Real-Time Syst (2015) 51:602-636 @ CrossMark
DOI 10.1007/511241-015-9234-z

Graph-based models for real-time workload: a survey

Martin Stigge! - Wang Yi!

Published online: 1 August 2015
© Springer Science+Business Media New York 2015

Abstract This paper provides a survey on task models to characterize real-time work-
loads at different levels of abstraction for the design and analysis of real-time systems.
It covers the classic periodic and sporadic models by Liu and Layland et al., their
extensions to describe recurring and branching structures as well as general graph-
and automata-based models to allow modeling of complex structures such as mode
switches, local loops and also global timing constraints. The focus is on the precise
semantics of the various models and on the solutions and complexity results of the
respective feasibilty and schedulability analysis problems for preemptable uniproces-
Sors.

Keywords Real-time scheduling - Scheduling theory - Schedulability test -
Workload models - Survey

1 Introduction

Real-time systems are often implemented by a number of concurrent tasks sharing
hardware resources, in particular the execution processors. The designer of such sys-
tems needs to construct workload models characterizing the resource requirements
of the tasks. With a formal description of the workload, a resource scheduler may

B Martin Stigge
martin.stigge @it.uu.se

Wang Yi
yi@it.uu.se

Department of Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-015-9234-z&domain=pdf

Real-Time Syst (2015) 51:602-636 603

be designed and analyzed. The fundamental analysis problem to solve in the design
process is to check (and thus to guarantee) the schedulability of the workload, i.e.,
whether the timing constraints on the workload can be met with the given scheduler.
In addition, the workload model may also be used to optimize the resource utilization
as well as the average system performance.

In the past decades, workload models have been studied intensively in the theory
of real-time scheduling (Buttazzo 2011) and other contexts, for example performance
analysis of networked systems (Boudec and Thiran 2001). The research community
of real-time systems has proposed a large number of models (often known as task
models) allowing for the description and analysis of real-time workloads at different
levels of abstraction. One of the classic works is the periodic task model due to Liu
and Layland (1973), Leung and Merrill (1980), and Leung and Whitehead (1982),
where tasks generate resource requests at strict periodic intervals. The periodic model
was extended later to the sporadic model (Mok 1983; Baruah et al. 1990; Lehoczky
et al. 1987) and multiframe models (Mok and Chen 1997; Baruah et al. 1999a) to
describe non-regular arrival times of resource requests, and non-uniform resource
requirements. In spite of a limited form of variation in release times and worst-case
execution times, these repetitive models are highly deterministic. To allow for the
description of recurring and non-deterministic behaviours, tree-like recurring models
based on directed acyclic graphs are introduced (Baruah Baruah 1998a, b) and recently
extended to a digraph model based on arbitrary directed graphs (Stigge et al. 2011;
2011a) to allow for modeling of complex structures like mode switches and local
loops as well as global timing constraints on resource requests. With origin from
formal verification of timed systems, the model of task automata (Fersman et al.
2007) was developed in the late 90s. The essential idea is to use timed automata to
describe the release patterns of tasks. Due to the expressiveness of timed automata,
it turns out that all the models above can be described using the automata-based
model.

In addition to the expressiveness, a major concern in developing these models is
the complexity of their analyses. It is not surprising that the more expressive the
models are, the more difficult to analyze they tend to be. Indeed, the model of task
automata is the most expressive model with the highest analysis complexity, which
marks the borderline between decidability and undecidability for the schedulability
analysis problem of workloads. On top of the operational models summarized above
that capture the timed sequences of resource requests representing the system execu-
tions, alternative characterizations of workloads using functions on the time interval
domain have also been proposed, notably demand-bound functions, request-bound
functions and real-time calculus (RTC) (Thiele et al. 2000) that can be used to specify
the accumulated workload over a sliding time window. They have been further used
as a mathematical tool for the analysis of operational workload models.

This paper is intended to serve as a survey on existing workload models for pre-
emptable uniprocessor systems. Figure 1 outlines the relative expressive powers of
the models (marked with sections where they are described). In the following sec-
tions we go through this model hierarchy and provide a brief account for each of the
well-developed models.

@ Springer

604 Real-Time Syst (2015) 51:602-636

@ Extended DRT (EDRT) (4.6)
(graph + constraints)

k-EDRT (4.6)
(graph + k constraints)

Digraph (DRT) (4.5)

bit h
recurring RT (RRT) (4.3) (arbitrary graph)

(DAG, P) .
non-cyclic RRT (4.4)

(DAG, F)
recurring branching (RB) (4.2)

(tree, P) I non-cyclic GMF (3.4)
. . (order arbitrary)
generalized multiframe (GMF) (3.3)
(Ex.Di.) /
multiframe (3.2) sporadic (3.1)
(E;,D=P) (E,D,P)

Liu & Layland (3.1)

Fig. 1 A hierarchy of task models. Arrows indicate the generalization relationship. We denote the corre-
sponding section in parentheses

2 Preliminaries
2.1 Terminology

We first review some terminology used in the rest of this survey. The basic unit describ-
ing workload is a job, characterized by a release time, an execution time and a type
from which parameters like a deadline are derived. The higher-level structures which
generate (potentially infinite) sequences of jobs are fasks. The time interval between
the release time and the deadline of a job is called its scheduling window. The time
interval between the release time of a job and the earliest release time of its succeeding
job from the same task is its exclusion window.

A task system typically contains a set of tasks that at runtime concurrently generate
sequences of jobs and a scheduler decides at each point in time which of the pend-
ing jobs to execute. We distinguish between two important classes of schedulers on
preemptable uniprocessor systems:

Static priority schedulers Tasks are ordered by priority. All jobs generated by a task
of higher priority get precedence over jobs generated by tasks of lower priority.
Dynamic priority schedulers Tasks are not ordered a priori; at runtime, when choos-
ing one of the pending jobs to execute, the scheduler is not constrained to a static

priority ordering between tasks.

Given suitable descriptions of a workload model and a scheduler, one of the impor-
tant questions is whether all jobs that could ever be generated will meet their deadline
constraints, in which case we call the workload schedulable. This is determined in a
formal schedulability test which can be:

@ Springer

Real-Time Syst (2015) 51:602-636 605

Sufficient or safe, if itis failed by all non-schedulable task sets,
Necessary, if it is satisfied by all schedulable task sets, or
Precise or exact, if it is both sufficient and necessary.

Workload that is schedulable with some scheduler is called feasible, determined by
a feasibility test that can also be either sufficient, necessary or both.

2.2 Model hierarchy

Most workload models described in this survey are part of a model hierarchy in the
sense that some are generalizations of others, cf. Fig. 1. Intuitively, a modeling for-
malism My generalizes a modeling formalism M p, if any task system expressed in
terms of M p has a corresponding task system expressed with M 4 such that these
two represent the same behavior. The motivation behind such a generalization concept
is that more expressive models should preserve the capability of being able to ana-
lyze a given system description. That is, if a modeling formalism is being extended
to increase expressiveness, the original formalism should in some way remain a sub-
class or special case. However, the concept as such is rather vague, which may lead to
disagreements about whether one model is in fact a generalization of another.

Therefore, Stigge (2014) introduces a formalization of the notion of what it means
for a modeling formalism to generalize another one within the semantic framework
introduced above. Recall that we use job sequences to express the semantics of work-
load models. We first define an equivalence on job sequences. We remove spurious
0-jobs in this definition since they do not quantify additional workload.

Definition 1 (Job Sequence Equivalence) Two job sequences p and p’ are equivalent,
written p = o/, if they are equal after removing all jobs with execution time 0.

This equivalence is useful in order to define equivalent sets of job sequences. Two
sets are equivalent if they only contain equivalent job sequences. They express the
same workload demands, apart from spurious 0-jobs.

Definition 2 Two sets S and S’ of job sequences are equivalent, written S = §’, if for
each p € §, thereis p’ € §’ with p = p’, and vice versa.

Since we express workload model semantics as sets of job sequences, we can use
this definition in order to give a formal definition of generalization. For a task system
7, we write [t] to denote the set of job sequences generated by .

Definition 3 (Generalization) A workload model M 4 generalizes a workload model
Mp, written My = Mp, if for every task system 73 € Mp there is a task system
T4 € My such that [t4] = [rp] and 4 can be effectively constructed from 75 in
polynomial time.

This definition allows complexity results for analysis problems to carry over since
modeling formalisms that have been generalized can be interpreted as special cases
of more general ones. We summarize this in the following proposition.

@ Springer

606 Real-Time Syst (2015) 51:602-636

Proposition 1 [f feasibility or schedulability can be decided in pseudo-polynomial
time for a workload model M, then they can be decided in pseudo-polynomial time
for any M’ with M = M’

Further, if feasibility or schedulability are strongly NP- or coNP-hard problems
for a workload model M, then they are strongly NP- or coNP-hard for any M’ with
M = M, respectively.

Using this partial order on workload models, we outline a hierarchy of expressive
power in Fig. 1. An edge M, @&——@ M represents the generalization relation
with the arrow pointing to the more expressive model, i.e., M 4 = Mp. The higher a
workload model is placed in the hierarchy, the higher the expressiveness, but also the
more expensive feasibility and schedulability analyses.

3 From Liu and Layland tasks to GMF

In this section, we show the development of task systems from the periodic task model
to different variants of the multiframe model, including techniques for their analysis.

3.1 Periodic and sporadic tasks

The first task model with periodic tasks was introduced by Liu and Layland (1973).
Each periodic task T = (P, E) in atask set 7 is characterized by a pair of two integers:
period P and worst-case execution time (WCET) E. It generates an infinite sequence
p = (Jo, Ji,...) containing jobs J; = (R;, e;, v) which are all of the same type v
with release time R; and execution time ¢; such that R; 1| = R; + P and ¢; < E. This
means that jobs are released periodically. Further, they have implicit deadlines at the
release times of the next job, i.e., d(v) = P.

A relaxation of this model is to allow jobs to be released at later time points, as long
as at least P time units pass between adjacent job releases of the same task. This is
called the sporadic task model, introduced by Mok (1983). Another generalization is
to add an explicit deadline D as a third integer to the task definition 7 = (P, E, D),
leading to d(v) = D for all generated jobs. If D < P for all tasks 7' € T then we say
that t has constrained deadlines, otherwise it has arbitrary deadlines.

This model has been the basis for many results throughout the years. Liu and
Layland (1973) give a simple feasibility test for implicit deadline tasks: defining the
utilization U (t) of a task set T as U(1) := ZT,-ET E;/P;, a task set is uniprocessor
feasible if and only if U(r) < 1. As in later work, proofs of feasibility are often
connected to the Earliest Deadline First (EDF) scheduling algorithm, which uses
dynamic priorities and has been shown to be optimal for a large class of workload
models on uniprocessor platforms, including those considered in this survey. Because
of its optimality, EDF schedulability is equivalent to feasibility.

