Activation/deactivation of QPS servers associated with P

1 Let t be a release time or deadline
2 if qps_mode(P, t) // QPS mode
3 then
4 if QPS servers are inactive at t then
5 Let σ ∈ P be the server released at t

6 PA ← {σ }
7 PB ← P\{σ }
8 Activate QPS servers

9 x ← qps_rate(P, t)−1
10 Set-up QPS servers:

11 σM : (x, P); σ S : (x, P)

12 σ A : (R(PA) − x, PA)

13 σ B : (1 − R(PA), PB )

14 else // EDF mode
15 Deactivate the QPS servers associated with P

all servers are considered inactive before t = 0, the single server for A may be
chosen arbitrarily if all tasks arrive initially. QPS servers can then be activated. While
QPS servers are active, new rates are computed for these servers at all deadlines and
release instants. Function qps_rate(P, t) computes the rate needed by P at time t
and its implementation will be given in Sect. 4.2.2. As will be seen in Lemma 4,
qps_rate(P, t) does not return values greater than R(P). Hence, the corresponding
QPS servers will correctly fit into the processor hierarchy defined by Algorithm 1.

It is worth observing that Algorithm 2 takes O(1) steps for managing the acti-
vation/deactivation of QPS servers in charge of a major execution set P . Since the
activation/deactivation of QPS servers for a set P can cause the activation/deactivation
of other QPS servers, which may involve all processor hierarchy (recall Sect. 4.1), the
system-wide management operation takes no more than O(m) steps.

There are some options to configure QPS, giving rise to different mode-change
strategies, as we now explain.

4.2.1 Mode change strategies

We define three different strategies for carrying out mode change: Conservative with
Full-rate (CF); Rate-based with Full-rate (RF); and Rate-based with Partial-rate (RP).
If QPS is configured to CF, it is conservatively assumed that whenever all servers
of any major execution set P are active, QPS servers providing full rate (R(P)) are
needed. If some server is inactive, though, EDF is used instead. According to the rate-
based strategies, RF or RP, the rate required by active servers in P , namely ρ(P, t),
is accurately computed at release time or deadline instants t (Sect. 4.2.2 gives details
on how this rate is computed). If more than one processor is needed, i.e., ρ(P, t) > 1,
QPS servers are activated by the Manager. Otherwise, EDF is used to schedule P . The
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difference between RF and RP is the rate used for setting up QPS servers when it is
needed to do so. Although both strategies use ρ(P, t) to decide whether QPS servers
are instantiated, RP strategy also uses ρ(P, t) to set up their partial rates while RF
always sets up QPS servers at their full rate.

Below we specify functions qps_mode(P,t) and qps_rate(P,t) that con-
formwith themode-change strategy chosen. The former determineswhichmode (QPS
or EDF) is to be used. Note that this function indicates that QPS mode is to be used if
all servers are active for CF and additionally when ρ(P, t) > 1 for RF or RP.

Function qps−mode(P, t)
A ← all active servers at time t
case CF: return (A = P)

case RF or RP: return (A= P and ρ(P, t)>1)

Function qps_rate(P,t) is only called when in QPSmode (line 9 of Algorithm
2). As in EDF mode, P is to be executed on a single processor by EDF and there is
no need to determine the execution rate.

Function qps−rate(P, t)
// qps_mode(P,t) equals True
case CF or RF: return R(P)

case RP: return ρ(P, t)

4.2.2 Computation of ρ(P, t)

To calculate ρ(P, t), the Manager estimates the maximum service time available after
t by assuming that all servers in P will be executed at execution rate of R(P) after
D(P, t). Doing so, the Manager determines the maximum demand of P’s servers at
t that can be postponed after D(P, t). Subtracting this quantity from the demand of
servers in P at t , the urgent part of this demand that must execute during [t, D(P, t))
can be computed. Finally, ρ(P, t) is obtained by dividing this urgent demand by
D(P, t) − t . Since each server in P may have its own urgent demand, ρ(P, t) is the
maximum of those rates obtained for each server in P . We now detail this procedure.

Let the set of servers with higher or equal priorities than a server σi in P at time t
be denoted as

hpi (P, t) = {
σ j ∈ P, D(σ j , t) ≤ D (σi , t)

}

For each server σi in P , φi (P, t) denotes the highest possible demand due to
jobs with priority not lower than σi ’s job that may have to be executed from time t
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until deadline D(σi , t). By “highest” we mean the demand due to the worst-case job
releasing scenario by sporadic tasks i.e., as if they were periodic. For some server σ j

in hpi (P, t), we shall distinguish two kinds of job that contribute to φi (P, t): the jobs
released but not yet finished by t and the jobs released from D(σ j , t)with deadlines not
greater than D(σi , t). This latter demand is no more than R(σ j )(D(σi , t)− D(σ j , t)).
Hence,

φi (P, t) =
∑

σ j∈hpi (P,t)

E(σ j , t) + R(σ j )
(
D (σi , t) − D(σ j , t)

)
(1)

The service time available from D(P, t) until D(σi , t) regarding any σi in P is
denoted ψi (P, t). Assuming that QPS servers provide their full execution rate R(P)

during interval [D(P, t), D(σi , t)) and that servers in P execute at this rate, we obtain

ψi (P, t) = R(P)
(
D (σi , t) − D(P, t)

)
(2)

The difference φi (P, t) − ψi (P, D(P, t)) gives the urgent demand of server σi that
must be executed in interval [t, D(P, t)). Thus, the minimum execution rate needed
by P during [t, D(P, t)) is

ρ(P, t) = maxσi∈P
{
φi (P, t) − ψi (P, t)

}

D(P, t) − t
(3)

As an example of how to compute the minimum execution rate needed by a major
execution set P at a time instant t using Eq. (3), let us consider a major execution set
P = {τ1 : (6, 15), τ2 : (12, 30), τ3 : (5, 10)}. Suppose an arbitrary scenario where,
at time 16, tasks deadlines are D(τ1, 16) = 30, D(τ2, 16) = 30, and D(τ3, 16) =
26 whereas the remaining execution times are E(τ1, 16) = 6, E(τ2, 16) = 4, and
E(τ3, 16) = 5. Figure 4 illustrates this scenario. Note that R(P) = 1.3 and the next
deadline of tasks in P after t is D(P, 16) = 26. As the objective of this example
is to show how to compute ρ(P, t) for a major execution set P with its respective
remaining execution times, the schedule of this system until time 16 is not relevant
and therefore will be omitted.

