
Real-Time Syst (2014) 50:509–547
DOI 10.1007/s11241-014-9202-z

Fault-tolerant and real-time scheduling for
mixed-criticality systems

Risat Mahmud Pathan

Published online: 13 May 2014
© Springer Science+Business Media New York 2014

Abstract The design and analysis of real-time scheduling algorithms for safety-
critical systems is a challenging problem due to the temporal dependencies among
different design constraints. This paper considers scheduling sporadic tasks with three
interrelated design constraints: (i) meeting the hard deadlines of application tasks,
(ii) providing fault tolerance by executing backups, and (iii) respecting the critical-
ity of each task to facilitate system’s certification. First, a new approach to model
mixed-criticality systems from the perspective of fault tolerance is proposed. Sec-
ond, a uniprocessor fixed-priority scheduling algorithm, called fault-tolerant mixed-
criticality (FTMC) scheduling, is designed for the proposed model. The FTMC algo-
rithm executes backups to recover from task errors caused by hardware or software
faults. Third, a sufficient schedulability test is derived, when satisfied for a (mixed-
criticality) task set, guarantees that all deadlines are met even if backups are executed to
recover from errors. Finally, evaluations illustrate the effectiveness of the proposed test.

Keywords Run-time support · Real-time scheduling · Fixed-priority scheduling ·
Mixed-criticality systems · Fault-tolerance

1 Introduction

Safety-critical systems, e.g., automotive, aircraft, space shuttle, have strict real-time
and fault-tolerant requirements. In addition, the manufacturers of safety-critical sys-
tems are considering mixed-criticality design by hosting tasks having different critical-
ity on the same computing platform due to space, weight and power (SWaP) concerns.

R. M. Pathan (B)
Department of Computer Science and Engineering,
Chalmers University of Technology, 412-96 Göteborg, Sweden
e-mail: risat@chalmers.se

123

510 Real-Time Syst (2014) 50:509–547

Ensuring the real-time properties of such systems is challenging because the schedule
to satisfy real-time constraints, i.e., meeting deadlines, can influence or be influenced
by the fault-tolerant and/or mixed-criticality constraints. This paper proposes a new
uniprocessor fixed-priority (FP) scheduling algorithm, called fault-tolerant mixed-
criticality (FTMC), for scheduling constrained-deadline sporadic tasks by taking into
account three interrelated design constraints: (i) meeting the deadlines of the tasks
(real-time constraints), (ii) providing fault tolerance using time-redundant execution
of backup tasks (fault-tolerant constraints), and (iii) respecting the statically-assigned
criticality of each task to facilitate system’s certification (mixed-criticality constraints).

This paper considers safety-critical application (e.g., control and monitoring) mod-
eled as a collection of sporadic real-time tasks, i.e., a task potentially releases infinite
number of instances, called jobs. Consecutive jobs of a task are separated by a mini-
mum inter-arrival time. Each job must deliver correct output before its deadline even
in the presence of faults. According to Avižienis et al. (2004), a fault is a source of an
error which is an incorrect state in the system that may cause deviation from correct
service, called failure. When a task’s behavior is incorrect (e.g., wrong output gener-
ated or wrong execution path is taken) due to some fault, we categorize such behavior
as task error, not as task failure because we aim to mask task errors to avoid task
failures.

In addition to satisfying the temporal correctness, the functional correctness of
safety-critical systems ought to be guaranteed even in the presence of faults; otherwise,
the consequence may be disastrous, like death or severe economic loss. To guarantee
both temporal and functional correctness, the proposed FTMC algorithm considers
fault-tolerant scheduling to recover from task errors caused by hardware transient
faults or software bugs. When a fault adversely affects the functionality of a task, the
task is said to be erroneous. Hardware transient faults may occur due to, for example,
hardware defects, electromagnetic interferences, or cosmic ray radiation (Koren and
Krishna 2007). Hardware transient faults are the most common, and their number
is continuously increasing due to high complexity, smaller transistor sizes and low
operating voltage for computer electronics (Baumann 2005). In addition, software
faults (bugs) may remain undetected even after months of software testing.

Real-time scheduling with fault-tolerant capability is implemented using redun-
dancy either in time or space (Koren and Krishna 2007). However, time redundancy
rather than space redundancy is often viable and cost-efficient means to achieve fault-
tolerance due to SWaP concerns in many resource-constrained systems. The proposed
FTMC algorithm employs time redundancy to recover from task error while also ensur-
ing the real-time constraints.

In time redundancy, each task is considered to have one primary and several backups.
Multiple task errors due to multiple of faults may affect the same job of a task in such a
way that the primary and multiple backups of that job may become erroneous. Multiple
task errors may also affect different jobs of the same task or may affect different
jobs of different tasks. The FTMC algorithm has to ensure that each job (including
its backups) of each task completes execution before its deadline to guarantee both
temporal and functional correctness of the system. Whenever a job of some task is
ready to execute, the FTMC algorithm first dispatches the primary. If the primary is
detected to be erroneous, then one-by-one backup is dispatched until the output is

123

Real-Time Syst (2014) 50:509–547 511

correct. The priority of the backup is same as the primary. The backup can either be
the re-execution of the primary or a diverse-implementation execution of the same
task. Note that the WCET of a backup which is implemented diversely may be smaller
or larger than that of the original task.

Algorithm FTMC also considers the mixed-criticality aspect of safety-critical sys-
tem to facilitate certification—which is about ensuring certain level of confidence
regarding the correct behavior (e.g., meeting deadline, producing non-erroneous out-
put) of different multi-criticality functions hosted on a common computing platform.
The need for research in the domain of mixed-criticality MC systems is motivated in
Barhorst et al. (2009) using an example of unmanned aerial vehicle (UAV) which is
expected to operate over or close to civilian airspace. Such a system has both flight-
critical and mission-critical functionalities that require safety, reliability and time-
liness guarantee. In addition, the design of such safety-critical MC systems is often
subject to certification by standard statutory certification authority (CA), for exam-
ple, by Federal Aviation Authority (FAA) in the US or the European Aviation Safety
Agency (EASA) in Europe for avionics systems. A certified product is considered safe
and also promotes confidence among the end-users in buying that product.

Traditionally, the design of a non-mixed-criticality system assumes the same crit-
icality level for all the functions present in the system. In contrast, an MC system has
multiple criticality levels where each function is assigned one unique criticality based
on its “importance”. For example, the ABS function in a car is assigned a safety crit-
icality level that is relatively higher than that is assigned to the DVD player function.
Higher criticality level assigned to a function means that higher degree of assurance is
needed regarding the correct behavior of the function. The FTMC algorithm considers
scheduling MC tasks having two criticality levels (called, dual-criticality system): each
task’s criticality is either low (LO-critical task) or high (HI-critical task). Extending
the FTMC algorithm for more than two criticality levels adds no fundamental chal-
lenge, and for simplicity of presentation, this paper considers dual-criticality system.
The main principle to extend the result of this paper for more than two criticality levels
is briefly presented in Sect. 7.2.

The degree of assurance needed for certifying the behavior of an MC system as “cor-
rect” is a function of different criticality levels. In this paper, the correct behavior of an
MC system is modeled using timing constraints (i.e., deadlines). Certification of MC sys-
tem is a challenging and costly approach since such system is relatively complex due to
the integration of functionalities with different criticality levels. The run-time behavior
of MC system like other systems varies based on the operating environment, hardware
dynamics, input parameters, and so on. The behavior of the system at each time instant
determines the criticality behavior of the system at that time instant. The criticality
behavior of the system changes from one time instant to another while the statically-
assigned criticality of each function does not change. The criticality behavior of an MC
system can be modeled based on many different run-time parameters. This paper con-
siders two such parameters to model the run-time criticality behavior of MC systems:
the WCET of application tasks and the frequency of errors detected in the system.

Whether the deadline of a function is met or not depends on the WCET of the func-
tion, which is the maximum CPU time the function requires to complete its execution.
The WCET of a function can be approximated at varying degrees of confidence or

123

512 Real-Time Syst (2014) 50:509–547

assurance, depending on the inaccuracy or difficulty in estimating the true WCET, for
example, due to the variability in inputs, operating environment, hardware dynamics,
and so on. The higher degree of assurance needed in estimating the WCET of a func-
tion, the larger (more conservative) the WCET bound tends to be in practice (pointed
by Honeywell’s engineer Vestal in 2007).

Building upon Vestal’s seminal work (Vestal 2007), there have been several
approaches (Baruah and Vestal 2008; Baruah et al. 2010, 2011b, 2012b; Li and Baruah
2010b; Guan et al. 2011; Ekberg and Yi 2012; Baruah and Fohler 2011; Santy et al.
2012) to design certification-cognizant scheduling of MC system based on a particular
run-time aspect: the WCET of the tasks. In order to certify an MC system as being cor-
rect, the worst-case assumptions by the CA regarding the system’s run-time behavior
tend to be more conservative in comparison to that of assumed by the manufacturer.
Based on Vestal’s model, each task in a dual-criticality system is considered to have
two different WCETs: CLO (LO-criticality WCET) and CHI (HI-criticality WCET)
such that CLO ≤ CHI. The assumption regarding the WCET of the tasks holding dur-
ing run-time determines the criticality behavior of the system. The criticality behavior
of the system is determined by comparing the actual execution time of each task with
the WCET that is estimated using different degrees of assurance. When some task’s
actual execution time exceeds CLO, the system is considered to switch from LO to HI
criticality behavior.

Inspired by Vestal’s model, this paper also considers that each primary and backup
of a task has two different WCETs corresponding to LO and HI criticality behaviors.
In addition, this paper considers another important run-time parameter to model MC
system—the number of task errors detected in any interval no larger than Dmax —
where Dmax is the maximum relative deadline of the tasks. The term “task error”
refers to the situation when the output of a primary/backup of some job of a task is
erroneous. Multiple task errors may be detected in the same job of a task or in multiple
jobs of the same task or in jobs of different tasks. In this paper, it is assumed that the
frequency of task errors at higher criticality behavior is larger than the frequency of
errors at lower criticality behavior. In other words, the CA assumes higher frequency
of errors in comparison to that of the manufacturer. In any interval of no larger than
Dmax , the manufacturer considers to recover at most f errors while the CA considers
to recover at most F errors where F ≥ f. This way to model the criticality behavior of
the MC system will be used to generate robust schedule for tolerating WCET overrun
and higher number of errors. Based on the different constraints regarding the WCET
and frequency of errors, the criticality behavior of an MC system is defined as follows:

Definition 1 (Mixed-Criticality Behavior) An MC system exhibits LO-criticality
behavior if

• each task’s primary or backup executes no more than the WCET estimated for the
LO criticality behavior, and
• the number of task errors detected in any interval no larger than Dmax is at most f.

Otherwise, the system exhibits HI-criticality behavior if

• any task’s primary or backup executes at most the WCET estimated for the HI
criticality behavior, and

123

Real-Time Syst (2014) 50:509–547 513

Fig. 1 Staring from time t = 0, the error detected at t = 12 is the first occurrence of (f + 1)th (i.e.,
second) error in an interval no larger than Dmax = 5. By assuming that no job’s primary/backup exceeds
LO-criticality WCET before t = 12, the system exhibits LO-criticality behavior in [0, 12) and switches to
HI-criticality behavior at t = 12. However, if some job’s primary/backup exceeds LO-criticality WCET
before t = 12, then the system switches to HI-criticality behavior earlier than t = 12. The error detected
at t = 14 occurs during the HI-criticality behavior

• the number of task errors detected in any interval no larger than Dmax is at most
F, where F ≥ f.

Otherwise, the behavior of the system is erroneous. ��
The HI-criticality behavior of the system requires higher computation power

because tolerating WCET overrun or higher frequency of errors need additional
processing capacity to meet the deadlines of the tasks. Based on Definition 1, the
system is considered to switch from LO to HI criticality behavior at time t if one of
the following events (denoted by E1 and E2) is detected at t :

• E1 Some job’s primary or backup does not signal completion after finishing its
LO-criticality WCET.
• E2 There is an error detected at time t and this is the (f + 1)th error detected in
[t − t ′, t] such that t ′ ≤ Dmax . This is illustrated in Fig. 1 for Dmax = 5 and
f = 1.

According to Definition 1, this paper considers restricting certain number of task
errors in any interval no larger than Dmax during the LO- and HI-criticality behavior
of the system. No fault-tolerant system can mask infinite number of task errors in a
bounded interval. Therefore, the schedulability guarantee of fault-tolerant systems is
this paper is provided by assuming a bounded number of errors in an interval.

Assuming a bounded number of task errors in any interval no larger than Dmax is a
system-level property that applies to all the tasks in the system rather than only being
applicable to some specific task. This enables to perform (as will be evident later)
the schedulability analysis of each task by applying the analysis only to an arbitrary
job of each task; rather than doing so for all the (potentially infinite number of) jobs
of the task. This is because the maximum number of errors between the release time
and deadline of any job of any task is not larger than the maximum number of errors
assumed to occur in any interval of length Dmax since no job’s deadline is larger than
Dmax .