3.1.1 Demand-bound functions

For the case of explicit deadlines, Baruah et al. (1990) introduced a concept that was
later called the demand-bound function: for each interval size ¢ and task 7', dbf 1 ()

@ Springer

Real-Time Syst (2015) 51:602-636 607

is the maximal accumulated worst-case execution time of jobs generated by T in any
interval of size t. More specifically, it counts all jobs that have their full scheduling
window inside the interval, i.e., release time and deadline. The demand-bound func-
tion dbf . (t) of the whole system t has the property that a task system is feasible if
and only if

vVt > 0:dbf (t) <t (1)

This condition is a valid test for a very general class of workload models and is of
great use in later parts of this survey. It holds for all models generating sequences of
independent jobs. A proof was provided by Baruah et al. (1999a).

Focussing on sporadic tasks, Baruah et al. (1990) show that dbf . () can be computed
with

dbf (1) = > E; - max {0, V;fD"J + 1} . 2)

Tiet !

This closed-form expression is motivated by the observation that periodic tasks lead to
a simple form of very regular step-functions. Using this they prove that the feasibility
problem is in coNP. Eisenbrand and Rothvof (2010) have shown that the problem
is indeed (weakly) coNP-hard for systems with constrained deadlines. Very recently,
Ekberg and Yi (2015) have tightened this result by providing a proof of coNP-hardness
in the strong sense.

Another contribution of Baruah et al. (1990) was to show that for the case of
U (1) < c for some constant c, there is a pseudo-polynomial solution of the schedu-
lability problem, by testing Condition (1) for a pseudo-polynomial number of values.
Intuitively, the smaller the task set’s utilization U (), the smaller a value ¢ has to be
in order to be able violate Condition (1). The reason is that its left-hand side dbf . (¢)
approaches an asymptotic growth of U (7), eventually creating a gap to its right-hand
side 7. Thus, if U(r) is bounded by a ¢ < 1, a pseudo-polynomial bound for ¢ can
always be derived. On the other hand, for U(r) = 1, a similar bound for 7 is not
known. The existence of such a constant bound ¢ of U (t) (however close to 1) is a
common assumption when approaching this problem since excluding utilizations very
close to 1 only rules out very few actual systems.

3.1.2 Static priorities

For static priority schedulers, Liu and Layland (1973) show that the rate-monotonic
priority assignment for implicit deadline tasks is optimal, i.e., tasks with shorter periods
have higher priorities. They further give an elegant sufficient schedulability condition

by proving that a task set t with » tasks is schedulable with a static priority scheduler
under rate-monotonic priority ordering if

Uty <n-QY" —1). 3)

For sporadic task systems with explicit deadlines, the response time analysis technique
has been developed. It is based on a scenario in which all tasks release jobs at the

@ Springer

608 Real-Time Syst (2015) 51:602-636

same time instant with all following jobs being released as early as permitted. This
maximizes the response time R; of the task in question, which is why the scenario
is often called the critical instant. It is shown by Joseph and Pandya (1986) and
independently by Audsley et al. (1991) that R; is the smallest positive solution of the

recurrence relation
R
R =E; — |- E;, 4
i + E [Pj—‘ | 4

j<i

assuming that the tasks are in order of descending priority. This is based on the obser-
vation that the interference from a higher priority task 7; to 7; during a time interval
of size R can be computed by counting the number of jobs task T can release as
[R / Pj—| and multiplying that with their worst-case duration E ;. Together with 7;’s
own WCET E;, the response time is derived. Solving Eq. (4) leads directly to a pseudo-
polynomial schedulability test. Eisenbrand and Rothvof3 (2008) show that the problem
of computing R; is indeed NP-hard.

3.2 The multiframe model

The first extension of the periodic and sporadic paradigm for jobs of different types
to be generated from the same task was introduced by Mok and Chen (1997). The
motivation is as follows. Assume a workload which is fundamentally periodic but
it is known that every k-th job of this task is extra long. As an example, Mok and
Chen describe an MPEG video codec that uses different types of video frames. Video
frames arrive periodically, but frames of large size and thus large decoding com-
plexity are processed only once in a while. The sporadic task model would need
to account for this in the WCET of all jobs, which is certainly a significant over-
approximation. Systems that are clearly schedulable in practice would fail standard
schedulability tests for the sporadic task model. Thus, in scenarios like this where most
jobs are close to an average computation time which is significantly exceeded only in
well-known periodically recurring situations, a more precise modeling formalism is
needed.

To solve this problem, Mok and Chen (1997) introduce the Multiframe model. A
multiframe task 7 is described as a pair (P, E) much like the basic sporadic model with
implicit deadlines, except that E = (Ey, ..., Ex_1) is a vector of different execution
times, describing the WCET of k potentially different frames.

3.2.1 Semantics

Asbefore, let p = (Jo, J1, .. .) be ajob sequence with job parameters J; = (R;, e;, v;)
of release time R;, execution time e; and job type v;. For p to be generated by a
multiframe task 7" with k frames, it has to hold that ¢; < E(4+i) mod x for some
offset a, i.e., the worst-case execution times cycle through the list specified by vector
E. The job release times behave as before for sporadic implicit-deadline tasks, i.e.,
Ri11 > R; + P. We show an example in Fig. 2.

@ Springer

Real-Time Syst (2015) 51:602-636 609

A A A
I \ I Y l P

T T T T T T T T T T T T T T T

} Frame 0 -+ " Frame 1 - " Frame 2 -+ " Frame 3 " Frame 0 -+ |

Fig. 2 Example of a multiframe task 7 = (P, E) with P =4 and E = (3, 1, 2, 1). Note that deadlines are
implicit

3.2.2 Schedulability analysis

Mok and Chen (1997) provide a schedulability analysis for static priority scheduling.
They provide a generalization of Eq. (3) by showing that a task set t is schedulable
with a static priority scheduler under rate-monotonic priority ordering if

U(t) gr.n.((l 1/l 1). (5)

The value r in this test is the minimal ratio between the largest WCET E; in a task and
its successor E(;11) mod k- Note that the classic test for periodic tasks in Condition (3)
is a special case of Condition (5) with r = 1.

The proof for this condition is done by carefully observing that for a class of
multiframe tasks called accumulatively monotonic (AM), there is a critical instant that
can be used to derive the condition (and further even for a precise test in pseudo-
polynomial time by simulating the critical instant). In short, AM means that there is
a frame in each task such that all sequences starting from this frame always have a
cumulative execution demand at least as high as equally long sequences starting from
any other frame. After showing (5) for AM tasks the authors prove that each task can
be transformed into an AM task which is equivalent in terms of schedulability. The
transformation is via a model called General Tasks (Mok and Chen 1996) which is an
extension of multiframe tasks to an infinite number of frames and therefore of mainly
theoretical interest.

Refined sufficient tests have been developed (Han 1998; Baruah et al. 1999b; Kuo et
al. 2003; Lu 2007) that are less pessimistic than the test using the utilization bound in
(5). They generally also allow certain task sets of higher utilization than those passing
the above test to be classified as schedulable. A precise test of exponential complex-
ity has been presented (Zuhily and Burns 2009) based on response time analysis as
a generalization of (4). The authors also include results for models with jitter and
blocking.

3.3 Generalized multiframe tasks

In the multiframe model, all frames still have the same period and implicit deadline.
Baruah etal. (1999a) generalize this further by introducing the Generalized Multiframe
(GMF) task model. A GMFtask T = (P, E, D) with k frames consists of three vectors:

P=(Py,..., Pr—1) for minimum inter-release separations,
E = (Ey,..., Er_1) for worst-case execution times, and

@ Springer

610 Real-Time Syst (2015) 51:602-636

i B I e e O OO

T T T T T T T T T T T T T T T T

Fig. 3 Example of a GMF task 7 = (P,E, D) withP = (5,3,4),E=(3,1,2) and D = (3,2, 3)

D = (Do, ..., Dy_1) forrelative deadlines.

For unambiguous notation we write Pl.T, El.T and Dl.T for components of these three
vectors in situations where it is not clear from the context which task 7 they belong
to.

3.3.1 Semantics

As a generalization of the multiframe model, each job J; = (R;, e;, v;) in a job
sequence p = (Jo, Ji, . ..) generated by a GMF task T needs to correspond to a frame
and the corresponding values in all three vectors. Specifically, we have for some offset
a that:

1. Rit1 2 Ri + Pati) mod k
2. ¢; < E(g+i) mod k

An example is shown in Fig. 3.

3.3.2 Feasibility analysis

Baruah et al. (1999a) give a feasibility analysis method based on the demand-bound
function. The different frames make it difficult to develop a closed-form expression
like (2) for sporadic tasks since there is in general no unique critical instant for GMF
tasks. Instead, the described method (which we sketch here with slightly adjusted
notation and terminology) creates a list of pairs (e, d) of workload e and some time
interval length d which are called demand pairs in later work (Stigge et al. 2011).
Each demand pair (e, d) describes that a task 7' can create e time units of execution
time demand during an interval of length d. From this information it can be derived
that dbf r(d) > e since the demand bound function dbf (d) is the maximal execution
demand possible during any interval of that size.

In order to derive all relevant demand pairs for a GMF task, Baruah et al. first intro-
duce a property called localized Monotonic Absolute Deadlines (I-MAD). Intuitively,
it means that two jobs from the same task that have been released in some order will
also have their (absolute) deadlines in the same order. Formally, this can be expressed
as D; < P; 4 D(i+1) mod k» Which is more general than the classical notion of con-
strained deadlines, i.e., D; < P;, but still sufficient for the analysis. We assume this
property for the rest of this section.

As preparation, the method by Baruah et al. (1999a) creates a sorted list DP of
demand pairs (e, d) for all i and j each ranging from O to k — 1 with

@ Springer

Real-Time Syst (2015) 51:602-636 611

i+ i+j-1
ezzEmmodk» d= Z Py mod k +D(i+j)m0dk-
m=i m=i

For a particular pair of i and j, this computes in e the accumulated execution time of a
job sequence with jobs corresponding to frames i, . .., (i + j) mod k. The value of d is
the time from first release to last deadline of such a job sequence. With all these created
demand pairs, and using shorthand notation Py, := Zf:é P, Equm = Zf:& E; and
Din 1= minf:(% D;, the function dbf 1 (¢) can be computed with

0 if t < Duin,

max {e | (e,d) € DP withd <t} ift € [Dmin, Psum + Dmin),
afry =1,
LTZ'“J Esum + dbfT

(Dmin + (t — Dmin) mod Psum) if t > Psum + Dmin-

Intuitively, we can sketch all three cases as follows: In the first case, time interval
t is shorter than the shortest deadline of any frame, thus not creating any demand.
In the second case, time interval ¢ is shorter than Pgy;,m + Dpmin Which implies that
at most k jobs can contribute to dbf 1 (¢). All possible job sequences of up to k jobs
are represented in demand pairs in DP, so it suffices to return the maximal demand e
recorded in a demand pair (e, d) with d < t. In the third case, a job sequence leading
to the maximal value dbf 7 () must include at least one complete cycle of all frames in
T . Therefore, it is enough to determine the number of cycles (each contributing Egyp,)
and looking up the remaining interval part using the second case.

