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Abstract In this paper, we investigate static probabilistic timing analysis (SPTA)
for single processor real-time systems that use a cache with an evict-on-miss random
replacement policy. We show that previously published formulae for the probability of
a cache hit can produce results that are optimistic and unsound when used to compute
probabilistic worst-case execution time (pWCET) distributions. We investigate the
correctness, optimality, and precision of different approaches to SPTA for random
replacement caches. We prove that one of the previously published formulae for the
probability of a cache hit is optimal with respect to the limited information (reuse
distance and cache associativity) that it uses. We derive an alternative formulation that
makes use of additional information in the form of the number of distinct memory
blocks accessed (the stack distance). This provides a complementary lower bound
that can be used together with previously published formula to obtain more accurate
analysis. We improve upon this joint approach by using extra information about cache
contention. To investigate the precision of various approaches to SPTA, we introduce
a simple exhaustive method that computes a precise pWCET distribution, albeit at
the cost of exponential complexity. We integrate this precise approach, applied to
small numbers of frequently accessed memory blocks, with imprecise analysis of
other memory blocks, to form a combined approach that improves precision, without
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significantly increasing complexity. The performance of the various approaches are
compared on benchmark programs. We also make comparisons against deterministic
analysis of the least recently used replacement policy.

Keywords WCET analysis · Random cache replacement · Static probabilistic
timing analysis · Timing verification

Extended version

This paper builds upon, and significantly extends the 6 page paper (Altmeyer and
Davis 2014) published in Design Automation and Test in Europe (DATE) 2014. The
main extensions are as follows:

– Derivation of an alternative method of computing a lower bound on the probability
of a cache hit, based on the concept of stack distance (Sect. 4).

– Correcting an omission in the basic approach to cache contention given by Altmeyer
and Davis (2014), and introducing a more effective cache contention approach
(Sect. 5).

– Integration of the cache contention approaches with exhaustive analysis of a limited
number of relevant memory blocks, and the introduction of an additional heuristic
to select relevant memory blocks in a given trace (Sect. 7).

– Extended evaluation on significantly larger real-life examples, with comparisons
against deterministic analysis of the least recently used (LRU) replacement policy
(Sect. 8).

1 Introduction

Real-time systems such as those deployed in space, aerospace, automotive and railway
applications require guarantees that the probability of the system failing to meet its
timing constraints is below an acceptable threshold (e.g. a failure rate of less than
10−9 per hour for some aerospace and automotive applications). Advances in hardware
technology and the large gap between processor and memory speeds, bridged by the
use of cache, make it difficult to provide such guarantees without significant over-
provision of hardware resources. The use of deterministic cache replacement policies
means that pathological worst-case behaviours need to be accounted for, even when in
practice they may have a vanishingly small probability of actually occurring. The use
of cache with random replacement policies facilitate upper bounding the probability of
pathological worst-cases behaviours to quantifiably extremely low levels for example
well below the maximum permissible failure rate (e.g. 10−9 per hour) for the system.
This allows the extreme worst-case behaviours to be safely ignored, and hence provides
the potential to increase guaranteed performance in hard real-time systems.

The timing behaviour of programs running on a processor with a random cache
replacement policy can be determined using static probabilistic timing analysis
(SPTA). SPTA computes an upper bound on the probabilistic worst-case execution
time (pWCET) in terms of an exceedance function [1-cumulative distribution function
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(CDF)]. This exceedance function gives the probability, as a function of all possible
values for an execution time budget x , that the execution time of the program will not
exceed that budget on any single run. The reader is referred to Davis et al. (2013) for
examples of pWCET distributions, and Cucu-Grosjean (2013) for a detailed discus-
sion of what is meant by a pWCET distribution and the important difference between
that and a probabilistic execution time (pET) distribution.

Simple forms of SPTA comprise two main steps (Davis et al. 2013): First, a proba-
bility function is required to compute an estimate of the probability of a cache hit for
each memory access. This probability function is valid if it provides a lower bound
on the probability of a cache hit. Typical probability functions used in SPTA are a
function of the cache associativity and the reuse distance, defined as the number of
intervening memory accesses that could cause an eviction, since the memory block
was last accessed. The probability function is used to obtain a pWCET distribution
for each instruction. Second, the pWCET distribution for a sequence of instructions is
computed by convolving the distributions obtained for individual instructions. For the
basic form of convolution to give correct results, the pWCET distributions obtained
for the different instructions must be independent. By independent, we mean that the
estimate of the probability of a cache hit for a given memory access remains a valid
lower bound irrespective of the behaviour of other memory accesses. We note that the
precise probability of a cache hit for a given memory access is rarely independent, it
typically depends strongly on the history of previous accesses (i.e. whether or not they
were cache hits). Thus care needs to be taken in the derivation of suitable probability
functions to ensure that independence is obtained.

SPTA has been developed for single processor systems assuming evict-on-
miss (Quiñones et al. 2009; Kosmidis et al. 2013), and evict-on-access (Cucu-Grosjean
et al. 2012; Cazorla et al. 2013) random replacement policies. This initial work assumed
single path programs and no pre-emption. Subsequently, Davis et al. (2013) provided
analysis for both evict-on-miss and evict-on-access policies for single and multi-path
programs, along with a method of accounting for cache related pre-emption delays.
As the evict-on-miss policy dominates evict-on-access we focus on the former in this
paper.

Despite the intensive research in this area over the past few years, it remains an
open problem (Davis 2013) how to accurately and efficiently compute the pWCET
distributions for individual instructions and sequences of them. In particular, prior
approaches gave little information about the correctness and precision of the pWCET
distributions obtained.

1.1 Related work

In the previous section, we covered specific related work on SPTA for random replace-
ment caches. A detailed review of these methods is given in Sect. 2. We now set the
work on SPTA in context with respect to related work on both probabilistic hard
real-time systems and cache analysis for deterministic replacement policies.

The methods introduced in this paper belong to the realm of analyses that estimate
bounds on the execution time of a program. These bounds may be classified as either
a worst-case value (WCET), or a worst-case probability distribution (pWCET).
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The first class is a mature area of research and the interested reader may refer to
Wilhelm et al. (2008) for an overview of these methods. A specific overview of cache
analysis for deterministic replacement policies together with comparison between
deterministic and random cache replacement policies is provided at the end of this
section.

The second class is a more recent research area with the first work on providing
bounds described by probability distributions published by Burns and Edgar (2000),
and Edgar and Burns (2001). The methods for obtaining such distributions can be cate-
gorised into three different families: measurement-based probabilistic timing analyses,
static probabilistic timing analyses, and hybrid probabilistic timing analyses.

Measurement-based probabilistic timing analyses provide a pWCET distribution
for a program from a set of execution time observations obtained by running the
program on the target hardware. This distribution is obtained by applying Extreme
Value Theory as originally proposed by Edgar and Burns (2001). Several works have
improved upon this first use of the Extreme Value Theory in hard real-time systems
by including block maxima reasoning (Hansen et al. 2009), and via the treatment of
execution time observations such that the conditions of the basic version of Extreme
Value Theory are fulfilled (Yue et al. 2011). Extreme Value Theory may underestimate
the pWCET of a program as shown by Griffin and Burns (2010). The work of Cucu-
Grosjean et al. (2012) overcomes this limitation and also introduces the appropriate
statistical tests required to treat worst-case execution times as rare events.

Static probabilistic timing analyses provide a pWCET distribution for a program
by analysing the structure of the program and modeling the behaviour of the hardware
it runs on. Here, each instruction of the program may have a probability distribution
associated with it; by combining these distributions, static probabilistic timing analysis
provides a pWCET for the entire program. Existing work is primarily focussed on
randomized architectures containing caches with random replacement policies. Initial
results for the evict-on-miss (Quiñones et al. 2009; Kosmidis et al. 2013) and evict-
on-access (Cucu-Grosjean et al. 2012; Cazorla et al. 2013) policies were derived for
single-path programs. These results were superseded by later work that also included
extensions to multi-path programs and took account of cache related preemption delays
(Davis et al. 2013). Static probabilistic timing analyses have also been developed taking
into account faults (Hardy and Puaut 2013). The work described in this paper belongs
to this family of static probabilistic timing analyses. It extends the work of Altmeyer
and Davis (2014) as described in the next section. Static probabilistic timing analyses
may have complexity problems to solve related to their heavy use of convolution;
however, techniques exist that are effective in addressing this issue without making
the pWCET estimation unsound (Refaat and Hladik 2010; Maxim et al. 2012).

Hybrid probabilistic timing analyses are methods that apply measurement-based
methods at the level of sub-programs or blocks of code and then operations such as
convolution to combine these bounds to obtain a pWCET for the entire program. The
main principles of hybrid analysis were introduced by Bernat et al. (2002; 2003) with
execution time probability distributions estimated at the level of sub-programs. Here,
dependencies may exist among the probability distributions of the sub-programs and
copulas are used to describe them (Bernat et al. 2005).
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Static timing analysis for deterministic caches (Wilhelm et al. 2008) relies on a
two step approach with a low-level analysis to classify the cache accesses into hits
and misses (Theiling et al. 2000) and a high-level analysis to determine the length of
the worst-case path (Li and Malik 2006). The most common deterministic replace-
ment policies are least-recently used (LRU), first-in first-out (FIFO) and pseudo-LRU
(PLRU). Due to the high-predictability of the LRU policy, academic research typi-
cally focusses on LRU caches—with a well-established LRU cache analysis based
on abstract interpretation (Ferdinand et al. 1999; Theiling et al. 2000). Only recently,
analyses for FIFO (Grund and Reineke 2010a) and PLRU (Grund and Reineke 2010b)
have been proposed, both with a higher complexity and lower precision than the
LRU analysis due to specific features of the replacement policies. Despite the focus
on LRU caches and its analysability, FIFO and PLRU are often preferred in proces-
sor designs due to the lower implementation costs which enable higher associativi-
ties.

Recent work by Abella et al. (2014) and Reineke (2014) compares static analysis
of caches using LRU with prior work on SPTA (Davis et al. 2013) for evict-on-miss
random replacement policies, and also makes comparisons with measurement-based
analysis (Cucu-Grosjean et al. 2012). We discuss the findings of Reineke (2014) in
further detail in Sect. 8.3.