No other restriction regarding the occurrences of task errors is assumed for FTMC
scheduling: (i) errors can occur in any job of any task at any time, (ii) there is no
separation restriction regarding the occurrences of consecutive errors, and (iii) there is
no probability distribution assumed for the occurrences of task errors. Consequently,
assuming a bounded number of task errors in Dmax also covers the case where all

123

514 Real-Time Syst (2014) 50:509–547

these errors may occur in an interval smaller than Dmax . To that end, the schedulability
analysis of this paper in fact considers the worst-case occurrences of a bounded number
of errors in the busy-period1 of each task where the length of the busy period may be
smaller than Dmax .

The proposed FTMC scheduling is based FP scheduling paradigm. The dominating
scheduling approach in industry for meeting the hard deadlines of application tasks is
the FP scheduling policy, due to its flexibility, ease of debugging, and predictability.
Under the FP scheduling strategy, each task is assigned a priority that never changes
during the execution of the task. This paper addresses preemptive FP scheduling of
sporadic tasks on uniprocessor platform. In preemptive FP scheduling, at each time
instant, the highest-priority runnable2 task is dispatched for execution. If the processor
is busy for executing a relatively lower-priority task, then the highest-priority runnable
task is dispatched for execution by preempting the lower-priority (executing) task.
The preempted task may later resume its execution when it becomes the highest-
priority runnable task. As will be evident in next paragraph if some LO-critical task is
preempted before the criticality switch and becomes ready after the criticality switch,
then such LO-critical task will not be allowed to resume their executing after the
criticality switch in FTMC scheduling.

The proposed FTMC algorithm (formally presented later) is same as traditional
uniprocessor FP scheduling with three additional features: run-time monitoring to
detect the events E1 and E2 (i.e., when the system switches toHI-criticality behavior);
dropping the LO-criticality tasks after the system switches to HI-criticality behavior;
and finally, dispatching backup whenever task error is detected. Based on run-time
monitoring, as soon as it is detected that the system has switched to HI-criticality
behavior (i.e., the assumptions for LO-criticality behavior are no more valid), only the
HI-criticality tasks including their backups are scheduled. When the system switches
to HI-criticality behavior, rather than dropping the LO-critical tasks, the execution
of the LO-critical tasks may be suspended until the system’s criticality behavior is
restored to LO-criticality behavior. However, this paper considers dropping (rather
than suspending) the LO -critical tasks since for certification it is enough to show that
the system is schedulable in both LO and HI critical behaviors.

The FTMC algorithm schedules MC sporadic tasks with both real-time and fault-
tolerant constraints while facilitating system’s certification. TheFTMC algorithm needs
to recover at most f and F task errors during the LO- and HI-criticality behaviors in
any interval no larger than Dmax , respectively. And, the execution time of the primary
and backups of each task may be up to the corresponding WCET assumed for each
criticality behavior.

The major contribution in this paper is the derivation of a sufficient schedulability
test for FTMC algorithm. As will be evident later deriving an exact schedulability
test for the FTMC algorithm is computationally impractical. When the proposed test
is satisfied for a task set, it is ensured that all deadlines are met even if backups are
executed to recover from task errors, which facilitates certification. Deriving such a

1 An interval is called level-i busy period if task τi and its higher priority jobs continuously execute in that
interval. A more formal definition of busy period will be provided later.
2 A task is runnable if it has been released but has not completed its execution.

123

Real-Time Syst (2014) 50:509–547 515

schedulability test is important to guarantee offline that all the deadlines will be met
during the mission of the system. Experimental results show that the proposed test is
very close to the theoretical upper bound of the fraction of schedulable, randomly-
generated task sets. In other words, the sufficient schedulability analysis presented
in this paper is quite close to the exact analysis, i.e., does not suffer from too much
pessimism.

Another challenge in the design of mixed-criticality scheduling is the priority
assignment problem for the MC tasks. The priority and criticality of a task are not
necessarily positively correlated in the sense that always assigning higher priority to
a higher criticality task may not yield the best performance (Vestal 2007; Baruah and
Vestal 2008; Baruah et al. 2011b). The criticality level of a task is statically assigned
based on the degree of assurance needed regarding its correct behavior (which in this
paper is about meeting its deadline). In case of FP scheduling, a task with higher
criticality level may sometimes be assigned higher fixed priority to ensure, for exam-
ple, that all the HI-criticality tasks get processing resources before the LO-critical
ones. However, a task with higher criticality level may sometimes need to be assigned
a relatively lower fixed priority to allow the deadlines of all the LO- and HI-critical
tasks to be met. The deadline-monotonic (DM) priority ordering—which is optimal for
traditional FP scheduling of constrained-deadline sporadic tasks (Leung and White-
head 1982)—is already shown to be suboptimal for scheduling MC tasks (Vestal 2007;
Baruah et al. 2011b). Therefore, determining a good FP priority assignment policy is
very important for MC systems and this problem is addressed in this paper. Another
salient feature of the proposed schedulability test is that it can be used to find effective
fixed-priority ordering of the tasks based on Audsley’s optimal priority assignment
(OPA) algorithm (Audsley 2001).

The derivation of a schedulability test that does not suffer mush from pessimism and
finding an effective priority ordering that makes a task set schedulable on a given plat-
form have several advantages. First, it reduces the demand on computing resources
which in turn reduces the cost of the system for mass production. Second, lower
computing resource means less SWaP consumption which are desirable in many
resource-constrained embedded systems. Finally, efficient use of system resources
enables incorporating more functionalities on the same computing platform without
buying additional hardware. All these advantages provide better competitiveness of a
product in the market.

Certification of safety-critical system is a complex and broad issue. In reality, the
CA does not certify only a piece of software, e.g., scheduler, rather the entire system
(e.g., aircraft or car) is certified. The aim of certification is to check that the required
verification and validation (V&V) activities, depending on the criticality level, have
been successfully completed by the manufacturer. It must be noted that the manufac-
turer and the CA do not have different or conflicting aims in developing and certifying
a product. Addressing the entire spectrum of certification of MC system is outside the
scope of this paper. The certification issue of MC system, addressed in this paper, is
tailored to the issue of real-time and fault-tolerant scheduling. The scheduling algo-
rithm proposed in this paper is to facilitate certification of MC systems by ensuring
different levels of assurance for different criticality behavior. In this paper, the different
values of WCET and frequency of errors are considered to model the criticality of the

123

516 Real-Time Syst (2014) 50:509–547

software and to show the robustness of the system in tolerating WCET overrun and
mitigating the effect of higher number of errors than predicted. Based on such model,
the manufacturer would be able to show that the required V&V activities (regarding the
system’s schedule) have been performed which guarantees correctness of the system
in case of WCET overrun and increase in frequency of errors.

The paper is organized as follows. The fault and task models are presented in Sect. 2.
The FTMC algorithm is formally presented in Sect. 3. Important considerations and an
overview of the worst-case schedulability analysis of FTMC algorithm are presented
in Sects. 4 and 5. The schedulability tests for both criticality behaviors are presented in
Sects. 6 and 7. Empirical investigation into the proposed schedulability test is presented
in Sect. 8. Finally, related works are presented in Sect. 9 before concluding the paper
in Sect. 10.

2 Fault and task model

The category of real-time systems having stringent timing constraints is called hard
real-time systems. If the timing constraints of a hard real-time system are not satis-
fied, then the consequences may be catastrophic, for instance, threat to human lives.
Consequently, it is of utmost importance for designers of hard real-time systems to
ensure a priori that all the timing constraints will be met when the system is in mission.
The timing constraints of hard real-time applications can be fulfilled using appropriate
scheduling of the tasks on a particular hardware platform. Scheduling is the policy of
allocating resources (e.g., CPU time, communication bandwidth) to the tasks of the
application that are competing for the same resource. Scheduling algorithms and their
analysis that can be used to verify the timing constraints of hard real-time systems
are at the heart of the research presented in this paper. The design and analysis of
hard real-time scheduling algorithms is based on appropriate modeling of the target
system. This is because a priori knowledge of the workload and available resources
is necessary to analyze and ensure predictability of the system. The task and fault
models are presented in this section.

2.1 Fault model

The nature and frequency of faults considered for the design of a particular fault-
tolerant system are specified using a fault model. The fault model used for analyzing
the predictability of different computer systems varies. For example, the fault model
considered during the design of a space shuttle is different from that of personal
computers. Identifying the characteristics of the faults and the corresponding errors
is an important issue for the design of an effective fault-tolerant system. Based on
persistence, faults can be classified as permanent, intermittent, and transient (Koren
and Krishna 2007). Faults can occur in hardware or/and software.
Hardware faults A permanent failure of the hardware is an erroneous state that is
continuous and stable. Such erroneous state is caused by some permanent fault in
the hardware. This paper does not consider tolerating permanent hardware faults, for

123

Real-Time Syst (2014) 50:509–547 517

example, failure of a processor permanently. Such failure needs to be tolerated using
hardware redundancy, for example, using TMR approach.
Transient hardware faults are temporary malfunctioning of the computing unit or any
other associated components which causes incorrect state in the system. Intermittent
faults are repeated occurrences of transient faults. Transient faults and intermittent
faults manifest themselves in a similar manner. They happen for a short time and then
disappear without causing a permanent damage. If the error caused by such transient
faults are recovered, then it is expected that the same error will not re-appear since
transient faults are short lived.

• Sources and rate of hardware transient faults The main sources of transient faults
in hardware are environmental disturbances like power fluctuations, electromag-
netic interference and ionization particles. Transient faults are the most common,
and their number is continuously increasing due to high complexity, smaller tran-
sistor sizes and low operating voltage for computer electronics (Baumann 2005).
It has been shown that transient faults are significantly more frequent than perma-
nent faults (Siewiorek et al. 1978; Castillo et al. 1982; Iyer et al. 1986; Campbell
et al. 1992; Baumann 2005; Srinivasan et al. 2004). Experiments by Campbell,
McDonald, and Ray using an orbiting satellite containing a microelectronics test
system found that, within a small time interval (∼15 min), the number of errors
due to transient faults is quite high (Campbell et al. 1992). It was shown by Shiv-
akumar et al. (2002) that the error rate in processors due to transient faults is likely
to increase by as much as eight orders of magnitude in the next decade.

Software faults All software faults, known as software bugs, are permanent. However,
the way software faults are manifested as errors leads to categorize the effect as:
permanent and transient errors. If the effect of a software fault is always manifested,
then the error is categorized as permanent. For example, initializing some global
variable with incorrect value which is always used to compute the output is an example
of a permanent software error. On the other hand, if the effect of a software fault is not
always manifested, then the error is categorized as transient. Such transient error may
be manifested in one particular execution of the software and may not manifest at all
in another execution. For example, when the execution path of a software varies based
on the input (for example, sensor values) or the environment, a fault that is present in
one particular execution path may manifest itself as a transient error only when certain
input values are used. This fault may remain dormant when a different execution path
is taken, for example, due to a change in the input values or environment.
Fault model of this paper The fault-tolerant scheduling algorithms proposed in this
paper considers tolerating multiple task errors due to hardware transient faults and
software faults (errors due to which may be transient or permanent in nature). Hardware
transient faults that can cause transient task errors are considered in the fault model of
the paper. Hardware transient faults are short lived and generally cause no permanent
error to the hardware. Therefore, re-executing the primary as backup is a cost-efficient
and simple means for tolerating such faults. Software faults that leads to transient
errors can be masked using simple re-execution. Such software faults which result
in transient errors are considered in the fault model. Finally, software faults which
result in permanent task errors (therefore, cannot be tolerated using re-execution) are

123

518 Real-Time Syst (2014) 50:509–547

also considered in the fault model. A diverse implementation of the same task (e.g.,
exception handler) needs to be executed as backup to recover from such permanent
error due to software faults. To this end, the FTMC algorithm considers original-task
re-execution or diverse-implementation execution as backup.

The FTMC algorithm needs to recover during theLO- andHI-criticality behaviors at
most f and F errors in any interval no larger than Dmax , respectively. And, during the
LO-criticality behavior of the system, no task’s primary/backup executes more than
its LO-criticality WCET while it can execute up to its HI-criticality WCET during
the HI-criticality behavior of the system. Regardless of how errors are propagated,
the FTMC algorithm can recover errors as long as the errors are contained at the task
level (i.e., error-containment region) and the frequency of errors is bounded according
to the assumed fault model. Faults that affect the system software (e.g., RTOS) or
cause permanent hardware error (e.g., processor failure) need to be tolerated using
system level fault-tolerance, for example, using triple-modular (space) redundancy.
This paper does not address system level fault-tolerance rather proposes fault-tolerant
technique for application level.

