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Abstract Semiconductor technology evolution suggests that permanent failure rates
will increase dramatically with scaling, in particular for SRAM cells. While well
known approaches such as error correcting codes exist to recover from failures and
provide fault-free chips, they will not be affordable anymore in the future due to their
growing cost. Consequently, other approaches like fine-grained disabling and recon-
figuration of hardware elements (e.g. individual functional units or cache blocks) will
become economically necessary. This fine-grained disabling will degrade performance
compared to a fault-free execution. To the best of our knowledge, all static worst-case
execution time (WCET) estimation methods assume fault-free processors. Their result
is not safe anymore when fine-grained disabling of hardware components is used. In
this paper we provide the first method that statically calculates a probabilistic WCET
bound in the presence of permanent faults in instruction caches. The proposed method
derives a probabilistic WCET bound for a program, cache configuration, and proba-
bility of cell failure. As our method relies on static analysis to bound the longest path,
its probabilistic nature only stems from the probability that faults actually occur. Our
method is computationally tractable because it does not require an exhaustive enu-
meration of all the possible combinations of faulty cache blocks. Experimental results
show that it provides WCET estimates very close to, but never below, the method that
derives probabilistic WCETs by enumerating all possible locations of faulty cache
blocks. The proposed method not only allows to quantify the impact of permanent
faults on WCET estimates, but, most importantly, can be used in architectural explo-
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ration frameworks to select the most appropriate fault management mechanisms and
design parameters for current and future chip designs.

Keywords Hard real-time · WCET · Static probabilistic analysis · Faulty caches

1 Introduction

In safety-critical real-time systems it is crucial to prove that tasks meet their deadline
in all execution situations, including the worst-case. This proof needs an estimation of
the worst-case execution time (WCET) of any sequential task in the system. WCET
estimation methods must offer both safety and tightness properties. Safety is the guar-
antee that the estimated WCET is greater than or equal to any possible execution
time. Tightness means that the estimated WCET is as close as possible to the actual
WCET.

WCET estimation methods can be divided into two classes (Wilhelm et al. 2008):
measurement-based approaches and static analysis approaches. The former class of
methods executes the task under study to derive a WCET estimate. It has the advantage
to provide an estimation when the processor micro-architecture is not completely
known. On the other hand it may underestimate the actual WCET if test-case generation
does not cover the actual longest path during measurements, and thus may raise safety
issues. The latter class of methods, in contrast, statically analyzes the software and
hardware under study. It provides a safe WCET upper bound but requires detailed
knowledge of the processor micro-architecture.

Static WCET estimation methods are generally divided into two steps, commonly
named high-level analysis and low-level analysis. The high-level analysis determines
the longest execution path among all possible flows in a program. The low-level analy-
sis is used to account for the processor micro-architecture. A number of static analysis
methods have been designed in the last two decades at both levels (see Wilhelm et al.
2008 for an extensive survey of methods and tools). Concerning the low-level analy-
sis, methods have been designed to predict WCETs in architectures equipped with
caches (Theiling et al. 2000; Mueller 2000; Ferdinand and Wilhelm 1998; Hardy and
Puaut 2008) or pipelines (Engblom 2002; Li et al. 2006).

A common implicit assumption in all static WCET estimation methods is that the
target processor is not subject to faults. However, technology scaling, used to increase
performance, has the negative consequence of providing less reliable silicon primitives
due to static and dynamic variations (Borkar et al. 2003; Bowman et al. 2009), resulting
in an increase of the probability of failure (pfail) of circuits. The recently published
resilience roadmap (Nassif et al. 2010) underlines the magnitude of the problem we
will very soon face. According to Nassif et al. (2010), the increase of pfail with
scaling will be particularly significant for SRAM cells, for which the predicted pfail
is 6.1 × 10−13 at 45 nm and will increase to 2.6 × 10−4 at 12 nm.

Space redundancy techniques, like column/row sparing and error correcting codes
(ECC), have been defined to deal with process defects and latent errors and provide
fault-free chips at current technology nodes. They will not be affordable anymore
in the future due to their non-scalable cost, when used extensively to recover from
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permanent faults. Furthermore, using ECC to prevent the effect of permanent faults
will reduce the transient errors recovery capabilities.

Consequently, other approaches such as fine-grained disabling and reconfiguration
(e.g. individual functional units or cache blocks) will become economically necessary.
We are going to enter a new era: functionally correct chips with variable performance
among chips and throughout their lifetime. A recent study (Hardy et al. 2012) has
analyzed the effect of fine-grained disabling on average performance resulting from
permanent faults. It reveals that caches, which take most of the die real-estate in
current processors and contain numerous SRAM cells, will be a non-negligible source
of performance degradation in the near future. Therefore, ignoring the effect of such
faults in WCET estimation methods may lead to an underestimation of the WCET,
even for static analysis methods.

To the best of our knowledge, no static WCET estimation method so far has been
proposed to estimate the impact of permanent faults of micro-architectural elements on
worst-case execution times. Our work provides the first results on this topic, through
the proposal of a static analysis method that evaluates the impact of faulty SRAM
cells in instruction caches on WCETs. The trivial solution consisting in assuming
all cache blocks as faulty is obviously safe. However, the probability that such a
scenario occurs is very low (although non null) and such a method would largely
overestimate the calculated WCET. Instead, our method, based on the probability that
a SRAM cell is faulty (or will become faulty during the system lifetime), evaluates
probabilistically how many additional cache misses (fault-induced misses) may occur.
The distribution of the timing penalties due to faults is then used to derive probabilistic
worst-case execution times. These probabilistic execution times can finally be used
to ensure that timing constraints are met under a targeted probability depending on
the software criticality level (e.g. 10−15 per task activation for commercial aerospace
industry (Slijepcevic et al. 2013).