1.2 Contributions

In this paper, we re-visit the probability functions that form the fundamental build-
ing blocks of SPTA. We show that convolution of the probability functions given
by Kosmidis et al. (2013) and Quiñones et al. (2009) is unsound (optimistic), as these
probability functions do not provide lower bounds on the probability of a cache hit
that are independent of the behaviour of previous memory accesses. By contrast, we
show that the probability function derived by Davis et al. (2013) provides a valid lower
bound that is independent of the behaviour of previous memory accesses, enabling the
calculation of sound pWCET distributions via convolution. We prove that this proba-
bility function is optimal with respect to the limited information (reuse distances and
the cache associativity) that it employs, in the sense that no further improvement is
possible without considering additional information.

As well as correctness and optimality, we also investigate the precision of SPTA.
Despite claims to the contrary in the conclusions of Cucu-Grosjean et al. (2012),
SPTA does not provide a precise pWCET distribution for a sequence of instructions
when based on the convolution of simple pWCET distributions for each instruction.
Instead, precise analysis requires that the probabilities of all possible sequences of
cache hits and cache misses are considered leading to exponential complexity. Previous
work (Cazorla et al. 2013; Cucu-Grosjean et al. 2012; Kosmidis et al. 2013; Quiñones
et al. 2009) provides little indication of the precision of existing SPTA techniques,
while Davis et al. (2013) provide some comparisons with simulation.

In this paper, we improve the precision and efficiency of SPTA for single-path
programs in a number of ways. First, we present an alternative formulation giving
a lower bound on the probability of a cache hit, based on the stack distance, i.e. the
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number of distinct memory blocks accessed within the reuse distance. This formulation
is incomparable with that given by Davis et al. (2013). Since neither formula dominates
the other and both are valid lower bounds, we may take the maximum of them to provide
an improved lower bound. Second, we refine the probability function given by Davis et
al. (2013) using the concept of cache contention. Third, we describe a simple approach
that exhaustively enumerates all cache states that may occur for a given sequence of
memory accesses. This provides precise analysis at the cost of complexity that is
exponential in the number of pairwise distinct memory blocks. Nevertheless, this
approach enables us to quantify the precision of various approaches to SPTA for small
programs. Finally, we introduce a combined approach which integrates precise analysis
of the most important memory accesses (those made most frequently), with imprecise
analysis of the remaining memory accesses, using simple probability functions. We
show that this combined technique is effective in improving the accuracy of SPTA
while avoiding the exponential increase in complexity that exhaustive analysis brings.

While the focus of this paper is on the fundamentals of analysis for single path
programs we note that the methods presented are extendable to multipath programs.
Such extension is the subject of further work by the authors.

2 System model and prior approaches

2.1 Random cache replacement

A cache with the evict-on-miss random replacement policy operates as follows: when-
ever a memory block is requested and is not found in the cache, then a randomly chosen
cache line is evicted and the requested block is loaded into the evicted location. We
assume an N -way fully associative cache,1 and so the probability of any cache line
being evicted on a miss is 1/N . We also assume pessimistically that random caches
do not replace free or invalid cache lines first, which means that cache evictions can
occur even when less than N elements are cached.

Prior work considered mostly instruction cache only and no data cache; however,
this restriction is unnecessary for the theoretical foundations of our analysis as we
assume that access traces are given. We therefore define traces as sequences of memory
blocks directly (independent of the content of the memory blocks) instead of sequences
of instructions as was done by Davis et al. (2013). Further, the restriction to a fully-
associative cache can be easily lifted, as a set-associative cache with s cache sets
can be analysed as s parallel and independent fully-associative caches. In the context
of random cache replacement, the cache-hit and cache-miss delays are assumed to
be constant and hence the processor architecture is assumed to not exhibit timing
anomalies. For data caches, accesses to unknown memory blocks are possible when
the effective memory address cannot be statically determined. In such cases, we use a
unique memory block identifier for each unidentified access which guarantees that it
is considered a cache miss.

1 In a fully associative cache, any memory block may be placed in any cache line.
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2.2 Traces and reuse distance

A trace T of size n is an ordered sequence of n memory blocks [e1, . . . , en]. The set of
all traces is denoted by T, while E denotes the set of all elements, where an element is
an access to a memory block. The reuse distance rd(e) of an element e is the maximum
possible number of evictions since the last access to the same memory block, with
reuse distance ∞ in the case that there is no prior access to that memory block.

rd : E × T → N ∪ {∞}

rd
(
el ,

[
e1, . . . el−1

]) =
{

l − j − 1 if ∃e j : e j = el ∧ ∀ j<i<l : el �= ei

∞ otherwise
(1)

We typically represent the reuse distance k using a superscript and omit all infinite
reuse distances. For example,

a, b, a1, c, d, b3, c2, f, a5, c5

We denote the event of a cache hit at memory block ei as ehit
i and P(ehit

i ) the corre-
sponding probability, with emiss

i and P(emiss
i ) being the equivalent for a cache miss.

Further, we use P̂ to denote approximations to distinguish them from the precise
probability values.

Successive accesses to the same memory block will always lead to cache hits in a
random cache with the evict-on-miss replacement policy. We therefore collapse the
traces and remove all successive accesses. For instance, the trace

a, b, b, c, c, b, c, c, a, a, c

is collapsed to

a, b, c, b, c, a, c

and successive accesses to the same element do not count towards the reuse distance.
We note that this step does not influence the number of cache misses.

2.3 Review of prior approaches

In this section, we present the different approaches that have been proposed to compute
the probability of cache hits and misses and thus the pWCET distribution.

Zhou (2010) proposed using the reuse-distance to compute the probability P(ehit)

of a cache hit at access e with reuse distance k:

P̂ Z (k) =
(

N − 1

N

)k

(2)
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where N is the associativity of the cache. To simplify the notation, we write P̂ Z (ehit
l )

as a short form of P̂ Z (rd
(
el ,

[
e1, . . . el−1

])
).

The rationale behind (2) is that the second access to e can only be a hit, if all
intermediate cache misses evict cache lines other than the one that element e occupies.
Equation (2) is not precise, but a lower bound on the individual probability of a cache
hit for that specific access. Recall that the reuse distance is defined as the maximum
number of evictions, and not the actual number. Therefore P̂ Z (ehit) < P(ehit) holds
for some access sequences.

Quiñones et al. (2009) proposed deriving the pWCET distribution of a single path
program via convolution of the pWCET distributions of individual accesses obtained
from (2). However, (2) is only valid if considered in isolation and the convolution
for independent events cannot be used due to a dependency stemming from the finite
size of the cache (Davis et al. 2013). To correct (2), Davis et al. (2013) proved an
independent lower bound on the probability of a cache hit:

P̂ D(k) =
{( N−1

N

)k
N > k

0 otherwise
(3)

We use P̂ D(ehit
l ) as a short form of P̂ D(rd

(
el ,

[
e1, . . . , el−1

])
).

The drawback of (3) is that all accesses with reuse distance higher than the associa-
tivity of the cache are considered to be cache misses. Kosmidis et al. (2013) proposed
the following formula:

P̂ K (ehit) =
(

N − 1

N

)∑
P

(
emiss

j

)

(4)

where the summation in the exponent is over the probabilities of misses of the inter-
vening memory accesses. (We note that a similar formula was given by Zhou (2010)
as an approximation). Equation (4) may over-estimate the actual probability of a cache
hit as noted by Davis (2013), and thus lead to a pWCET distribution that is optimistic.

Using one of the above estimates of the probability of a cache hit, the Probability
Mass Function (PMF) Ii of element ei is defined as follows:

Ii =
(

hit-delay miss-delay
P(ehit) P(emiss)

)
(5)

with P(emiss) = 1 − P(ehit) and hit-delay (miss-delay) denoting the execution time
for a cache hit (cache miss). The probability mass function thus gives the probability
distribution for a discrete random variable that describes the possible execution times
of the memory access. The pWC ET distribution is then derived by computing the
convolution ⊗ of the probability mass function of every memory access ei in the
original (uncollapsed) trace:

pWC ET = I1 ⊗ I2 ⊗ . . . In (6)
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where convolution provides the sum Z of two independent random variables X1
and X2:

Z = X1 ⊗ X2

For discrete random variables:

P{Z = z} =
+∞∑

k=−∞
P{X1 = k}P{X2 = z − k}

Note that convolution is commutative and associative.
Under the assumption of constant hit- and miss-delays, computing the distribution

of cache-hits and cache-misses is sufficient to derive the pWCET distribution. We will
therefore concentrate only on the former, the latter can be obtained by multiplying the
constant delays by the number of hits and misses.

3 Correctness conditions and optimality

As stated by Davis et al. (2013), the probability that a single access is a cache hit/miss
is not independent of prior events. This means that in general, the convolution for
independent events cannot be soundly applied, as it is only valid for independent
events. What can be done instead; however, is to provide a lower bound approximation
P̂ to the actual probability of a cache hit for which we can soundly apply the basic
convolution for independent events. Sound in this context means that for any sequence
of cache accesses [e1, . . . , en], the approximation P̂ complies with two constraints:
(C1) it does not over-estimate the probability of a cache hit, and (C2) the value obtained
from convolution of the approximated probabilities for any subset of accesses on a
trace T describing the probability that all elements in the subset are a hit, is at most
the precise probability of such an event occurring:

C1 ∀e ∈ {e1, . . . , en} : P(ehit) ≥ P̂(ehit),
C2 ∀E ⊆ {e1, . . . , en} : P

(∧
e∈E ehit

) ≥ ∏
e∈E P̂(ehit).

We note that C2 can be instantiated to C1; however, we define two separate constraints
as each one covers a distinct property of a correct approximation P̂ .

3.1 Counterexamples to Eqs. (2) and (4)

Of the different approaches presented in Sect. 1, only (3) provides a valid and sound
lower-bound. Equation (2) does not fulfil C2 and (4) fulfils neither C1 nor C2 as
shown below.