Masking task errors based on time redundancy have been proposed for non-MC
task systems in many other works considering hardware transient faults (Pandya and
Malek 1998; Liberato et al. 2000; Punnekkat et al. 2001; Aydin 2007; Lima and Burns
2003; Many and Doose 2011; Short and Proenza 2013) and software faults (Chetto
and Chetto 1989; Han et al. 2003). However, many of these earlier works are based on
a relatively restricted fault model assuming, for example, that (i) the inter-arrival time
of two faults must be separated by a minimum distance (Ghosh et al. 1995; Pandya
and Malek 1998; Burns et al. 1996 Lima and Burns 2003; Punnekkat et al. 2001), (ii)
at most one fault may occur in one task (Punnekkat et al. 2001; Han et al. 2003), (iii)
the backup is simply the re-execution of the original task, i.e., do not consider diverse
implementation of the task (Ghosh et al. 1995; Pandya and Malek 1998; Punnekkat
et al. 2001; Liberato et al. 2000; Many and Doose 2011). In contrast, the fault model
considered for theFTMC algorithm is very powerful in the sense that it covers variety of
hardware/software faults and can recover multiple errors in any task, at any time even
during the execution of backups. The fault model allows to consider many different
situations, for example, where (i) a single job of a particular task is affected by multiple
faults, (ii) a single fault causes multiple task errors, (iii) different jobs are affected by
different number of faults, (iv) faults that may occur in bursts, and (v) the inter-arrival
time of faults is not predictable.
Error-detection mechanisms In order to tolerate a fault that leads to an error, fault-
tolerant systems rely on effective error detection mechanisms. The design of many
fault-tolerant scheduling algorithm relies on effective mechanisms to detect errors.
Error detection mechanisms and their coverage (e.g., percentage of errors that are
detected) determine the effectiveness of the fault-tolerant scheduling algorithms.

The fault-tolerant scheduling algorithm proposed in this paper relies on effective
error-detection mechanisms that are already part of the safety-critical system’s health
monitoring functions. We assume 100 % error-detection coverage, i.e., each error
is detected based on existing hardware/software based error-detection mechanisms.
Errors that skipped detection at a partition-level must be masked at the system level
using, for example space redundancy, which is not addressed in this paper.

123

Real-Time Syst (2014) 50:509–547 519

Error detection can be implemented in hardware or software. Hardware imple-
mented error detection can be achieved by executing the same task on two processors
and compare their outputs for discrepancies (duplication and comparison technique
using hardware redundancy). Another cost-efficient approach based on hardware is to
use a watchdog processor that monitors the control flow or performs reasonableness
checks on the output of the main processor (Madeira et al. 1991). Control flow checks
are done by verifying the stored signature of the program control flow with the actual
program control flow during runtime. In addition, today’s modern microprocessors
have many built-in error detection capabilities like, error detection in memory, cache,
registers, illegal op-code detection, and so on (Meixner et al. 2007; Kalla et al. 2010;
Al-Asaad et al. 1998).

There are many software-implemented error-detection mechanisms: for example,
executable assertions, time or information redundancy-based checks, timing and con-
trol flow checks, and etc. Executable assertions are small code in the program that
checks the reasonableness of the output or value of the variables during program exe-
cution based on the system specification (Jhumka et al. 2002; Hiller 2000). In time
redundancy, an instruction, a function or a task is executed twice and the results are
compared to allow errors to be detected (duplication and comparison technique used in
software) (Aidemark et al. 2005). Additional data (for example, error-detecting codes
or duplicated variables) are used to detect occurrences of an error using information
redundancy (Koren and Krishna 2007).

2.2 Task model

A task model specifies the workload and timing constraints of the real-time application.
A task is a particular piece of program code that performs some computation, e.g.,
reading sensor data, writing actuator value, executing a control loop, etc. The recurrent
task model considered in this paper is the sporadic task model where the inter-arrival
time (period) of each task has a lower bound and the relative deadline of each task
is not greater than its period. An instance (also, called job) of the task is said to be
released when it becomes available for execution. The releases of two consecutive
jobs are separated by at least the period of the task. The deadline is “relative” in the
sense that whenever a job is released, the deadline for that job applies with respect to
its release time.

The uniprocessor preemptive FP scheduling of n sporadic tasks in � = {τ1 . . . τn}
is considered. Task τi is characterized by a 5-tuple (Li , Di , Ti ,

−→
C L

i ,
−→
C H

i), where

• Li ∈ {LO,HI} is the criticality of the task;
• Ti ∈ N

+ is the minimum inter-arrival time (also called period) of consecutive jobs
of the task;
• Di ∈ N

+ is the relative deadline such that Di ≤ Ti ;
• −→C L

i is a vector < Ci,p, Bi,1, . . . Bi,f > where the LO-criticality WCET of τi ’s
primary is Ci,p and the LO-criticality WCET of ath backup of τi is Bi,a .

• −→C H
i is a vector < ̂Ci,p, B̂i,1, . . . B̂i,f, . . . B̂i,F > where the HI-criticality WCET

of τi ’s primary is ̂Ci,p and the HI-criticality WCET of ath backup of τi is B̂i,a .

123

520 Real-Time Syst (2014) 50:509–547

The WCET of a piece of code is generally an upper bound on true WCET and
the more confidence one needs in estimating the true WCET of a piece of code, the
more pessimistic this upper bound tends to be in practice (Vestal 2007). Accurately
estimating the WCET of a piece of code is challenging and also an active research
area (Yoon et al. 2011; Huynh et al. 2011; Guan et al. 2012; Chattopadhyay et al.
2012). One reason for this problem is because modern processors include performance
enhancing micro-architectural features (e.g., pipelining, caching) that make WCET
estimation complicated. Another reason is that software is becoming more complex
as new services/function are added to the system, for example, advanced safety features
in modern cars. The different parts of hardware and possible paths in software that
are exercised during a particular run of a system is quite difficult to predict, which
makes the WCET estimation challenging. The different values of WCET of the same
task used in this paper is to model the possibility of WCET overrun. To this end, it is
assumed that Ci,p ≤ ̂Ci,p and Bi,a ≤ B̂i,a for a = 1 . . .F.

A sporadic task τi potentially generates an infinite sequence of instances or jobs
with consecutive arrivals separated by at least Ti time units. The j th instance or job of
task τi is denoted by J j

i . All time values (e.g, WCET, relative deadline, inter-arrival
time, time intervals) are assumed to be positive integer. This is a reasonable assumption
since all the events in the system happen only at clock ticks.

We denote hpei the set of all tasks having priority higher than or equal to the
priority of task τi . We denote hpi the set of all the higher priority tasks of task τi . We
denote hpLi the set of higher-priority and lower-critical tasks of task τi . Similarly, we
denote hpHi the set of higher-priority and higher/equal-critical tasks of task τi . Note
that, hpi = hpLi ∪ hpHi and hpei = hpLi ∪ hpHi ∪ {τi }.

We finally denote Ei,αand Êi,αrespectively the total LO- and HI-criticality WCET
required for the recovery of a job of task τi if exactly α task errors3 are detected in
that particular job. Note that α task errors affect the same job of task τi such that the
primary of (α− 1) backups of that job suffer task error. The values of Ei,αand Êi,αare
computed as follows:

Ei,α = Ci,p +
α

∑

a=1

Bi,a (1)

Êi,α = Ĉi,p +
α

∑

a=1

B̂i,a (2)

When all the backups of task are same as the primary, then Bi,a = Ci,p and
B̂i,a = ̂Ci,p for any a. In such case, Ei,α = (α + 1) · Ci,p and Êi,α = (α + 1) · ̂Ci,p.
The assumption that all the backups are same as the primary does not provide any
advantage in terms of run-time dispatching of FTMC algorithm and does not simplify
the schedulability analysis since the worst-case occurrence of multiple faults affecting
different tasks is still need to be considered. Moreover, when all backups are same, then
software faults that cause permanent errors cannot be masked using time redundancy.

3 The term “task errors” here refers to errors in the primary and backups of one job of task τi , i.e., errors
are considered to be detected at the job level; not at task level.

123

Real-Time Syst (2014) 50:509–547 521

Table 1 An example of
dual-criticality task set Li Ci,p Bi,1 Bi,2 ̂Ci,p B̂i,1 B̂i,2 Di Ti

τ1 HI 1 1 2 2 1 2 7 8

τ2 LO 2 3 2 – – – 12 14

τ3 HI 3 3 3 4 3 3 14 28

Table 2 Execution requirement
of any job of τi affected by α

errors

E1,α E2,α E3,α Ê1,α Ê2,α Ê3,α

α = 0 1 2 3 2 – 4

α = 1 2 5 6 3 – 7

α = 2 4 7 9 5 – 10

Example 1 Consider the dual-criticality task set in Table 1 where f = 1 and F = 2.
Since FTMC drops the LO-critical tasks when the system switches to HI-criticality
behavior, the HI-criticality WCET of the LO-critical task τ2 is not specified in Table 1.

Based on Eqs. (1) and (2), the total LO- and HI-criticality WCET for the recovery
of one job of task τi that exclusively suffers and recovers α errors are given in Table 2
for α = 0, 1, 2.

For example, the total HI-criticality WCET for the recovery of any particular job of
τ3 that suffers α = 2 errors is computed using Eq. (2) as follows (shaded in Table 2):

Ê3,α = Ê3,2 = ̂C3,p + B̂3,1 + B̂3,2 = 4+ 3+ 3 = 10

��
Definition 2 (Busy Period) The notion of level-i busy period will be used in this paper.
We define the level-i busy period as the interval [a, b) such that

• b > a;
• only the primary and backups of jobs of tasks in set hpei execute in [a, b);
• the processor is busy throughout [a, b); and
• the processor is not executing any task from hpei just prior to a or just after b.

A note on mixed-criticality system design and its challenges The advent of powerful
processors and the SWaP concerns drive the design of safety-critical systems towards
integrating multiple functionalities having multiple criticality levels on the same com-
puting platform. There are many standards that specify multiple criticality levels of
the application tasks. For example, the RTCA DO-178B and ISO 26262 standards
specify multiple criticality for different software functions in avionics and automotive
systems, respectively.

One of the challenges regarding the design of such MC systems is to ensure the
isolation property, i.e., that functions, tasks or components at a lower criticality level
do not interfere adversely with those at a higher criticality level. The real time, fault
tolerance and mixed criticality aspects are already addressed in avionics certifica-
tion. Aviation industry considers “Integrated Modular Avionics” (IMA) to achieve
economic advantage by hosting multiple avionics functions on a single platform.

123

522 Real-Time Syst (2014) 50:509–547

The ARINC-653 standard provides application programming interfaces (APIs) to
employ temporal and spatial partitions in IMA-based avionic systems. Mixed critical-
ity is addressed by the IMA standard which creates real-time virtual processors called
IMA partition and then allocating applications with different criticality to different
IMA partitions. Such partitioning ensures that the failure of software in any form in
any partition cannot cause other partitions to fail in either time or space. Hardware
(permanent) fault tolerance is then addressed by hardware redundancy using quad or
triple redundancy. The intra-partition software fault avoidance / tolerance is then done
by application developers to meet the software reliability requirement for each criti-
cality level mandated by FAA or EASA. However, providing such dedicated resource,
i.e., virtual processors, for each critical application may not be cost- and resource-
efficient. Therefore, (truly) sharing the computing resources among the tasks having
multiple criticality levels needs to be considered. To this end, the processing platform
is not divided into multiple virtual processors (each dedicated to one application);
rather, the entire platform is shared among all the tasks of all the application.

The main aspect of MC system design that is addressed in this paper is static ver-
ification, which is related to the certification of safety-critical systems by CA. For
example, in order to operate UAV over civilian airspace, the flight-critical functional-
ities must be certified as “correct” by the CA while the manufacturer needs to ensure
the correctness of both mission-critical and flight-critical functionalities. Conventional
scheduling strategies, that address both the “criticality” (i.e., multiple WCET of the
same task or frequency of errors) and “deadline” aspects of MC systems, are not cost-
and resource-efficient. The major challenge in the design of MC system is devising
a FP scheduling strategy that addresses both the criticality and deadline aspects of
the tasks while facilitating certification and efficient resource usage. This challenge is
addressed in this paper.

3 Certification and the FTMC algorithm

An MC system is certified as correct if and only if the system is schedulable at each
criticality level. An MC task system is schedulable at �-criticality level, where � ∈
{LO,HI}, if and only if the primary and backups of the jobs of each task τi satisfying
Li ≥ � complete by their deadlines for all the �-criticality behaviors of the system.
According to the definition of correctness, when the system switches to HI-criticality
behavior, the LO-critical tasks can be dropped to efficiently utilize the processor. The
FTMC algorithm for dispatching the jobs of the tasks is designed as follows:

• There is a criticality level indicator �, initialized to the lowest criticality level,
�← LO.
• While (true), at each time-instant t , do the following

– if event E1 is detected, i.e., a currently executing primary or backup exceeds
its LO-criticality WCET without signaling completion at time t , then �← HI;
or

– if event E2 is detected, i.e., an error is detected at time t and this is the (f+1)th

error in an interval [t ′, t] where t ′ ≤ Dmax , then �← HI.