An essential benefit of our approach is that its probabilistic nature stems only from
the probability associated with the presence of faults. By construction, the worst-case
execution path cannot be missed, since it is determined using static analysis, extended
to cope with permanent faults. This allows our method to be used in safety-critical
real-time systems. In addition, as demonstrated by experimental results, the proposed
method is computationally tractable, since it avoids the exhaustive enumeration of
all possible fault locations. Experimental results also show that the proposed method
accurately estimates WCETs in the presence of permanent faults compared to a method
that explores all possible locations for faults.

On the one hand, the proposed method allows to quantify the impact of permanent
faults on WCET estimates for chips with a known probability of cell failure for the
whole chip lifetime. On the other hand, and most importantly, our work can also
be used in architectural exploration frameworks to select the most appropriate fault
management mechanisms, for current and future chip designs.

The remainder of the paper is organized as follows. Section 2 first surveys related
work. The fault model and the base WCET estimation technique extended to cope with
faults are presented in Sect. 3. Section 4 describes the proposed probabilistic WCET
estimation method. Experimental results are presented in Sect. 5. Finally, we summa-
rize the contributions of our research and give directions for future work in Sect. 6.
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2 Related work

WCET estimation techniques may use static analysis or measurements to derive
WCET bounds (Wilhelm et al. (2008). Our method falls into the first category, which
by construction provides safe WCET bounds. Produced WCET estimates may be
either deterministic (calculate a strict upper bound that is never exceeded at run-time)
or probabilistic (calculate several worst-case execution times with associated proba-
bilities of occurrence). The method we propose produces probabilistic WCET bounds
to reflect the uncertainty of the location of faults in the architecture. It can be classified
as static probabilistic timing analysis (SPTA) method according to the terminology
introduced in the Proartis project (Cazorla et al. 2013).

Many static timing analysis methods for systems equipped with cache memories
(instruction caches, data caches, cache hierarchies, with various cache structures and
replacement policies) have been proposed in the last two decades (Theiling et al. 2000;
Mueller 2000; Ferdinand and Wilhelm 1998; Hardy and Puaut 2008). These methods
are by construction safe, provided that the details of the cache architecture are known.
They are accurate if the cache structure, in particular the cache replacement policy, is
carefully selected (Reineke et al. 2007). To the best of our knowledge, all static cache
analysis methods assume fault-free caches, and are not sound anymore if the hardware
is subject to permanent faults; our work is the first to integrate the effect of permanent
faults in a static cache analysis method.

Some scheduling approaches exist to cope with faults while keeping time pre-
dictability. Most of them support transient faults using mechanisms such as check-
pointing and rollback, or active replication. Such approaches aim at integrating the
cost of error detection and error recovery/masking in the task schedulability analy-
sis (Ghosh et al. 1997; Chevochot and Puaut 1999; Punnekkat et al. 2001). In the
scope of real-time systems, comparatively little research has addressed the effect of
permanent faults and disabling of resources on application performance.

The study presented in Hardy et al. (2012) addresses this issue for non real-time
applications. They assume the same fault model as in our method, but concentrate on
average-case performance, whereas our focus is on real-time applications and worst-
case performance.

A method to statically compute probabilistic WCETs in the presence of faulty
sensors is presented in Höfig (2012). Each configuration of faulty sensors yields a
different path in the program, for instance, due to the interpolation of sensor values,
and thus a different WCET. Probabilities of faulty sensors are derived using a safety
analysis model and are then used to obtain the overall probabilistic WCET. In contrast
to our work, (Höfig 2012) focusses on faulty sensors, whereas we focus on faulty
SRAM cells in instruction caches.

The objective and assumptions in Slijepcevic et al. (2013) are very close to ours. A
very similar fault model is used, and the objective is to derive WCET estimates in the
presence of permanent faults and disabling of hardware elements. The difference lies
in the type of method used to obtain WCETs and in the processor architecture consid-
ered. Regarding WCET estimation, (Slijepcevic et al. 2013) uses a measurement-based
probabilistic timing analysis method (MBPTA), that determines probabilistic WCETs
based on measurements, whereas we use static probabilistic timing analysis (SPTA).
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By construction MBPTA, in contrast to SPTA, does not necessarily explore all appli-
cation paths, which can cause the longest path to be missed and thus does not provide
an absolute guarantee that the computed probabilistic WCET is safe. Regarding the
processor architecture, (Slijepcevic et al. 2013) assumes a PTA-compliant architecture
(e.g. the architecture described in Kosmidis et al. 2013) that implements random cache
placement and replacement). This is not a requirement in our method. In summary,
the fundamental difference between the two approaches is that in Slijepcevic et al.
(2013) the probabilistic nature of the estimated WCETs stems from several factors:
uncertainty in the path exploration procedure, probabilistic hardware timing, proba-
bilistic fault location and fault count. In contrast, in our method, the only source of
uncertainty comes from the probability associated to faults.

3 Background

3.1 Architecture and fault model

The proposed analysis is defined for set-associative instruction caches implementing
the least recently used (LRU) replacement policy. A cache configuration is defined
by a number of sets S, a number of ways per set W , and a block size in bits K .
The architecture is considered free from timing anomalies,1 meaning that a cache
miss leads to the worst-case behavior. For the scope of the paper, a single level of
instruction cache is assumed, and the data cache is assumed perfect.

Only permanent faults affecting the instruction cache are considered. The rest of
the architecture is assumed to be fault free. The interaction between faulty micro-
architectural components is considered out of the scope of this paper and left for
future work. The effects of transient faults (e.g. particle strikes) are not addressed and
are assumed to be covered by other error detection/correction codes (ECC).

In the cache, a cache block with at least one bit affected by a permanent fault is
considered as faulty and is disabled. Furthermore, LRU-stack bits and control bits are
assumed to be fault free by using hardening and/or redundancy techniques.

Faulty cache blocks are assumed to be detected using post-manufacturing and boot-
time tests, ECC, and built-in self-tests. Cache block disabling has already been suc-
cessfully used in commercial processors (McNairy and Mayfield 2005).