To show that (4) over-estimates the probability of an individual cache hit (i.e.
contradicts constraint C1), we use the access sequence

a, b, c, d, a3, b3

and a cache with associativity 2.
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Equation (4) computes the probability of a cache hit for the second access to a as

(1/2)3 = 0.125

which is correct and precise. For the second access to b, however, (4) results in

(1/2)2+0.875 ≥ 0.1363

which is optimistic as the correct probability of a cache hit is in this case

(1/2)3 = 0.125

This can be seen by enumerating all the possible cache states that could exist after
the second access to a; out of 16 possibilities each with probability 0.0625, only two
contain b.

To show that C2 does not hold using (4) we use an example from Davis (2013), we
assume the access sequence

a, b, a1, b1

and a cache with associativity of 4. Further, we assume that the latency of a cache hit
is 1 and the latency of a cache miss is 10. The first two accesses are certain misses, so
using (4), the probability distributions for the first three instructions are as follows:

(
1 10
0 1

)
,

(
1 10
0 1

)
,

(
1 10

0.75 0.25

)
(7)

According to (4), the probability of the 4th access being a cache hit is then:
P̂ K (ehit) = 0.750.25 = 0.9306. (Note this value is rounded down slightly, which
is a safe assumption). So the overall pWC ET is

(
10
1

)
⊗

(
10
1

)
⊗

(
1 10

0.75 0.25

)
⊗

(
1 10

0.9306 0.0694

)

=
(

22 31 40
0.69795 0.0.2847 0.01735

)
(8)

However, the correct pWC ET is

(
22 31 40

0.75 0.1875 0.0625

)
(9)

This can be seen by considering the scenarios that result in a total of two and four cache
misses respectively. (The first accesses to a and b are certain to be cache misses). If
the first access to b does not evict a (probability 0.75), then the second access to a can
only be a cache hit, which in itself does not evict b, and so in this scenario, which has
a probability of occurring of 0.75, there are two cache misses in total. Alternatively, if
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the first access to b evicts a (probability 0.25), then the second access to a is certain
to be a cache miss, which in turn has a probability of 0.25 of evicting b and so making
the second access to b a cache miss. Hence the only scenario with four cache misses
in total has a probability of occurring of 0.0625.

In this example, using (4) results in a pWCET distribution that significantly under-
estimates the probability of obtaining four cache misses and hence an execution time
of 40. This is an optimistic and unsound result. We note that if the same example is
repeated for a larger cache associativity then the discrepancy becomes more marked
with (4) resulting in a pWCET distribution that under-estimates the probability of
obtaining four cache misses by more than two orders of magnitude for an associativity
of 128 (e.g. a small fully-associative cache).

To show that (2) also contradicts constraint C2, we assume an associativity of 2
and the access sequence:

a, b, c, b1, a3

Using (2), the overall pWC ET is computed as follows:

(
10
1

)
⊗

(
10
1

)
⊗

(
10
1

)
⊗

(
1 10

0.5 0.5

)
⊗

(
1 10

0.125 0.875

)

=
(

32 41 50
0.0625 0.5 0.4375

)
(10)

However, the correct pWC ET is:

(
41 50

0.625 0.375

)
(11)

This can be seen by considering the scenarios that result in one and two cache misses
for the last two accesses in the sequence. (The first accesses to a, b, and c are certain
to be cache misses). If the access to c does not evict b (which occurs with a probability
of 0.5), then the second access to b is certain to be a hit; however, as the cache then
contains both b and c and the associativity is two, the final access to a is certain to be
a miss. Alternatively, if the access to c evicts b (which also occurs with a probability
of 0.5), then the second access to b is certain to be a miss. In this case, since c evicted
b, it did not evict a, and so the final access to a has a conditional probability of 0.25 of
surviving the two accesses to b both of which are misses. Hence the overall probabilities
of a cache hit for the final accesses to a and b are 0.125 and 0.5 respectively. We note
that these are the values given by (2); however, these two events (cache hits for the
final accesses to a, and b) are not independent, they are instead mutually exclusive;
either the last access to a is a hit, or the last access to b is a hit, but both cannot be
hits, hence the values in the correct pWC ET (11).

As a further example, we assume an associativity of 4 and the access sequence:

a, b, c, d, f, a4, b4, c4, d4, f 4
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Using (2) then by construction, all probabilities of a cache hit P̂ Z (ehit) for the last five
accesses are non-zero. Hence, the combined probability of five hits is also non-zero,
which contradicts with the fact that at most 4 elements can be stored simultaneously
in the cache.

Note that the counter examples we have given in this section are for small associa-
tivity (i.e. 2 or 4) as found in typical set-associative caches. The associativity and the
sequences chosen are simply used to highlight the issues, and to make the calculations
easy to comprehend; however, the reader should be in no doubt that these issues persist
for finite values of associativity (≥2), and for access sequences of arbitrary lengths.

3.2 Correctness of Eq. (3)

In this section, we prove that Equation (3) is correct in the sense that it fulfils both
constraints (C1) and (C2) and therefore can be used for static probabilistic timing
analysis. Recall that we use P̂ D(ehit

l ) as a short form of P̂ D(rd
(
el ,

[
e1, . . . el−1

])
).

Theorem 1 The function P̂ D(ehit) does not over-estimate the probability of a cache
hit and therefore provides a valid lower bound on the exact probability of a cache hit
for any single element in a trace. (C1)

∀e ∈ {e1, . . . , en} : P(ehit) ≥ P̂ D(ehit)

Proof (Theorem 1) Let e be an arbitrary element on a trace T with reuse distance k.
We prove Theorem 1 using a case distinction over k:

Case k ≥ N : If the reuse distance k is equal to or larger than the associativity N ,
the value P̂ D(k) is equal to zero and P̂ D(k) ≤ P(ehit) holds.
Case k < N : By definition of the reuse distance, we know that exactly k elements
have been accessed in between the last and the current access to the memory block
of e. Each of these accesses is either a cache hit, which means that the state of
the cache does not change (and the memory block accessed may potentially reside
in the cache for all of the reuse distance of e), or a cache-miss, which means
that the memory block of element e is evicted with probability 1/N . The worst-
case situation is given by k misses (as shown by Theorem 4 in the appendix of
Davis et al. (2013), and discussed further in Sect. 5) and hence, the probability

of a cache hit at e is given by
( N−1

N

)k
and thus P̂ D(k) ≤ P(ehit) holds, as any

access to an intermediate element e′ resulting in a cache hit will only improve the
hit-probability of the remaining elements. ��

Theorem 2 The value obtained from the product of the approximated probabilities
P̂ D(k) for any subset of accesses E on any trace T describing the probability that
all elements in the subset are a hit, is at most the precise probability of such an event
occurring. (C2)

∀E ⊆ {e1, . . . , en} : P

(
∧

e∈E

ehit

)

≥
∏

e∈E

P̂ D(ehit)
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Proof (Theorem 2) We prove Theorem 2 by induction over the set of accesses E .
Base case: For a set E with cardinality one (|E | = 1) there is only one element and(∧
e∈E ehit

) ≥ ∏
e∈E P̂ D(ehit) holds by Theorem 1.

Induction step: assuming that
(∧

e∈E ehit
) ≥ ∏

e∈E P̂ D(ehit) holds for a set of

elements E with cardinality i , we show that
(∧

e∈E ′ ehit
) ≥ ∏

e∈E ′ P̂ D(ehit) holds
for E ′ with E ′ = E ∪ {e′} and cardinality i + 1. Note, we assume without loss of
generality that e′ occurs later in the trace than any element of E .

Let k be the reuse distance of element e′. We can conclude that the induction
hypothesis trivially holds for E ′, if (i) k ≥ N , or (ii)

∏
e∈E P̂ D(ehit) = 0, since in

both these cases,
∏

e∈E ′ P̂ D(ehit) = 0. We therefore only need to show the correctness
of the theorem assuming that k < N and

∏
e∈E P̂ D(ehit) > 0.

We note that the reuse distance of each element e ∈ E is independent of the
selection of e′ and that since k < N and

∏
e∈E P̂ D(ehit) > 0 the reuse distance of

each element in E ′ is less than N . If we assume a cache-state evolution in which
elements are evicted in Least-Recently Used (LRU) order (note any specific order
including LRU is possible for a random replacement cache), then all accesses in E ′
can result in cache hits during the same sequence of accesses (this is the case because
an element is only evicted in an LRU cache if the reuse-distance is greater than or
equal to N ), and hence

(∧
e∈E ′ ehit

)
> 0 holds. Further, since Theorem 1 also holds for

element e′, we know that P̂ D(k) ≤ P(e′hit) where k is the reuse distance of element
e′. As P̂ D(k) lower bounds the probability of a hit for e′ for any pattern of hits or
misses prior to access e′ then it follows that

(∧
e∈E ′ ehit

) ≥ (∧
e∈E ehit

) · P̂ D(k). Since
(∧

e∈E ehit
) ≥ ∏

e∈E P̂ D(ehit) it follows that
(∧

e∈E ′ ehit
) ≥ ∏

e∈E ′ P̂ D(ehit). ��

3.3 Optimality of Eq. (3)

We can derive an estimate of the probability of a cache hit that is more precise than (3)
as we can simply enumerate all possible cache states and the associated probabilities;
however, this solution is computationally intractable, as we will explain in Sect. 6. If
we aim at an estimate using only the reuse distances and on which we can apply the
convolution for independent events, then (3) is optimal in the sense that there is no
function of only k and N that is valid and returns any larger value.

Theorem 3 The lower bound on the probability of a cache hit P̂ D(k) is optimal for
the information it uses, i.e., the reuse distance k and the associativity N .