123

Real-Time Syst (2014) 50:509–547 523

– if an error is detected at time t , then the next backup of the faulty task becomes
ready for execution;

– the ready job (i.e, its primary or backup) of the highest priority task τi , satisfying
Li ≥ �, is dispatched for execution;

Algorithm FTMCnospace, as defined above, works exactly same as the uniprocessor
FP scheduling with the following three additional features:

• The system employs run-time monitoring to detect the events E1 and E2. As
soon as any one of the events is detected, the system switches from LO to HI
criticality behavior. Such run-time monitoring support to detect events E1 and E2
can be incorporated as part of system’s health-monitoring functions (Pellizzoni et
al. 2008; Raju et al. 1992).
• As soon as the system switches to HI-criticality behavior, the FTMC algorithm

drops the LO-criticality tasks to better utilize the processor for HI-critical tasks
while not compromising the certification requirement.
• In FTMC algorithm, whenever a job of a task arrives, the primary of the job is

executed; and if an error is detected in the primary, then one-by-one backup is
executed until no error is detected. The priority of the backup is equal to the
priority of the primary.

Regardless of what task corresponds to event E1 or E2, the FTMC algorithm
increases the criticality and drops the jobs of the LO-critical tasks after event E1 or E2
is detected. Switching the criticality � of the system by setting �← HI is a “flag” that
is used at run-time to ensure that no job of any LO-critical task is dispatched after the
criticality of the system is switched. If criticality behavior � is not switched, then the
LO-critical tasks may consume processor bandwidth that should be used for executing
the HI-critical tasks. And, such uncontrolled provision of processing bandwidth to
LO-critical tasks can cause HI-critical task to miss their deadlines.
Clarification of the assumption that f ≤ F. Remember that f and F are assumed to be
the maximum number of errors detected in an interval no larger than Dmax respectively
during the LO- and HI-criticality behavior of the system. And, we assume f ≤ F. We
think this assumption warrants some explanation, which is given below.

Consider an interval [ri , ri + Di) where ri and (ri + Di) are the release time and
deadline of some job of task τi . Also assume that the system has not switched to
HI-criticality behavior before time instant ri . And, the time instant (ri + s) is when
event E1 and/or E2 is detected, i.e., the system switches to HI-criticality behavior at
time (ri + s) for some s, where 0 ≤ s ≤ Di . This situation is depicted in Fig. 2.

The system exhibits LO-criticality behavior in [ri , ri+s] and exhibits HI-criticality
behavior in [ri + s, ri + Di] in Fig. 2. Based on the fault model in this paper, the
maximum number of errors that can be detected in any interval of length Dmax during
the LO- and HI-criticality behavior of the system is f and F, respectively. Since
Di ≤ Dmax , at most F errors can be detected in [ri , ri + Di] where

• at most f errors are detected in [ri , ri + s] where these errors are detected in the
jobs of both LO- and HI-critical tasks, and
• at most (F − f) errors are detected in (ri + s, ri + Di) where these errors are

detected in the jobs of the HI-critical tasks since only HI-critical tasks are allowed
to execute beyond (ri + s) in FTMC scheduling.

123

524 Real-Time Syst (2014) 50:509–547

Fig. 2 At most F errors are detected in [ri , ri + Di) where at most f errors are detected in [ri , ri + s] and
at most (F− f) errors are detected in (ri + s, ri + Di)

Note that if s = Di , then the entire interval [ri , ri + Di) exhibits LO-criticality
behavior and at most f task errors can be detected in that interval. On the other hand,
if s = 0, then the entire interval [ri , ri + Di) exhibits HI-criticality behavior and at
most F task errors can be detected in [ri , ri + Di). Finally, as is shown in Fig. 2, if
0 < s < Di , then at most f errors are detected in [ri , ri + s] and at most (F − f)

errors are detected in (ri + s, ri + Di). Note that f ≤ F does not necessary imply
that the number of errors in (ri + s, ri + Di), i.e., during the HI-criticality behavior is
larger than the number of errors during theLO-criticality behavior in [ri , ri+s]. This is
because (F−f) can be smaller than f if the values of F and f are such that 2 ·f > F. ��

Our main objective is to derive schedulability tests of each task τi ∈ � during
both LO and HI criticality behaviors of FTMC algorithm. Section 4 presents important
considerations for the worst-case schedulability analysis of FTMC algorithm. The
detailed schedulability analysis of FTMC algorithm is presented in Sects. 5 and 7.

4 Considerations for schedulability analysis

We will derive response-time-based schedulability test of each task τi ∈ � for both
LO and HI criticality behaviors. The response time of a task is the largest difference
between the completion time and release time of any job of the task. We denote RLO

i and
RHI

i the response times of task τi respectively for the LO- and HI-criticality behaviors.
We compute the response time of a generic job, denoted by Ji , of task τi based on the
schedulability analysis during the level-i busy period [ri , ri + t) of length t , where
ri is the release time of the generic job. An interval is called level-i busy period if
and only if jobs of the tasks only in hpei execute in that interval. By computing the
worst-case workload (i.e., maximum CPU time required) in the level-i busy period,
the response-time of task τi is derived.

The workload of the tasks in hpei during the level-i busy period for traditional
uniprocessor FP scheduling of constrained-deadline sporadic tasks4 is maximized
under the following two assumptions (Audsley et al. 1991):

4 If the relative deadline of each task in a task set is less than or equal to its period, then the task set is called
a constrained-deadline task system. If the relative deadline of each task is exactly equal to its period, then
the task set is called an implicit-deadline task system.

123

Real-Time Syst (2014) 50:509–547 525

• A1: when all tasks arrive simultaneously, and
• A2: when jobs of the tasks arrive strictly periodically.

Assumptions A1 and A2 also correspond to the worst-case schedulability analy-
sis of FTMC algorithm for LO-criticality behavior. This is because the execution of
the jobs during the LO-criticality behavior in FTMC algorithm is same as traditional
uniprocessor FP scheduling of (non-MC) sporadic tasks with the exception that back-
ups are executed to recover from task errors. And, if the completion of job J of a task
is delayed by � time units due to executing backups of J or its higher-priority jobs,
then some other lower priority job J ′ will be delayed by at most � time unit if both
J and J ′ are released simultaneously (i.e., A1 holds). And, it is not difficult to realize
that when jobs of the tasks are released strictly periodically during the LO-criticality
behavior, the workload in the busy period is maximized (i.e., A2 holds).

However, A1 and A2 do not correspond to the worst-case schedulability analysis
of FTMC algorithm for HI-criticality behavior. This is due to the following reason:

The workload of HI- and LO-critical jobs in a level-i busy period cannot be
computed independent of the release times of other jobs when analyzing the
HI-criticality behavior of the system.

Whether a HI-critical job executes beyond its LO-criticality WCET depends on when
event E1 or E2 is detected relative to the execution of that HI-critical job. Because
FTMC algorithm drops the LO-critical tasks when event E1 or E2 is detected, the
workload of the LO-critical tasks in the level-i busy period depends on the release
time of the jobs that could trigger the events. Considering all possible releases of
the jobs of sporadic tasks to exactly analyze the the HI-criticality behavior in the
busy period is computationally impractical. We, therefore, concentrate on sufficient
schedulability analysis of FTMC algorithm for theHI-criticality behavior of the system
(Sect. 7).

The schedulability analysis of FTMC algorithm assumes that an error is detected
(using some built-in error-detection mechanism as part of the system’s health mon-
itoring) at the end of execution of a job’s primary or backup since detection of the
error at the end of execution corresponds to larger wasted CPU time. Without loss of
generality, assume that job J ok

k is the first job of task τk ∈ hpei released in the level-i
busy period [ri , ri + t). The actual values of ri and ok are not needed to be known for
the schedulability analysis (i.e., any positive integer for ri and ok can be assumed).

5 Overview of schedulability analysis

In this section, an overview of the schedulability analysis of the FTMC algorithm
in the level-i busy period [ri , ri + t) is presented. Computing the response time of
task τi requires to find the workload of the tasks in set hpei during the level-i busy
period [ri , ri + t). The response time RLO

i and RHI
i of task τi respectively for LO- and

HI-criticality behaviors are computed based on the following two steps.
Step 1 (job characterization) When analyzing a particular criticality behavior, we
first determine the jobs of each task τk ∈ hpei that can execute in the level-i busy

123

526 Real-Time Syst (2014) 50:509–547

period. And, for each such job of task τk , say the hth job5 of task τk , we also decide
whether J h

k executes up to its LO- or HI-criticality WCET in the busy period. If job
J h

k is considered to execute up to its LO-criticality WCET, then it is characterized as
J h

k (LO); otherwise, it is characterized as J h
k (HI).

The purpose of characterizing job J h
k either as J h

k (LO) or J h
k (HI) is to consider the

corresponding LO- or HI-criticality WCET when computing the workload in the busy
period. It is important to characterize each job this way in order to reduce pessimism
during the schedulability analysis because if job J h

k executes inLO-criticality behavior,
then (i) the maximum number of faults that can affect this job is limited to f (not F)
according to the fault model considered in this paper, and (ii) the WCET of the primary
and backup of job J h

k corresponds to theLO-criticality WCET of task τk . Consequently,
the total CPU time required for job J h

k which is characterized as J h
k (LO) can be

computed using the relatively less pessimistic assumption regarding the frequency of
faults and WCET.
Step 2 (workload computation) The maximum total execution time (i.e., workload)
that needs to be completed by jobs of the tasks in set hpei during the busy period is
computed in this step. Since the length of the busy period will be bounded by Dmax ,
the workload computation must consider that the jobs determined in Step 1 may
need to recover from at most f and F errors when analyzing the LO and HI-criticality
behaviors, respectively. To this end, we are interested in solving the following problem:

Workload Computation Problem Let A be a set of jobs where each particular
job J h

k in A is characterized as J h
k (LO) if job J h

k of task τk must complete
its execution in FTMC scheduling during the LO-criticality behavior; otherwise,
job J h

k is characterized as J h
k (HI). Set A may contain jobs of different tasks.

Assume that the jobs of set A suffer α task errors such that these errors affect
the primaries and backups of different jobs in set A during run-time. What is the
maximum total execution time required by the jobs in set A such that these jobs
suffer and recover from α task errors?

To compute the response time of task τi for each criticality behavior, Step 1 finds the
set of jobs of the tasks in hpei that can execute in the level-i busy period. Then, Step 2
computes the workload by solving the workload computation problem by considering
α = f and α = F for analyzing the LO- and HI-criticality behaviors in the busy
period, respectively. The solution to the workload computation problem is presented
in the remainder of this section by assuming A and α are known. The details of Step 1,
i.e., characterizing the set of jobs that can execute in the busy period for each criticality
behavior, are presented in Sects. 6 and 7.

We denote Wα(A) the maximum workload that needs to be completed by the jobs in
set A where α errors are detected in these jobs and recovered. Inspired by Aydin’s work
in Aydin (2007), technique to compute the maximum workload Wα(A) is presented.
In order to compute Wα(A), we need to consider the worst-case occurrences of α

errors affecting the jobs in A such that the sum of the execution time required by the

5 The hth job of task τk is denoted by J h
k .

123

Real-Time Syst (2014) 50:509–547 527

primaries and backups of the jobs in A is maximized. The value ofWα(A) is recursively
computed as follows.

The basis of the recursion considers exactly one job (say, job J h
k (�)) in A such that

J h
k suffers α errors during the �-criticality behavior. Since there are at most f and F

errors in any interval no larger than Dmax respectively during the LO and HI criticality
behaviors, job J h

k suffers at most min{f, α} errors if J h
k (LO) ∈ A; otherwise, it suffers

at most min{F, α} errors. The basis is computed as follows:

Wα(A) = Wα({J h
k (�)}) =

{

Ek,min{α,f} if � = LO

Êk,min{α,F} if � = HI
(3)

where Ek,min{α,f} and Êk,min{α,F} are computed using Eqs. (1) and (2), respectively.
Let B = A− {J h

k }. The value of Wα(A), where |A| > 1, is computed as follows:

Wα(A) = α
max
q=0

{

Wq(B)+ W(α−q)({J h
k (�)})

}

(4)

using values ofWq(B) that are computed for q = 0, 1, . . . α beforeWα(A) is computed.
The value of Wα(A) is the maximum for one of the (α + 1) possible values of q for
the right hand side of Eq. (4). The value of q is selected such that, if there are q errors
detected in the jobs of set B and the remaining (α − q) errors are detected in job J h

k ,
then Wα(A) is maximum for some q, 0 ≤ q ≤ α. Starting with one job in set A, and
then including one-by-one job in the calculation of workload in Eq. (4), the value of
Wα(A) can be computed using O(|A| · F2) operations for all α = 0, 1, . . .F.