The term faulty cache configuration is used to denote a cache with faulty blocks.
Such a configuration is represented by a vector with an entry per set, indicating its
number of faulty blocks ∈ [0, W ]. The exact position of the faulty blocks in each set
has no importance, thanks to LRU replacement: in case of block failure, the LRU stack
of a set is reduced by its number of faulty blocks.

Each SRAM cell (i.e. bit) is assumed to have an equal probability of failure (pfail).
pfail corresponds to the probability of a bit to be permanently faulty due to process
defects, aging, low-voltage operation, et cetera. Moreover, the locations of perma-

1 Especially, an in-order pipeline with a constant latency per instruction is assumed like in Slijepcevic et
al. (2013).
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nently faulty SRAM cells are considered as random. This allows to account for some
major causes of uncorrelated faults (Cheng et al. 2011).

Based on the above assumptions, the probability of a cache block failure pbf can
be determined from the probability of bit failure pfail as follows:

pbf = 1 − (1 − pfail)K (1)

And the probability pwf(w) to have w faulty ways among W in a set can be derived
by using the binomial probability law:

pwf(w) =
(

W

w

)
(pbf)

w(1 − pbf)
W−w (2)

3.2 Base static WCET estimation technique

The proposed analysis extends the standard static WCET estimation technique briefly
described hereafter, originally designed for fault-free architectures. Since our focus
is on the impact of permanent faults on instruction caches, the low-level analysis for
the scope of this paper only includes static instruction cache analysis. The base static
WCET estimation technique is representative of the current state-of-the-art and is
implemented in several tools (Wilhelm et al. 2008). The reader is referred to (Wilhelm
et al. 2008) and (Theiling et al. 2000) for further details on the static analysis techniques
extended in our work.

3.2.1 Low-level analysis

The contribution of instruction caches to the WCET is determined by associating
a Cache Hit/Miss Classification (CHMC) to every memory reference. The CHMC
we use, defined in Theiling et al. (2000), represents the worst-case behavior of each
reference with respect to the instruction cache:

– always-hit (AH): the reference will always result in a cache hit,
– first-miss (FM): the reference could neither be classified as hit nor as miss the first

time it occurs but will result in cache hits afterwards,
– always-miss (AM): the reference will always result in a cache miss,
– not-classified (NC): the reference could neither be classified as hit nor as miss.

CHMCs are obtained by applying the static analysis technique described in Theiling
et al. (2000), based on abstract interpretation. When using this technique, three analyses
that operate on the program control flow graph are defined:

– the Must analysis determines if a memory block is always present in the cache at
a given program point: if so, the reference CHMC is always-hit,

– the Persistence analysis determines if a memory block will not be evicted after it
has been loaded; the CHMC of such references is first-miss,

– the May analysis determines if a memory block may be in the cache at a given point:
if not, the reference CHMC is always-miss. Otherwise, if present neither in the
Must analysis nor in the Persistence analysis the reference CHMC is not classified.
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In order to avoid enumerating all possible (concrete) cache contents, each of these
three analyses compute an abstract cache state (ACS) at every program point until a
fixpoint is reached. The semantics of abstract cache states depends on the considered
analysis. For instance, a block in the Must ACS at a given point is guaranteed to be in
the cache at that point. Furthermore, for the Must and Persistence analyses, the age of
a block in an ACS is the maximum possible age that block could have in the cache at
run-time. The classifications of references as AH/FM are based on the maximal age
of the reference in the corresponding ACS (e.g. a reference is classified AH if its age
is lower or equal to w).

This concept of age in abstract cache states is at the core of the method. An in-depth
understanding of static cache analysis methods is not mandatory to understand the
method developed in this paper; further details can be found in Theiling et al. (2000).

3.2.2 High-level analysis

WCET calculation in this study uses the most prevalent technique, named IPET for
Implicit Path Enumeration Technique. IPET is based on an integer linear programming
(ILP) formulation of the WCET calculation problem (Li and Malik 1995; Puschner
and Schedl 1997). It reflects the program structure and the possible execution flows
using a set of linear constraints. Such constraints express that each basic block must
be entered the same number of times as it is exited (structural constraints), or indicate
the maximal number of times a basic block can be executed inside loops (loop bound
constraints). An upper bound of the program’s WCET is obtained by maximizing the
following objective function:

∑
b∈BasicBlocks

Tb ∗ xb (3)

Tb (constant in the ILP problem) is the timing information of basic block b. Tb

integrates the effects of caches, and is computed using the CHMC of its references
and the cache and memory latencies. xb (variables in the ILP system, to be instantiated
by the ILP solver) correspond to the number of times basic block b is executed.2 The
values of variables xb, once set by the ILP solver to maximize the objective function,
identify one of the paths in the program leading to the estimated WCET. The term
WCEP will be used to denote one on the longest execution paths.

4 Probabilistic static WCET estimation for faulty caches

4.1 Design rationale

Cache blocks with permanent faults are disabled, which reduces the cache capacity
and leads to additional cache misses, named all along the paper fault-induced misses;

2 Due to the definition of CHMC FM, variable xb is split into two distinct variables, one for the first

execution of the block (x f irst
b ) and another for the next executions (xnext

b ).
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(a) Fault-free cache configuration (b) Faulty cache configuration: 1 faulty block 
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Fig. 1 WCET and WCEP estimation for an architecture with a fully-associative 2-way cache (1 cycle
cache/100 cycles memory latency). A reference is performed by each basic block of the conditional structure.
A WCEP variation occurs between the fault-free configuration (a) and the faulty cache configuration (b)

a reference that was known to hit the cache for a fault-free cache may result in a cache
miss in the presence of faults.

Consequently, when statically analyzing faulty caches, some references that were
classified as hits when ignoring faults may have to be changed to misses in the pres-
ence of faults. For instance, let us assume a 2-way set-associative cache. For a given
reference, if the cache line containing that reference has a maximal age determined by
the Must analysis equal to 2, the fault-free analysis will classify the reference as AH.
However, if there is one faulty block in the set, the reference has to be classified as
NC. The estimated WCET is thus affected by faults due to the possible modifications
of the timing information of individual basic blocks.