Finally, Baruah et al. (1999a) describe how a feasibility test procedure can be
implemented by checking Condition (1) for all ¢ at which dbf(¢) changes up to a
bound

= e (P~ Pha)

with U(t) := >y, EL /PL measuring the utilization of a GMF task system. If
U () is bounded by a constant ¢ < 1 then this results in a feasibility test of pseudo-
polynomial complexity. Baruah et al. include also an extension of this method to task
systems without the [-MAD property, i.e., with arbitrary deadlines. As an alternative
test method, they even provide an elegant reduction of GMF feasibility to feasibility
of sporadic task sets by using the set DP to construct a dbf-equivalent sporadic task
set.

3.3.3 Static priorities
An attempt to solve the schedulability problem for GMF in the case of static priorities

was presented by Stigge and Yi (1997). The idea is to use a function called Maximum-
interference function (MIF) M (t). It is based on the request-bound function rbf (t)

@ Springer

612 Real-Time Syst (2015) 51:602-636

rbf (1) Mr(t)
6 6
4 4
2 2
0 -+ T T T T T T —> ! 0 T T T T T T —> !
0O 2 4 o6 8 10 12 14 0o 2 4 o6 8 10 12 14
(a) Request-bound function (b) Maximum-interference function

Fig. 4 Examples of request-bound function and maximum-interference function of the same task 7 =
(P,E,D) withP=D = (6,7,10) and E = (3,3, 1)

which for each interval size ¢ counts the accumulated execution demand of jobs that
can be released inside any interval of that size. (Notice that in contrast, the demand-
bound function also requires the job deadline to be inside the interval.) The MIF is
a “smoother” version of that, which for each task only accounts for the execution
demand that could actually execute inside the interval. We show examples of both
functions in Fig. 4.

The method uses the MIF as a generalization in the D -summation term in Eq. (4),
leading to a generalized recurrence relation for computing the response time:

R=E;+ > Mj(R) (©6)

j<i

Note that this expresses the response time of a job generated by one particular frame i of
aGMF task with M ; (t) expressing the corresponding maximum-interference functions
of higher priority tasks. Computation of M;(¢) is essentially the same process as
determining the demand-bound function dbf () from above.

It was discovered by Stigge and Yi (2012) that the proposed method does not lead to
aprecise test since the response time computed by solving Eq. (6) is over-approximate.
The reason is that M; () over-approximates the actual interference caused by higher
priority tasks. They give an example in which case the test using Eq. (6) determines
a task set to be unschedulable while none of the concrete executions would lead to a
deadline miss.

Stigge and Yi (2012) provide a hardness result by showing that the problem of an
exact schedulability test for GMF tasks in case of static priority schedulers is strongly
coNP-hard implying that there is no adequate replacement for M; (¢). Intuitively, one
single integer-valued function on the time interval domain cannot precisely capture the
information needed to compute exact response times. Different concrete task sets with
different resulting response times would be abstracted by identical functions, ruling
out a precise test. The rather involved proof is mostly focussing on the a more general
task model (Digraph Real-Time tasks, cf. Sect. 4.5) but is shown to even hold in the
GMF case and in fact even applies to the MF model. Still, the MIF-based test for GMF
presented by Takada and Sakamura (1997) is a sufficient test of pseudo-polynomial
time complexity.

@ Springer

Real-Time Syst (2015) 51:602-636 613

3.4 Non-cyclic GMF

The original motivation for multiframe and GMF task models was systems consisting
of frames with different computational demand and possibly different deadlines and
inter-release separation times, arriving in a pre-defined pattern. Consider again the
MPEG video codec example where video frames of different complexity arrive, leading
to applicability of the multiframe model. For the presented analysis methods, the
assumption of a pre-defined release pattern is fundamental. Consider now a system
where the pattern is not known a priori, for example if the video codec is more flexible
and allows different types of video frames to appear adaptively, depending on the
actual video contents. Similar situations arise in cases where the frame order depends
on other environmental decisions, e.g. user input or sensor data. A prominent example
is an engine management component in an automotive embedded real-time system.
Depending on the engine speed, the tasks controlling ignition timing, fuel injection,
opening of exhaust valves, etc. have different periods since the angular velocity of the
crankshaft changes (Buttazzo et al. 2014). These systems cannot be modeled with the
GMF task model.

Moyo et al. (2010) propose a model called Non-Cyclic GMF to capture such behav-
ior adequately. A Non-Cyclic GMF task T = (P, E, D) is syntactically identical to
GMF task from Sect. 3.3, but with non-cyclic semantics. In order to define the seman-
tics formally, let ¢ : N — {0, ..., k — 1} be a function choosing frame ¢ (i) for the
i-th job of a job sequence. Having ¢, each job J; = (R;, ¢;, v;) in a job sequence
p = (Jo, J1, ...) generated by a non-cyclic GMF task T needs to correspond to frame
¢ (i) and the corresponding values in all three vectors:

L. Riy1 2 R + Py
2. ¢, < Epiy

This contains cyclic GMF job sequences as the special case where ¢ (i) = (a+i) mod k
for some offset a. An example of non-cyclic GMF semantics is shown in Fig. 5.

For analyzing non-cyclic GMF models, Moyo et al. (2010) give a simple density-
based sufficient feasibility test. Defining D(7) := max; CiT / Dl.T as the densitiy of a
task 7', a task set 7 is schedulable if ", D(T) < 1. This generalizes a similar test
for the sporadic task model with explicit deadlines. In addition to this test, Moyo et al.
(2010) also include an exact feasibility test based on efficient systematic simulation.
Thatis, they carefully extract a set of job sequences to simulate, in order to conclusively
decide feasibility. A complexity bound is not given.

A different exact feasibility test is presented by Baruah (2010) for constrained dead-
lines using the demand-bound function as in Condition (1). A dynamic programming
approach is used to compute demand pairs (see Sect. 3.3) based on the observation that

i Bl Bl A n O

T T T T T T T T T T T T T T T

Fig. 5 Non-cyclic semantics of the GMF example Fig. 3

@ Springer

614 Real-Time Syst (2015) 51:602-636

dbf r(t) can be computed for larger and larger ¢ reusing earlier values. More specifi-
cally, a function A7 (¢) is defined which denotes for an interval size ¢ the accumulated
execution demand of any job sequence where jobs have their full exclusion window'
inside the interval. It is shown that A7 (¢) for # > 0 can be computed by assuming that
some frame i was the last one in a job sequence contributing a value to A7 (¢). In that
case, the function value for the remaining job sequence is added to the execution time
of that specific frame i. Since frame i is not known a priori, the computation has to
take the maximum over all possibilities. Formally,

Ar(f) = max {AT(I — PN+ ET | PT < z} .)
1

Using this, dbf () can be computed via the same approach by maximising over all
possibilities of the last job in a sequence contributing to dbf(¢). It uses that the
execution demand of the remaining job sequence is represented by function A7 (%),
leading to

dbf 1 (t) =m_ax{AT(t—DiT)+EiT | DT gt}. (8)

This leads to a pseudo-polynomial time bound for the feasibility testif U (7) is bounded
by a constant, since dbf (1) > timplies 1 < (3.7 ; E[') / (1 — U(t)) which is pseudo-
polynomial in this case.

The same article also proves that evaluating the demand-bound function is a
(weakly) NP-hard problem. More precisely: Given a non-cyclic GMF task 7 and
two integers ¢ and B it is coNP-hard to determine whether dbf (1) < B. The proof
is via a rather straightforward reduction from the Integer Knapsack problem. Thus, a
polynomial algorithm for computing dbf (¢) is unlikely to exist.

3.4.1 Static priorities

A recent result by Berten and Goossens (2011) proposes a sufficient schedulability
test for static priorities. It is based on the request-bound function similar to Takada
and Sakamura (1997) and its efficient computation. In a similar way, the function is
inherently over-approximate and the test is of pseudo-polynomial time complexity.

Other recent results specifically handle the case of tasks in control applications
for combustion engines. They can be modeled using the non-cyclic GMF model, but
tighter results can be obtained by a more custom-tuned model which we discuss in
Sect. 5.2.

4 Graph-oriented models

The more expressive workload models become, the more complicated structures are
necessary to describe them. In this section we turn to models based on different classes

! The exclusion window of a job is the time interval between its release time and the earliest possible release
time of the next job from the same task. In the GMF model, this window has length Pl.T for jobs released
by frame i of task 7.

@ Springer

Real-Time Syst (2015) 51:602-636 615

T = (P,E,D)
P=(10,8,3,5,5) @
{7
E=(1,2,3,1,1)
D =(10,7,7,9,8)
O
(a) T as vectors (b) T as cycle graph (c) T as complete graph

Fig. 6 Different ways of representing a GMF task 7. The vector-representation in 6a from Sect. 3.3 does
by itself not imply cyclic or non-cyclic semantics. This is more clear with graphs in 6b and 6¢. Note that
we omit vertex and edge labels in 6¢ for clarity

of directed graphs. We start by recasting the definition of GMF in terms of a graph
release structure.

4.1 Revisiting GMF

Recall the generalized multiframe task model from Sect. 3.3. A GMF task T =
(P, E, D) consists of three vectors for minimum inter-release separation times, worst-
case execution times and relative deadlines of k frames. The same structure can be
imagined as a directed cycle graph®> G = (V, E) in which each vertex v € V rep-
resents the release of a job and each edge (v, v') € E represents the corresponding
inter-release separation. A vertex v is associated with a pair (e(v), d(v)) for WCET
and deadline parameters of the represented jobs. An edge (u, v) is associated with a
value p(u, v) for the inter-release separation time.

The cyclic graph structure directly visualizes the cyclic semantics of GMF. In con-
trast, non-cyclic GMF can be represented by a complete digraph. Figure 6 illustrates
the different ways of representing a GMF task with both semantics.

4.2 Recurring branching tasks

A first generalization to the GMF model was presented by Baruah (1998b), followed
up by Anand et al. (2008). It is based on the observation that real-time code may
include branches that influence the pattern in which jobs are released. As the result of
some branch, a sequence of jobs may be released which may differ from the sequence
released in a different branch. In a schedulability analysis, none of the branches may
be universally worse than the others since that may depend on the context, e.g., which
tasks are being scheduled together with the branching one. Thus, all branches need to

2A cycle graph is a graph consisting of one single cycle, i.e., one closed chain.