The maximum demand until D(τ1, 16) = 30 due to jobs with priority not lower
than τ1’s priority is φ1 = 15+ 2 = 17. The service time available from D(P, t) = 26
until D(τ1, 16) = 30 is ψ1 = 1.3(30 − 26) = 5.2. This results in a demand equal to

Fig. 4 Illustration of a scenario
where ρ(P, 16) is computed for
a major execution set
P = {τ1 : (6, 15), τ2 :
(12, 30), τ3 : (5, 10)}, with
respective deadlines
D(τ1, 16) = 30,
D(τ2, 16) = 30, D(τ3, 16) = 26
and respective remaining
execution times E(τ1, 16) = 6,
E(τ2, 16) = 4, E(τ3, 16) = 5

t = 16 22

D(P, t)

26 30

τ1 E(τ1, 16) = 6
t

τ2 E(τ2, 16) = 4
t

τ3 E(τ3, 16) = 5
t
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17−5.2 = 11.8 to be executed until D(P, 16) = 26. As D(τ1, 16) = D(τ2, 16) = 30,
the computation for τ2 yields the same urgent demand. The maximum demand until
D(τ3, 16) = 26 is equal to φ3 = 5 + 0 = 5 and the service time available from
D(P, 16) = 26 until D(τ3, 16) = 26 is null. Hence, the urgent demand regarding
τ3 is 5 time units, which needs to be executed until D(P, 16) = 26. Getting the
maximum of these three values (11.8, 11.8, 5) and dividing it by the size of the
interval [t = 16, D(P, t) = 26) yields

ρ(P, 16) = max
{
11.8, 11.8, 5

}

26 − 16
= 1.18

4.3 The dispatcher

The Dispatcher, outlined in Algorithm 3, visits each processor j for which there is
an active server (lines 3–4); selects a server in each processor (lines 5–8); selects the
task that must be dispatched (lines 9–14); and finally dispatches the selected tasks
(line 16). The procedure is executed whenever a task or server has a job arrival or job
complete event.

Recall from Sect. 4.1 that Algorithm 1 defines a hierarchy on processors. Algo-
rithm 3 takes this hierarchy into account. It visits processor in reverse order from that
produced by Algorithm 1. As a result, masters are selected before their respective
slaves, ensuring their parallel execution.

Considering a specific execution set P allocated to processor j , the dispatching
rules are as follows. If P is either a minor execution set or a major execution set
in EDF mode, its servers are selected via local EDF on processor j , similarly to a
uniprocessor system. On the other hand, if P is a major execution set in QPSmode, its
dedicated QPS servers are scheduled according to the hierarchical relation between a
master and its slave i.e., whenever the master server executes on the shared processor
of P , its associated slave executes on the dedicated processor j so as to ensure the
parallel execution requirement of P (lines 5–6). Whenever the master server is not
executing, its slave server does not execute either, and the two dedicated QPS servers
are selected in arbitrary order since they share the same deadlines (line 8). In any case,
servers themselves select their clients via EDF.

Once a server is selected for a given processor j , the task that should execute on j
must be determined. As servers may encapsulate other servers, a server chain must be
followed until a task is reached, which is done in lines 9–15. Recall that master and
slave servers may potentially serve any client from the execution set. Line 14 prevents
the same client from running simultaneously on two processors.

Each loop inAlgorithm3 (lines 3 and9) takes nomore thanO(m) iterations, limiting
the total number of iterations to O(m2). We note that a more efficient implementation
can be derived. For example, processors can be visited following either a sequential
order or the processor hierarchy if a master is selected. Doing so, the same processor
is not visited more than once, meaning that the server selection would take O(m)

steps. We prefer to present the Dispatcher as described in Algorithm 3 for the sake of

123



580 Real-Time Syst (2016) 52:566–597

Algorithm 3: QPS Dispatcher

1 Let t be the current time and d the next deadline after t
2 Let k be the last processor allocated by Algorithm 1
3 for j ← k, k − 1, . . . , 1 do
4 if there is an active server at t on processor j then
5 if there is a slave server on processor j whose master was previously selected then
6 Select slave server σ on processor j

7 else
8 Select a non-slave server σ on processor j in EDF order

9 while σ is not a task do
10 P ← the clients of σ

11 if σ is not a slave server then
12 Select σ ′ in P via EDF

13 else
14 Select σ ′ via EDF from whichever of PA or PB is not running on P’s master server

15 σ ← σ ′

16 Execute all tasks on processors they are selected onto

simplicity. As for the selection of the highest priority tasks in an ordered queue, it can
be done in O(log n).

4.4 Illustration

The behavior of the QPS algorithm is illustrated by Example 3, which is amodification
of Example 1 to fully utilize two processors and to take sporadic tasks into account.