Example 2 Consider the task set in Table 1 wheref = 1 andF = 2. We will show how
to compute W2(A) where A = {J 1

1 (LO), J 1
3 (HI)}. The value W2(A) is the maximum

workload of the jobs in A such that these jobs suffer and recover from α = 2 errors.
The workload of each individual job in A—affected by 0, 1 and 2 errors—is computed
using Eq. (3) as follows:

W0({J 1
1 (LO)}) = E1,min{0,f} = E1,min{0,1} = E1,0 = 1

W1({J 1
1 (LO)}) = E1,min{1,f} = E1,min{1,1} = E1,1 = 2

W2({J 1
1 (LO)}) = E1,min{2,f} = E1,min{2,1} = E1,1 = 2

W0({J 1
3 (HI)}) = Ê3,min{0,F} = Ê3,min{0,2} = E3,0 = 4

W1({J 1
3 (HI)}) = Ê3,min{1,F} = Ê3,min{1,2} = E3,1 = 7

W2({J 1
3 (HI)}) = Ê3,min{2,F} = Ê3,min{2,2} = E3,2 = 10

Note that W2({J 1
1 (LO)}) is equal to E1,1 rather than E1,2 even if α = 2. This is due to

the “min” function in Eq. (3) which accounts the important fact that job J 1
1 executes

in LO-criticality behavior since it is characterized as J 1
1 (LO) and thus can suffer at

most f = 1 error. Therefore, the use of “min” function in Eq. (3) helps to tighten the
computed workload which reduces the demand on processing capacity. The value of
W2({J 1

1 (LO), J 1
3 (HI)}) is computed using Eq. (4) as follows:

123

528 Real-Time Syst (2014) 50:509–547

W2({J 1
1 (LO), J 1

3 (HI)}) = 2
max
q=0

{

Wq({J 1
1 (LO)})+ W(2−q)({J 1

3 (HI)})
}

= max{W0({J 1
1 (LO)})+ W2({J 1

3 (HI)}),
W1({J 1

1 (LO)})+ W1({J 1
3 (HI)}),

W2({J 1
1 (LO)})+ W0({J 1

3 (HI)})}
= max{1+ 10, 2+ 7, 2+ 4} = 11

��
The details schedulability analysis of the FTMC algorithm to compute RLO

i and RHI
i

are now presented in Sects. 6–7.

6 Schedulability analysis: LO criticality

In this section, we compute the response-time RLO
i of each task τi ∈ � considering

the occurrences of at most f task errors in a level-i busy period [ri , ri + t) of length
t . First, we determine the set of jobs of the tasks in hpei that are eligible to execute
in the busy period during the LO-criticality behavior. Then, the maximum workload
of these jobs due to the recovery of at most f task errors is computed using Eq. (4).
Finally, a recursion to compute RLO

i is presented.
We denoteJBi (t) the set of all jobs of the tasks inhpei that are released in the level-

i busy period [ri , ri + t). Since A1 and A2 correspond to the worst-case schedulability
analysis of FTMC algorithm during theLO-criticality behavior (as discussed in Sect. 4),
there are at most � t

Tk
 jobs of task τk ∈ hpei that are released in the busy period

[ri , ri + t). If job J ok
k of task τk ∈ hpei is released at time ri , the set JBi (t) is

computed as follows:

JBi (t) =
⋃

τk∈hpei

{

J h
k (LO)|h = ok . . .

(

ok + � t

Tk
 − 1

)}

(5)

Since during the LO-criticality behavior, no primary/backup of task τk executes more
than its LO-criticality WCET, each job J h

k is characterized as J h
k (LO) in JBi (t). The

generic job Ji is captured in set JBi (t) as J oi
i . Since at most f task errors need to be

recovered in the busy period, the response time RLO
i of task τi is given as follows:

RLO
i ← Wf(JBi (RLO

i)) (6)

whereWf(JBi (RLO
i)) is computed using Eq. (4). We can solve Eq. (6) by searching the

least fixed point starting with RLO
i = Ei,f for the right-hand side of Eq. (6). Example 3

in page 32 demonstrates how to compute RLO
i .

When certifying a system at LO-criticality level, Eq. (6) can be used to determine
whether task τi ∈ � meets its deadline during all the LO -criticality behavior of the
system or not. The test in Eq. (6) is an exact test for the FTMC scheduling algorithm
when considering the LO-criticality behavior of the system under the assumed fault

123

Real-Time Syst (2014) 50:509–547 529

Fig. 3 The level-i busy period [ri , ri + t). System switches to HI-criticality at (ri + s) because either
event E1 or E2 is detected at (ri + s). Notice that s = 0 considers the scenario when the criticality of the
system switches at or before the start of the busy period [ri , ri + t)

model. Note that Eq. (6) can be used to test the fault-tolerant schedulability of tradi-
tional (non-MC) sporadic tasks where at most f task errors are detected in any interval
of length Dmax . Moreover, if f = 0, then Eq. (6) becomes the well-known uniproces-
sor response-time analysis, as is proposed by Audsley et al. (1993), for traditional
non-MC and non-fault-tolerant fixed-priority scheduling of sporadic tasks.

7 Schedulability analysis: HI criticality

In this section, we compute the response-time RHI
i of each HI-critical task τi con-

sidering the occurrences of at most F task errors in a level-i busy period [ri , ri + t)
of length t . The primary and backups of each task τk ∈ hpei in the busy period may
execute up to the WCET estimated for the HI-criticality behavior.

Assume s be the time instant relative to ri at which the system switches from LO
to HI criticality behavior (as is shown in Fig. 3). If s > RLO

i , then the generic job
Ji finishes its execution before (ri + s) since the response time of task τi during the
LO-criticality behavior is RLO

i . Because we are interested to find the response time of
HI-critical task τi during the HI-criticality behavior of the system, we only consider
0 ≤ s ≤ RLO

i to compute RHI
i .

We denote R
HI
i,s the response time of task τi during the HI-criticality behavior for

some given s. The response time RHI
i is the largest R

HI
i,s for some s where 0 ≤ s ≤ RLO

i .

To compute R
HI
i,s , first we determine the set of jobs of the tasks inhpei that can execute

in the busy period [ri , ri + t) for some given s. And, for each such job, say job J h
k

of task τk ∈ hpei , we decide whether J h
k executes during the LO- or HI-criticality

behavior in the busy period to characterize it either as J h
k (LO) or J h

k (HI). Then, the
workload due to these jobs suffering from at most F task errors is computed using
Eq. (4). Finally, a recursion to compute R

HI
i,s is presented.

We denote Xi,s(t) and Yi,s(t) respectively the set of all LO- and HI-critical jobs of
the tasks in hpei that can execute in the busy period [ri , ri + t) for some given s and
t . First, we present how sets Xi,s(t) and Yi,s(t) are computed. Then, the maximum
workload due to the execution of the jobs in set Xi,s(t)∪Yi,s(t) subjected to F errors
is computed.
Computing Xi,s(t) This set contains only the jobs of the LO-critical tasks in hpei
(i.e., jobs of the tasks in hpLi) that can execute in the busy period [ri , ri + t). Since
FTMC drops the LO-critical jobs after the criticality switches at (ri + s), set Xi,s(t)

123

530 Real-Time Syst (2014) 50:509–547

Fig. 4 At most � s
Tk
 jobs of τk ∈ hpLi can execute in [ri , ri + s). The upward arrow indicates job arrival

and the downward arrow indicates job’s deadline

only contains the jobs of tasks in set hpLi that are released in [ri , ri + s). Since jobs in
Xi,s(t) execute only in LO-criticality behavior, the assumptions A1 and A2 correspond
to the worst-case analysis in the busy period. And, there are at most � s

Tk
 jobs of each

task τk ∈ hpLi released in [ri , ri + s). This is depicted in Fig. 4.
If job J ok

k is the first job of task τk ∈ hpLi released in the busy period, set Xi,s(t) is
computed for some given s and t as follows (note that if s = 0, then this set is empty):

Xi,s(t) =
⋃

τk∈hpLi

{

J h
k (LO)|h = ok, . . . ,

(

ok + � s

Tk
 − 1

)}

(7)

Note that Eq. (7) considers exactly � s
Tk
 jobs of each task τk ∈ hpi in set Xi,s(t)

since both A1 and A2 are satisfied for the analysis of the system in [ri , ri + s] which
exhibits LO-criticality behavior. In others words, we assume one job of all the tasks
in hpLi arrives simultaneously at time ri and subsequent jobs of each task τk ∈ hpLi
arrive as soon as possible in [ri , ri + s].
Computing Yi,s(t) This set contains only the jobs of the HI-critical tasks in (hpHi ∪
{τi }). Note that the generic job Ji belongs to this set because τi is a HI-critical task.

The number of jobs of task τk ∈ hpHi ∪ {τi } that are released in [ri , ri + t) is at
most � t

Tk
. This is because A1 and A2 correspond to the release of maximum number

of jobs of any task that may execute during the busy period in any uniprocessor FP
scheduling, of which FTMC is an example. However, assumptions A1 and A2 do not
correspond to the worst-case for computing the maximum workload of the HI-critical
tasks in the busy period (as discussed in Sect. 4). The workload of the HI-critical task
τk can be computed by finding how many (out of � t

Tk
) jobs of τk may execute up to

their HI-criticality WCET in the busy period.
A trivial way to compute the maximum workload due to the execution of the jobs

of task τk in the busy period is to consider that the primary and backups of each of
the � t

Tk
 jobs of task τk take up to their HI-criticality WCET. However, computing

the workload based on this trivial approach may be pessimistic if some of these jobs
must finish execution before the criticality is switched; hence, only allowed to execute
up to their LO-criticality WCET. Therefore, our aim is to find a safe but tight upper
bound on the number of jobs of task τk that can execute in the HI-criticality behavior.
The maximum number of jobs of task τk that are eligible for execution in the interval
[ri+s, ri+t), i.e., in an interval of length (t−s), is bounded by the following quantity:

123

Real-Time Syst (2014) 50:509–547 531

Fig. 5 All the � t
Tk
 jobs of task τk can execute up to their HI-criticality WCET in the busy period if

0 ≤ s ≤ Dk

⌈

t − s

Tk

⌉

+ 1

by assuming Tk = Dk . However, if Dk < Tk , then there is forced to be an interval of
length (Tk − Dk) after the completion of each job of task τk during which no job of
task τk is allowed to be released since the minimum inter-arrival time of the jobs of
task τk is Tk . Therefore, the maximum number of jobs of task τk that are eligible for
execution in an interval of length (t − s) is bounded by the following quantity, as is
shown by Baruah et al. (2011b):

⌈

t − s − (Tk − Dk)

Tk

⌉

+ 1

However, if s+(Tk−Dk) is small, then we may have � t−s−(Tk−Dk)
Tk

+1 > � t
Tk
. Based

on these observations, the work in Baruah et al. (2011b) without considering fault-
tolerance proposed an upper bound on the number of jobs of task τk that can execute
up to their HI-criticality WCET in the busy period for some given s and t . This upper
bound (please see Eq. (11) in reference Baruah et al. 2011b) is given as follows:

min

{⌈

t − s − (Tk − Dk)

Tk

⌉

+ 1,

⌈

t

Tk

⌉}

The crucial observation regarding this upper bound is that it is independent of the WCET
parameter of task τk . Consequently, regardless of how the primaries and backups of
the jobs of task τk are executed in the busy period, this upper bound is also applicable to
bound the number of jobs of τk that may execute up to theirHI-criticality WCET in the
busy period for FTMC algorithm. To this end, we define xk the minimum number of jobs
of τk that can execute up to their LO-criticality WCET in the busy period as follows:

xk =
⌈

t

Tk

⌉

− min

{⌈

t − s − (Tk − Dk)

Tk

⌉

+ 1,

⌈

t

Tk

⌉}

(8)

Note that if s ≤ Dk , then xk = 0., i.e., all � t
Tk
 jobs of τk can execute up to their

HI-criticality WCET (as is shown in Fig. 5).
In summary, there are at least xk jobs of τk that execute no more than their LO-

criticality WCET while the remaining (� t
Tk
 − xk) jobs may execute up to their HI-

123

532 Real-Time Syst (2014) 50:509–547

criticality WCET in the busy period [ri , ri + t). If job J ok
k is the first job of τk ∈

hpHi ∪ {τi } released in [ri , ri + t), then the set of jobs of the tasks in hpHi ∪ {τi } that
execute no more than their LO-criticality WCET in the busy period is:

⋃

τk∈hpHi∪{τi }

{

J h
k (LO)|h = ok, . . . , (ok + xk − 1)

}

(9)

And, the set of jobs of tasks in hpHi ∪ {τi } that may execute up to their HI-criticality
WCET in the busy period is:

⋃

τk∈hpHi∪{τi }

{

J h
k (HI)|h = ok + xk, . . . ,

(

ok + � t

Tk
 − 1

)}

(10)

Therefore, set Yi,s(t) which is the set of jobs of all the HI-critical tasks that execute
in the busy period is:

Yi,s(t) = Eq. (9)
⋃

Eq. (10) (11)