@ Springer

616 Real-Time Syst (2015) 51:602-636

(1,17) (1,17)
(a) RB task (b) RRT task (¢) Non-cyclic RRT task

Fig. 7 Examples of RB, RRT and non-cyclic RRT task models

be modeled explicitly and a proper representation is needed, different from the GMF
release structure.

A natural way of representing branching code is a tree. Indeed, the model proposed
by Baruah (1998b) is a tree representing job releases and their minimum inter-release
separation times. We show an example in Fig. 7a. Formally, a Recurring Branching
(RB) task T is a directed tree G(T) = (V, E) in which each vertex v € V represents
a type of job to be released and each edge (1, v) € E the minimum inter-release sep-
aration times. They have labels {(e(v), d(v)) and p(u, v), specifying WCET, deadline
and inter-release separation time parameters, respectively. In addition to the tree, each
leaf u has a separation time p (i, Vo) to the root vertex v,y in order to model that
the behavior recurs after each traversal of the tree.

In order to simplify the feasibility analysis, the model is syntactically restricted in
the following way. For each path w = (7, ..., m7) of length / from the root 7y = V¢
to a leaf vy, its duration when going back to the root must be the same, i.e., the value
P = Zﬁ;(l) p(mi, wig1)+ p (7, vroor) must be independent of . We call P the period
of T'. Note that this is a generalization of GMF since GMF can be expressed as a linear
tree.

4.2.1 Semantics

A job sequence p = (Jy, Ji,...) is generated by an RB task T if it corresponds
to a path & through G(T) in the following way. Path 7 starts at some vertex mp in
G (T), follows the edges to a leaf, then starts again at the root vertex, traverses G (T')
again in a possibly different way, etc. (Very short 7 may of course never reach a
leaf.) The correspondence between p and m means that all jobs J; are of the form
Ji = (R;, ej, m;), and the following:

. Riy1 2 Ri + p(mj, miy1),
2. e <e(m).

4.2.2 Feasibility analysis

The analysis presented by Baruah (1998b) is based on the concept of demand pairs as
described before. We sketch the method of Baruah (1998b), slightly adjusted to fit our

@ Springer

Real-Time Syst (2015) 51:602-636 617

terminology and notation. First, a set DPy is created consisting of all demand pairs
corresponding to paths not containing both a leaf and a following root vertex. This is
straightforward since for each pair of vertices («, v) in G(T') connected by a directed
path 7, this connecting path is unique. Thus, a demand pair (e, d) for 7 can be derived
by computing its total execution time and deadline. Formally, all (e, d) € DPy are
created by enumerating all vertex pairs (#, v) and computing for their connecting path
n = (7w, ..., ;) the values

-1

1
=D e(m). d:= plm.mip)+dm).
i=0

i=0
Second, all paths = which do contain both a leaf and a following root vertex can

be cut into three subpaths mxeqd, Tmiddie and i

/ / " 1 i "
7T:(Uy--',vl’vroot,v,'--avl,vr()()hU’~--,U]7Uroot’v yeees U)
—_————

T head T middle T tail

We use vy, vl’ , etc. for arbitrary leaf nodes. The first part 744 is the prefix of & up
to and including the first leaf in 7r. The second part 77,447 is the middle part starting
with v,0, and ending in the last leaf which m visits. Note that 7,44, may traverse the
tree several times. The third part 7,4 starts with the last occurrence of v, in 7. For
each of the three parts, a data structure is created so that demand pairs for a full path
7 can be assembled easily.

In order to represent 7jeqd , a set UP ey is created. For all paths wpeqq = (o, .. ., 77)
that end in a leaf, UPjqs contains a pair (e, p) with

[-1

=D elm), pi= D p@i, Tis1) + PO, Vor)-

i=0 i=0

For representing 1,,iq410, the maximal accumulated execution demand em,x of any path
completely traversing the tree is computed. Note that all paths from the root to a leaf
have the same sum of inter-release separation times and this sum is the period P of
T. Finally, for representing 7,;, a set DP,,,; is computed as a subset of DP(only
considering paths starting at v,es.

Using these data structures, dbf r(t) can be computed easily. If # < P, then a job
sequence contributing to dbf(t) either corresponds to a demand pair in DP((not
passing vyer) or is represented by items from UPjeqr and DP,y, (since it is passing
Vyor €Xactly once):

Fi(t) := max{e | (e,d) € DPy withd < t},
F>(#) := max {61 +ez | (e1,p) € UPleay N (e2,d) € DProos A p +d < t} s
dbf+(t) = max {F(t), F2(t)} ift <P

In case t > P, such a job sequence must pass through v,,, and traverses the tree
completely for either |#/P] or [t/P] — 1 times. Each of the complete traversals

@ Springer

618 Real-Time Syst (2015) 51:602-636

contributes emax to the total execution time sum of m,iq4q7.. For the parts that are
represented by mpeqq and 7y, of the corresponding path 7, we can use F, from
above, since mjeqq concatenated with m,; correspond to a job sequence without a
complete tree traversal but which visits v,,,,. For the case of m,i44; traversing the tree
¢/ P] times, there are t mod P time units left to consider, which is summarized in
Eq. (9). Similarly, for the case of 7,441 traversing the tree |/ P | — 1 times, there are
(t mod P) 4+ P time units left, summarized in Eq. (10). Putting it together for ¢ > P:

F3(1) == {%J - emax + F2(t mod P), ©))

t—P
Fi(t) := {TJ - émax + F2((t mod P) + P), (10)

dbfr(t) = max {F3(t), F4(t)} ift > P.

Finally, in order to do the feasibility test, i.e., verify Condition (1), the demand-
bound function dbf , (1) = X", dbf 7 (t) is computed for all 7 up to abound D derived
in a similar way as for GMF in Sect. 3.3.

4.3 Recurring real-time tasks—DAG structures

In typical branching code, the control flow is joined again after the branches are
completed. Thus, no matter which branch is taken, the part after the join is common
to both choices. In the light of a tree release structure as in the RB task model above,
this means that many vertices in the tree may actually represent the same types of
jobs to be released, or even whole subtrees are equal. In order to make use of these
redundancies, Baruah (1998a) proposes to use a directed acyclic graph (DAG) instead
of a tree. The impact is mostly modeling efficiency: each DAG can be unrolled into a
tree, but that comes at the cost of potentially exponential growth of the graph.

A Recurring Real-Time (RRT) task T is a directed acyclic graph G(T'). The def-
inition is very similar to RB tasks in the previous section, we only point out the
differences. It is assumed that G(T') contains one unique source vertex (correspond-
ing to vy, in an RB task) and further one unique sink vertex (corresponding to leafs
in a tree). There is no explicit minimum inter-release separation time between the sink
and the source vertex. Instead, an RRT task has an explicitly defined period parameter
P that constrains the minimal time between two releases of jobs represented by the
source vertex. An RRT task behaves just like an RB task by following paths through
the DAG. We skip the details and give an example of an RRT task in Fig. 7b.

4.3.1 Feasibility analysis

Because of its close relation to RB tasks, the feasibility analysis method presented by
Baruah (1998a) is very similar to the method presented above for RB tasks and we
skip the details. Note that this is largely due to the general period parameter P which
could be inferred in the RB model since all paths from v,y t0 v,y Were assumed

@ Springer

Real-Time Syst (2015) 51:602-636 619

to have the same duration. However, the adapted method has exponential complexity
since it enumerates paths explicitly.

Chakraborty et al. (2001) present a more efficient method based on a dynamic
programming approach, leading back to pseudo-polynomial complexity. Instead of
enumerating all pairs of vertices (u, v) in the DAG, the graph is traversed in a breadth-
first manner. The critical observation is that all demand pairs representing a path ending
in any particular vertex v can be computed from those for paths ending in all parent
vertices. It is not necessary to have precise information about which the actual paths
are that the demand pairs represent. Even though Chakraborty et al. consider a limited
variant of the model in which paths traverse the DAG only once, the ideas can be
applied in general to the full RRT model.

The feasibility problem is further shown to be NP-hard by Chakraborty et al. (2001)
via a reduction from the Knapsack problem and the authors give a fully polynomial-
time approximation scheme. For the special case where all vertices have equal WCET
annotations, they show a polynomial-time solution, similar to the dynamic program-
ming technique above.

4.3.2 Static priorities

A sufficient test for schedulability of an RRT task set with static priorities is presented
by Baruah (2003). It is shown that, up to a polynomial factor, the priority assignment
problem in which a priority order has to be found is equivalent to the priority testing
problem where a task set with a given priority order is to be tested for schedulability.
At the core of both is the test whether a given task 7 € t will meet its deadlines if it
has the lowest priority of all tasks in T (whose relative priority order does not matter).
In that case T is called lowest-priority feasible.

The proposed solution gives a condition involving both the demand-bound function
dbf 1 (¢) and the request-bound function rbf 7 (¢). It is shown that a task 7T is lowest-
priority feasible if

Vi 0:3 <tidbfr()+ D rbfp(t) <t (1)
T'et\{T}

It is shown that rbf 7 (¢) can be computed with just a minor modification to the com-
putation procedure of dbf 1 (¢) and that Condition (11) only needs to be checked for a
bounded festing set of t, similar to the bound D introduced in checking Condition (1)
in feasibility tests. For each 7, checking the existence of a ¢’ < r is essentially iden-
tical to an iterative procedure of solving the recurrence relation in Eq. (6) of which
Condition (11) is a generalization.

A tighter and more efficient test is shown by Chakraborty et al. (2001) based on a
smoother variant of the request-bound function, denoted rbf’ (¢). Using this, a task T
is lowest-priority feasible if

YoeG(T) 3 <dw):iew)+ D rbfp) <1 (12)
T'et\{T}

@ Springer

620 Real-Time Syst (2015) 51:602-636

This test is a more direct and tighter generalization of the sufficient test using Eq. (6)
for GMF tasks.

4.3.3 Position in the model hierarchy

The RRT model is a generalization of the RB model in the sense of Definition 3. Itis not
the case that syntactically, every RB task is also an RRT task, because of the edges from
leaves back to the root vertex in an RB task. However, Stigge (2014) demonstrates that
an equivalent RRT task can be constructed as follows. Given G(T') of an RB task T,
we create a new vertex v serving as a dummy sink vertex, i.e., {e(v), d(v)) = (0, 0).
For each leaf vertex u, we create an edge (u, v) to the sink vertex with edge label
p(u, v) := p(u, Vo) and remove edge (i, Vo). The resulting graph is G(T”) of
a new task 7’ which together with a parameter P equal to the duration of any path
through G(7') back to its root is now syntactically an RRT task. It is easily verified
that [T] = [T'].

4.4 Non-cyclic RRT

A different generalization of RB is non-cyclic RRT> (Baruah 2010b) where the assump-
tion of one single sink vertex is removed. Specifically, a non-cyclic RRT task T is a
DAG G(T) with vertex and edge labels as before that has a unique source vertex
Vsource- Additionally, for every sink vertex v, there is a value p(v, vsource) as before.
We give an example in Fig. 7c. Note that a non-cyclic RRT task does not have a gen-
eral period parameter, i.e., paths through G(T') visiting vgy,rc. repeatedly may do so
in different time intervals when doing so through different sinks.