Example 3 Consider a set of sporadic tasks � = {τ1 : (6, 15), τ2 : (12, 30), τ3 :
(5, 10), τ4 : (3.5, 5)} to be scheduled by QPS on two processors. Assume that all four
tasks release their first jobs at time 0 and the second job of τ3 arrives at t = 16 whereas
the other tasks are released periodically.

Let Q(�, 2) = {P1, P2} with P1 = {τ1, τ2, τ3} and P2 = {τ4}, be the quasi-
partition for this example, and CF be the chosenmode-change strategy. The Partitioner
(Algorithm 1) then allocates P1 on processor 1 and its external server is allocated on
processor 2 together with τ4. Note that the external server has rate of 0.3 since R(P1) =
1.3. Since all tasks in P1 are active at t = 0, the Manager (Algorithm 2) activates
QPS servers σ M , σ S , σ A and σ B in charge of P1. As τ1, τ2 and τ3 were activated
simultaneously, the choice of the bi-partition is arbitrary. It is only required that a
single task must be assigned to server σ A. In Fig. 5, which depicts the QPS schedule
produced for this example, σ A and σ B initially serve {τ1} and {τ2, τ3}, respectively. As
R(P1) = 1.3, theManager activates theQPS servers as:σ M : (0.3, P1),σ S : (0.3, P1),
σ A : (0.1, τ1), and σ B : (0.6, {τ2, τ3}). As the first deadline of tasks in P1 is t = 10,
servers σ M , σ S , σ A, and σ B receive, respectively, initial budgets equal to 3, 3, 1 and
6, all with deadlines at t = 10. At time 0 the Dispatcher (Algorithm 3) visits first
processor 2 (the last one assigned by the Partitioner), where σ M and τ4 are allocated.

123



Real-Time Syst (2016) 52:566–597 581
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Fig. 5 Quasi-partitioned scheduling for Example 3 assuming that Q(�) = {{τ1, τ2, τ3}, {τ4}} and the
mode-change strategy. The second job of τ3 arrives late at t=16

As τ4 has the highest priority at time 0 (by EDF), it is chosen to execute during [0, 3.5).
Also, either σ A or σ B can be selected at time 0 on the first processor.

The figure shows a scenario where σ A is chosen. It then executes its single client,
τ1, until time 1. Then server σ B starts executing its clients. Task τ3 has the earliest
deadline compared to τ2 and so it is selected to execute by σ B until time 3.5 when σ S

starts to execute due to the selection of σ M on the second (shared) processor. During
[3.5, 6.5), σ M and σ S execute one client each from partitions {τ1} and {τ2, τ3}. As
τ3 has higher priority than τ2 (by EDF) and it is already executing on the dedicated
processor, it remains so but being served by σ S . Note that there is no preemption here.
Task τ1 migrates and is served by σ M on the shared processor.

The remainder of the schedule shown in the figure follows similar reasoning until
t = 10, when τ3 becomes inactive. Until the arrival of τ3’s late job (at t = 16) the
QPS servers are kept deactivated by theManager (EDFmode). That is, during interval
[10, 16) tasks τ1 and τ2 are scheduled by EDF on the first processor.

At time 16, the second job of τ3 arrives making all tasks active. According to
Algorithm 2 and CF strategy, the QPS servers are then activated at time 16 as σ M :
(0.3, P1), σ S : (0.3, P1), σ A : (0.2, {τ3}) and σ B : (0.5, {τ1, τ2}). Now, σ A serves τ3
since it is the last task to become active. Tasks τ1 and τ2 are now the clients ofσ B . Then,
QPS servers release jobs with the same deadline D(σ, 16) = 26, i.e., σ M , σ S, σ A and
σ B release jobs with execution times 3, 3, 2, and 5, respectively. The next schedule
decisions follow similar reasoning.

We observe that if either RF or RP were used instead of CF, the Manager would
calculate ρ(P1, 16) = 1.18 and would activate the QPS servers at time 16. Note that
this is the same scenario of Fig. 4. Thus, P1 would be managed by local EDF until
time D(P1, 16) = 26. Postponing the activation of the QPS servers this way is useful
for reducing preemption and migration overheads, as will be shown in Sect. 6.

5 Proof of correctness

For the proofs below, we assume that the QPS algorithm consists of a set of execution
sets created by Algorithm 1, managed by servers in Algorithm 2, and dispatched by
Algorithm3. For time interval	 = [t, t ′), we say that	 is a complete EDF interval for
a major execution set P if the Manager activates EDF mode for P at time t (possibly
t = 0), and next activates QPSmode at t ′ (so that P executes in EDFmode throughout
	). Similarly, we say that 	 is a complete QPS interval if a phase of QPS execution
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begins at t (again, possibly t = 0) and ends at t ′. Thus in complete QPS intervals
all tasks in P are active whereas in complete EDF intervals some task in P may be
inactive. Finally, 	 is a QPS job interval if some task of P releases a job at t , and
t ′ = D(P, t) is the next deadline of any task of P . Thus a complete QPS interval
is divided into a sequence of QPS job intervals, and P’s four managing servers each
release a new job within each QPS job interval.

As described in Sect. 4, a major execution set P is alternately scheduled by QPS
servers or by EDF. Hence, we need to show that this jointly generated schedule is valid.
To do so, we first assume that QPS servers are consistently created by Algorithm 2,
i.e., QPS server rates for a major execution set P do not sum up more than R(P). For
the case when the mode change strategies RF or CF are being used, this assumption
is trivially granted. As for RP, the assumption means that ρ(P, t) ≤ R(P). In any
case, we refer to a QPS server considering that it was consistently created. Under this
condition, we show that QPS correctly schedules P from the beginning of a complete
QPS interval until the starting time of another (Lemmas 2, 3). Then, we prove that the
assumed condition always holds (Lemma 4). Lemma 5 then proves that P is always
correctly scheduled provided that its master server is correctly scheduled. Finally,
Theorem 1 completes the proof by inductively extending the lemmas to all execution
sets.