The WCEP may change as well as compared to the fault-free WCEP. This behavior
is illustrated by Fig. 1. In a fault-free execution (Fig 1a), basic block C is not on the
WCEP because the memory reference in C is known to always hit the cache. With
the faulty cache configuration (Fig 1b), if the cache block of C is faulty, this access
is classified as a miss and changes the timing information of C , which now becomes
part of the WCEP.

Due to this possible WCEP variation, there is a need to cover all paths when ana-
lyzing the impact of faults. To do so, a safe naive brute-force solution to compute the
WCET probability distribution would consist in estimating for each possible faulty
cache configuration the WCET and the corresponding probability of that configuration
to happen.

The probability of a faulty cache configuration to occur would then be computed
as follows:

S∏
s=1

pwf(nbfaulty(s)), (4)

where the function nbfaulty(s) returns the number of faulty blocks of set s in the
configuration.

However, this exhaustive computation is impractical, due to the prohibitive number
of faulty cache configurations for which a WCET estimation has to be performed:
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Fig. 2 Number of references detected as hits per set and way, determined with the fault-free WCET
computation for single-path code and a 2-way 4-set LRU cache. The number of fault-induced misses for
the considered faulty cache configuration is equal to 10 + 14

(W + 1)S . The method we propose to deal with faulty caches provides probabilistic
WCET estimates very close to the one of the exhaustive method, but is computationally
tractable. This brute-force method will only be used as a baseline for the validation of
our approach in Sect. 5.

4.2 Method description

The proposed approach computes, for a given program, cache configuration, and prob-
ability of cell failure, a WCET probability distribution. In order to avoid an exhaustive
computation of WCETs for all combinations of fault locations, the proposed approach
operates in two steps. It first computes the fault-free WCET. Then, it determines an
upper bound of the probability distribution of the time penalties caused by fault-
induced misses. The WCET probability distribution is then obtained by adding these
two components. The fault-free WCET estimation is performed using the static analy-
sis described in Sect. 3.2. Thus, at the core of the method is the computation of the
penalty probability distribution described hereafter. We first present how to compute
the fault-induced miss penalty distribution in Sect. 4.2.1 and, then we propose a solu-
tion to reduce the pessimism of our approach in Sect. 4.2.2.

4.2.1 Computation of fault-induced miss penalty probability distribution

To progressively go into the details of our method, we first explain how the fault-
induced miss penalty is computed from a known faulty cache configuration. We first
focus on single-path code and then present the method on multi-path programs.

For single-path code, the number of fault-induced misses can be easily derived from
the results of the fault-free WCET analysis, since the number of cache hits for each
set on the (unique) execution path is known. This is depicted in Fig. 2. The figure
shows for every set and every way, from the most recently used (MRU) to the LRU
position in the LRU stack, how many accesses are detected as hits in that position.
The position in the LRU stack is given by the maximal age of each reference provided
by the cache analysis (Must and Persistence analyses). For instance, number 10 in the
LRU position in set 0 means that 10 references are detected as hits in that position
when set 0 is fault free. Thus, there are 10 + 14 fault-induced misses resulting from
two faulty blocks, located in sets 0 and 1.
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(a) (b)

Fig. 3 a Fault miss map (FMM) derived from the hits per sets and ways of Fig. 2. b Example of computation
of the distribution of fault-induced miss penalties for the first two sets

However, due to the WCEP variation effect presented in Fig. 1, generalizing the
method to multiple-path programs is not straightforward. Using the number of hits
occurring along the fault-free WCEP may indeed lead to an underestimation of the
number of references that cause misses and thus may lead to an underestimation of
the fault-induced miss penalty.

To overcome this issue and ensure that the number of fault-induced misses is never
underestimated, we compute for each set an upper bound of the number of references
detected as hits instead of computing the exact value. This is performed separately for
each set of the cache and for each possible number of faulty cache blocks f ∈ [1, W ]
in the set. The computation is made insensitive to path variations by considering the
memory references on all paths, and not only the ones on the WCEP. More precisely,
for a given set s j and a given number of faulty blocks f , the upper bound of the
number of fault-induced misses is obtained by an ILP formulation where the objective
function to maximize is as follows:

∑
b∈BasicBlocks

Rb ∗ xb (5)

in which Rb stands for the number of references of basic block b which map onto set
s j and determined by the cache analysis to have a maximal age in the f latest LRU
position. xb is the number of times basic block b is executed. This ILP formulation
is subject to the same set of linear constraints (structural constraints and loop bound
constraints) as the IPET formulation used to compute the WCET (Sect. 3.2.2).

By solving this ILP system for all sets and all possible numbers of faulty blocks per
set (S ∗ W different resolutions), we obtain a Fault Miss Map, denoted by FMM in the
following. This map gives an upper bound of the number of fault-induced misses per
set and per number of faulty blocks. In the map, a row corresponds to a set and each
column corresponds to a number of faulty blocks. Figure 3a gives the FMM derived
from the example of Fig. 2. For set 0, 10 fault-induced misses are determined when
1 block is faulty, which corresponds to the number of hits in the LRU position. 130
fault-induced misses are computed when the 2 blocks are faulty, which corresponds
to the sum of the number of hits in the MRU and LRU position.
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Given a faulty cache configuration and the FMM, the corresponding fault-induced
latency is then:

Latmem ∗
S−1∑
s=0

{
FMM[s][nbfaulty(s)] if nbfaulty(s) > 0
0 otherwise

(6)

with Latmem representing the memory latency.
In order to avoid exploring all possible faulty cache configurations to obtain the

penalty probability distribution, our method takes benefit of the independence of sets.
The penalty distribution is first computed for each cache set independently by studying
the respective impact of f ∈ [1, W ] faults. For each set, the distribution is composed
of at most W + 1 different penalties that correspond to 0 up to W faulty blocks with
the probability for each case given by pwf (Eq. 2). Since sets are independent and
all possible memory accesses are considered, all these discrete distributions are inde-
pendent. Thus, they can be combined by computing the product of their probability
distributions (also called convolution) to obtain an upper bound of the penalty distrib-
ution, as illustrated in Fig. 3b. In the figure, the penalty probability distribution of set
0 and set 1 have 3 distinct points corresponding to 0, 1 and 2 blocks faulty with their
associated probability to occur pwf(0), pwf(1) and pwf(2). These two distributions
are then combined by convolution to obtain the penalty probability distribution of set
0+1.