4.4.1 Feasibility analysis

The analysis technique presented by Baruah (2010b) is similar to the ones of RB
and RRT. The author uses the dynamic programming technique of Chakraborty et al.
(2001) to compute demand pairs inside the DAG in order to keep pseudo-polynomial
complexity and assumes a partition of paths 7 into 7jeqd, Tmiddie and 745 as before.
The difference here is that paths traversing G(7T) completely from vgg,rce to a sink
may have different lengths, i.e., iz 1S not necessarily a multiple of some period
P. Thus, the expressions for partial dbf 1 (¢) computation in Eqs. (9) and (10) cannot
just assume a fixed length P and a fixed computation time epax. The idea to solve
this is to first use the technique by Chakraborty et al. (2001) to compute demand pairs
for full DAG traversals. These can then be interpreted as frames with a length and an
execution time requirement, which can be concatenated to achieve a certain interval
length, like a very big non-cyclic GMF task. Similar to Eq. (7) for solving non-cyclic
GMF feasibility, all possible paths going from source to a sink can be represented

3 The name “non-cyclic RRT” can be a bit misleading. The behavior of a non-cyclic RRT task is cyclic, in
the sense that the source vertex is visited repeatedly. However, in comparison to the RRT model, the behavior
is non-periodic, in the sense that revisits of the source vertex may happen in different time intervals.

@ Springer

Real-Time Syst (2015) 51:602-636 621

in a function A7 (¢) that expresses for each ¢ the amount of execution demand these
special paths may create during intervals of length ¢. Similar to Eq. (8), this function
is integrated into Conditions (9) and (10), resulting in an efficient procedure.

The procedure is generalized in Sect. 4.5 which generalizes and unifies all feasibility
tests presented so far.

4.4.2 Position in the model hierarchy

It is rather straightforward to see that the non-cyclic RRT model generalizes the RB
model since a tree is a special case of a DAG. However, it is not directly obvious
that non-cyclic RRT generalizes non-cyclic GMF since non-cyclic GMF does not
syntactically fit into the non-cyclic RRT definition, even if interpreted as a (fully
connected) digraph. Nevertheless, a transformation of a non-cyclic GMF task 7' =
(P, E, D) is given by Stigge et al. (2014). In order to create G(T") for an equivalent
non-cyclic RRT task 7, we create k vertices vy, ..., Vxk—1, each representing one of
the k frames of 7', i.e., (e(v;), d(v;)) := (E;, D;).Further, we create a (dummy) source
verteX Usource With (€ (Usource), d (Vsource)) = (0, 0). We connect the source with the
vertices v; via edges (Vi, Vsource) and (Vsource, Vi) Which have labels

P Wi, Vsource) = Piy P(Usource, Vi) := 0.

It is clear that T’ is equivalent to T since all vertices v; can be visited in any order,
just as the frames of T, hence [T] = [T].

4.5 Digraph real-time tasks

Stigge et al. (2011) observe that the non-cyclic RRT model can be generalized to any
directed graph. They introduce the Digraph Real-Time (DRT) task model and describe
a feasibility test of pseudo-polynomial complexity for task systems with utilization
bounded by a constant. A DRT task 7T is described by a directed graph G(T') with
edge and vertex labels as before. There are no further restrictions, any directed graph
can be used to describe a task. Using any graph allows modeling of local loops which
was not possible in any model presented above. Even in the non-cyclic RRT model,
all cycles in that model have to pass through the source vertex. An example of a DRT
task is shown in Fig. 8a.

4.5.1 Semantics

The behavior of a DRT task 7 is similar to earlier models. A job sequence p =
(Jo, J1, . ..) is generated by T if there is a path m = (g, 7y, . ..) through G(T') such
that each job is of the form J; = (R;, e;, 7;) and it holds that

1. Riy1 2 R; + p(mj, miy1) and

2. e; <e(m).
Note that this implies sporadic job releases as before. However, worst-case sequences
usually release jobs as soon as permitted.

@ Springer

622 Real-Time Syst (2015) 51:602-636

(1,5) (1,2)
(a) DRT task (b) EDRT task

Fig. 8 Examples for DRT and EDRT task models. The EDRT task in Fig. 8b contains two additional
constraints (u4, up, 6) and (13, u3, 9), denoted with dashed arrows. Note that these dashed arrows do not
represent edges that can be taken. They only denote additional timing constraints

4.5.2 Feasibility analysis

Stigge et al. (2011) present a feasibility analysis method which is again based on
demand pairs. However, there is no single vertex through which all paths pass and nei-
ther does the graph G (T') represent a partial order as DAGs do. Thus, earlier dynamic
programming approaches can not be applied. It is not possible either to simply enu-
merate all paths through the graph since that would lead to an exponential procedure.
Instead, the authors propose a path abstraction technique which is essentially also
based on dynamic programming, generalizing earlier approaches.

For the case of constrained deadlines, each path 7 = (vg, ..., v;) through G(T) =
(V, E) is abstracted using a demand triple {e(w), d (), v;) with

[-1

e(m) =D e(w), d(m):= D pi,vis1) +d(v).

i=0 i=0

It contains as first two components a demand pair and the third component is the
last vertex in the path. This abstraction allows creating all demand pairs for G(T)
iteratively. The procedure starts with all demand triples that represent paths of length 0,
i.e., with the set

{{e(v),d(v),v) | v e V}.
In each step, a triple (e, d, v) is picked from the set and extended to create new triples
(e’, d, v’) via
e =e+e®), d:=d—dw)+pw,v)+d0), (V) eE.
This is done for all edges (v, v') € E. The procedure abstracts from concrete paths
since the creation of each new triple (e’, d,v) does not need the information of the
full path represented by (e, d, v). Instead, the last vertex v of any such path suffices.

The authors show that this procedure is efficient since it only needs to be executed
once up to a bound D as before and the number of demand triples is bounded.

@ Springer

Real-Time Syst (2015) 51:602-636 623

Further contributions of Stigge et al. (2011) include an extension of the method to
arbitrary deadlines and a few optimisation suggestions for implementations. One of
them is considering critical demand triples (e, d, v) for which no other demand triple
(e’, d, v’) exists with

1. ¢ > e,
2. d <d,and
3.0 =v.

It is shown that only critical demand triples need to be stored during the procedure.
All other, non-critical, demand triples can be discarded since they and all their future
extensions will be dominated by others when considering contributions to the demand
bound function dbf 7 (¢). This optimization reduces the cubic time complexity of the
algorithm to about quadradic in the task parameters.

The presented method is applicable to all models in the previous sections since DRT
generalizes all of them. In a few special cases, custom optimizations may speed up
the process. Recently, Zeng and Di Natale (2014) have proposed a clever application
of max-plus algebra to the problem of computing the demand-bound function which
can speed up the computation further.

4.5.3 Static priorities

Sufficient tests involving rbf (t) similar to Conditions (11) and (12) can be applied
to DRT as well, but no exact schedulability test for DRT with static priorities can be
of pseudo-polynomial time complexity. It was shown by Stigge and Yi (2012) that
the problem is strongly NP-hard via a reduction from the 3-PARTITION problem.
Further, even fully polynomial-time approximation schemes can not exist either. The
result holds for all models at least as expressive as GMF or even the multiframe model.

Despite these hardness proofs, practical schedulability tests are still desirable, even
though they might have worst-case inputs for which they run in exponential time.
Using an iterative refinement method, Stigge and Yi (2013) introduce a schedulability
test that runs about as fast as the state-of-the-art pseudo-polynomial feasibility test
on synthetically generated task sets. The idea is to abstract paths through graphs
representing tasks as request functions. That is, for a task 7', a path & through G(T)
is represented by a function rf (f) which gives the maximal cumulative amount of
workload that this task can request from the processor along 7 within the first ¢ time
units. Figure 9 shows two request functions.

Given tuples rf = (if T, rf(T2) |) of request functions, each representing a path
for a different task of higher priority, a condition can be given for a job associated
with a vertex v to be able to meet its deadline as:

Vif 13t <d@) e+ D D) <

T thign
Intuitively, this condition guarantees that for all release scenarios of higher priority

tasks, represented by the tuples rf, the job associated with v will be able to finish before
its deadline. Compared to Conditions (11) and (12), this test is precise, but comes at

@ Springer

624 Real-Time Syst (2015) 51:602-636

O T T TrT* 11T ""T 1T 1T 1T "1 T T t
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 9 Example of two request functions for two different paths 7 and 7’

N

’f‘ﬂ,’l yfnz rfﬂ5
rfn3 ’f7[4

Fig. 10 Request function abstraction tree for request functions of some task 7. The leaves are five concrete
request functions. Each inner node is the point-wise maximum of all descendants and thus an abstract request
function. Abstraction refinements happen downwards along the edges, starting at the root

the cost of testing all combinations 7f if applied naively. This can be improved by
considering abstract request functions which are the point-wise maximum of request
functions and thereby represent sets of behaviors. In the example in Fig. 9, consider
the point-wise maximum of rf, and rf,, which is an over-approximation of both
behaviors. The approach can be used for iterative refinement by starting with one
function that represents all behaviors and is successively refined to represent smaller
and smaller sets along an abstraction tree, illustrated in Fig. 10.

The method refines abstractions in order to solve a combinatorial problem and
is therefore called combinatorial abstraction refinement. It is a rather general idea
and has been applied as well to response-time analysis of static priorities and EDF
(Stigge and Yi 2014). While the problem is strongly NP-hard and the method’s time
complexity therefore, in principle, exponential for worst-case instances, Stigge and Yi
(2014) show that typical instances can be solved in time comparable to the state-of-the-
art feasibility analysis described above in Sect. 4.5.2 which has pseudo-polynomial
worst-case time complexity. Note that both methods are incomparable since they differ
in the type of scheduler the analysis assumes, i.e., EDF versus static priorities.

4.5.4 Position in the model hierarchy
We observe that, intuitively, the DRT model generalizes all models described so far. All
models are based on different classes of directed graphs which are all subsumed by the

generality of the DRT model. This includes multiframe models which are essentially
cycle graphs and even the sporadic task model which can be expressed using a single

@ Springer

Real-Time Syst (2015) 51:602-636 625

vertex with a self loop. Regarding the model hierarchy depicted in Fig. 1, Stigge (2014)
provides more details about two aspects.

First, it is clear that non-cyclic RRT is generalized by DRT since each non-cyclic
RRT task is already syntactically a DRT task. In fact, the non-cyclic RRT model is the
subclass of the DRT model in which each G(T') is a strongly connected directed graph
in which all cycles share a common vertex. By transitivity, all models located below
non-cyclic RRT in the model hierarchy are generalized by DRT, including branching
and multiframe models.