We begin to prove the correctness of QPSwith Lemma 2which states that whenever
created by the QPS manager, as specified by Algorithm 2, QPS servers meet their
deadlines so long as themaster server of the same execution set alsomeets its deadlines.

Lemma 2 Let P be a major execution set and consider a complete QPS interval
	 = [t, t ′). If themaster server σ M in charge of P is scheduled on its shared processor
so that it meets all its deadlines in 	, then the other three QPS servers will also meet
theirs on P’s dedicated processor.

Proof Let σ M , σ S , σ A and σ B be the QPS servers in charge of P during	. σ M is part
of some other execution set, and is being scheduled on a shared processor. We assume
this schedule allows σ M to meet all its deadlines during 	. Algorithm 3 schedules σ S

whenever σ M executes and so σ S also meets all of its deadlines. The remaining time
on the dedicated processor is filled with the execution of σ A and σ B in their correct
proportion by Algorithm 3 since R(σ S) + R(σ A) + R(σ B) = 1. As all four QPS
servers share the same release times and deadlines, they all met their deadlines.

Once the four QPS servers in charge of an execution set P meet their deadlines,
Lemmas 3, 4 and 5 assure that the elements of P will also meet their deadlines.

Lemma 3 Let P be a major execution set. If ρ(P, t) ≤ R(P) where t is the starting
time of a QPS interval, the individual tasks and servers in P will meet all their
deadlines until the starting time of the next QPS interval provided that the master
server in charge of P meets its deadlines.

Proof As we are taking a local view of major execution set P , let us refer to its
elements as “the tasks” (though some may actually be the master servers of other
major execution sets), and σ M , σ S , σ A, and σ B as “the servers”. By our assumption
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that the master server in charge of P meets its deadlines and by Lemma 2, QPS
servers in charge of P meet their deadlines in any complete QPS interval providing
P an execution rate of ρ(P, t). So, by assumption, Eq. (3) returns a value not greater
than R(P) and so those four QPS servers can always be consistently defined at t . As
per Algorithm 2, when we partition P into PA and PB , PA will contain a singleton
task τ which arrived at the beginning of the current complete QPS interval (possibly at
t = 0 if all servers arrived then). Suppose that processor j is the dedicated processor
of P .

We focus on proving the lemma by showing that all deadlines in P are met when
QPS is configured to the RP mode-change strategy. As the mode-change strategies
RF and CF provide higher execution rates to QPS servers, the correctness of the RP
strategy implies that strategies RF and CF are also correct. Our proof of correctness
here relies primarily on the observation that processor j is always running uniprocessor
EDF on PB , sometimes with a minor modification. Even though the elements of PB

may change as P goes into and out of QPS mode, these changes conform to standard
EDF scheduling.

(A) QPS mode Let [r, d) with r ≥ t be a QPS job interval, so that each of P’s four
servers releases a job at r with deadline d. Recall that σ A, σ B , and σ S are scheduled
on processor j . Now, while the Dispatcher may choose either PA or PB to be served
by σ M , since σ M and σ S only execute in parallel, let us suppose WLOG that σ M

serves PA and σ S serves PB (swapping these may affect migration count, but never
execution time allotted to tasks). Thus processor j is scheduling PB via EDFwhenever
σ A isn’t running.

The QPS rate computed by Eq. (3) gets the maximum of its arguments, so the rate
calculated at time r satisfies

ρ(P, r) ≥ φi (P, r) − ψi (P, r)

d − r
(4)

for any server σi .
Consider a server σi in P with deadline at d, i.e., D(σi , r) = d.Wewill show that σi

(and so any other server in P with deadlines at d) meets its deadline. As σi has the first
deadline after r , for any server σk ∈ hpi (P, r), we have that D(σk, r) = D(σi , r) = d.
This means that ψi (P, r) = 0, reducing (4) to

φi (P, t) ≤ ρ(P, r)(d − r) (5)

and making
φi (P, r) =

∑

σk∈hpi (P,r)

E(σk, r) (6)

Recall from Algorithm 2 that x = ρ(P, r) − 1 and R(σ M ) = x . As σ M executes
for x(d − r) in [r, d) and by our assumption it meets all of its deadlines, the demand
of P to be executed in processor j during [r, d) is φi (P, r) − x(r − d). Using (5) and
(6), we have that the total demand with deadline at d to be executed in processor j is
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∑

σk∈hpi (P,r)

E(σk, r) − x(d − r) ≤ ρ(P, r)(d − r) − x(d − r) = (d − r)

which is successfully scheduled byEDFon processor j during interval [r, d). That is, if
we were to simply run an EDF scheduler on processor j , it would have to schedule σ A

and the servers in PB for this same amount of time during [r, d). This EDF schedule
is the same schedule produced by QPS, with σ B and σ S both serving PB , except that
σ A may not execute at the same time as σ M . However, moving and/or subdividing
the execution of σ A within [r, d) (so as to avoid overlap with σ M ) cannot affect the
correctness of the schedule, as there are no job releases or deadlines within [r, d).
Thus all deadlines in PB must be met while in QPS mode, as the schedule produced
for PB is equivalent to a (guaranteed correct) EDF schedule.