Proof (Theorem 3) We assume that P̂ ′(k) is a probability function such that P̂ ′(k) is
more precise than P̂ D(k). Hence:

∃k : P̂ ′(k) = P̂ D(k) + ε (12)

for some ε > 0. We assume that the only input to P̂ D and P̂ ′ is the reuse distance k
which must be valid for any sequence of accesses [e1, . . . , en], and the associativity N .
We make a case distinction on k:
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Case k < N : Assume the following ordered sequence with accesses to k pairwise
distinct elements

[ex , e1, e2, e3, . . . ek−1, ek, ex ]

and an initially empty cache. The reuse distance of the second access to ex is k.
Each access to any of the other elements results in a cache miss, the probability
of a cache hit P(ehit

x ) is exactly P̂ D(k) and the assumption that ε > 0 contradicts
C1.
Case k ≥ N : Assume the access pattern to k + 1 memory blocks repeated twice:

[e1, e2, e3, . . . ek, ek+1, e1, e2, e3, . . . ek, ek+1]

for each second access to ei , the reuse distance is k. Since the cache can store at
most N elements and k + 1 > N , we know that the probability of k + 1 hits is

0, i.e, P
(∧

ei
ehit

i

)
= 0. However, since ε > 0 and P̂ D(k) ≥ 0, we can conclude

that
∏

e∈E P̂ ′(ehit) > 0, which contradicts C2.

Hence, we can construct for any k and any N , an access sequence where P̂ D(k) is
optimal in the sense that it provides the largest valid value of any function relying only
on the reuse distance and the associativity. ��

4 Stack distance

In the previous section, we showed that P̂ D(k) i.e. (3) is optimal in the sense that there
is no function of the reuse distance k and the associativity N that is valid and returns
any larger value. In this section, we show how additional information can be used to
obtain an alternate formula for the probability of a cache hit.

We note that P̂ D(k) can be pessimistic in the commonly observed case of sequences
with repeated accesses (e.g. loops). For example, the trace a, b, c, d, c1, d1, c1, d1,

a7, b7 repeats the accesses c, d three times within the reuse distance of the final
accesses to a and b. Assuming an associativity of 4, then P̂ D(k) gives zero probability
of a cache hit for these accesses, since their reuse distance exceeds the associativity
of the cache. However, it is possible for the cache to contain all four distinct memory
blocks a, b, c, d accessed in this sequence, and so a zero value for the probability of
a cache hit for the final accesses to a and b is pessimistic.

In this section we derive a simple, alternative formula P̂ A(�, k) that is effective
in such cases. Let � be the stack distance2 of element el , i.e., the total number of
pair-wise distinct memory blocks that are accessed within the reuse distance k of
element el . The maximum number of distinct cache locations loaded during the reuse
distance of el is upper bounded by � (proved below), hence it follows that a lower

2 The term stack distance of an element el refers to the position of the element on a stack with least-recently
used ordering.
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bound on the probability that el will survive all of the loads and remain in the cache is
given by:

P̂ A(�, k) =
{( N−�

N

)
(N > �) ∧ (k �= ∞)

0 otherwise
(13)

Observe that the lower bound probability is zero if the reuse distance is infinite (i.e.
el was never previously loaded into the cache) or if the stack distance is larger than
or equal to the associativity (� ≥ N ), i.e., the number of distinct memory blocks that
may be loaded into the cache within the reuse distance of el is sufficient to fill the
cache.

Theorem 4 The total number of distinct cache locations loaded with memory blocks
during the reuse distance of element el , is no greater than the stack distance.

Proof (Theorem 4) The proof of Theorem 4 can be obtained by induction. Let r =
l − rd(el) be the index of the element immediately following the previous access to
the same memory block as el . (Note if rd(el) = ∞ then r = 0 and er identifies the
first element in the trace). Let Xi be the set of distinct cache locations that are loaded
with memory blocks due to accesses er . . . ei inclusive (where r ≤ i < l). Further
let Mi be the set of distinct memory blocks cached in the locations given by Xi after
element ei has been accessed.

We show that independent of the access history, ∀ei ∈ [er , . . . , el−1] :
∣
∣Xi

∣
∣ ≤ �.

Base case: initially, we have Xi = ∅ and Mi = ∅, hence
∣∣Xi

∣∣ = 0 ≤ � prior to
access er .

Inductive step: assuming that
∣
∣Xi

∣
∣ ≤ �, we show that

∣
∣Xi+1

∣
∣ ≤ �. There are three

cases to consider:

(i) ei+1 is in the cache. In this case, no eviction takes place and no new memory
block is loaded, hence

∣∣Xi+1
∣∣ = ∣∣Xi

∣∣ ≤ �.
(ii) ei+1 is not in the cache and the eviction and load of a memory block takes place in a

location that is not in Xi . In this case,
∣∣Xi+1

∣∣ = ∣∣Xi
∣∣+ 1 and Mi+1 = Mi ∪ ei+1.

Note that
∣∣Xi+1

∣∣ = ∣∣Mi+1
∣∣ and since Mi+1 can contain only unique memory

blocks, then
∣
∣Xi+1

∣
∣ ≤ �.

(iii) ei+1 is not in the cache and the eviction and load of a memory block takes
place in a location that is in Xi . In this case,

∣∣Xi+1
∣∣ = ∣∣Xi

∣∣ ≤ �. Further,
Mi+1 = (Mi \ eev) ∪ ei+1 where eev is the unique memory block evicted from
the location into which ei+1 is loaded. Note that

∣∣Xi+1
∣∣ = ∣∣Mi+1

∣∣.

Induction over ei ∈ [er , . . . , el−1] is sufficient to prove that ∀ei ∈ [er , . . . , el−1] :∣∣Xi
∣∣ ≤ �. ��

Theorem 5 The lower bound on the probability of a cache hit P̂ A(�, k) is incompa-
rable with the lower bound on the probability of a cache hit P̂ D(k) derived by Davis
et al. (2013).

Proof (Theorem 5) Theorem 5 can be proven by considering two extremes.
Firstly when the reuse distance is large (k > N ) then P̂ D(k) = 0; however, in this

case, the stack distance may be small. As an example, consider the final accesses to a
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and b in the sequence a, b, c, d, c1, d1, c1, d1, a7, b7 with an associativity of N = 4.
Here, we have P̂ D(k) = 0 since N = 4 and k = 7, yet P̂ A(�, k) = 1/4 since there
are only three distinct memory blocks accessed within the reuse distance.

Secondly, consider the case where 1 < k < N and all of the accesses within the
reuse distance are to different memory blocks. In this case, � = k and we have:

P̂ A(�, k) =
(

N − k

N

)
<

(
N − 1

N

)k

= P̂ D(k) (14)

The correctness of (14) can be shown by induction over values of i from 1 to k.
Base case: for i = k = � = 1 then trivially, P̂ A(i, i) = P̂ D(i). Inductive step:

assuming that P̂ A(i, i) ≤ P̂ D(i), then for 0 < i < N − 1, we have:

P̂ A(i + 1, i + 1) = P̂ A(i, i)

(
N − (i + 1)

N − i

)
(15)

P̂ D(i + 1) = P̂ D(i)

(
N − 1

N

)
(16)

Since
(

N−(i+1)
N−i

)
<

( N−1
N

)
holds for 0 < i < N −1 then P̂ A(i +1, i +1) < P̂ D(i +1)

Induction over all integer values of i from 1 to k suffices to prove (14). ��
As P̂ A(�, k) and P̂ D(k) are incomparable, yet both give valid lower bounds on

the probability of a cache hit, then, we may use the maximum of them to compute an
improved lower bound that dominates each individually.

5 Cache contention

Equation (14) shows that P̂ D(k) i.e. (3) can often give a larger lower bound for the
probability of a cache hit compared to P̂ A(�, k) i.e. (13). Indeed, the value at which

P̂ D(k) is forced to zero to ensure correctness with respect to constraint C2 is
( N−1

N

)N

which tends to 1/e ≈ 0.367 for large N , (where e is Euler’s number). This illustrates
the significant loss of precision that can potentially result from the simple approach
taken to ensuring the validity of the formula. While (3) provides a lower bound on the
probability of a cache hit, it is thus imprecise even for simple access sequences. If we
consider a cache with associativity 4 and the following access sequence,

a, b, c, d, f, a4, b4, c4, d4, f 4

all accesses are considered cache misses. The reason for this is that for each of the
last five accesses, the probability of a cache hit is set to 0 to ensure correctness with
respect to constraint C2, i.e, that the probability of the last five accesses all being hits
is zero.

The proof that Davis et al. (2013) give for the correctness of (3) is based on mod-
elling the set of intervening accesses (i.e. within the reuse distance k of an element
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el in the trace) as all having the possibility of either being hits or misses. Misses are
assumed to result in evictions which reduce the probability of element el remaining in
the cache. By contrast, hits are assumed not to cause evictions, but instead to reduce
the number of cache locations available to el , since a hit could imply that a memory
block is present in the cache for the entire reuse distance. If there are h ≥ N such
memory blocks, then there can be no locations available for el , and hence the only
safe assumption is that the probability of a cache hit is zero. Otherwise, for h < N ,
the probability of a cache hit for el is lower bounded by:

P̂h(k) =
(

N − h − 1

N − h

)k−h

(17)

Davis et al. (2013) showed that P̂h(k) takes its smallest value for h = 0. Equation (3)
then follows from the safe assumption that h could take any value from 0 to k.

We now build on this previous work, refining the limit on the number of contending
memory blocks that need to be considered (Davis et al. 2013 assume this could be as
high as k). To this end, we define the concept of the cache contention (con(el , T )) of
an access el which denotes the number of accesses within the reuse distance of el in
trace T that could potentially contend with el for locations in the cache.

We only need to set the probability of a cache hit for an access el to zero when the
cache contention is greater than or equal to the associativity N .

P̂ N (ehit
l ) =

{
0 con(el , T ) ≥ N

max
(

P̂ A(�, k),
( N−1

N

)k
)

otherwise
(18)

The cache contention and the probability P̂ N are mutually dependent; but the
cache contention of an element el depends only on the probability of a cache hit for
the preceding elements, which enables the cache contention and the probability P̂ N

to be computed efficiently.
We present two different methods of computing cache contention, first a basic

approach, and second an improved one that uses a form of cache simulation.