Second, the RRT model is, strictly speaking, not generalized by the DRT model.
This is because the parameter P for every RRT task is a global constraint which the
DRT model cannot directly express. It is a timing constraint between two successive
releases of jobs associated with the source vertex. One such constraint exists per RRT
task. This restriction, albeit mostly a technicality, is alleviated with the introduction of
EDRT tasks in the following section. More specifically, an RRT task can be expressed
by an equivalent 1-EDRT task, which in turn can be pseudo-polynomially translated
into a DRT that is equivalent for most analysis purposes, as described in the following
section.

4.6 Global timing constraints

In an effort to investigate the border of how far graph-based workload mod-
els can be generalized before the feasibility problem becomes infeasible, Stigge
et al. (2011a) propose a task model called Extended DRT (EDRT). In addition
to a graph G(T) as in the DRT model, a task 7 also includes a set C(T) =
{(froml, 101, Y1), - - ., (fromy, to, yk)} of global inter-release separation constraints.
Each constraint (from;, to;, y;) expresses that between the visits of vertices from; and
to;, at least y; time units must pass. An example is shown in Fig. 8b.

4.6.1 Feasibility analysis

The feasibility analysis problem for EDRT indeed marks the tractability borderline. In
case the number of constraints in C(T) is bounded by a constant k which is a restriction
called k-EDRT, Stigge et al. (2011a) present a pseudo-polynomial feasibility test. If
the number is not bounded, they show that feasibility analysis becomes strongly NP-
hard by a reduction from the Hamiltonian Path problem, ruling out pseudo-polynomial
methods.

For the bounded case, we illustrate why the iterative procedure described in Sect. 4.5
for DRT can not be applied directly and then sketch a solution approach. The demand
triple method can not be applied without change since the abstraction loses too much
information from concrete paths. In the presence of global constraints, the procedure
needs to keep track of which constraints are active. Consider path w = (u4, us) from
the example in Fig. 8b, which would be abstracted with demand triple (2, 4, us).
An extension with u; leading to demand triple (4,7, uy) is not correct, since the
path 7’ = (u4, us, up) includes a global constraint, separating releases of the jobs
associated with u4 and u; by 6 time units. A correct abstraction of 7" would therefore

@ Springer

626 Real-Time Syst (2015) 51:602-636

Fig. 11 A basic example of a
1-EDRT task T being {1,2) (1,2)
transformed into an equivalent \

DRT task 7’. Only a subset of .

the vertices of 7’ is shown \

[\

(L1)

N

@.3) () (2.3)

(a) EDRT taskT (b) (Parts of) DRT task 7"

—
—
—_
~
W

be (4, 8, us), butitis impossible to construct that from (2, 4, u5) which lost information
about the active constraint.

A solution to this problem is to integrate information about active constraints into
the analysis. For each constraint (from;, to;, y;), the demand triple is extended by a
countdown that represents how much time must pass until fo; may be visited again. This
slows down the analysis, but since the number of constraints is bounded by a constant,
the slowdown is only a polynomial factor. Stigge et al. (2011a) choose to not directly
integrate the countdown information into the iterative procedure but to transform each
EDRT task T into a DRT task 7’ where the countdown information is integrated into
the vertices. The transformation leads to an equivalent iterative procedure and has
the advantage that an already existing graph exploration engine for feasibility tests of
DRT task sets can be reused without any change. The transformation is illustrated in
Fig. 11.

5 Further generalizations and extensions

We now turn to models that either extend the DRT model in other directions or are
outside the hierarchy in Fig. 1 since they operate partially or entirely on a different
abstraction level.

5.1 Resource sharing

Real-time systems even on uniprocessor platforms contain not only the execution
processor, but often many resources shared by concurrently running jobs using a
locking mechanism during their execution. Locking can introduce unwanted effects
like deadlocks and priority inversion. For periodic and sporadic task systems, the
Priority Ceiling (and Inheritance) Protocols (Sha et al. 1990) and Stack Resource
Policy (Baker 1991) are established solutions with efficient schedulability tests. While
these protocols can be used for more expressive models like DRT, the analysis methods
do not necessarily apply.

@ Springer

Real-Time Syst (2015) 51:602-636 627

Fig. 12 A DRT task with <27 8)
resource annotations @

O!(VQ,R]):I
a:V x{R;,R} >N 10
15
20

3.8)
2.5 (2 Je((2) a2
(2,5) 20 (v3,Ry)

OC(V3,R2):1

Some initial work exists on extending the classical results to graph-based mod-
els. The common model extension is to consider a set of semaphores that all tasks
may use, and annotate each vertex in each graph with the set of semaphores that the
corresponding job may lock, together with a bound on the locking duration, cf. Fig. 12.

Results of Ekberg et al. (2014) introduce an optimal protocol for GMF tasks with
resources scheduled by EDF and Guan et al. (2011) develop a new protocol to deal with
branching structures in the context of EDF scheduling. Recently, static priority sched-
ulers have been considered by Zhuo (2014), in which blocking times are represented
by blocking functions, similar to request functions for DRT analysis, cf. Sect. 4.5.3.
Generally, the non-deterministic behaviours introduced by DRT-like models are not
yet well understood in the context of resource sharing and subject of future research.

5.2 Adaptive variable-rate tasks

A model that has gained attention recently is motivated by control applications for
combustion engines. In this setting, task releases are triggered by specific crankshaft
rotation angles, leading to flexible inter-release separation times induced by different
engine speeds. Further, execution times may be variable as well, since at higher engine
speeds, certain functionality is being dropped because of a lack of time until the next
task release. The resulting model contains different frames with different inter-release
times and a non-trivial pattern of possible switches between frame types that can
be exploited for analysis purposes. More specifically, a priori knowledge about the
minimal time that one job type has to be repeatedly released until a new type can be
instantiated, can lead to more exact results.

This model has been given different names, like Rate-Adaptive Tasks (Buttazzo et al.
2014), Variable Rate-Dependent Behaviour (Davis et al. 2014) or Adaptive Variable-
Rate Tasks (Biondi et al. 2014). In a series of works, a few analysis methods have
been developed. A sufficient utilization-based feasibility test (Buttazzo et al. 2014)
was among the first known results. For static priorities, efficient but only sufficient
ILP-based tests have been published (Davis et al. 2014) as well as an exact test (Biondi
et al. 2014) which does an exhaustive search of all critical behaviours.

Current results are usually based on the assumption that just one task in the system
does exhibit variable-rate behavior. Future work includes investigation of task systems
with several such tasks for which angular velocity is correlated. Of course, this model
can be over-approximated with the non-cyclic GMF model (and therefore methods for

@ Springer

628 Real-Time Syst (2015) 51:602-636

DRT analysis can be applied), but without further adaptation, corresponding analysis
methods can only provide sufficient tests. The model offers an interesting research
direction by investigating its relation to the DRT model and related formalisms in its
hierarchy. Because of the dense set of existing frame sizes, there is no obvious one-
to-one correspondence that would allow direct applicability of the methods surveyed
in this article. However one may conjecture that such a mapping could be created
by defining suitable equivalence classes on frame sizes, allowing definition of an
equivalent graph-based model.

5.3 Task automata

A very expressive workload model called task automata is presented by Fersman et
al. (2002). It is based on Timed Automata that have been studied thoroughly in the
context of formal verification of timed systems (Alur and Dill 1994; Bengtsson and Yi
2003). Timed automata are finite automata extended with real-valued clocks to specify
timing constraints as enabling conditions, i.e., guards on transitions. The essential idea
of task automata is to use the timed language of an automaton to describe task release
patterns.

In DRT terms, a task automaton (TA) T is a graph G(T') with vertex labels as in
the DRT model, but labels on edges are more expressive. An edge (u, v) is labeled
with a guard g(u, v) which is a boolean combination of clock comparisons of the
form x < C where C is a natural number and <€ {<, <, >, >, =}. Further, an edge
may be labeled with a clock reset r(u, v) which is a set of clocks to be reset to 0
when this edge is taken. Since the value of clocks is an increasing real value which
represents that time passes, guards and resets can be used to constrain timing behavior
on generated job sequences. We give an example of a task automaton in Fig. 13.

A task automaton has an initial vertex. In addition to resets and guards, task automata
have a synchronization mechanism. This allows them to synchronize on edges either
with each other or with the scheduler on a job finishing time.

Note that DRT tasks are special cases of task automata where only one clock is
used. Each edge (u, v) in a DRT task with label p(u, v) = C can be expressed with
an edge in a task automaton with guard x > C and reset x := 0.

Fersman et al. (2007) show that the schedulabiliy problem for a large class of
systems modeled as task automata can be solved via a reduction to a model checking
problem for ordinary Timed Automata. A tool for schedulability analysis of task

Fig. 13 Example of a task
automaton

@ Springer

Real-Time Syst (2015) 51:602-636 629

automata is presented by Amnell et al. (2002) and Fersman et al. (2006). In fact,
the feasibility problem is decidable for systems where at most two of the following
conditions hold:

Preemption. The scheduling policy is preemptive.

Variable execution time. Jobs may execute for a time from an interval of possible
execution times.

Task feedback. The finishing time of a job may influence new job releases.

However, the feasibility problem is undecidable if all three conditions are true
(Fersman et al. 2007). Task automata therefore mark a borderline between decidable
and undecidable problems for workload models.

5.4 Fork-join real-time tasks

An extension of the DRT task model to incorporate fork/join structures has been
proposed recently by Stigge et al. (2013). Instead of following just one path through
the graph, the behavior of a task includes the possibility of forking into different paths
at certain nodes, and joining these paths later. This can be thought of as temporarily
creating parallel threads which execute concurrently until they are synchronized and
ultimately joined again.

Syntactically, the concept is represented using hyperedges. A hypergraph general-
izes the notion of a graph by extending the concept of an edge between two vertices
to hyperedges between two sets of vertices. More precisely, a hyperedge (U, V) is
either a sequence edge with U and V being singleton sets of vertices, or a fork edge
with U being a singleton set, or a join edge with V being a singleton set. In all cases,
the edges are labeled with a non-negative integer p(U, V) denoting the minimum job
inter-release separation time. The model is illustrated with an example in Fig. 14. Note
that this contains the DRT model as a special case if all hyperedges are sequence edges.
Since every DRT task can be interpreted as a single thread which never synchronizes

Vi

Fig. 14 Example FJRT task. The fork edge is depicted with an intersecting double line, the
join edge with an intersecting single line. All edges are annotated with minimum inter-release
delays p(U, V). The vertex labels are omitted in this example. A possible job sequence contain-
ing jobs with their absolute release times and job types (but omitted execution times) is p =
[0, v1), (5, v2), (5, v5), (6, v4), (7, v3), (8, v5), (16, v6), (22, v1)]

@ Springer

630 Real-Time Syst (2015) 51:602-636

with other tasks in the system, the FIRT task model is a strict generalization of the
DRT task model.