(B) Migrating task Recall from Algorithm 2 that x = ρ(P, r) − 1, R(σ M ) = x ,
and R(σ A) = R(PA) − x , so that R(σ M ) + R(σ A) = R(PA). Since PA = {τ },
R(σ M ) and R(σ A) will collectively do R(τ )(d − r) units of work on τ during any
QPS job interval [r, d). This is assured since our assumption and Lemma 2 guarantee
that σ M and σ A meet their deadlines. That is, at any deadline of some task of P , τ has
received its correct proportion of work, and so will meet any deadline it has during
QPS execution. Further, if P gets into EDF mode, when we switch τ to executing
exclusively on processor j under EDF, the work remaining on its current job is in the
correct proportion R(τ ) to the time remaining on that job. More precisely, if P enters
EDF mode at time t ′, then E(τ, t ′) = R(τ )(D(τ, t ′) − t ′).

(C) Entering EDF mode Here, [r, d) is an EDF interval. Assume first that QPS
is configured to the CF mode-change strategy. In this case, when a task of P fails
to release a new job at its deadline and puts P into EDF mode, EDF execution of
PB [see (A) above] continues uninterrupted on processor j . As P’s four servers are
deactivated, we will no longer schedule σ A along with PB . If it is τ ∈ PA that fails to
arrive, then PB continues to execute via EDF as before. If some τ ∈ PB fails to arrive,
then the remainder of the current job of τ ∈ PA is moved exclusively to processor j .
When this happens at time t , the EDF scheduler on processor j may treat this as if it
were a newly arrived job with work E(τ, t), deadline D(τ, t), and rate R(τ ), as noted
in (B). By construction, any proper subset of P (such as PB + {τ } − {τ ′}) must have
rate less than one. As the set of jobs now being scheduled on processor j (σ A and τ ′
are gone, but τ has “arrived”) still has rate no more than one, EDF will continue to
schedule it correctly. This will be the case while other jobs fail to arrive on time, and
late jobs reappear, so long as not all jobs of P are active at once.

When QPS is configured to the RP/RF mode-change strategy and P gets into EDF
mode, we have that ρ(P, r) ≤ 1. The next deadline after r is (for some task σi )
D(σi , r) = d and all servers with deadline at d are in hpi (P, r). Thus, using (5) and
(6) again, we have that

∑

σk∈hpi (P,r)

E(σk, t) ≤ ρ(P, r)(d − r) ≤ (d − r)

and there is no deadline miss during [r, d). Similar reasoning applies to any EDF
interval as long as the system runs in EDF mode.
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(D) Leaving EDFmodeNow suppose first that the last late task of P arrives at time
t , when P switches from EDFmode back into QPSmode. Let’s call this task τ , though
it may be different from the task in PA during the previous QPS execution phase. We
now re-partition P so that PA = (this new) {τ }, and PB = P − {τ }, and allot P’s
four managing servers accordingly. From the perspective of the EDF scheduler on
processor j , all previous tasks from EDF mode are still present, and one new job of
σ A has arrived, which brings the total rate of tasks on processor j up to one. Hence
QPS execution resumes as in (A).

Thus, except as noted in (B), all scheduling of P is handled by the persistent
EDF scheduler running processor j (subject to some safe rearranging within QPS job
intervals, as noted in (A)). Since the rate load of jobs being scheduled on processor j
never exceeds one, EDFguarantees that all deadlineswill bemet. Further, the singleton
task in PA will meet its deadlines so long as σ M does the same. ��

Lemma 4 ensures that QPS servers can always be consistently instantiated since
function ρ(P, t), as defined by Eq. (3), is safe after a correct period scheduled by QPS.

Lemma 4 At any time t at which ρ(P, t) is computed for a major execution set P,
ρ(P, t) ≤ R(P) provided that P is correctly scheduled by QPS until t .

Proof Assume by contradiction that t is the earliest instant such that ρ(P, t) > R(P).
According to Algorithm 2, all servers in P are active at t ; otherwise ρ(P, t) would
not be computed. Let σk be the server such that

ρ(P, t) = φk(P, t) − ψk(P, t)

D(P, t) − t
> R(P) (7)

and S ⊆ hpk(P, t) a set of servers that release a set of jobs J before t with deadlines
after t , which includes a job of σk .

Our proof arguments are based on a specific but legal scenario according to which
the interference in the execution of the jobs in J is maximized; and so is the value
of ρ(P, t). To maximize the interference in the jobs of J , we consider that servers in
P ′ = P \ S release their jobs at time 0 with deadline at t . Likewise, we consider that
all servers in S release their jobs at 0 with deadlines at r , where r is the release time
of their jobs in J . Releasing all these jobs at 0 like we did, delays the execution of
jobs in J , maximizing the value of ρ(P, t), as we wished. Further, if our assumption
that ρ(P, t) > R(P) holds for an arbitrary job release pattern, it will also hold for our
constructed scenario. We distinguish two cases:

Case 1 S = {}. This means that all servers in P are released at t , since they are all
active at t . As

∑

σ j∈hpk (P,t)

E(σ j , t) =
∑

σ j∈hpk (P,t)

R(σ j )
(
D(σ j , t) − t

)
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we have that

φk(P, t) =
∑

σ j∈hpk (P,t)

R(σ j )
(
D(σ j , t) − t

) + R(σ j )
(
D(σk, t) − D(σ j , t)

)

=
∑

σ j∈hpk (P,t)

R(σ j )
(
D(σk, t) − t

)

Since hpk(P, t) ⊆ P , the above equation implies that

φk(P, t) ≤
∑

σ j∈P

R(σ j )
(
D(σk, t) − t

)

≤ R(P)
(
D(σk, t) − t

)

From Eq. (2), we finally obtain,

φk(P, t) − ψk(P, t) ≤ R(P)
(
D(P, t) − t

)

which contradicts (7).
Case 2 S �= {}. Let X be the workload executed by QPS before t . Observe that the

value of X for the scenario we constructed is exactly R(P)t because: (i) by assumption
t is the earliest time when ρ(P, t) > R(P) and so, at any time t ′ < t at which ρ(P, t ′)
was computed, its value is not above R(P); (ii) By assumption, P is correctly scheduled
by QPS during [0, t); (iii) by construction of our scenario, all tasks are active during
[0, t) and the total workload released until t is not less than R(P)t . However, in
the following, we show that ρ(P, t) > R(P) implies X < R(P)t , contradicting
X = R(P)t .