5.1 Basic cache contention

The basic approach to cache contention models each of the accesses within the reuse
distance of el that have been assigned non-zero probability of being a hit as requiring
its own separate location in the cache. Further, it is also assumed that the first element
er within the reuse distance of el (i.e. where r = l−rd(el , [e1, . . . , el−1]) also requires
a separate location in the cache regardless of its assigned probability.

con : E × T → N

con
(
el ,

[
e1, e2, . . . , el−1

]) =
{∞ rd(el , [e1, . . . , el−1]) = ∞∣∣∣conS

∣∣∣ otherwise
(19)
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Table 1 Probabilities P̂ N , P̂ D , and P̂ A for the access sequence a, b, c, d, f, a, b, c, d, f , with reuse
distances (rd) and cache contentions (con)

a, b, c, d, f, a, b, c, d, f

rd ∞ ∞ ∞ ∞ ∞ 4 4 4 4 4

con ∞ ∞ ∞ ∞ ∞ 1 2 3 4 3

P̂ D 0 0 0 0 0 0 0 0 0 0

P̂ A 0 0 0 0 0 0 0 0 0 0

P̂ N 0 0 0 0 0
( 3

4
)4 ( 3

4
)4 ( 3

4
)4 0

( 3
4
)4

with

conS =
{

ei ∈ [e1, . . . , el−1]
∣∣
(

l − rd(el , [e1, . . . , el−1]) < i ∧ P̂(ehit
i ) �= 0

)}

∪ {
er ∈ [e1, . . . , el−1]

∣∣ (l − rd(el , [e1, . . . , el−1]) = r
}

Table 1 presents the probability P̂ N for the elements of the example sequence

a, b, c, d, f, a, b, c, d, f

In contrast to (3), only one of the five elements with finite reuse distance is assumed
to have zero probability of being a cache hit.

Theorem 6 The cache contention defined in Equation (19) eliminates all combina-
tions of cache hits that are infeasible due to the finite associativity of the cache.

Proof (Theorem 6) To prove Theorem 6, we must show that there is an evolution of
the cache state for the entire trace T that permits all accesses assigned a non-zero
probability to all be hits. (It follows trivially that any subset of these accesses could
also all be hits). To do so, we consider the evolution of the set Z which contains the
subset of the cache state that is necessary to support cache hits for all of the accesses
assigned non-zero probabilities. Let Zi be this subset of the cache state, immediately
following access ei .

We construct the set Z as follows:

Z1 = {e1}

Zi =
{

(Zi−1 \ {ei−1}) ∪ {ei } if con(eni−1 , T ) ≥ N
(Zi−1 ∪ {ei }) if con(eni−1 , T ) < N

(20)

where eni−1 denotes the next access to element ei−1. (Note if there is no such next
access, then we assume that con(eni−1 , T ) = ∞). We now prove that the set Z is
always a subset of a feasible cache behaviour. Specifically, (i) it always contains the
least recently accessed element, (ii) all elements in Zi have been accessed prior to
element ei and (iii) the set always contains at most N elements:
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(i) ∀i : ei ∈ Zi ,
(ii) ∀i : ∀e j ∈ Zi : ∃l ≤ i : e j = el , and

(iii) ∀i : |Zi | ≤ N .

Conditions (i) and (ii) hold by construction. Further, each element e j ∈ Zi where
e j �= ei must have a non-zero probability of being a hit at its next reuse and thus a
cache contention smaller than N , otherwise it would have been removed from Zi thus:

∀e j ∈ Zi : e j �= ei ⇒ con(en j , T ) < N (21)

We now prove condition (iii) by contradiction. We assume (for contradiction) that
i is the smallest index such that |Zi | > N holds. It follows that |Zi−1| = N and
|Zi | = N + 1, since at most one element can be added to Zi−1 to form Zi (see (20)).
As |Zi−1| < |Zi |, then from (20), ei−1 must be a member of Zi with ei �= ei−1. It must
also be the case that con(eni−1 , T ) < N , otherwise ei−1 would have been removed
and we would instead have |Zi−1| = |Zi |.

As con(eni−1 , T ) < N , it follows that Zi−1 contains N elements, all of which have
a non-zero probability of being a hit at their next reuse. Further, we know that ei is
not one of these elements, since otherwise we would again have |Zi | = |Zi−1|.

Let e j ∈ Zi be the element with the highest index n j for its next reuse of all those
elements in Zi with a non-zero probability at their next reuse.

(Recall that the next access to the same memory block as e j is denoted by en j ).
Since Zi−1 contains N elements all of which have a non-zero probability of being a
hit on their next reuse, but does not contain ei , then we conclude that there must be at
least N − 1 accesses between ei and en j that are assigned non-zero probabilities.

There are two cases to consider:
Case 1: j = i . In this case, we know that ei /∈ Zi−1 and that all N elements of

Zi−1 have non-zero probabilities on their next reuse, it must therefore be the case
that there are N accesses between e j and en j with non-zero probabilities. Hence the
cache contention of en j is at least N which contradicts the assumption that en j has a
non-zero probability of being a cache hit. Hence it cannot be the case that j = i .

Case 2: j < i . In this case, we know that e j ∈ Zi−1, e j �= ei , and that there must
be at least N − 1 accesses between ei and en j that are assigned non-zero probabilities
and so contribute to the cache contention of en j . Further, there is also the access
e j+1 immediately following e j (where j + 1 ≤ i), which also contributes 1 to the
cache contention of en j irrespective of the probability assigned to it. Hence the cache
contention of en j is at least N which contradicts (21).

Both cases lead to contradictions, hence the assumption that ∃i : |Zi | = N + 1 is
wrong, and thus condition (iii) ∀i : |Zi | ≤ N holds. ��

The cache contention embodied in (19) is therefore sufficient to ensure that there is
a feasible evolution of the cache state, following the construction rules given in (20)
that permits all accesses assigned a non-zero probability to be cache hits.

5.2 Improved cache contention

The cache contention as defined in Eq. (19) is pessimistic in that it assumes that each
access with a non-zero probability of being a cache hit, within the reuse distance of el
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Table 2 Probabilities P̂ N for the access sequence a, b, c, d, f, d, f, g, h, g, h, a, b, with reuse distances
(rd) and cache contentions (con)

a, b, c, d, f, d, f, g, h, g, h, a, b

rd ∞ ∞ ∞ ∞ ∞ 1 1 ∞ ∞ 1 1 10 10

con ∞ ∞ ∞ ∞ ∞ 1 1 ∞ ∞ 1 1 5 5

P̂ N 0 0 0 0 0
( 3

4
) ( 3

4
)

0 0
( 3

4
) ( 3

4
)

0 0

contends separately with el for space in the cache; however, this may not necessarily
be the case. Consider the trace a, b, c, d, f, d, f, g, h, g, h, a, b and a cache with an
associativity of 4. Here blocks d and f need to remain in the cache for two accesses, as
do blocks g and h, but g and h could potentially replace d and f leaving the possibility
that the last two accesses, to a and b, are also hits. This potential reuse of cache space
is not captured by the basic method of determining cache contention given in the
previous section.

Table 2 illustrates this pessimism. The second accesses to d, f , g, h, a and b
could all potentially be hits within the trace a, b, c, d, f, d, f, g, h, g, h, a, b and could
therefore be assigned non-zero probabilities; however this is not captured by P̂ N .

To overcome this pessimism, as well as pessimism due to repeated accesses to the
same set of memory blocks, we propose an alternative cache contention based on a
simulation of a feasible cache behaviour. We conceptually simulate one valid cache
behaviour to check which elements may be cached simultaneously, and thus, for which
accesses we can assign non-zero probabilities of being a cache hit. In the case of an
eviction, we assume that the element with the maximum reuse distance at its next
reuse will be evicted. By doing so, we aim to have the smallest possible impact on the
overall cache hit/miss distribution, and thus the least pessimism. We note that this is
a heuristic and we do not claim optimality.

We use the term forward reuse-distance rd→(e) to denote the reuse distance of an
element at its next reuse, with a forward reuse-distance of ∞ in the case that there is
no next access to that memory block.

rd→ : E × T × N → N ∪ {∞}

rd→ (e, [e1, . . . en] , i)

=
{

rd
(
el ,

[
e1, . . . el−1

])
if ∃el : e = el ∧ l > i ∧ ∀i< j<l : e �= e j

∞ otherwise
(22)

Let Si be the set of potentially cached elements immediately before the access to ei .
We define the set Si recursively and start with an initially empty cache:

S0 = ∅ (23)

Si+1 =

⎧
⎪⎪⎨

⎪⎪⎩

Si if ei ∈ Si

Si ∪ {ei } if |Si | < N

Si \
(

arg max
e∈Si

(
rd→(

e, T, i
))) ∪ {ei } if |Si | = N

(24)
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Table 3 Probabilities P̂C and P̂ N for the access sequence a, b, c, d, f, d, f, g, h, g, h, a, b

a, b, c, d, f, d1, f1, g, h, g1, h1, a10, b10

P̂ D 0 0 0 0 0
( 3

4

)1 ( 3
4

)1 0 0
( 3

4

)1 ( 3
4

)1 0 0

P̂ A 0 0 0 0 0
( 3

4
) ( 3

4
)

0 0
( 3

4
) ( 3

4
)

0 0

P̂ N 0 0 0 0 0
( 3

4
) ( 3

4
)

0 0
( 3

4
) ( 3

4
)

0 0

P̂C 0 0 0 0 0
( 3

4
) ( 3

4
)

0 0
( 3

4
) ( 3

4
) ( 3

4
)10 ( 3

4
)10

The three different cases in (24)) are as follows: First case: if we access an element ei

that is currently cached, i.e, ei ∈ Si , then we do not need to update the cache contents.
Second case: if the set Si contains less then N elements at the previous access, we
only need add the currently accessed element ei . Third case: if the set Si contains N
elements at the previous access, we first remove the element with the largest forward
reuse-distance from the set Si and then add element ei . (For completeness, we break
ties deterministically by assuming that the memory block with the lowest address is
evicted). By construction, ∀i : |Si | ≤ N holds. Hence Si represents a feasible evolution
of the cache state for i = 1 to n (i.e. over the entire trace).