As an extension of the DRT model, an FJRT task system releases independent jobs,
allowing to define concepts like utilization U (t) and demand-bound function just
as before in Sect. 4.5. A task executes by following a path through the hypergraph,
triggering releases of associated jobs each time a vertex is visited. Whenever a fork edge
({u}, {v1, ..., vy}) is taken, m independent paths starting in v; to v,,, respectively,
will be followed in parallel until joined by a corresponding join edge. In order for a
join edge ({uy, ..., u,}, {v}) to be taken, all jobs associated with vertices uy, ..., u,
must have been released and enough time must have passed to satisfy the join edge
label. Forking can be nested, i.e., these m paths can lead to further fork edges before
being joined. Note that meaningful models have to satisfy structural restrictions, e.g.,
each fork needs to be joined by a matching join, and control is not allowed to “jump”
between parallel sections.

5.4.1 Feasibility

A complete method for analyzing FJRT task sets is not known at the time of writing.
However, we sketch current approaches (Stigge et al. 2013). The usual demand-bound
function based condition, i.e., checking V¢ > 0 : ZT < dbf r(t) < t,is applicable.

Demand tuples For an FIRT task T without fork and join edges, dbf(t) can be
evaluated by traversing its graph G(T') using a demand tuples abstraction as intro-
duced in Sect. 4.5. We can extend this method to the new hyperedges by a recursive
approach. Starting with “innermost” fork/join parts of the hypergraph, the tuples
are merged at the hyperedges and then used as path abstractions as before. It can
be shown that this method is efficient.

Utilization ~ Recall that just computing dbf 7 (¢) does not suffice for a finite test since
itis also necessary to know which interval sizes ¢ need to be checked. As for the DRT
model, a bound can be derived from the utilization U (7) of a task set . However,
it turns out that an efficient way of computing U (7) is surprisingly difficult to find.
The difficulty comes from parallel sections in tasks with loops of different periods
which, when joined, exhibit the worst-case behavior in very long time intervals of
not necessarily polynomial length.

6 Conclusions and outlook

This survey covers a hierarchy of graph-based workload models for hard real-time
systems, together with analysis methods and related results for preemptive uniproces-
sor scheduling. We have provided details for all models included in a formally defined
model hierarchy (cf. Fig. 1) and sketched analysis methods and complexity results
for each model. Generalizations of models have been presented together with analysis
methods which in turn have in most cases been generalizations as well, including pre-
vious methods as special cases. This is especially true for feasibility analysis where
increased non-determinism made previous methods inapplicable. Apart from their
importance in theoretical studies, we believe that these expressive models may find

@ Springer

Real-Time Syst (2015) 51:602-636 631

z
Hﬁ
_""\. 3

= |

2 A

3

(a) Feasibility. (b) SP Schedulablllty

Fig. 15 Classification of task models into ’ t[af@tzlg‘ (pseudo-polynomial tests exist) versus \ntractable

(strongly coNP-hard), relative to different decision problems

their applications in for example model- and component-based design for timed sys-
tems.

As a theoretical result, a classification of task models into tractable and intractable
classes is shown in Fig. 15. This provides interesting insights about the precise position
of the borderlines which we will discuss briefly.

For EDF scheduling, the fundamental problem is to determine processor demand
within time intervals. The complexity of computing this demand appears to be closely
related to non-deterministic branching in task graphs. In the basic DRT model, cf. the
hierarchy in Fig. 10a, computing the demand is possible in pseudo-polynomial time
as long as timing constraints are either purely local or can be translated into local
constraints. In this case, graph traversal algorithms can track constraints one by one
when following branches. The extension from k-EDRT to EDRT causes intractability
since many global constraints need to be considered together in all branches.

For SP scheduling, the source of intractability is different. In this case, actual
interference patterns need to be considered, in contrast to EDF. Different interference
patterns can be combined in different ways, leading to a combinatorial explosion
and therefore a high complexity of the schedulability problem. Therefore, all models
allowing different types of frames can be shown to lead to intractability, cf. Fig. 10b.
The non-cyclic GMF model using a complete digraph for each task plays a special
role in the hierarchy. Even though it allows different types of frames, it can not enforce
their order. Therefore, the hardness proofs for multiframe models with static priority

@ Springer

632 Real-Time Syst (2015) 51:602-636

schedulers are not applicable to the non-cyclic GMF model. Moreover, exact pseudo-
polynomial time analysis methods are not known either and left open for future work.

In preparing this paper, we have intended to cover only works on independent
tasks for preemptive uniprocessors. Surveys on related topics have been published
on the broad area of static-priority scheduling and analysis (Audsley et al. 1995), on
scheduling and analysis of repetitive models for preemptable uniprocessors (Baruah
and Goossens 2004), on real-time scheduling for multiprocessors (Davis and Burns
2011) and on the historic development of real-time systems research in general (Sha
et al. 2004).

The following is a list of areas that we consider important in relation to the presented
models, but did not include them in this paper for keeping the topic focused.

Real-time multiprocessor scheduling In contrast to uniprocessor systems, scheduling
real-time workloads on parallel architectures is a much harder challenge. There are
various scheduling strategies, e.g., global and partition-based scheduling with mostly
sufficient conditions for schedulability tests. A comprehensive survey on this topic was
published by Davis and Burns (2011). In the context of graph-based workload models,
recent work focuses on the sporadic DAG model (Baruah et al. 2012b). Each sporadic
task does not just release a single job at its activation but a set of jobs for which
precedence constraints are specified with a directed acyclic graph. Results include
speed-up bounds (Bonifaci et al. 2013; Li et al. 2014) and sufficient schedulability
tests (Baruah 2014).

Mode switches A system may operate in different modes demonstrating different
timing behaviors. In particular, the current mode is often a property of the system
state, not just the fask state, i.e., coordination and correlation between tasks may
take place. The notion is rather general and several different concrete mode switching
models are conceivable in the context of graph-based workload models like the DRT
model.

— On the level of job releases, modes between tasks may be coordinated by provid-
ing synchronization possibilities on edges between job types. That is, tasks need
to “take” edges together, synchronously, thereby modeling a global synchroniza-
tion. Analysis methods need to be adapted in order to reflect the restricted set of
behaviors. Note that many methods that are not mode-aware are still sound, but
possibly over-approximate.

— On the level of job execution, modes may switch at a time instant where jobs are
executing and demand that job parameters change immediately. One may consider
a simple model using a directed mode-change graph where the nodes stand for
modes, assigned with a set of tasks to be executed in the corresponding mode,
and edges for mode switches that may be triggered by an internal or external
event and guarded by a timing constraint such as a minimal separation distance. A
prominent example of this kind of mode switches is the theory of mixed-criticality
scheduling which has been studied intensively in recent years (Baruah et al. 2011;
2012a; Ekberg and Yi 2012). In recent work (Ekberg and Yi 2014; Ekberg et al.
2013), it has been shown that a mixed criticality task system can be modeled nicely
using a chain of modes representing the criticality levels where mode switches
are triggered by a task over-run that may occur at any time. The authors present

@ Springer

Real-Time Syst (2015) 51:602-636 633

a technique for scheduling the mixed criticality workload described in directed
acyclic graphs. An interesting direction for future work is scheduling of mode
switches in general directed graphs, which involves fixed-point computation due
to cyclic structures.

An open area for research is the connection of mode switches with multiprocessor
scheduling with seminal work by Li and Baruah (2012).

Tools for schedulability analysis Over the years, many models and analysis techniques
have been developed. It is desirable to have a software framework that as input takes a
workload description in some of the models and a scheduling policy and determines the
model’s schedulability. A tool for task automata has been developed using techniques
for model checking timed automata (Amnell et al. 2002). Due to the analysis complex-
ity of timed automata, it suffers from the state-explosion problem. For the tractable
models including DRT in the hierarchy of Fig. 1, a tool for schedulability analysis is
currently under development in Uppsala based on the path abstraction techniques of
Stigge et al. (2011) and Stigge and Yi (2013).

Acknowledgments The authors would like to thank the anonymous reviewers of the Real-Time Systems
journal for their constructive comments on an earlier manuscript of this article.

References

Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126:183-235

Amnell T, Fersman E, Mokrushin L, Pettersson P, Yi W (2002) TIMES—A tool for modelling and imple-
mentation of embedded systems. In: Proceedings of TACAS. Springer, pp 460-464

Anand M, Easwaran A, Fischmeister S, Lee I (2008) Compositional feasibility analysis of conditional
real-time task models. In: Proceedings of ISORC, pp 391-398

Audsley NC, Burns A, Davis RI, Tindell KW, Wellings AJ (1995) Fixed priority pre-emptive scheduling:
an historical perspective. Real Time Syst 8(2):173-198

Audsley NC, Burns A, Richardson MF, Wellings AJ (1991) Hard real-time scheduling: the deadline-
monotonic approach. In: Proceedings of RTOSS, pp 133-137

Baker TP (1991) Stack-based scheduling for realtime processes. Real-Time Syst 3(1):67-99

Baruah S, Goossens J (2004) Scheduling real-time tasks: algorithms and complexity. Handbook of schedul-
ing: models, and performance analysis, p 3

Baruah SK, Mok AK, Rosier LE (1990) Preemptively scheduling hard-real-time sporadic tasks on one
processor. In: Proceedings of RTSS, pp 182-190

Baruah SK (1998a) A general model for recurring real-time tasks. In: Proceedings of RTSS, pp 114-122

Baruah SK (1998b) Feasibility analysis of recurring branching tasks. In: Proceedings of EWRTS, pp 138-
145

Baruah SK (2003) Dynamic- and static-priority scheduling of recurring real-time tasks. Real Time Syst
24(1):93-128

Baruah SK (2010) Preemptive uniprocessor scheduling of non-cyclic GMF task systems. In: Proceedings
of RTCSA, pp 195-202

Baruah SK (2010b) The non-cyclic recurring real-time task model. In: Proceedings of RTSS, pp 173-182

Baruah SK (2014) Improved multiprocessor global schedulability analysis of sporadic DAG task systems.
In: Proceedings of ECRTS, pp 97-105

Baruah SK, Bonifaci V, D’Angelo G, Li H, Marchetti-Spaccamela A, Megow N (2012a) Scheduling real-
time mixed-criticality jobs. IEEE Trans Comput 61(8):1140-1152

Baruah SK, Bonifaci V, Marchet alei-Spaccamela A, Stougie L, Wiese A (2012b). A generalized parallel
task model for recurrent real-time processes. In: Proceedings of RTSS, pp 63-72

Baruah SK, Burns A, Davis RI (2011) Response-time analysis for mixed criticality systems. In: Proceedings
of RTSS, pp 3443