To improve the solver’s computation time of the different ILP resolutions, we inject
fault-insensitive frequency values, obtained during the fault-free WCET estimation,
into the ILP system before its resolution. This is achieved by keeping track of each xb

value determined during the fault-free WCET estimation and by using a dominance
analysis to determine basic blocks which are always on the execution path (i.e. they
dominate all the exit points of the program). The maximal number of times a basic
block b is executed is fault-insensitive if basic block b is always on the execution
path. For such a basic block, the corresponding variable xb is set to the value obtained
during the fault-free WCET estimation before the resolution.

4.2.2 Tightness improvement

While the method as described so far never underestimates the number of memory
references that may be affected by faults, it may be pessimistic. Indeed, mutually
exclusive accesses (i.e. accesses performed along the two branches of an if-then-
else construct) mapped to different sets are all considered as causing fault-induced
misses. This phenomenon is particularly important when entire sets are faulty, because
references target the MRU position more significantly than the other positions. To
improve the tightness of the distribution of penalties at a reasonable computation cost,
we focus on such situations.

We estimate the worst-case penalty when sf sets (sf ∈ [1, S]) are entirely faulty
and S − sf sets have all their blocks faulty except the MRU block. Let us denote by
penaltysf the computed worst-case penalty. After having computed the distribution of
penalties as described before (Sect. 4.2.1), the distribution is corrected to eliminate
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overestimated penalties. For each value of the distribution corresponding to sf entirely
faulty sets, none of the corresponding penalty values can exceed penaltysf meaning
that the values above that penalty can safely be reduced to penaltysf.

To estimate the worst-case penalty for sf entirely faulty sets, the IPET formulation
presented in Sect. 3.2.2 is extended to compute the WCET in the presence of sf entirely
faulty sets. The worst-case penalty is then obtained by subtracting the fault-free WCET
already computed.

In the ILP formulation, the presence of an entirely faulty set s is represented by a
binary variable sfs set to 1 when all blocks in set s are faulty. The following constraint
limits the number of sets that can be entirely faulty to sf:

S−1∑
s=0

s f s ≤ s f (7)

The penalty can be separated in two distinct parts: (i) the penalty resulting from all
accesses that hit exclusively in the MRU position (denoted by Ps

b for the accesses of
basic block b that hit in the MRU position of set s) and, (ii) the penalty resulting from
all accesses that hit but not in the MRU position (denoted by P ′

b for the accesses of
basic block b). Thus, the IPET objective function can be extended as follows:

∑
b∈BasicBlocks

(
Tb + P ′

b +
S−1∑
s=0

P j
b ∗ sf s

)
∗ xb (8)

In this formula, the penalty due to accesses in the MRU position is represented by
the sum of the penalties coming from the MRU position of each set s times s f s .

However, Eq. 8 is in a quadratic form, because sfs and xb are two variables of the
ILP system. To obtain a linear formulation, we introduce the variable hs

b which is equal
to xb if sfs is set to 1 and equal to 0 otherwise, which is modeled by the following
constraints:

hs
b ≤ xb and hs

b ≤ M ∗ s f s, (9)

where M is a constant higher than any possible xb. In our experiments M is fixed to
MAX_INT.

The objective function can thus be rewritten as follows:

∑
b∈BasicBlocks

(Tb + P ′
b) ∗ xb +

S−1∑
s=0

Ps
b ∗ hs

b (10)

Finally, to reduce the explored solution space and thus to improve the solver’s
resolution time, an extra constraint on the objective function is added, indicating an
upper bound of that function. This upper bound corresponds to the fault-free WCET
plus the extra-latency stemming from faults, the latter being the sum of all the fault-
induced cache misses, multiplied by the memory latency. Formally:
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(10) ≤ WCETfault free +
S−1∑
s=0

FMM[s][W ] ∗ Latmem (11)

S distinct resolution of the above ILP formulation are needed to determine the
values of penaltysf.

4.3 Complexity considerations

The base method that was presented in this section requires one run of the WCET
estimation tool to estimate the fault-free WCET. Then, S∗W resolutions of ILP systems
are required to obtain the fault miss map (FMM). Finally, to obtain the distribution
of fault-induced miss penalties, convolutions of the distributions of the S sets have
to be performed (complexity O(log(S))). This complexity has to be compared to
the (W + 1)S runs of the WCET estimation tool that would be required if all faulty
configurations were exhaustively examined. The method proposed to improve the
tightness requires S additional ILP system resolutions. Measured analysis times will
be given in Sect. 5.

5 Experimental results

In this section, we first present the experimental setup. Then the experiments demon-
strating the accuracy as well as the applicability of the method are detailed.

5.1 Experimental setup

Analyzed codes The experiments were conducted on 25 benchmarks from the
Mälardalen WCET benchmark suite.3 Table 1 summarizes the applications’ char-
acteristics. The analyzed programs include both single-path programs (fdct, jfdctint,
mincer, prime, matmult) and multi-path programs. They include both small loop inten-
sive programs and control programs, containing fewer loops and more complex control
flow.