Computing R
HI
i,s The set Xi,s(t) ∪ Yi,s(t) is the set of all the jobs of the tasks in

hpei = hpLi ∪ hpHi ∪ {τi } that execute in the busy period where Xi,s(t) and Yi,s(t)

are computed using Eqs. (7) and (11), respectively. To find R
HI
i,s , we have to consider the

worst-case occurrences and recovery of F errors in the jobs of (Xi,s(t)∪Yi,s(t)) such
that the workload in the busy period is maximum. In other words, we are interested
in computing WF(Xi,s(t) ∪ Yi,s(t)). The response time of HI-critical task τi for some
given s is given as follows:

R
HI
i,s ← WF(Xi,s(R

HI
i,s) ∪ Yi,s(R

HI
i,s)) (12)

The Eq. (12) can be solved by iteratively searching the least fixed point starting with
RHI

i,s = Êi,F for the right-hand side of Eq. (12). The response time RHI
i of task τi

during any HI-criticality behavior of the system is given as follows:

RHI
i = max

0≤s≤RLO
i

{

R
HI
i,s

}

(13)

When certifying the system at HI-criticality level, Eq. (13) can be used to determine
whether the HI-critical task τi meets its deadline during all HI-criticality behaviors of
the system or not. The response-time calculation in Eq. (6) forLO-criticality behavior is
an exact test while the response-time calculation in Eq. (13) for HI-criticality behavior
is a sufficient test.
Time-complexity As mentioned earlier, the time-complexity of computing Wα(A) for
all α = 0, 1, . . .F using Eq. (4) is O(|A| · F2). There are pseudo-polynomial number
of jobs of the higher priority tasks that can be released between the release time
and deadline of any job. Therefore, the workload computation problem considering a
collection of jobs in setA has pseudo-polynomial time complexity in the representation
of the system. Because the response-time calculation in Eqs. (6) and (13) apply the

123

Real-Time Syst (2014) 50:509–547 533

workload computation in Eq. (4) at most O(n · Dmax) times for all the n tasks, the
proposed schedulability test for the FTMC algorithm has pseudo-polynomial time
complexity.

Example 3 Consider the task set in Table 1 where f= 1 and F= 2. Assume that τ1 and
τ2 are the higher priority tasks of τ3. We will show how RLO

3 and RHI
3 are computed

based on Eqs. (6) and (13), respectively. Without loss of generality, assume ri = r3 = 0
(busy period starts at 0) and ok = 1 for each task τk .
Computing RLO

3 Initially, the length of the busy period is RLO
3 = E3,f = E3,1 = 6.

The set of jobs that are eligible for execution in the busy period [0, 6) is JB3(6). Based
on Eq. (5), the set JB3(6) is given as follows:

JB3(6) =
{

J 1
1 (LO), J 1

2 (LO), J 1
3 (LO)

}

Note that the generic job J3 is captured in JB3(6) as J 1
3 (LO). The maximum workload

of the jobs in set JB3(6) such that these jobs can suffer and recover at most f = 1
error is Wf(JB3(6)). Based on Eq. (4), the value of Wf(JB3(6)) is given as follows:

Wf(JB3(6)) =
({

J 1
1 (LO), J 1

2 (LO), J 1
3 (LO)

})

1 = 9

Since this computed workload is larger than the length of the busy period, the new
length of the busy period is reset to RLO

3 = 9. Based on Eq. (5), the jobs released in
the busy period [0, 9) is given as:

JB3(9) =
{

J 1
1 (LO), J 2

1 (LO), J 1
2 (LO), J 1

3 (LO)
}

Based on Eq. (4), the maximum workload of the jobs in set JB3(9) subjected to at
most f = 1 error is given as follows:

Wf(JB3(9)) =
({

J 1
1 (LO), J 2

1 (LO), J 1
2 (LO), J 1

3 (LO)
})

1 = 10

And, the new length of the busy period is RLO
3 = 10. The jobs released in the busy

period [0, 10) is given as follows:

JB3(10) =
{

J 1
1 (LO), J 2

1 (LO), J 1
2 (LO), J 1

3 (LO)
}

And, we have Wf(JB3(10)) = W1(JB3(10)) = 10 because JB3(10) = JB3(9). Since
the computed workload is equal to length of the busy period, the response time com-
putation converges and RLO

3 = 10. Since RLO
3 ≤ D3 = 14, task τ3 meets its deadline

in all LO-criticality behaviors.
Computing RHI

3 According to Eq. (13), the values of s ranges in [0, RLO
3]. Here we

only show here how to compute RHI
3,s for s = 9. Initially, the length of the busy period

is R
HI
3,s = Ê3,F = Ê3,2 = 10. The jobs that are released in the busy period [0, 10) are

in set (Xi,s(t) ∪ Yi,s(t)) where i = 3, s = 9 and t = RHI
3,s = 10.

123

534 Real-Time Syst (2014) 50:509–547

We have X3,9(10) = {J 1
2 (LO)} and Y3,9(10) = {J 1

1 (LO), J 2
1 (HI), J 1

3 (HI)} based
on Eqs. (7) and (11) , respectively. The generic job J3 is included in Y3,9(10) as
J 1

3 (HI).
Based on Eq. (4), the maximum total workload due to the execution of the jobs in

set X3,9(10) ∪ Y3,9(10) that can suffer and recover at most F = 2 errors is given as
follows:

W2({J 1
2 (LO), J 1

1 (LO), J 2
1 (HI), J 1

3 (HI)}) = 15

Since the computed workload is larger than the deadline D3 = 14 of task τ3, the
response time RHI

i,s > D3 = 14, which implies [based on Eq. (13)] that RHI
i > D3.

So, task τ3 cannot be guaranteed to be schedulable during all HI-criticality behaviors.
��

7.1 Priority assignment using audsley’s OPA algorithm

The proposed response-time test in Eqs. (6) and (13) can be used to find the fixed
priorities of the tasks using Audsley’s OPA algorithm (Audsley 2001). The following
three conditions, proposed by Davis and Burns (2009) are used to check whether a
shcedulability test S is OPA-compatible, i.e., can be applied along with Audsley’s
OPA algorithm to find fixed-priority ordering of the tasks.

• Condition 1 The schedulability of a task τi may, according to test S, be dependent
on the set of higher priority tasks, but not on the relative priority ordering of those
tasks.
• Condition 2 The schedulability of a task τi may, according to test S, be dependent

on the set of lower priority tasks, but not on the relative priority ordering of those
tasks.
• Condition 3 When the priorities of any two tasks of adjacent priority are swapped,

the task being assigned the higher priority can not become unschedulable according
to test S, if it was previously schedulable at the lower priority. (As a corollary, the
task being assigned the lower priority can not become schedulable according to
test S, if it was previously unschedulable at the higher priority).

Now we briefly describe how these conditions are satisfied for both schedulability
tests in Eqs. (6) and (13). Note that both Eqs. (6) and (13) are computed based on the
workload of the higher priority tasks. And, the workload of all the higher priority tasks
is the sum of the workloads of jobs of each higher priority task considering the occur-
rences of a particular number of faults in each such job. Computing the workload of
each job of each particular task entirely depends on the corresponding task’s parame-
ters (please observe that the workload computation in Eq. (4) accumulates workload
of each job separately). In other words, the workload of a job of each particular task
can be computed independent of any parameters of its higher or lower priority tasks.
This implies that Eqs. (6) and (13) satisfy both Condition 1 and Condition 2 for a
schedulability test to be OPA-compatible.

The tests in Eqs. (6) and (13) are derived for FTMC algorithm, which is a fixed-
priority based algorithm. If the priorities of any two tasks of adjacent priority are

123

Real-Time Syst (2014) 50:509–547 535

Fig. 6 OPA algorithm for MC tasks scheduled using FTMC. The value of RLOi and RHIi are computed using
Eqs. (6) and (13), respectively

swapped, then the task being assigned the higher priority cannot suffer more interfer-
ence than that of when it was assigned lower priority in fixed-priority based scheduling.
Consequently, the task being assigned the higher priority cannot become unschedula-
ble according to tests Eqs. (6) and (13) if it was previously deemed schedulable at the
lower priority using Eqs. (6) and (13). Therefore, schedulability tests in Eqs. (6) and
(13) also satisfy Condition 3 for a schedulability test to be OPA-compatible.

Given that the schedulability tests in Eqs. (6) and (13) are OPA-compatible, the OPA
algorithm is combined with Eqs. (6) and (13) as follows in Fig. 6. The OPA algorithm
is applied to find the priorities of the MC tasks as follows. Initially, no task is assigned
any priority (i.e., all tasks are priority-unassigned). Priorities are assigned from lowest
to highest priority level (loop in line 1). At each new priority level, if any priority-
unassigned task τi satisfies R�

i ≤ Di for all � ≤ Li assuming the higher priorities for
all other priority-unassigned tasks (line 2–5), then τi is assigned the current priority
level (line 6) and priority assignment for next (higher) priority level starts (jumping
from line 7 to next iteration in line 1). The value of RLO

i and RHI
i are computed using

Eqs. (6) and (13), respectively. If no task can be assigned the current priority, then
priority assignment fails (line 8). If each task is assigned a priority, then OPA algorithm
declares success (line 9) and all tasks are guaranteed to met their deadlines usingFTMC
algorithm. The response time tests in Eqs. (6) and (13) combined with OPA is called
the OPA-FTMC test.

Since the OPA algorithm considers at most O(n2) different priority ordering and
the response time tests in Eqs. (6) and (13) have pseudo-polynomial time complexity,
the OPA-FTMC test also has pseudo-polynomial time complexity in the representation
of the task set and fault model.

7.2 Dealing with more than two criticality levels

There are many safety-critical systems having functions with more than two criticality
levels. In this subsection, the main principle to extend the result of this paper for more
than two criticality levels is briefly presented. A system having L different criticality
levels is called L-criticality system. An approach to perform the schedulability analysis
for MC systems having more than two criticality levels but without considering fault
tolerance is discussed by Pathan (2012). To deal with MC systems having more than

123

536 Real-Time Syst (2014) 50:509–547

two criticality levels and considering fault tolerance, the fault and task models of this
paper need to be extended. And, the criticality behavior of the system is defined based
on the extended fault and task model as follows:

• Similar to dual-criticality system that exhibits either LO- or HI-criticality behav-
iors, an L-criticality system exhibits L different criticality behaviors. An L-
criticality system exhibits �-criticality behavior if the number of errors within
any interval of length Dmax is at most η(�) for � = 1, 2 . . . L. For dual-criticality
system, we have η(LO) = f and η(HI) = F respectively for the LO- and HI-
criticality behaviors of the dual-criticality system. When the number of errors in
any interval of length Dmax exceeds η(�), then the system switches to (� + 1)-
criticality behavior.
• The criticality Li of task τi in L-criticality system is equal to exactly one element

in set {1, . . . L}. Similar to the WCET vectors
−→
C L

i and
−→
C H

i in dual-criticality sys-

tems for each task τi , we define total |Li | different vectors
−→
C 1

i ,
−→
C 2

i , . . .
−→
C Li

i

for task τi in L-criticality system. The WCET vector
−→
C �

i is equal to <

C�
i,p, B�

i,1, . . . B�
i,η(�) > where 1 ≤ � ≤ Li . The WCET of τi ’s primary is C�

i,p and

the WCET of ath backup of τi is B�
i,a during the �-criticality behavior of the sys-

tem. If some task’s primary or backup does not signal completion after executing
for its �-criticality WCET, then the system switches to (�+1)-criticality behavior.

For of each task τi in L-criticality system, we are interested in computing the
response time R�

i considering the �-criticality behavior of the system where 1 <

� ≤ Li . When computing R�
i for task τi , we have to consider the time instants within

the problem window of a generic job of τi when the system switches its behavior from
q to (q + 1)-criticality behavior where 1 ≤ q < �. In other words, to compute R�

i for
L-criticality system, we have to consider (�−1) possible criticality switching instants
within the problem window of a generic job of task τi , i.e., from q-criticality behavior
to (q + 1)-criticality behavior for q = 1, 2 . . . (� − 1). By computing the workload
considering the worst-case occurrences of η(q) faults in the problem window of a
generic job of task τi during the q-criticality behavior of the system for q = 1, 2, . . . �,
an upper bound on response time R�

i can be computed for each task τi . According to
the RTCA DO-178B standard, there are five different Design Assurance Levels (DAL
A to DAL E) for software in avionics systems, and according to ISO 26262 standard,
the safety functions in automotive systems can have four different Automotive Safety
Integrity Levels (ASIL A to ASIL D). Since the number of different criticality levels
for such practical systems are generally not very high, the time complexity of the
solution proposed in this paper for such systems is still pseudo-polynomial.

8 Empirical investigation

In this section, result of empirical investigation to measure the performance of
OPA-FTMC test using randomly generated task sets is presented. In particular, the
OPA-FTMC test is compared with the following two tests:

• DM-FTMC test: This test applies the proposed response-time tests in Eqs. (6) and
(13) where all the tasks are assigned DM priorities.