Our contradiction assumption (ρ(P, t) > R(P), which keeps valid for our scenario)
implies that

φk(P, t) − ψk(P, t) > R(P)
(
D(P, t) − t

)

Substituting ψk(P, t), defined by Eq. (2), in the above relation yields

φk(P, t) − R(P)
(
D(σk, t) − D(P, t)

)
> R(P)

(
D(P, t) − t

)

Hence,
φk(P, t) > R(P)

(
D(σk, t) − t

)
(8)

Considering that φk(P, t) does not take into account jobs of servers in P \ hpk(P, t),
from Eq. (8) we have that the maximum workload of P that must be executed within
[t, D(σk, t)), namely 
, is


 ≥ φk(P, t) > R(P)
(
D(σk, t) − t

)
(9)

The worst-case workload released by P during [0, D(σk, t)) to be executed up to
D(σk, t) is preciselyR(P)D(σk, t),which occurswhen all servers in P have a common
deadline D(σk, t). Also, 
 is the difference between the maximum workload released
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by P to be executed up to D(σk, t) and the workload already executed by QPS before
t . Hence, φ = R(P)D(σk, t) − X and from Eq. (9), we obtain

R(P)D(σk, t) − X > R(P)
(
D(σk, t) − t

)

which implies that X < R(P)t . A contradiction, since we know by construction that
X = R(P)t . ��
Lemma 5 Let P be a major execution set scheduled by QPS. The individual tasks and
servers in P will meet all their deadlines provided that the master server in charge of
P meets its deadlines.

Proof Let ti and ti+1 be the time instants at which the i-th and (i+1)-th QPS complete
intervals begin. We apply a simple induction on the intervals [ti , ti+1).

Base case Consider the first and second complete QPS intervals, starting at t1 and
t2, respectively. Either t1 = 0 (all servers in P arrive at t1); or before t1 the system was
continuously on EDFmode. In the former case, Lemma 4 states that ρ(P, t1) ≤ R(P)

(since no deadline up to t1 is missed) and thus, from Lemma 3, we know that no
deadline is missed until t2 since by assumption the master server in charge of P meets
its deadlines. For the sake of argumentation in the latter case, construct a scenario
where all servers are released at some time t0 < t , where t is when the first job by
servers in P was released. Consider also that all jobs released at t0 have deadlines at t .
These artificial releases of jobs at t0 does not change anything in the schedule from t
onwards. As this scenario is similar to the former case, Lemmas 3 and 4 apply again,
leading to the same conclusion.

Induction step Assume that all deadlines of servers in P were met until ti . This
means that ρ(P, ti ) ≤ R(P) (by Lemma 4). Hence, as the master server in charge of
P meets its deadlines, we have from Lemma 3 that all tasks and servers in P meet all
their deadlines until ti+1. ��

The correctness of the QPS scheduler now follows easily by induction.

Theorem 1 QPS produces a valid schedule for a set of implicit-deadline sporadic
tasks � on m ≥ 	R(�)
 identical processors.
Proof By Lemma 1, given any task set � with R(�) ≤ m, Algorithm 1 will assign �

to at most m processors. We must show that no task in � misses its deadlines. More
generally, we will see that no task or server in the system misses deadlines.

Recall that minor execution sets are assigned to their own dedicated processors (see
lines 11–13 of Algorithm 1), and that those processors are scheduled using uniproces-
sor EDF (line 8 of Algorithm 3). Since minor execution sets have rates no more than
one, the optimality of EDF (Baruah et al. 1990) guarantees that no deadlines aremissed
in minor execution sets.

The while loop of Algorithm 1 cannot exit while major execution sets remain, so
the last processor allocated (say, processor k) must to be a minor execution set. This,
and all other minor execution sets, will serve as our base cases. Recall that Algorithm 3
schedules processors in reverse order. Suppose processors k, k − 1, . . . , j + 1 are
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scheduled at time t so that none of their next deadlines will be missed, and suppose
that P is a major execution set assigned to dedicated processor j . From Lemma 4 we
know that the on-line activations of QPS servers are safe since their rates never sum
up more than R(P) implying that the master server σ M of P will fit into the external
server size defined by Algorithm 1. Server σ M will be part of some “later” execution
set which has been assigned some dedicated processor from k, k − 1, . . . , j + 1. By
our induction hypothesis, σ M will meet its next deadline after t , and so by Lemma 5,
the next deadline from P will also be met. Extending this to all processors and all
scheduling instants, all deadlines in � will be met, and we conclude that QPS is an
optimal scheduling algorithm for sporadic task sets. ��

6 Evaluation

If preemptions and migrations were actually instantaneous, as we have assumed, then
all optimal schedulers would be of roughly equal merit. However, since it is the time
costs of these operations that limit the use of optimal schedulers in practice, we use
the number of these operations as the primary metric for comparing various optimal
schedulers. The performance of QPS in terms of task preemption and migration was
assessed via simulation. During simulation, preemptions are counted only when the
execution of a preempted task is resumed on the same processor as before. If the task
execution is resumed on a different processor, we consider this as a migration event.