Cache configurations The instruction cache size is fixed to 1 KB (or it will be men-
tioned otherwise) and an LRU replacement policy is assumed. The cache and memory
latencies are fixed to 1 cycle and 100 cycles respectively. The different configurations
in terms of associativity and cache line size are given when describing every experi-
ment. A cache block is composed of the data bytes, the tag bits and their corresponding
ECC bits assumed to be SEC-DED codes (Hamming 1950). As an example, for 1 KB
4-way cache with 64B cache line, for each cache block, there are 23 bits for the tag
and 6 bits for the tag ECC, as well as 11 ECC bits to protect the data.

WCET analysis The experiments were conducted on MIPS R2000/R3000 binary
code compiled with gcc 4.1 with no optimization and the default linker memory layout.
The WCETs of tasks are computed by the Heptane static WCET estimation tool (Colin

3 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.
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Table 1 Analyzed benchmarks

Name Description Binary code
size (bytes)

adpcm Adaptive pulse code modulation algorithm 7,644

bs Binary search for the array of 15 integer elements 328

bsort100 Bubblesort program 588

cnt Counts non-negative numbers in a matrix 816

compress Data compression program (adopted from SPEC95 for
WCET-calculation)

2,724

crc Cyclic redundancy check computation on 40 bytes of data 1,368

expint Series expansion for computing an exponential integral function 940

fdct Fast Discrete cosine transform 3,368

fft 1,024-point fast Fourier transform using the Cooly–Turkey
algorithm

6,244

fir Finite impulse response filter (signal processing algorithms) over a
700 items long sample

4,460

insertsort Insertion sort on a reversed array of size 10 472

jfdctint Discrete-cosine transformation on a 8 × 8 pixel block 3,048

lcdnum Read ten values, output half to LCD 608

ludcmp LU decomposition algorithm 3,092

matmult Matrix multiplication of two 20 × 20 matrices 848

minver Inversion of floating point matrix 5,312

ndes Complex embedded code 3,820

ns Search in a multi-dimensional array 600

nsichneu Simulate an extended Petri net 44,028

prime Calculates whether numbers are prime 512

qurt Root computation of quadratic equations 2,412

select A function to select the nth largest number in a floating point array 1,892

sqrt Square root function implemented by Taylor series 780

statemate Automatically generated code generated by the STAtechart
real-time-code generator STARC

8,768

ud Calculation of matrixes 2,348

and Puaut 2001), that implements the cache analysis and WCET computation steps
as presented in Sect. 3. The experimental results presented hereafter only account for
the contribution of instruction caches to the WCET. The effects of other architectural
features (data cache, pipeline, branch predictor) are not considered. CHMC NC is thus
considered equivalent to AM. Cplex 12.5 is used to solve the different ILP systems.

5.2 Experimental results

In this section, the accuracy of the proposed methods is first evaluated. Measurements
of the analysis computation time are then provided. Here, the optimization exploiting
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the dominance relation, as presented in Sect. 4.2.1 is systematically used. Finally,
some first results on the impact of architectural parameters are given.

5.2.1 Accuracy of probabilistic WCET estimates

We evaluate the quality of the proposed method in two steps, presented in the next
two paragraphs. First, we compare the base method (Sect. 4.2.1), named Base in
the following, and tightness-improved method (Sect. 4.2.2), named Improved in the
following, to a baseline method that enumerates all possible fault locations (named
Exhaustive hereafter) and statically evaluates the WCET for each of them. This first
set of experiments aims to show that the WCET produced by the proposed method is
very close to the exhaustive method. Second, we compare estimated WCETs with a
baseline that simulates program execution with random selection of fault location. The
term accuracy is used in both situations to quantify the difference with the baseline.

Results will be presented by depicting the complementary cumulative distribution
function. This curve can be seen has an exceedance function which indicates for a
given targeted probability p (e.g. 10−15 per task activation for aerospace commercial
industry Slijepcevic et al. 2013) the value at which the random variable WCET will
be equal to, or below that value, with probability 1 − p.

In this set of experiments, the instruction cache size is fixed to 1 KB with a 64B
cache line. Two configurations are used with 1-way (named DirectMapped) and 2-way
(named SetAssoc) per set respectively. These two configurations have a sufficiently
small number of different faulty cache configurations (6,561 = 38 for SetAssoc and
65,536 = 216 for DirectMapped) to allow an exhaustive computation/simulation of
the WCET distribution for all possible fault locations.

The probability of failure pfail is fixed to 10−4 which is representative of the highest
assumed probability of cell failure in related work (Nassif et al. 2010; Slijepcevic et
al. 2013). Other smaller pfails have been used during our experiments (see Sect. 5.2.5)
and we found that the worst accuracy occurred when the highest pfail was used.

5.2.2 Comparison of our method with static analysis and exhaustive exploration of
fault locations

To show the accuracy for all benchmarks, we first provide the normalized overesti-
mation of the Base and Improved methods against the Exhaustive method when the
targeted probability is set to 10−15. The results are depicted in Fig. 4 for both cache
configurations. The figure shows that method Improved significantly improves the
accuracy of method Base for both cache configurations. Moreover, WCETs obtained
by method Improved are very close to the ones obtained by method Exhaustive. A
deeper analysis of the results, for all benchmarks, reveals that the benchmarks can be
classified into three different categories according to the accuracy of our method:

– perfect (identical to the Exhaustive method): fdct, jfdctint, minver, prime, ud, mat-
mult, nsichneu, ns, insertsort, bsort100

– very accurate (very close to the Exhaustive method): adpcm, fir, qurt, sqrt, fft,
ludcmp
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(a)

(b)
Fig. 4 Normalized overestimation of the base and improved methods against the exhaustive when the
targeted probability is set to 10−15 (p f ail = 10−4)

– accurate (close to the Exhaustive method): bs, cnt, compress, crc, expint, lcdnum,
ndes, select, statemate

For space considerations, only a subset of the complementary cumulative distribu-
tions of the analyzed 25 benchmarks are given in Fig. 5 for the two considered cache
configurations (DirectMapped on the left, SetAssoc on the right). Presented results are
selected to have one benchmark of the three categories identified above. For the last
two categories, the benchmarks are chosen to be representative of the worst observed
accuracy. Each graph depicts the complementary cumulative distribution function of
the Exhaustive, Base and Improved methods. The 10−15 probability is highlighted by
an horizontal line in all graphs. The x-axis corresponds to the WCET (in cycles) and
the y-axis, in log scale, corresponds to the probability. By construction, the Base and
Improved curves are two upper bounds of the Exhaustive distribution meaning that
they are equal to or above the Exhaustive curve.