Using the definition of the potentially cached elements, we can safely set the prob-

ability of a cache hit for an access ei to max
(

P̂ A(�, k),
( N−1

N

)k
)

when the accessed

element is contained in Si

P̂C (ehit
i ) =

{
max

(
P̂ A(�, k),

( N−1
N

)k
)

if ei ∈ Si

0 if ei /∈ Si
(25)

Theorem 7 The improved cache contention as defined in Eq. (25) eliminates all com-
binations of cache hits that are infeasible due to the limited associativity of the cache.

Proof (Theorem 7) Proof of Theorem 7 is trivial as Si represents a feasible evolution
of the cache state over the entire trace. ��

Table 3 shows the probabilities of a cache hit according to (25) for the access
sequence a, b, c, d, f, d, f, g, h, g, h, a, b for a cache with an associativity of 4. The
evolution of Si is as follows S5 = {a, b, f, d}, since f replaces c which has an infinite
forward reuse distance. S9 = {a, b, g, h}, since g and h replace d and f which have
an infinite forward reuse distance by the time g is first accessed. Hence the second
accesses to d, f , g, h, and a and b are all assigned a non-zero probability of being a
cache hit.

6 Exhaustive state-enumeration

We now describe a simple analysis that computes the exact probability distribution
of cache hits. This analysis is different from the approaches presented in previous
sections. Here, we exhaustively enumerate all cache states that may occur during the
execution of a given trace.
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The domain of the analysis is a set of cache states defined as follows: A cache state
C S is a triple (E, P, D) consisting of a set of memory blocks E ⊆ E, a probability
P ∈ R

and a distribution of cache misses D : (N → R). A cache state C S = (E, P, D)

has the following meaning: the cache contains exactly the elements E with probability
P , and D denotes the distribution of cache misses when the cache is in this state. The
set of all cache states is denoted by CS. Note that we model a distribution by the
function N → R which assigns each possible number of cache hits a probability. We
start with an initially empty cache, i.e. C Sinit = (∅, 1, D) with

D(x) =
{

1 if x = 0
0 otherwise

Hence, our initial state space is the set containing the initially empty cache: {C Sinit}.
The update function u describes the cache update when accessing element e for a

single cache state as follows:

u : CS × E → 2CS

u ((E, P, D) , e) =
{ {(E, P, D)} if e ∈ E

miss((E, P, D), e) otherwise
(26)

If the accessed element e is a cache hit, then the cache state remains unchanged, and
the output is the set containing the input cache state. However, if the accessed element
e is a cache miss, then the update function generates a set of possible cache states as
follows:

miss((E, P, D), e) = {
(E \ e′ ∪ {e}, P · 1/N , D′)|e′ ∈ E

}

∪ {
(E ∪ {e}, P · (N − |E |)/N , D′)| if |E | < N

}
(27)

with D′(0) = 0 and ∀x > 0 : D′(x) = D(x − 1).
Each element e′ from the set E may be evicted from the cache with probability

1/N and the element e, which is now cached, is added to E . In the case that the set
E is smaller than the associativity of the cache, an empty cache line or a cache line
with unknown content will be evicted with probability (N − |E |)/N . In either case,
the miss-distribution will be shifted by one to account for the additional cache miss.

In order to reduce the state space, we merge two cache states if they contain exactly
the same memory blocks. We thus define the merge operation � for cache states as
follows:

�: CS × CS → 2CS

(E1, P1, D1) � (E2, P2, D2)

=
{{

(E1, P1 + P2, (
P1

P1+P2
· D1) ⊕ ( P2

P1+P2
· D2))

}
if E1 = E2

{(E1, P1, D1), (E2, P2, D2)} otherwise
(28)
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Fig. 1 The first four steps of exhaustive enumeration of all cache states for the access sequence
a, b, a, c, d, b, c, f, a, c The dotted arrows show the evolution of the different cache states, annotated
with the corresponding probability

where ⊕ denotes the summation of two distributions (i.e. D1 ⊕ D2 := λx .D1(x) +
D2(x)) and p · D denotes the multiplication of each element in D by p (i.e. p · D :=
λx .p · D(x)). This step is necessary to weight each distribution by its probability.

We can lift the update function u from single cache states to a set of cache states
as follows:

U : 2CS × E → 2CS

U (S, e) =
⊎

{u(C S, e)|C S ∈ S} (29)

By construction of the update function, the sum of the probabilities of the indiviual
cache states (E, P, D) within the set of cache states S holds:

∑

(Ei ,Pi ,Di )∈S

Pi = 1 (30)

The set of cache states Sres generated by a trace T = [e1, . . . , en] executed on the
initial cache state C Sinit is thus given by the composition of U :

Sres := U (. . . (U (U (C Sinit, e1), e2), . . . , en) (31)

The final distribution of all cache states in Sres is then given by the summation of all
individual distributions of each cache state weighted by their probabilities:

Dres =
⊕

{D · P|(E, P, D) ∈ Sres} (32)

See Fig. 1 for an example of the exhaustive enumeration of all cache states, for a cache
with associativity 4. Here, we assume an initially empty cache. The access to block
a leads with probability 1 to the next cache state (where only a is cached). The next
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access to b evicts memory block a with probability 1/4 or is stored in a different cache
line to a with probability 3/4, and so on.

The presented method computes all possible behaviours of the random cache with
the associated probabilities. It is thus correct by construction as it simply enumerates
all states exhaustively.

Unfortunately, a complete enumeration of all possible cache states is computation-
ally intractable. Due to the behaviour of the random replacement policy, each element
that was cached once, may still be cached. Thus the number of different cache states
grows exponentially.

7 Combined approach

So far, we presented a precise but computationally intractable approach, and two
imprecise yet efficient approaches based on cache contention and cache simulation.

In this section, we show how these approaches can be combined to form a new
approach with scalable precision. The idea is to use the precise approach for a small
subset of relevant memory blocks, while using one of the imprecise approaches for
the remaining blocks. So, instead of enumerating all possible cache states, we abstract
the set of cache states and focus only on the m most important memory blocks, where
m can be chosen to control both the precision and the runtime of the analysis. In this
way, we effectively reduce the complexity of the precise component of the analysis
for a trace with l distinct elements from 2l to 2m (typically with m � l).

7.1 Heuristic to select relevant memory blocks

We use the number of occurrences of a memory block e within a trace T as a simple
heuristic indicating relevance. We therefore order the memory blocks within a trace
T by the number of occurrences and select the m blocks with the highest frequency.
Let R ⊆ E be the set of these m blocks. For the access sequence

a, b, a, c, d, b, c, f, a, c

and m = 2,
R = {a, c}. Thus, the state exploration conceptually computes a precise probability

distribution for the sequence

a, _, a, c, _, _, c, _, a, c

while the imprecise calculation is used to compute the probability of cache hits for
the sequence

_, b, _, _, d, b, _, f, _, _

7.2 Update function for the combined approach

We have to change the update function of the precise analysis (see (26)) such that only
elements from the set R are represented explicitly, i.e. ∀(E, P, D) ∈ CS : E ⊆ R.
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Fig. 2 The first five steps of the reduced cache state enumeration for the access sequence
a, b, a, c, d, b, c, f, a, c with R = {a, c}. The dotted arrows show the evolution of the different cache
states, annotated with the corresponding probability. The access to memory block b is considered as cache
miss, but this block is not added to the cache states, since b /∈ R

Each access to a memory block e which is not contained in the set R will be considered a
cache miss; however, e will not be added to the set E (to ensure that E ⊆ R). Further, as
we use (18) to compute the probability of a hit for access e, and include the distribution
for e via convolution, we do not increase the miss counts of the cache states in respect
of e, i.e., we do not update the miss-distributions D of a cache state (E, P, D).

u : CS × E → 2CS

u((E, P, D), e) =
⎧
⎨

⎩

{(E, P, D)} if e ∈ E
miss((E, P, D), e) if e /∈ E ∧ e ∈ R
miss′((E, P, D)) if e /∈ R

(33)

with

miss′((E, P, D)) = {
(E \ e′, P · 1/N , D)|e′ ∈ E

}

∪ {(E, P · (N − |E |)/N , D)| if |E | < N } (34)

The function miss′ computes the resulting set of cache states in the case of a miss,
without inserting the accessed element e as it is not an element of R. Figure 2 shows
the reduced cache state exploration on the example sequence with R = {a, c}.

We also have to update the definition of cache contention (19) to consider all
memory blocks of R as potentially cached:

con : E × T → N
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Table 4 Probabilities P̂ N for the access sequence a, b, a, c, d, b, c, f, a, c and R = {a, c}, with reuse
distances (rd) and cache contentions (con)

_, b, _, _, d, b, _, f, _, _

rd _ ∞ _ _ ∞ 3 _ ∞ _ _

con _ ∞ _ _ ∞ 2 _ ∞ _ _

P̂ N _ 0 _ _ 0
( 3

4
)3 _ 0 _ _

P̂C _ 0 _ _ 0
( 3

4
)3 _ 0 _ _

con
(
el ,

[
e1, e2, . . . , el−1

]) =
{∞ rd(el , [e1, . . . , el−1]) = ∞∣∣

∣conS
∣∣
∣ + ∣

∣R
∣
∣ otherwise

(35)
with

conS =
{

ei ∈ [e1, . . . , el−1]
∣
∣
(

l − rd(el , [e1, . . . , el−1]) < i ∧ P̂(ehit
i ) �= 0 ∧ ei /∈ R

)}

∪ {
er ∈ [e1, . . . , el−1]

∣
∣ (l − rd(el , [e1, . . . , el−1]) = r ∧ er /∈ R

}

And also the cache simulation (24) accordingly:

S′
i+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S′
i if ei ∈ S′

i

S′
i ∪ {ei } if |S′

i | + |R| < N

S′
i \

(
arg max

e∈S′
i

(
rd→(

e, T, i
))) ∪ {ei } if |S′

i | + |R| = N
(36)

Furthermore, we must assume that each relevant memory block ei ∈ R constantly
uses a cache location and thus add the number of relevant blocks to the stack distance
�:

�′ = � + |R| (37)

Table 4 presents the probability P̂ N for the elements of the example sequence,
assuming N = 4.