@ Springer

634 Real-Time Syst (2015) 51:602-636

Baruah SK, Chen D, Gorinsky S, Mok A (1999a) Generalized multiframe tasks. Real Time Syst 17(1):5-22

Baruah SK, Chen D, Mok AK (1999b) Static-priority scheduling of multiframe tasks. In: Proceedings of
ECRTS, pp 38-45

Bengtsson J, Yi W (2003) Timed automata: semantics, algorithms and tools. In: Lectures on concurrency
and petri nets, pp 87-124

Berten V, Goossens J (2011) Sufficient FTP schedulability test for the non-cyclic generalized multiframe
task model. CoRR, abs/1110.5793

Biondi A, Melani A, Marinoni M, Natale MD, Buttazz G (2014) Exact interference of adaptive variable-rate
tasks under fixed-priority scheduling. In: Proceedings of ECRTS, pp 165-174

Bonifaci V, Marchetti-Spaccamela A, Stiller S, Wiese A (2013) Feasibility analysis in the sporadic DAG
task model. In: Proceedings of ECRTS, pp 225-233

Boudec J, Thiran P (2001) Network Calculus: a theory of Deterministic Queuing Systems for the Internet.
Lecture notes in computer science. Springer

Buttazzo G (2011) Hard real-time computing systems: predictable scheduling algorithms and applications.
Realtime systems. Springer

Buttazzo GC, Bini E, Buttle D (2014) Rate-adaptive tasks: model, analysis, and design issues. In: Proceed-
ings of DATE, pp 1-6

Chakraborty S, Erlebach T, Thiele L (2001) On the complexity of scheduling conditional real-time code.
In: Proceedings of WADS, pp 38-49

Davis RI, Burns A (2011) A survey of hard real-time scheduling for multiprocessor systems. ACM Comput
Surv 43(4):35:1-35:44

Davis RI, Feld T, Pollex V, Slomka F (2014) Schedulability tests for tasks with variable rate-dependent
behaviour under fixed priority scheduling. In: Proceedings of RTAS, pp 51-62

Eisenbrand F, RothvoB T (2008) Static-priority real-time scheduling: response time computation is NP-hard.
In: Proceedings of RTSS, pp 397-406

Eisenbrand F, Rothvof3 T (2010) EDF-schedulability of synchronous periodic task systems is coNP-hard.
In: Proceedings of SODA, pp 1029-1034

Ekberg P, Guan N, Stigge M (2014) An optimal resource sharing protocol for generalized multiframe tasks.
J Log Algebr Methods Program 84(1):92-105

Ekberg P, Stigge M, Guan N, Yi W (2013) State-based mode switching with applications to mixed-criticality
systems. In: Proceedings of WMC, pp 61-66

Ekberg P, Yi W (2012) Outstanding paper award: bounding and shaping the demand of mixed-criticality
sporadic tasks. In: Proceedings of ECRTS, pp 135-144

Ekberg P, Yi W (2014) Bounding and shaping the demand of generalized mixed-criticality sporadic task
systems. Real Time Syst 50(1):48-86

Ekberg P, Yi W (2015) Uniprocessor feasibility of sporadic tasks with constrained deadlines is strongly
conp-complete. In: Proceedings of ECRTS. to appear

Fersman E, Krcal P, Pettersson P, Yi W, (2007) Task automata: schedulability, decidability and undecid-
ability. Inf Comput 205(8):1149-1172

Fersman E, Mokrushin L, Pettersson P, Yi W, (2006) Schedulability analysis of fixed-priority systems using
timed automata. Theor Comput Sci 354(2):301-317

Fersman E, Pettersson P, Yi W (2002) Timed automata with asynchronous processes: schedulability and
decidability. In: Proceedings of TACAS 2002. Springer, pp 67-82

Guan N, Ekberg P, Stigge M, Yi W (2011) Resource sharing protocols for real-time task graph systems. In:
Proceedings of ECRTS, pp 272-281

Han, C.-C. J. (1998). A Better Polynomial-Time Schedulability Test for Real-Time Multiframe Tasks. In:
Proceedings of RTSS. IEEE Computer Society, Washington, DC, USA , pp 104-113

Joseph M, Pandya PK (1986) Finding response times in a real-time system. Comput J 29:390-395

Kuo T, Chang L, Liu Y, Lin K (2003) Efficient online schedulability tests for real-time systems. IEEE Trans
Softw Eng 29:734-751

Lehoczky JP, Sha L, Strosnider JK (1987). Enhanced aperiodic responsiveness in hard real-time environ-
ments. In: Proceedings of the RTSS, pp 261-270

Leung JY-T, Merrill M (1980) A note on preemptive scheduling of periodic, real-time tasks. Inf Process
Lett 11(3):115-118

Leung JY-T, Whitehead J (1982) On the complexity of fixed-priority scheduling of periodic, real-time tasks.
Perform Eval 2(4):237-250

@ Springer

Real-Time Syst (2015) 51:602-636 635

Li H, Baruah SK (2012) Outstanding paper award: global mixed-criticality scheduling on multiprocessors.
In: ECRTS, pp 166-175

LiJ, Chen J-J, Agrawal K, Lu C, Gill C, Saifullah A (2014) Analysis of federated and global scheduling
for parallel real-time tasks. In: Proceedings of ECRTS, pp 85-96

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.
J ACM 20(1):46-61

Lu W-C, Lin K-J, Wei H-W, Shih W-K (2007) New schedulability conditions for real-time multiframe tasks.
In: Proceedings of the ECRTS, pp 39-50

Mok AK (1983) Fundamental design problems of distributed systems for the hard-real-time environment.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA

Mok AK, Chen D (1996) A general model for real-time tasks. Technical report

Mok AK, Chen D (1997) A multiframe model for real-time tasks. IEEE Trans Softw Eng 23(10):635-645

Moyo NT, Nicollet ale E, Lafaye F, Moy C (2010) On schedulability analysis of non-cyclic generalized
multiframe tasks. In: ECRTS, pp 271-278

Sha L, Abdelzaher T, Arzén K-E, Cervin A, Baker T, Burns A, Buttazzo G, Caccamo M, Lehoczky J, Mok
AK (2004) Real time scheduling theory: a historical perspective. Real Time Syst 28(2-3):101-155

Sha L, Rajkumar R, Lehoczky J (1990) Priority inheritance protocols: an approach to real-time synchro-
nization. IEEE Trans Comput 39(9):1175-1185

Stigge M (2014) Real-time workload models: expressiveness vs. analysis efficiency. PhD thesis, Uppsala
University, Sweden

Stigge M, Ekberg P, Guan N, Yi W (201 1a). On the tractability of digraph-based task models. In: Proceedings
of ECRTS, pp 162-171

Stigge M, Ekberg P, Guan N, Yi W (2011) The digraph real-time task model. In: Proceedings of RTAS, pp
71-80

Stigge M, Ekberg P, Yi W (2013) The fork-join real-time task model. Proc ACM SIGBED Rev 10(2):20

Stigge M, Yi W (2012) Hardness results for static priority real-time scheduling. In: Proceedings of the
ECRTS, pp 189-198

Stigge M, Yi W (2013) Combinatorial abstraction refinement for feasibility analysis. In: Proceedings of the
RTSS, pp 340-349

Stigge M, Yi W (2014) Refinement-based exact response-time analysis. In: Proceedings of the ECRTS, pp
143-152

Takada H, Sakamura K (1997) Schedulability of generalized multiframe task sets under static priority
assignment. In: Proceedings of the RTCSA, pp 80-86

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
ISCAS, vol 4

Zeng H, Di Natale M (2014) Computing periodic request functions to speed-up the analysis of non-cyclic
task models. Real Time Syst 1-35

Zhuo Y (2014) Static priority schedulability analysis of graph-based real-time task models with resource
sharing. Uppsala University, Sweden, Term paper

Zuhily A, Burns A (2009) Exact scheduling analysis of non-accumulatively monotonic multiframe tasks.
Real Time Syst J 43:119-146

Martin Stigge received a Ph.D. degree in 2014 from Uppsala Uni-
versity for his work in the area of formal analysis of timed systems
with special focus on scheduling theory. In the group of Prof. Wang
Yi, he extended the theory of expressive workload models with new
models, complexity results and analysis algorithms.

@ Springer

636

Real-Time Syst (2015) 51:602-636

@ Springer

Wang Yi received his Ph.D. in Computer Science in 1991 from
Chalmers University of Technology. Currently he is a professor at
Uppsala University where he holds the chair of Embedded Systems.
He is one of the initial contributors to the research area on verifi-
cation of timed systems. He is a co-founder of UPPAAL, a model
checker for concurrent and real-time systems. He received the CAV
Award 2013, for the development of UPPAAL. His current inter-
ests include models, algorithms and software tools for modeling and
verification, timing analysis, real-time scheduling, and their applica-
tion to the design of embedded systems. With Pontus Ekberg, Nan
Guan and Martin Stigge, he received the Outstanding paper award
of ECRTS 2012 and Best Paper Awards of RTSS 2009 and DATE
2013. Wang has been an editor for several journals including IEEE
Transactions on Computers and served regularly as TPC chair and
TPC member for numerous conferences including TACAS, EMSOFT
and RTSS. Currently he is steering committee member of EMSOFT,
LCTES and ESWEEK. He is a fellow of the IEEE.

	Graph-based models for real-time workload: a survey
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Terminology
	2.2 Model hierarchy

	3 From Liu and Layland tasks to GMF
	3.1 Periodic and sporadic tasks
	3.1.1 Demand-bound functions
	3.1.2 Static priorities

	3.2 The multiframe model
	3.2.1 Semantics
	3.2.2 Schedulability analysis

	3.3 Generalized multiframe tasks
	3.3.1 Semantics
	3.3.2 Feasibility analysis
	3.3.3 Static priorities

	3.4 Non-cyclic GMF
	3.4.1 Static priorities

	4 Graph-oriented models
	4.1 Revisiting GMF
	4.2 Recurring branching tasks
	4.2.1 Semantics
	4.2.2 Feasibility analysis

	4.3 Recurring real-time tasks---DAG structures
	4.3.1 Feasibility analysis
	4.3.2 Static priorities
	4.3.3 Position in the model hierarchy

	4.4 Non-cyclic RRT
	4.4.1 Feasibility analysis
	4.4.2 Position in the model hierarchy

	4.5 Digraph real-time tasks
	4.5.1 Semantics
	4.5.2 Feasibility analysis
	4.5.3 Static priorities
	4.5.4 Position in the model hierarchy

	4.6 Global timing constraints
	4.6.1 Feasibility analysis

	5 Further generalizations and extensions
	5.1 Resource sharing
	5.2 Adaptive variable-rate tasks
	5.3 Task automata
	5.4 Fork-join real-time tasks
	5.4.1 Feasibility

	6 Conclusions and outlook
	Acknowledgments
	References