The general observation that can be made on all graphs is that the presence of
permanent faults significantly increases WCET estimates compared to the fault-free
WCET.

Regarding accuracy, for the perfect category, represented by nsichneu in Fig. 5, the
Base and Improved curves are identical to the Exhaustive distribution. This category
is composed of two groups of benchmarks: single-path and multi-path applications.
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Fig. 5 Complementary cumulative distribution function for nsichneu, adpcm and statemate

For the former group, this behavior is expected since the memory accesses are known
and are the same whatever the execution conditions. For the latter group, we found
that these benchmarks (nsichneu, ud, ns, insertsort, bsort100) do not have else blocks
in the conditional constructs of their code. This means that even if they are not single-
path, there is no overestimation for these codes of the number of memory references
when computing the impact of faults.

The second category, illustrated by adpcm in Fig. 5, reveals the presence of a small
overestimation of the Base curve as compared to the Exhaustive curve, and this when
nearly all the cache blocks are faulty (right part of the distribution). This overhead is
due to if-then-else constructs in their code which induces a few additional memory
references in the Base method as compared to the Exhaustive method. The Improved
method eliminates most of this overestimation and the resulting distribution is very
accurate.

The last category, depicted in Fig. 5 with statemate, shows that a significant over-
estimation can be observed (up to nearly 40 %) when comparing the Base method to
the Exhaustive method. For this set of benchmarks, we found that their code contains
if-then-else or switch constructs inside loops, which results in a significant overesti-
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mation of the memory references in the Base method. The Improved method reduces
significantly this overestimation, and even in that case, the Improved method produces
accurate distributions.

Finally, in all experiments, even if the shapes of the curves vary across the cache
configurations, the accuracy of our method is only marginally affected by the cache
configuration. The code structure is the main factor impacting the method accuracy.

5.2.3 Comparison of our method with simulation and exhaustive exploration of fault
locations

The second baseline, named Run Exhaustive hereafter, uses simulation-based results.
Run Exhaustive is obtained by using the Nachos educational operating system,4 run-
ning on top of a simulated MIPS processor. We have extended Nachos to evaluate the
impact on the WCET of all possible faulty cache configurations. This baseline is used
to show the impact on the accuracy of the static WCET analysis used in our approach
as compared to the actual WCET.

In this set of experiments, only single-path benchmarks are used to compare our
Improved method using static analysis against simulations. Only single-path programs
are studied here to focus on the impact of faults on the method accuracy, and rule out
imprecisions stemming from the determination of the longest execution path.

The results of these experiments are given in Fig. 6 for the two considered cache
configurations (DirectMapped on the left, SetAssoc on the right) on benchmark jfdctint.
Benchmark jfdctint is chosen because it has the worst observed accuracy (all the others
are nearly equal to the baseline curve).

Even on the worst-performing benchmark, our approach is shown to be very accu-
rate. The reason for the minor overestimation on benchmark jfdctint was investigated.
We found that the WCET analysis slightly overestimate both the age of the references
during the cache analysis and thus the number of memory accesses during the IPET
analysis.

5.2.4 Computation time

The measurements provided below are performed using an Intel Core i7 (2.9 GHz)
under OSX 10.8.2 with 8GB of DDR3 (1,600 MHz). Cplex 12.5 is set to run up to 4
threads in parallel to solve the ILP systems.

For the previous two cache configurations (1 KB cache, 64B lines, DirectMapped
and SetAssoc), the longest benchmark to analyze is nsichneu which is the biggest
benchmark used in our experiments (code size of 43 KB). For that benchmark, the
computation time needed to get the fault-free WCET is 0.26 s and the time to compute
the FMM is around 2 s for both cache configurations. The computation of the different
worst-case penalties for that benchmark takes respectively 3 s for the SetAssoc con-

4 Nachos web site, http://www.cs.washington.edu/homes/tom/nachos/.
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Fig. 6 Run exhaustive versus improved: complementary cumulative distribution function for jfdctint

figuration and 5 s for the DirectMapped configuration.5 When looking at the other
benchmarks, the computation takes at most 5 s, all steps included. To put it in perspec-
tive, when performing an exhaustive computation, more than 1,600 s (SetAssoc) and
16,000 s (DirectMapped) would be needed for nsichneu.

We have also considered bigger caches in this experiment to show the scalability of
our method. The assumed cache structure is a 4-way associative cache with 64B cache
lines and the number of sets vary from 4 to 256, for an overall cache size varying from
1 to 64 KB. The results for nsichneu are provided in Fig. 7 where the x axis represents
the cache size and the y-axis in log scale represents the execution time in seconds. The
nsichneu benchmark is selected because it produces the worst overall execution time
in most of the cases.

For the largest cache size, the overall execution time needed is less than 800 s which
shows the applicability of our approach on nowadays caches.

5 In the conference version of the paper (Hardy and Puaut 2013) it was 270 s. The significant improvement
comes from our complexity enhancement method consisting of injecting fault-insensitive frequency values
into the different ILP systems (Sect. 4.2.1).
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Fig. 7 Execution time measurement of a 1–64 KB (4-way 64B) cache

As expected, the fault-free WCET computation time stays constant because the
cache size has no impact on the fault-free WCET ILP system. The FMM computa-
tion needs at most 56 s. A factor close to 2 is observed for the FMM computation
when the cache size is doubled. Finally, the computation of the different worst-case
penalties takes at most 742 s and the factor when the cache size is doubled is 3.4 in
average.