In the last step, we convolve the resulting distributions of both approaches to obtain
the final distribution of cache misses.

7.3 Alternative heuristic

Instead of defining one fixed set of relevant blocks for the complete trace, we can
define the set of relevant blocks depending on the position within the trace. We first
determine all reused memory blocks in the complete trace, and the points at which
they are last used. Then starting from the beginning of the trace, we greedily collect
the reused memory blocks until we have a set of q relevant blocks. When we encounter
the last reuse of a block, that block is removed from the set of relevant blocks. Further,
whenever the set of relevant blocks contains fewer than q relevant blocks, the next
reused block encountered is added to the set. This heuristic accounts for memory
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Table 5 Sets of relevant memory blocks on trace a, b, a, b, a, c, d, b f, c, d, f for the occurrence-based
(HOcc) and trace-based heuristic (HTrace). The first line of the table indicates whether or not a memory
block will be reused

a, b, a, b, a, c, d, b, f, c, d, f

Reused? y y y y n y y n y n n n

HTrace {a} {a, b} {a, b} {a, b} {b} {b, c} {b, c} {c} {c, f } { f } { f } ∅
HOcc {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b} {a, b}

blocks with a high locality that occur frequently in one sub-trace and infrequently
in others. By construction, at most q memory blocks are relevant at any point in the
trace, limiting the number of different cache states to 2q . (We note that the number of
relevant blocks is often significantly lower than q for some sub-traces). Table 5 shows
the set of relevant memory blocks on an example trace for the trace-based and the
occurrence-based heuristic.

We note that the set of relevant memory blocks is not fixed in the case of the
alternative heuristic, but depends on the position in the trace. We therefore replace the
global set R with the local set of relevant memory blocks per access in (35) as follows:
in the second line we have ei /∈ Ri and in the third line er /∈ Rr , while still adding the
maximum number of relevant memory blocks

∣
∣R

∣
∣.

8 Evaluation

This section presents an evaluation of the precision and performance of the analyses
for random replacement caches described in this paper based on two different sets
of benchmarks. We also made comparisons against analysis for an LRU cache of the
same associativity, using the stack distance3. The first set of benchmarks are those used
in a previous publication (Davis et al. 2013) and are based on hand-crafted access
sequences, which are limited in size. The second set of traces were automatically
generated using the gem5 simulator (Binkert et al. 2011) and are significantly larger.

8.1 Mälardalen benchmarks

We first present results for all four Mälardalen benchmarks considered by Davis et al.
(2013): binary search, fibonacci calculation, faculty computation and insertion sort.
The execution traces for these benchmarks were manually extracted using the libFirm
compiler framework4 and only contain memory blocks compiled from the source files
(i.e. not including any library or operating system calls).

Our experiments assumed a fully-associative instruction-only cache with a block-
size of 8 and an associativity of (i) 8 and (ii) 16. (Note, we selected a small block size
to compensate for the limited size of the available benchmarks). The results are shown
in Figs. 3, 4, 5, 6, 7, 8, 9, and 10. The y-axis denotes the absolute number of misses

3 Each memory access with a stack distance larger than or equal to the associativity results in a cache miss
in the case of an LRU cache, while each memory access with a smaller stack distance results in a cache hit.
4 http://pp.ipd.kit.edu/firm/Index
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Fig. 3 Binary search. 132 memory accesses in total, 25 distinct memory blocks. (Associativity = 8)

Fig. 4 Binary search. 132 memory accesses in total, 25 distinct memory blocks. (Associativity = 16)

and the x-axis the exceedance probability To derive an approximation to the actual
performance of the cache, and thus a baseline for our experiments, we performed 109

simulations of the cache behaviour for each benchmark (red line). The other lines on
the graphs are the imprecise approach using only the reuse distance (3) (light blue line),
only the stack distance (13) (orange line), the cache-contention approach (18) (black
line), the improved cache-contention (25) (grey line), and the combined approach
(with cache simulation (36)) using 4, 8 and 12 relevant memory blocks (green, dark
blue and pink lines respectively). The vertical green line depicts the performance of
the LRU cache.

When the number of pairwise distinct memory blocks exceeds the associativity of
the cache as is the case with binary search (see Figs. 3 and 4) and faculty computation
(see Figs. 5 and 6), then the cache-contention approaches significantly improve upon
the imprecise approaches that use only the reuse distance or only the stack distance.
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Fig. 5 Faculty computation. 99 memory accesses in total, 25 distinct memory blocks. (Associativity = 8)

Fig. 6 Faculty computation. 99 memory accesses in total, 25 distinct memory blocks. (Associativity = 16)

The improved cache contention does not improve upon the basic cache contention and
the stack distance approach does not improve upon the reuse distance. Note for these
benchmarks, the latter approaches predict hardly any cache hits.

For the other two benchmarks: insertion sort (see Figs. 7 and 8) and fibonacci calcu-
lation (see Figs. 9 and 10), the number of distinct memory blocks accessed within a loop
is smaller than 16. In these case, the cache-contention approaches result in no improve-
ment or only a slight improvement over the reuse distance approach. The combined
approach; however, with 8 relevant memory blocks reduces the over-approximation by
40–60 %, and with 12 relevant memory blocks results in exact or nearly exact results.
The difference between the two cache contention approaches is limited in these cases,
while the approach using the stack distance performs considerably worse than the
approach using the reuse distance.
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Fig. 7 Insertion sort. 707 memory accesses in total, 21 distinct memory blocks. (Associativity = 8)

Fig. 8 Insertion sort. 707 memory accesses in total, 21 distinct memory blocks. (Associativity = 16)

The relative performance of the LRU replacement policy in these experiments
strongly depends on the number of distinct memory blocks and the cache associativity.
If the number of distinct memory blocks is below the associativity, LRU outperforms
random cache replacement (see Fig. 10), whereas random replacement outperforms
LRU if the number of distinct memory blocks exceeds the associativity (see Fig. 9).

Figure 11 shows how the runtime of the combined analysis varies with the number
of relevant cache blocks. (Note the logarithmic scale on the graph). The experiments
were run on a 4-core 64-bit 1.2GHz CPU. The graph shows that the runtime of the
analysis is exponential in the number of relevant blocks. This indicates that a complete
analysis, i.e. where all blocks are considered relevant, is computationally infeasible:
Even for the small number of distinct memory blocks and the short access traces, a
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Fig. 9 Fibonacci calculation. 340 memory accesses in total, 15 distinct memory blocks. (Associativity
= 8)

Fig. 10 Fibonacci calculation. 340 memory accesses in total, 15 distinct memory blocks. (Associativity
= 16)

precise analysis for the binary search and faculty computation benchmarks requires
several hours of computation, and so an approximation is necessary.

Observe that the runtime of the combined analysis for the insertion sort benchmark
remains constant for 14 or more relevant blocks as the total number of reused memory
blocks is 13 in this case. Hence, increasing the number of relevant blocks does not
affect the precision or the runtime of the analysis. The same holds for the fibonacci
benchmark and 13 blocks. Here, the flattening of the runtime between 8 and 10 relevant
blocks is caused by the specific structure of this benchmark. The 9th and 10th most-
frequent used memory blocks only occur in the final tenth of the access trace, which
means that the exponential growth of the number of states does not fully affect the
runtime when increasing the number of relevant blocks from 8 to 10.
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Fig. 11 Runtime evaluation for the benchmarks fibonacci calculation, insertion sort, faculty computation
and binary search

8.2 Precision and performance on larger traces

In addition to the benchmarks used by Davis et al. (2013), we generated cache access
traces for the four largest Mälardalen benchmarks (Gustafsson et al. 2010) using the
gem5 simulator (Binkert et al. 2011) assuming an ARM7 processor5. Even though the
benchmarks are not single-path, the C-Code is provided with example inputs, which
results in well-defined traces and guarantee one single execution path. In contrast to the
other benchmarks, the gem5-traces contain library and operating-system calls and are
thus significantly larger. We assumed the same cache configuration: a fully-associative
instruction-only cache with an associativity of (i) 8 and (ii) 16 and a block-size of 8.
The results are shown in Figs. 12, 13, 14, 15, 16, 17, 18, and 19. For these larger traces,
we used the alternative heuristic to select the relevant memory blocks as described in
Sect. 7.3.

In this set of experiments, the cache contention approaches always improved upon
the approaches that use only the reuse distance or only the stack distance: in the case
of the finite impulse filter benchmark (see Fig. 13), the over-approximation compared
to using reuse distance only is reduced by around 3 %, whereas in the case of the
petri-net simulation (see Fig. 19) the improvement is around 21 %.

The approach using the stack distance improves upon the approach using the reuse
distance in all examples except for statemate (see Fig. 17), where the situation is
reversed. The evaluation clearly shows that both approaches are incomparable.

In the case of an associativity of 16, the combined approach with 12 relevant blocks
provides highly accurate results, with an over-approximation of at most 6 % (Fig. 15)
and a near-optimal estimate for the petri-net simulation (see Fig. 17). Similarly, in
the case of an associativity of 8, using 8 or 12 relevant blocks also provides accurate
results (see Figs. 14 and 16). We note however, that in some cases, using a number of

5 http://www.arm.com/products/processors/classic/arm7
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Fig. 12 Finite impulse response filter (fir). 3,419 memory accesses in total, 393 distinct memory blocks.
(Associativity = 8)

Fig. 13 Finite impulse response filter (fir). 3,419 memory accesses in total, 393 distinct memory blocks.
(Associativity = 16)

relevant blocks that is equal to or higher than the associativity could be detrimental
to the precision of the results, this is because when the number of relevant blocks is
equal to associativity, the imprecise approach is unable to predict any cache-hits, as it
has to assume that associativity-many blocks are already cached.