Random synthetic task sets were generated according to the procedure described by
Emberson et al. (2010). The rate of each generated task was uniformly distributed in
(0.00, 1.00)with integer period uniformly distributedwithin [1, 100]. Each simulation
generated 1,000 task sets and ran for 1,000 time units. Since the task set generation
procedure tends to produce small task rates in large task sets and this would favor QPS
(due to partitioning), task sets had no more than 4m tasks, with m ranging from 2 to
32 processors.

Since the performance of QPS depends on the processor hierarchy created by quasi-
partitioning, this property is examined in Sect. 6.1. Section 6.2 discusses the effects
of different quasi-partition implementations on the performance of QPS. We do not
intend to evaluate quasi-partitioning heuristics, though. The intention is to highlight
which characteristics of these heuristics affect the performance of QPS. Sections 6.3
and 6.4 compare QPS against other optimal scheduling algorithms using periodic and
sporadic task systems.

6.1 Processor hierarchy

A major execution set may initially appear on the first processor; its master server
may then create a major execution set on the second processor, and so forth. In this
case, quasi-partitioning forms a processor chain ofmaximum size. For example, quasi-
partitioning a set of 10 tasks with rates equal to 0.9 to be scheduled on 9 processors
forms a processor chain with 8 major execution sets and one minor execution set.
Tasks belonging to the j th processor in the chain may migrate to any of the m − j
processors located upwards along the chain. This means that the larger the processor
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(a) (b)

(c)

Fig. 6 Average processor hierarchy. a Systems that fully utilizem processors, b systems with 8 processors
and 16 tasks, c systems with 8 processors and 9 tasks

hierarchy, the higher the expected overhead in terms of preemption and migration,
mainly for tasks that are down in the processor chain. Conversely, if some sporadic
task belonging to the first execution set becomes inactive, that execution set enters EDF
mode; the removal of themaster server from the next processor causes it (and, similarly,
all other processors above it in the chain) to also enter EDF mode. In summary, the
performance of QPS is dependent on the processor hierarchy produced during the
quasi-partitioning and execution set allocation phase, but larger hierarchies may alter
performance in positive or negative ways.

In this section we compute the average hierarchy size for various task set batches
considered during the simulation. The average hierarchy size is given by the average
processor level. In the example of 9 processors given above, the average hierarchy
size would be 1

9 (0 + 1 + · · · + 8) = 4.
Figure 6a summarizes the results found for the considered task sets for the FFD

quasi-partitioning heuristics. The results for EFD present the same basic behavior,
although they differ in the absolute figures. As can be seen, each task set has rate equal
tom to promote large hierarchy formations. As expected, when there arem+1 tasks in
the system, the average hierarchy size was m−1

2 . Interestingly, this value rapidly drops
for larger task sets. Figure 6b and c show the difference between FFD and EFD for
systems with m = 8 processors considering different processor utilization values. As
expected, the lower the system utilization, the lower the average processor hierarchy
sizes. FFD is in general a better heuristic. When the system becomes fully utilized,
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Fig. 7 Distribution of the
excess in execution sets due to
packing policy for fully utilized
task sets with 16 tasks scheduled
on 8 processors
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EFD is shown to be slightly better than FFD for 2m tasks and exhibit the same value
for m + 1 tasks. As will be seen shortly, there is a correlation between what is shown
in these graphs and the performance of QPS for periodic task systems (Sect. 6.3).

6.2 Quasi-partitioning heuristics

The histogram-like graph of Fig. 7 shows the distribution of excess rates used to set
up external servers in Algorithm 1 (line 6) for systems with 16 tasks using 100% of
8 processors. These rate values represent the maximum rates of master/slave servers,
activated in Algorithm 2 and so they play a role in QPS performance. Indeed, the lower
the master server rate, the better dealing with sporadic tasks since major execution sets
may be kept running on EDF mode more often mainly when QPS is configured to RF
or RP. In this context, as can be seen in the graph, FFD tends to favor the scheduling of
sporadic tasks: about 80% of excess rates generated for FFD are not larger than 5%;
EFD distributes the generated excess more evenly. For system with lower processor
utilization values, both FFD and EFD present similar distributions.

6.3 Performance for periodic task systems

Figure 8 shows the performance of QPS (using EFD) against other optimal scheduling
algorithms considering periodic tasks that fully utilize the system processors and so
mode-changes do not take place. For FFD, the found results were very similar due to
their marginal difference in the generated hierarchy size for fully utilized systems, as
pointed out in Sect. 6.1. Each point in the graphs corresponds to the average of results
for 1, 000 task sets. We observe that as DP-Wrap (DPW) (Levin et al. 2010) and EKG
(Andersson and Tovar 2006) use deadline-equality enforcement to achieve optimality,
they tend to performworse than QPS, RUN (Regnier et al. 2011) andU-EDF (Nelissen
et al. 2012), which use different strategies. Overall, RUN presents the best results for
these periodic systems, whereas the performance of U-EDF lies in between those
found for RUN and QPS. As all servers are always active (periodic tasks) and the
systems are fully utilized, the adaptation strategies of QPS do not apply. Even though,
QPS achieves good results as compared to the best known algorithms to date.
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(a) (b)

Fig. 8 Average number of preemptions and migrations for periodic systems with 2m tasks that fully utilize
the processors making use of the EFD quasi-partitioning heuristic. aMigrations, b preemptions

(a) (b)

(c) (d)

Fig. 9 Average number of migrations and preemptions for periodic task systems which fully utilize m
processors. aMigrations with m + 1 tasks, b migrations with 2m tasks, c preemptions with m + 1 tasks, d
preemptions with 2m tasks

To the best of our knowledge, RUN and U-EDF are the best optimal scheduling
algorithms for periodic and sporadic task systems known to date, respectively. There-
fore, they will be taken hereafter as our baseline comparison.