Concerning the convolution part, the number of discrete points becomes huge when
the cache size is above 4 KB (at most (W + 1)S = 516 distinct points for a 4 KB cache
4-way 64B). Therefore, there is a need to use a re-sampling method (Maxim et al.
2012; Hardy et al. 2012) when performing the convolutions. However, this is not an
issue since (Hardy et al. 2012) has shown that it takes around 30 s to perform a similar
computation when considering a 2MB cache to get accurate results.

5.2.5 Impact of pfail on WCET distributions

As seen during the experiments evaluating the accuracy of our method, the impact
of permanent faults on the WCET is significant when considering the highest
pfail.

In this experiment, we explore the impact on WCET at different technology nodes
of permanent faults. Figure 8 shows the results for the SetAssoc cache configuration
(1 KB cache, 64B lines, associativity of 2) with the Improved method when considering
a range of pfail from 10−13 to 10−4 representative of technology nodes from 45 to
12 nm (Nassif et al. 2010). The two selected benchmarks (statemate and adpcm) are
representative of the two different observed behaviors.

At the current technology node (45 nm/pfail = 10−13), we observe that the impact is
very low for adpcm and almost null for statemate for the lowest targeted probability
(10−15). At 32 nm (pfail = 10−9) or below, representative of future technology nodes,
the impact becomes significant. Therefore, it is essential to mitigate the effect of
such faults to minimize their resulting penalty. The proposed method facilitates the
exploration of design tradeoffs to address this challenge.
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Fig. 8 Impact of permanent faults on WCET at different technology nodes (pfail)

5.2.6 Exploration of architectural parameters

In this section, we explore the cache parameters as a first step in the exploration of
the design tradeoffs for supporting faulty caches for future technology nodes. In the
following, the Improved method is used assuming pfail = 10−4 and a 1 KB cache
where the associativity, the cache block size and the cell size vary.

We first present the impact of the cache associativity on the WCET distribution.
The WCET distributions obtained by our method for three associativity degrees (1,
2 and 4) are presented in Fig. 9 for jfdctint. The three depicted cache configurations
have a fixed cache line size of 64B and they only differ by their associativity degree.

The results show that the higher the associativity, the lower the impact on the
WCET. A similar behavior is observed for all benchmarks. In other words, selecting
a set-associative cache instead of a direct-mapped can significantly reduce the WCET
that has to be considered for a given targeted probability. Having all blocks faulty in
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Fig. 9 Impact of the cache associativity on the WCET distribution
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Fig. 10 Impact of the cache block size on the WCET distribution

a set has a strong influence on worst-case performance; the probability to have all the
blocks faulty in a set for set-associative caches is lower than the probability to have
one block faulty in a direct-mapped cache.

The second studied cache parameter is the size of the cache blocks. Based on the
previous observation, we focus on 4-way set associative cache with respectively 16B,
32B and 64B cache block size. The WCET distributions are depicted in Fig. 10 for
jfdctint. The results show that even if the fault-free WCET is higher when smaller
cache blocks are used, the obtained distribution highlights the fact that smaller blocks
are profitable when considering the impact of permanent faults. This conclusion can
be made for all the benchmarks and is explained by the fact that the probability of a
block failure depends on the size of blocks, the lower the number of bits in a block,
the lower is the probability that the block is faulty.
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Table 2 Relative cell area and pfail for different cell size (32 nm) (Zhou et al. 2010)

C1 C2 C3 C4 C5 C6

Relative cell area 1 1.12 1.23 1.35 1.46 1.58

pfail 1.2e−03 1.2e−04 5.6e−06 2.1e−06 4.6e−07 1.9e−07
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Fig. 11 Impact of permanent faults on WCET for different cell size

The last cache parameter studied in this experiment is the cell size. Using more
robust cells can help reduce the impact of permanent faults on WCET. Based on previ-
ous observations, we focus on 4-way set associative cache with 16B cache line and to
assess the benefits of cell size, we use six different cells sizes with their corresponding
pfail from (Zhou et al. 2010) for 32 nm technology assuming a voltage of 0.7. The
corresponding pfail and relative cell area are provided in Table 2.

Figure 11 shows the results for statemate and adpcm which are representative of
the two different observed behaviors. An obvious observation is that the higher the
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cell size the lower the impact of faults on WCET because their pfail are lower. Using
the most robust cells (C6) allows to significantly reduce the impact of such faults for
adpcm and to be very close to the fault-free WCET for statemate when targeting a
probability of 10−15. However, this obviously comes at the cost of an increase in terms
of die area. Thus, depending on the targeted probability, using the most robust cell may
not be the best tradeoff since the same probability can be reached with lower cell size.
For instance, when targeting a probability of 10−10 C3 is the best tradeoff between
probability and die area for statemate under the selected experimental conditions.

To put it in a nutshell, choosing carefully the cache parameters at design time can
help to limit the impact of faults on the WCET distribution.

6 Conclusions and future work

In this paper, we have proposed a method to calculate a probabilistic WCET bound in
the presence of permanent faults in instruction caches. The method is based on static
analysis, and as such is guaranteed to always find the longest execution paths. Its prob-
abilistic nature only comes from the presence of faulty blocks in the architecture. The
method is shown to be computationally tractable, and does not require an exploration
of all the possible locations of faults. Experimental results show that the method is
accurate, in the sense that its provides probabilistic WCETs close to (but never under)
the method that exhaustively explores all possible locations for faults.

So far, our method has focused on faults in instruction caches. Generalizing it
to other micro-architecture components with SRAM cells (e.g. branch predictors,
data caches, cache hierarchies) and studying the interactions between architectural
components is a first direction for future work. Comparison with similar methods
based on measurements (Slijepcevic et al. 2013) is another direction for future work. A
more general direction would be to integrate our method in an architectural exploration
framework, to decide of the most appropriate fault management mechanism for all
architectural elements.
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