By construction, the combined approach is very precise if the number of relevant
memory blocks is close to or larger than the number of distinct memory blocks (see
Figs. 3, 4, 5, 6, 7, 8, 9, and 10). But even the if the number of distinct memory
blocks strongly exceeds the number of relevant blocks, the combined approach is
typically able to provide precise results. See for instance the evaluation of the petri-
net simulation (Fig. 19). Despite a total of 454 distinct memory blocks, only a subset
of these blocks are simultaneously in the working set of the task.
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Fig. 14 Discrete-cosine transformation on a 8 × 8 pixel block (jfdctint). 2,185 memory accesses in total,
347 distinct memory blocks. (Associativity = 8)

Fig. 15 Discrete-cosine transformation on a 8 × 8 pixel block (jfdctint). 2185 memory accesses in total,
347 distinct memory blocks. (Associativity = 16)

In the case of the more complex benchmarks, the LRU replacement policy outper-
forms random replacement. Due to the complex structure of the larger traces, there are
significantly fewer sub-traces in which the number of distinct memory blocks accessed
within a loop marginally exceeds the cache associativity and hence, no cases overall
where random replacement outperforms LRU.

Figure 20 shows the runtime of the combined analysis for different numbers of
relevant memory blocks for each of the second set of benchmark traces. We note
again the exponential growth in runtime with an increasing number of relevant blocks;
however, here the runtime of the analysis is significantly higher due to the larger traces.
The alternative heuristic conceptually splits the traces into sub-traces enabling different
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Fig. 16 Automatically generated code (statemate). 1,831 memory accesses in total, 394 distinct memory
blocks. (Associativity = 8)

Fig. 17 Automatically generated code (statemate). 1,831 memory accesses in total, 394 distinct memory
blocks. (Associativity = 16)

sets of relevant blocks to be defined per sub-trace, while damping the exponential
growth in runtime. Since the number of pairwise distinct memory blocks significantly
exceeds the number of relevant blocks, we could not reach any saturation, in terms
of relevant blocks, for any of these benchmarks within a reasonable time (unlike the
insertion sort and fibonacci benchmarks in Fig. 11).

Figure 21 shows the runtime of the combined approach with 4, 8 and 12 relevant
blocks and the runtime of convolution using the reuse-distance for randomly generated
traces of different length. Each trace consists of random accesses to 32 distinct memory
blocks and the associativity is 16. The number of relevant blocks is the dominant factor,
with the runtime increasing exponentially with an increase in this parameter. However,
conversely our experiments on the benchmarks have shown that limiting the number of
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Fig. 18 Simulation of an extended Petri Net (nsichneu). 5,202 memory accesses in total, 454 distinct
memory blocks. (Associativity = 8)

Fig. 19 Simulation of an extended Petri Net (nsichneu). 5,202 memory accesses in total, 454 distinct
memory blocks. (Associativity = 16)

relevant blocks to 8 or 12 provides effective performance while limiting the growth in
the runtime of the analysis. The length of the trace has a slightly super-linear influence
on the runtime caused by two different factors: the convolution operation is quadratic
in the number of accesses, while the exhaustive state-space exploration grows linearly.
We note that the quadratic growth in runtime due to the convolution operation can be
addressed via the use of re-sampling techniques (Maxim et al. 2012) enabling the
analysis of much larger traces.

Figures 22 and 23 show how the precision of the analyses depend on the associa-
tivity of the cache and on the block-size . In both cases, we have used the largest
of our benchmarks, i.e, the simulation of an extended Petri Net (nsichneu). With
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Fig. 20 Runtime evaluation for the benchmarks fir, jfdctint, statemate and nsichneu

Fig. 21 Runtime evaluation depending on the length of the trace

increasing associativity, the precision of the convolution-based approaches (using re-
use distance, stack distance and cache contention) increases as the lower bounds on
the cache-hit probabilities are less likely to be zero. By contrast, the precision of
the combined approaches using exhaustive state enumeration decreases slightly with
increasing associativity. This is because the number of relevant blocks remains con-
stant, and hence a smaller share of the complete cache is modelled explicitly. The
block-size mostly influences the overall length of the trace and affects all approaches
in a similar fashion.

The evaluation indicates that the precision is very high if the number of relevant
blocks is close to or larger than the associativity of the cache. We note that in practice,
this will often be the case, since the associativity is typically lower than 16 for most
cache designs.
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Fig. 22 Influence of the associativity on the precision of the various analyses

8.3 Comparison with LRU caches—synthetic benchmarks

As discussed in Sect. 1.1 Reineke (2014) compared simple probabilistic analyses
(Davis et al. 2013) for evict-on-miss random replacement (referred to by Reineke as
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Fig. 23 Influence of the block-size on the precision of the various analyses
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Random) with analysis for LRU replacement. Reineke makes a number of interesting
observations and conclusions as follows:

Observation R.1: With the same information about an access sequence, i.e. (only)
upper bounds on the reuse distances of accesses, the hit probabilities for LRU are
always greater than or equal to the hit probabilities for Random.

Observation R.2: In case of LRU, and in contrast to Random, current cache analyses
can profit from bounding stack distances, which can be arbitrarily lower than reuse
distances.

Conclusion R.1: With simple, state-of-the-art analysis methods, LRU replacement
is preferable over Random replacement in static (probabilistic) timing analysis.

Reineke (2014) also describes so called “payroll sequences” which are loops where
the number of accesses exceeds the cache associativity. For such sequences Reineke
notes that LRU incurs only cache misses, and so will be outperformed by Random
with a very high probability; however to profit from Random replacement in such
cases, more sophisticated analysis techniques are required.

We agree with these observations and conclusions. Regarding Observation R.2 in
this paper we have described new analysis for random replacement caches based on
stack distance. We note that the following modification to observation R.1 applies to
that analysis.

Observation R.1b. With the same information about an access sequence, i.e. (only)
upper bounds on the stack distances of accesses, the hit probabilities for LRU are
always greater than or equal to the hit probabilities for Random.

The validity of Observations R.1 and R.1b are demonstrated by our previous results
where the number of misses computed for random replacement using the reuse distance
and stack distance analyses are never below the number of misses obtained assuming
the LRU replacement policy.

In this paper, we also derived combined analysis techniques that do not depen-
dent entirely on convolving probability distributions for individual accesses. For these
analyses, our experiments show that in the case of benchmarks that contain accesses
with stack distances greater than the associativity of the cache, then random replace-
ment can sometimes provably exceed the performance of LRU replacement. We note
that there are also many cases when LRU outperforms random replacement, hence the
two policies and their more sophisticated analyses are incomparable.

In this section, we specifically investigate the different performance of LRU and
random replacement policies using synthetic benchmarks.

The first synthetic benchmark Random Sequence aims to be representative of
straight-line code. It consists of traces of 1000 random accesses to x distinct memory
blocks where we have varied x from 4 to 64. The results are shown in Fig. 24. Note,
we assume a cache associativity of 16. For all values of x , LRU outperforms ran-
dom replacement on the Random Sequence benchmark, with the relative performance
difference between the two remaining largely constant.

The second synthetic benchmark LoopK was used to evaluate the influence of the
size of a loop body on the relative performance of LRU and random replacement.
To this end, we generated 5 traces with 512 accesses each. These 512 accesses are
within a loop body of size 4, 8, 16, 32 and 64 respectively. The number of loop
iterations was varied to keep the total number of accesses constant (i.e. the loop
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Fig. 24 Influence of the number of distinct blocks on the precision of the various analyses
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Fig. 25 Influence of the size of the loop body on the precision of the various analyses
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Fig. 26 Number of misses with exceedance probability 10−9 with varying loop-body size. 10 iterations
of the loop

with size 4 was repeated 128 times, while the loop with size 64 was repeated only
8 times). We again assumed an associativity of 16. The results are shown in Fig. 25.
On the LoopK benchmark, LRU outperforms random replacement when the size of
the loop body is less than or equal to the associativity, whereas random replace-
ment outperforms LRU as soon as the size of the loop body exceeds the associativ-
ity.

We also modified the LoopK benchmark to iterate a constant number of times (10)
and presented the results in a different way in Fig. 26. This figure shows execution
time estimates with an exceedance probability of 10−9 depending on the loop body
size assuming an associativity of 8 and 16. Here, we can see a smooth progression in
the performance of the random replacement policy which is in stark contrast the LRU
replacement policy, where the performance rapidly degrades when the loop body size
exceeds the associativity.
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9 Conclusion and future work

In this paper, we investigated the correctness, optimality and precision of Static Prob-
abilistic Timing Analysis (SPTA) for systems that use a cache with an evict-on-miss
random replacement policy.

The main contributions of this paper are:

1. Showing that the formula for the probability of a cache hit previously published
in DATE (Kosmidis et al. 2013) is not sound for use in SPTA, since it can pro-
duce results in the form of pWCET distributions that are optimistic by orders of
magnitude and thus unsafe.

2. Proving the optimality of the probability function given by Davis et al. (2013)
with respect to the limited information (reuse distance and associativity) that it
uses.

3. Deriving an alternative probability function based on the stack distance (the num-
ber of pair-wise distinct memory blocks accessed within the reuse distance). This
approach is incomparable to that of Davis et al. (2013).

4. Providing two new cache contention methods; a basic method, and an improved
one based on a conceptual cache simulation, that can be used to improve upon
the previous analyses that use reuse distance and stack distance. The basic cache
contention presented in this paper corrects an omission in the formulation given
by Altmeyer and Davis (2014). Both approaches are proven correct by showing
that there exists a feasible evolution of the cache state that supports cache hits for
all accesses where the cache contention is less than the associativity.

5. Introducing an approach with scalable precision, combining precise analysis for
frequently used memory blocks with imprecise analysis for those memory blocks
that are used less often.

6. An evaluation on a set of benchmark programs, showing the performance of the
different approaches, and in particular that the scalable approach is highly effective
in reducing pessimism in SPTA without the problems of exponential complexity
inherent in an exhaustive cache state exploration.

7. A comparison between the LRU replacement policy and the Evict-on-Miss random
replacement policy, showing that when the sophisticated combined analysis for
random replacement (introduced in this paper) is used, the two are incomparable,
with random replacement having provably better hard real-time performance when
the number of distinct memory blocks in a loop exceeds the associativity, and LRU
having better performance otherwise.

The SPTA methods described in this paper, including the scalable combined
approach, are extendable to multipath programs. Such extension is the subject of
further work by the authors.
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