123

Real-Time Syst (2014) 50:509–547 537

Fig. 7 The UUnifast
algorithm (Bini and Buttazzo
2005). The function pow(x,y)
returns x y and rand() returns
a random number in the range
[0,1]

• UBound test: This test is satisfied for a task set if (i) all the tasks with DM priorities
are deemed schedulable based on Eq. (6), and (ii) all the HI-critical tasks with DM
priorities are deemed schedulable based on Eq. (12) for s = 0, i.e., considering
that only HI-critical tasks executes in the entire busy period.

The UBound test is not a sufficient schedulability test that can be used to verify
whether a task set is schedulable. But UBound test is a necessary schedulability
test, i.e., any task set that fails to satisfy UBound test is unschedulable using any FP
scheduling algorithm for the assumed task and fault models. This is because if the
entire busy period exhibits the same criticality behavior and backups have the same
priority as the primary, then the DM priority ordering can be shown to be the optimal
using similar reasoning as used by Leung and Whitehead (1982). The UBound test
is an upper bound on the schedulable task sets by FTMC algorithm. The task set
generation algorithm is presented next.

Task set generation The UUnifast algorithm is proposed by Bini and Buttazzo
(2005) to generate utilizations of a task set to study uniprocessor scheduling (given in
Fig. 7). The utilization of a task τi , denoted by ui , is the ratio between Ci and Ti , i.e.,
ui = Ci/Ti .

The UUnifast algorithm is used to generate utilizations for n tasks with total
utilization equal to U . These utilizations correspond to LO-criticality WCET of the
primaries of n tasks. Once a set of n utilizations {u1, u2, . . . un} of a task set is gener-
ated, the other parameters of each task τi are generated as follows:

• The period Ti of task τi is generated from the uniform random distribution in the
range [10ms, 1000ms]. Task τi ’s deadline is set equal to its period. The inter-
arrival time of the tasks in many practical real-time systems (e.g., robotics and
control applications) often belong to this interval.
• The LO-criticality WCET of the primary of task τi is set to Ci,p = ui · Ti .
• The criticality of task τi is set to HI (i.e., Li = HI) with a probability of 50 %.
• The HI-criticality WCET of the primary is set to ̂Ci,p = Ci,p ·CF where CF ≥ 1.

For different experiments, we considered different values ofCF as will be discussed
below.
• Backups are considered to be the re-execution of the primary, i.e., Bi,a = Ci,p and

B̂i,a = ̂Ci,p for any a = 0, 1, . . .F.

For each experiment, total 40 different utilization levels {0.025, . . . 0.975, 1} are
considered. For each utilization level U ∈ {0.025, . . . 0.975, 1}, total 1000 task sets
are generated with simulation parameters n, U and CF. The value of CFwe considered
are CF = 1 and CF = 2 where the former is to experiment that the CA is not more

123

538 Real-Time Syst (2014) 50:509–547

0 %

20 %

40 %

60 %

80 %

100 %

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

UBound
OPA-FTMC

DM-FTMC

Fig. 8 Schedulable tasksets with (n = 20,f = 0,F = 1,CF = 1)

0 %

20 %

40 %

60 %

80 %

100 %

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

UBound
OPA-FTMC

DM-FTMC

Fig. 9 Schedulable tasksets with (n = 20,f = 1,F = 2,CF = 2)

pessimistic than the system designer regarding the WCET of the tasks while the latter
is to experiment that the CA is more pessimistic than the system designer regarding
the WCET of the tasks. The fault-tolerant requirement for each experiment is specified
using simulation parameter (f,F).
Result analysis Figures 8 and 9 plot fraction of schedulable task sets deemed
schedulable by theUBound,OPA-FTMC andDM-FTMC tests for a system with n = 20
tasks. The experiment presented in Fig. 8 considers CF = 1 and (f = 0,F = 1)

to investigate the fact that the CA is not pessimistic regarding the WCET of the
tasks but pessimistic regarding frequency of errors. The fault-tolerant requirement
(f = 0,F = 1) specifies that as long as the system exhibits LO-criticality behavior,
no error recovery is required while one error needs to be recovered in any interval no
larger than Dmax during theHI-critical behavior. In other words, one error is recovered
in any interval no larger than Dmax when the system executes (only) the HI-critical
tasks during the HI-criticality behavior.

123

Real-Time Syst (2014) 50:509–547 539

0 %

20 %

40 %

60 %

80 %

100 %

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

UBound
OPA-FTMC

DM-FTMC

Fig. 10 Schedulable tasksets with (n = 20,f = 1,F = 2,CF = 2)

The experiments presented in Fig. 9 considers CF = 2 and (f = 1,F = 2) to
experiment the fact that the CA is pessimistic regarding both the WCET and the
frequency of errors. The HI-criticality WCET of each primary/backup is two times
(i.e., CF = 2) the LO-criticality WCET of the corresponding primary/backup. The
fault-tolerant requirement (f = 1,F = 2) specifies that at most one error needs to be
recovered during theLO-critical behavior while at most two errors need to be recovered
during the HI-critical behavior in any interval no larger than Dmax .

The performance of the OPA-FTMC test in both Figs. 8 and 9 is very close to the
upper limit illustrated by the UBound test. This demonstrates that sufficient schedu-
lability analysis presented in this paper is very close to the exact analysis of FTMC
algorithm for implicit-deadline tasks.

The OPA-FTMC test performs significantly better than the DM-FTMC test with
higher pessimism in WCET and frequency of errors. For example, the percentage of
task sets deemed schedulable by OPA-FTMC test in Fig. 9 at U = 0.5 is 74 % while
that of by DM-FTMC test is only 31 % (an improvement of 238 %). This is because
the OPA-FTMC test applies the OPA algorithm to search for a priority assignment, if
there exists one, for which the task set passes the proposed response-time test.

The performance of each test decreases with increasingCF or stricter fault-tolerance
requirement. This is expected since increasing CF or fault-tolerant requirement results
in increased workload in the busy period. And, task with higher workload in its busy
period is more difficult to schedule.

The result for constrained-deadline tasks is presented in Fig. 10 where the deadline
of τi is selected from a uniform distribution in the range [Ei,f, Ti] and [Êi,F, Ti] if
Li = LO and Li = HI, respectively. The OPA-FTMC test performs much better than
the DM-FTMC test and quite close to the upper limit given by the UBound test in
Fig. 10.
Comparing OPA-FTMC with non-(MC) fault-tolerant scheduling The response-time
computation in Eq. (6) computes RLO

i . If RLO
i ≤ Di for each task τi ∈ �, then at most

f errors can be tolerated between the release time and deadline of each job of task τi

during the LO-criticality behavior of the system. By applying the test in Eq. (6) for

123

540 Real-Time Syst (2014) 50:509–547

0 %

20 %

40 %

60 %

80 %

100 %

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

(n=20, f=1, F=2)

nonMC-FTDM
OPA-FTMC (CF=1)
OPA-FTMC (CF=2)

Fig. 11 Schedulable tasksets with (n = 20,f = 1,F = 2)

all the tasks, we can determine whether at most f task errors can be masked in any
interval not larger than Dmax for traditional non-MC task system. And, DM is the OPA
in such case. We call the response time test in Eq. (6) assuming DM priority ordering
the nonMC-FTDM test.

To compare OPA-FTMC and nonMC-FTDM, we randomly generated implicit-
deadline task sets using simulation parameters n = 20, f = 1, and F = 2. To
measure the impact of pessimism regarding the WCET of the HI-critical tasks in
FTMC scheduling, we considered two different value of CF such that CF = 1 and
CF = 2. The fraction of schedulable task sets that pass the OPA-FTMC for CF = 1
and CF = 2 are compared with the fraction of schedulable task sets that pass the
nonMC-FTDM test. The results are presented in Fig. 11.

The nonMC-FTDM test performs better than the OPA-FTMC test for both CF = 1
andCF = 2 in Fig. 11. The fraction of schedulable task sets usingOPA-FTMC test with
CF = 2 at higher utilization level is much smaller than that of using OPA-FTMC test
with CF = 1. This is because when CF = 2, the WCET of each HI-critical task during
the HI-criticality behavior is two times larger (i.e., more pessimistic) in comparison
to that of when CF = 1. Capturing such pessimism in the OPA-FTMC test degrades
the performance of OPA-FTMC for CF = 2 in comparison to OPA-FTMC for CF = 1.

Note that when CF = 1, then there is no pessimism regarding the WCET of the
MC tasks in OPA-FTMC test. And, the system only switches the criticality and drops
LO-critical tasks if more than f task errors are detected in the problem window of a
task. Therefore, at run-time FTMC never needs to complete higher amount of execu-
tion (due to dropping of tasks) in comparison to non-MC scheduling, which is assumed
for the nonMC-FTDM test. Surprisingly, the OPA-FTMC does not perform better than
nonMC-FTDM scheduling although less work is done in FTMC scheduling. This is due
to the sufficient (not exact) analysis of the FTMC scheduling during the HI-criticality
behavior.

Since an upper bound on the number of jobs of the higher priority tasks in a problem
window is considered, the OPA-FTMC test suffers from this pessimism. And, this
pessimism is not offset by the fact that FTMC is performing less work due to dropping of

123

Real-Time Syst (2014) 50:509–547 541

0 %

20 %

40 %

60 %

80 %

100 %

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
ch

ed
ul

ab
le

 T
as

ks
et

s

Utilization

(n=20, f=0, F=0)

OPA-FTMC (CF=1)
OPA-FTMC (CF=2)
OPA-FTMC (CF=3)

Fig. 12 Schedulable tasksets with (n = 20,f = 0,F = 0) by varying CF = 1, 2, 3

LO-critical tasks. However, the performance of OPA-FTMCwith CF = 1 is quite close
to the nonMC-FTDMin Fig. 11. And, this implies the pessimism is not in OPA-FTMC
test is insignificant when comparing with non-MC fault tolerant scheduling.
Comparing OPA-FTMC with non-fault-tolerant (MC) scheduling When f = 0 and
F = 0, the FTMC algorithm is equivalent to scheduling of MC tasks without fault toler-
ance. We conducted a series of experiments forOPA-FTMC test using randomly gener-
ated implicit-deadline task sets using simulation parameters n = 20,f = 0 andF = 0.

To measure the impact of pessimism regarding the WCET of the high criticality
tasks, we consideredCF = 1,CF = 2, andCF = 3. The results are presented in Fig. 12.
As expected, the higher is the pessimism regarding the WCET of the HI-critical tasks
(i.e., larger value of CF) the smaller is the fraction of schedulable task sets at relatively
higher utilization level. This is because, as the utilization of the task set increases,
each task in a task set has a relatively higher individual utilization since number of
tasks in a task set remains unchanged. Moreover, the HI criticality utilization of each
task increases as CF increases. As a result, the total HI-criticality utilization of each
random task set at higher utilization level increases with increasing CF. And, task
set with relatively higher total utilization is more difficult to schedule. Consequently,
the fraction of schedulable task sets that passes the OPA-FTMC test decreases with
increasing CF and increasing utilization level in Fig. 12.

9 Related work

The seminal work by Vestal in first proposed the MC task model and its analysis based
on FP scheduling algorithm on uniprocessor platform (Vestal 2007). Vestal’s algorithm
is proved by Dorin et al. as the optimal for traditional FP scheduling on uniprocessor
where lower critical tasks are not dropped (Dorin et al. 2010). By showing that neither
FP nor earliest-deadline-first (EDF) scheduling of MC tasks on uniprocessor dominates
the other, Baruah and Vestal proposed a hybrid algorithm by combining the benefits
of both FP and EDF policies (Baruah and Vestal 2008). A variant of FP scheduling

123

542 Real-Time Syst (2014) 50:509–547

algorithm and its analysis on uniprocessor platform is proposed by Baruah et al.
based on the following observation (Baruah et al. 2011b): the run-time monitoring of
execution time of the jobs can be used to drop jobs of �-critical tasks as soon as the
system switches to (�+ 1)-criticality behavior. The FTMC algorithm proposed in this
paper also uses this observation.

Several works addressed MC scheduling of a finite collection of jobs on uniproces-
sors. It has been proved by Baruah et al. (2012a) that determining the feasibility of a
collection of MC jobs is strongly NP-hard, even when all release times are identical and
there are only two criticality levels. Baruah et al. (2010) proposed own criticality based
priority (OCBP) algorithm for scheduling a finite collection of jobs on uniprocessor.
Algorithm OCBP works as follows: jobs are assigned fixed-priorities in offline, and
the highest priority ready job is always dispatched at run-time. The processor speed-
up factor of the OCBP algorithm for dual-criticality system is 1.619, i.e., any feasible
instance of dual-criticality jobs on unit-capacity processor is also OCBP-schedulable
on a processor that is 1.619 times faster (Baruah et al. 2010). An improved load-
based sufficient schedulability condition of the OCBP algorithm is proposed by Li
and Baruah (2010a).