Figure 9 shows how QPS compares against RUN and U-EDF for periodic systems
with a varying number of processors, and eitherm+1 or 2m tasks. Again, all systems in
thefigures require 100%ofm processors.As canbe seen in the graphs, the performance
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(a) (b)

(c) (d)

Fig. 10 Average number of migrations and preemptions for periodic task systems which utilize 98% of m
processors. aMigrations with m + 1 tasks, b migrations with 2m tasks, c preemptions with m + 1 tasks, d
preemptions with 2m tasks

of QPS for m + 1 tasks is not as good as in the other scenarios. This is expected
due to the fact that quasi-partitioning systems with m + 1 tasks fully utilizing m
processors produces large processor hierarchies (recall Sect. 6.1). The performance
of QPS significantly improves when larger task sets are considered. In the graphs we
show only systems with up to 2m tasks. The behavior for larger task sets does not
change significantly. Even considering that the adaptation strategies used in QPS do
not apply (all servers are always active and the system is fully utilized), QPS performs
very well.

Consider in Fig. 9 the points corresponding to m = 8 processors for both quasi-
partitioning heuristics, FFD and EFD. As can be seen, for m + 1 tasks, the found
number of preemption and migration is the same for both heuristics. EFD exhibits a
slightly better result. This behavior can be explained using the data plotted in Fig. 6b
and c, which show that the processor hierarchy size: Whereas FFD and EFD produce
the same values for m + 1 tasks, EFD behaves slightly better for 2m tasks.

Interestingly, for systems that do not require 100% of the processors the perfor-
mance of QPS improves significantly, and can be comparable to that of RUN in some
cases. This is illustrated in Fig. 10, which presents results obtained for systems uti-
lizing 98% of m processors. This considerable improvement corresponds to reduced
hierarchy sizes, as no processor chain was found to be larger than 2 at 98% utilization.
As can be seen by comparing Figs. 9 and 10, this slight drop in utilization has very
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little effect on the performance of RUN and U-EDF. QPS, by comparison, benefits
greatly when even a little slack is provided to its off-line partitioner.

6.4 Performance for sporadic task systems

The great advantage of using QPS comes when sporadic task systems are considered,
as it will be evident in this section. As RUN does not deal with sporadic tasks, we
compare QPS against U-EDF only.

All task sets in this section have rates summing tom. When a task is to be activated,
the simulator generates a task activation delay, whose values are uniformly distributed
in the continuous interval [0,max.delay]. This causes system load fluctuations. The
Manager deactivates the QPS servers in charge of anymajor execution set P whenever
some of their tasks/servers are late (CF mode-change strategy); or ρ(P, t) < 1 (RP
or RF mode-change strategies).

During the experiments we first observed that the performance of QPS does not sig-
nificantly vary with the number of processors in the system. The pattern found is very
similar to the one shown in Fig. 11, which presents the results for m = 16 processors.
Interestingly, systems with m + 1 tasks present a lower number of migrations than
systemswith 1.5m tasks, so long as average arrival delay is sufficiently high (generally
more than 10 time units). Under the periodic case (or low maximum delay), the large
processor hierarchies lead to more migrations between related processors. However,
any late arrival lower in a long processor chain will cause transitions to EDF mode all
the way up the chain, with all affected processors behaving like Partitioned EDF, and
suffering no migrations during this time.

Figure 12 better illustrates how QPS converges very nicely from global to parti-
tioned scheduled systems, except for a few residual migrations, when task activation
delays increase. U-EDF, on the other hand, does not vary as a function of activation
delays, an expected behavior (Nelissen 2013). As expected, under the conservative
mode-change strategy (CF), higher figures are observed. The effect of using rate-
based approaches (RF or RP) is indeed evident. However, the simplicity of the CF
approach (based on monitoring whether or not all active tasks in a major execution set

(a) (b)

Fig. 11 Average number of preemptions andmigrations for systemswithm = 16 processors andmaximum
task activation delay ranging from 10 to 100. a Migrations, b preemptions
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(a) (b)

Fig. 12 Average number of migrations and preemptions for sets with 16 sporadic tasks scheduled on 8
processors. aMigrations, b preemptions

are active) favors the cost of implementation. In the graphs of Fig. 12 we also plotted
data related to using the EFD packing heuristics. As mentioned in Sect. 6.2 due to
the generated excess rates distribution, EFD tends to respond worse than FFD when
sporadic tasks are being considered. However, as can be observed, the difference is
not that significant.

7 Conclusion

We have described QPS, a new optimal algorithm for scheduling real-time sporadic
implicit-deadline tasks. By switching between partitioned EDF and global scheduling
rules at run-time, QPS performs competitively with state-of-the-art global schedulers
on periodic task sets, and outperforms similar schedulers on sporadic task sets. Dif-
ferent configurations of QPS have been described, including two quasi-partitioning
heuristics and three adaptation strategies. Results from simulation have evaluated sev-
eral combinations of such configurations against related work. It has been shown that
when sporadic tasks are considered, QPS is able to provide on-line adaptation, dynam-
ically tuning between the partitioned-to-global multiprocessor scheduling spectrum.
The results shown in this paper may well motivate further developments. Adaptation
may be explored in different dimensions, e.g. slack sharing between servers would
favor scheduling soft real-time tasks. Other interesting questions are related to imple-
mentation issues in an actual operating system or to mechanisms to manage resource
sharing between tasks. The results showed here are solid foundations for these and
other developments.
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