By assuming the earliest releases of the jobs within a busy interval, Li and Baruah
proposed interesting techniques to apply the OCBP algorithm for scheduling sporadic
MC tasks on uniprocessor platform (Li and Baruah 2010b). However, Due to the spo-
radic nature of the tasks, the priorities of the jobs are recomputed at run-time and such
priority recomputation at run-time has pseudo-polynomial time complexity (Li and
Baruah 2010b). Recently, Guan et al. (Guan et al. (2011)) proposed a novel polynomial
time algorithm for recomputing the priorities at run-time for scheduling sporadic tasks
using the OCBP algorithm. Although OCBP and the proposed OPA-FTMC uses the
Audsley’s approach for assigning the priorities, the main differences are: (i) OCBP
is based on dynamic-priority-based dispatching algorithm where different jobs of the
same task may have different priorities. In contrast, all the jobs of each task are assigned
the same priority in FTMC algorithm, (ii) OCBP may need to recompute the priori-
ties of the jobs during run-time while there is no recomputation of priorities during
run-time in FTMC scheduling.

An EDF-based scheduling algorithm, called EDF-VD (EDF Virtual-Deadline), in
which the deadlines of the implicit-deadline sporadic tasks are modified online, is
proposed by Baruah et al. (2011a). The algorithm EDF-VD modifies the deadlines
of the tasks depending of the behavior of the system at different criticality levels and
schedule the tasks based on EDF scheduling according to the modified deadlines. The
processor speed-up factor of EDF-VD scheduling for dual-criticality system is 1.619.
By performing a more precise analysis of the EDF-VD scheduling of implicit-deadline
MC sporadic tasks, the speed-up factor of EDF-VD is further improved by Baruah et
al. to 1.333 (Baruah et al. 2012b). Ekberg and Yi (2012) recently proposed interesting
technique to compute the demand-bound (Baruah et al. 1990b) function to determine
the EDF schedulability of constrained-deadline MC sporadic tasks. The demand-bound
of the tasks at each criticality level is determined by adjusting the deadline of the tasks
when the system switches from LO to HI criticality behavior. The purpose of shaping
or adjusting the demand is to respect the supply-bound (Mok et al. 2001) function of
the underlying uniprocessor platform to ensure schedulability.

123

Real-Time Syst (2014) 50:509–547 543

Time-triggered (TT) scheduling of MC jobs on uniprocessor platform is proposed
by Baruah and Fohler (2011). The TT-scheduling essentially computes in offline, for
each criticality levels, the scheduling table that stores the time instant at which jobs
will be dispatched for execution. When the criticality behavior of the system switches
from � to (�+ 1), then jobs are scheduled based on the scheduling table computed for
criticality level (�+ 1). The processor speed-up factor for TT-scheduling is 1.619.

Many of the scheduling algorithms forMC systems considers dropping tasks of lower
criticality levels when the system switches to a higher criticality level. However, the
lower criticality tasks may not need to be dropped as long as they are not causing
a higher criticality task to miss its deadline. Based on this observation, Santy et al.
(2012) proposed a method, called latest completion time (LCT), that allows lower
criticality task to execute using uniprocessor FP scheduling until time instant at which
the lower criticality task is suspended to allow execution of a higher criticality task to
avoid missing its deadline. The lower-criticality task may resume its execution later
when the system switches back to lower-criticality behavior.

Many other works addressed scheduling of MC systems for aspects other than cer-
tification. Pellizzoni et al. (2009) and Petters et al. (Petters et al. (2009)) proposed
techniques for isolating (either in time or space) subsystems having different critical-
ity levels based on reservation based approach. However, these work concentrate on
providing isolation through worst-case reservation of resources and do not efficiently
utilize the resources. The work proposed by de Niz et al. (2009) observed that isolation
among multiple subsystems that are based on reservation based approach may suffer
from, so called criticality inversion problem: the deadline of a higher-criticality job
may be missed while allowing a lower criticality job to meet its deadline. In addition,
assigning priorities based on criticality to avoid criticality-inversion is not a good pri-
ority assignment policy for meeting the deadlines. They have proposed slack-aware
scheduling that dynamically assigns the priorities to tasks or jobs to avoid criticality
inversion while focusing on efficient use of the resources (Niz et al. 2009). This algo-
rithm avoids criticality inversion under which low-criticality task can not interfere with
high-criticality task but high-criticality task can steal cycles from the low-criticality
task under overload situations to meet deadlines. The work in Niz et al. (2009) is
further extended for non-preemptable shared resources (Lakshmanan et al. 2010) and
distributed systems (Lakshmanan et al. 2011). Mollison et al. (2010) proposed an
architecture for scheduling MC tasks based on criticality-monotonic scheduling on
multicore. The allocation of MC tasks in a distributed systems is considered in Tamas-
Selicean and Pop (2011), where each task allocated to a processor is given a time
partition by determining the sequence and size of each partition in addition to finding
the scheduling table for each processor.

Many approaches exist in the literature for tolerating faults for (non-MC) real-time
tasks. Ghosh et al. (1995) proposed fault-tolerant uniprocessor scheduling of aperi-
odic tasks considering transient faults by inserting enough slack in the schedule to
allow for the re-execution of tasks when an error is detected. They assumed that the
occurrences of two faults are separated by a minimum distance. Pandya and Malek
analyzed fault-tolerant rate-monotonic (RM) scheduling on a uniprocessor for toler-
ating one fault and proved that the minimum achievable utilization bound is 50 %
(Pandya and Malek 1998). The authors also demonstrated the applicability of their

123

544 Real-Time Syst (2014) 50:509–547

scheme for tolerating multiple faults if two faults are separated by a minimum time
distance equal to maximum period Tmax of a task set. In this paper, the proposed FTMC
algorithm place no restriction in time distance between occurences of two consecutive
faults within Dmax .

Liberato, Melhem and Mossé derived both exact and sufficient feasibility conditions
for tolerating f transient faults for a set of aperiodic tasks using EDF scheduling
(Liberato et al. 2000). However, the authors of Liberato et al. (2000) consider backup
of a faulty task simply as a re-execution of the primary copy and do not consider the
execution of a diverse implementation of a task possibly having a different execution
time as backup.

Burns, Davis, and Punnekkat derived an exact fault-tolerant feasibility test for any
fixed-priority system using backup that could be simple re-execution or a diverse
implementation of the same task Burns et al. (1996). This work is extended in Pun-
nekkat et al. (2001) to provide the exact schedulability tests employing check-pointing
for fault recovery. In Lima and Burns (2003), proposed an optimal fixed-priority assign-
ment to tasks for fault-tolerant scheduling based on re-execution. The fixed priorities
of the tasks can be determined in O(n2) time for a set of n periodic tasks. The schedu-
lability analysis in Burns et al. (1996, Lima and Burns 2003) require the information
about the minimum time distance between any two consecutive occurrences of tran-
sient faults within the schedule, and only considers simple re-execution or exactly one
different implementation when an error is detected. In the latter case, the execution
time of the backup is the same regardless of the number of errors affecting a particular
job. This is in contrast to the proposed method in this paper where each backup for a
particular job may have different execution time.

Based on the last chance strategy of Chetto and Chetto (1989) (in which backups
execute at late as possible), software faults are tolerated by considering two versions of
each periodic tasks: a primary and a backup (Han et al. 2003). Backups are scheduled
as late as possible using a backward RM algorithm (schedule from backward in time).
Similar to the work in Lima and Burns (2003), the work in Han et al. (2003) considers
that there is only one backup for each task and therefore does not have the provision
for considering different backups of the same task if more than one fault affect the
same task.

A fault-burst model is recently defined by Many and Doose in Many and Doose
(2011) as a bounded time interval during which the execution of the tasks are disturbed
due to the occurrences of faults for which the distribution of the faults is unknown.
Although the work in Many and Doose (2011) assumes arbitrary number of faults
in a fault burst, the proposed recovery strategy in fact considers a finite number of
errors to be tolerated within an interval of length Dmax where only one job of each
task is assumed to be faulty. In contrast, the proposed FTDM algorithm considers that
multiple jobs of the same task can be disturbed due to burst of faults within an interval
of length Dmax .

Aydin (2007) proposed aperiodic and periodic task scheduling based on an exact
EDF feasibility analysis in which a backup of a task can be different from the primary.
Aydin considers a fault model in which a maximum of f transient errors could occur
in tasks of the aperiodic task set. The schedulability analysis in Aydin (2007) is based
on processor demand analysis proposed by Baruah et al. (1990a). For periodic task

123

Real-Time Syst (2014) 50:509–547 545

systems, the proposed exact feasibility test in Aydin (2007) has exponential time
complexity.

The fault model considered for the FTMC algorithm is more general (e.g., no sepa-
ration constraints between two errors, multiple diverse backups, multiple errors in the
same job) in comparison to many of the earlier works. In addition to fault tolerance, the
FTMC algorithm also considers the mixed-criticality aspect of safety-critical systems.

10 Conclusion

This paper proposes a new approach to model MC systems from the perspective of fault
tolerance which is an important aspect of safety-critical systems. The proposed FTMC
algorithm and its analysis address the challenge of satisfying real-time, fault-tolerance,
and mixed-criticality constraints. The fault model that FTMC algorithm assumes is
very powerful in the sense that it considers different types of faults and covers many
different scenarios for error recovery. The derived OPA-FTMC test enables the system
designer to judge the resilience of the system by experimenting with different values of
f and F. The performance of the proposed test is close to the theoretical upper bound
in simulation. Extending the FTMC algorithm and its analysis for multiprocessors is
an interesting future work.

References

Aidemark J, Folkesson P, Karlsson J (2005) A framework for node-level Ffault tolerance in distributed
real-time systems. In: Proceedings of the international conference on dependable systems and networks,
pp 656–665

Al-Asaad H, Murray BT, Hayes JP (1998) Online BIST for embedded systems. IEEE Des Test 15(4):17–24.
doi:10.1109/54.735923

Audsley NC (2001) On priority assignment in fixed priority scheduling. Inf Proc Lett 79(1):39–44
Audsley NC, Burns A, Richardson MF, Wellings AJ (1991) Hard real-time scheduling: the deadline-

monotonic approach. In: Proc. IEEE workshop on real-time operating systems and software, pp 133–137
Audsley N, Burns A, Richardson M, Tindell K, Wellings AJ (1993) Applying new scheduling theory to

static priority pre-emptive scheduling. Softw Eng J 8(5):284–292 ISSN 0268–6961
Avižienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable

and secure computing. IEEE Trans Depend Sec Compt 1(1):11–33. doi:10.1109/TDSC.2004.2 ISSN
1545–5971

Aydin H (2007) Exact fault-sensitive feasibility analysis of real-time tasks. IEEE Trans Compt 56(10):1372–
1386. doi:10.1109/TC.2007.70739 ISSN 0018–9340

Barhorst J, Belote T, Binns P, Hoffman J, Paunicka J, Sarathy P, Stanfill JSP, Stuart D, Urzi R (2009) In
white paper: a research agenda for mixed-criticality systems. https://www.cs.unc.edu/~mollison/pubs/
icess10.pdf. Accessed 5 Mar 2010

Baruah S, Fohler G (2011) Certification-cognizant time-triggered scheduling of mixed-criticality systems.
In: Proc. of RTSS, pp 3–12

Baruah S, Vestal S (2008) Schedulability analysis of sporadic tasks with multiple criticality specifications.
In: Proc. of ECRTS, pp 147–155

Baruah S, Rosier LE, Howell RR (1990a) Algorithms and complexity concerning the preemptive scheduling
of periodic, real-time tasks on one processor. Real-Time Syst 2(4):301–324. doi:10.1007/BF01995675
ISSN 0922–6443

Baruah SK, Mok AK, Rosier LE (1990b) Preemptively scheduling hard-real-time sporadic tasks on one
processor. In: Proc. of the RTSS, pp 182–190

Baruah S, Li H, Stougie L (2010) Towards the design of certifiable mixed-criticality systems. In: Proc. of
RTAS

123

http://dx.doi.org/10.1109/54.735923
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TC.2007.70739
https://www.cs.unc.edu/~mollison/pubs/icess10.pdf
https://www.cs.unc.edu/~mollison/pubs/icess10.pdf
http://dx.doi.org/10.1007/BF01995675

546 Real-Time Syst (2014) 50:509–547

Baruah S, Bonifaci V, D’Angelo G, Marchetti-Spaccamela A, Van Der Ster S, Stougie L (2011a) Mixed-
criticality scheduling of sporadic task systems. In: Proc. of the European conf. on algorithms, pp 555–566

Baruah S, Burns A, Davis R (2011b) Response-time analysis for mixed criticality systems. In: Proc. of
RTSS

Baruah S, Bonifaci V, D’Angelo G, Li H, Marchetti-Spaccamela A, Megow N, Stougie L (2012a) Scheduling
real-time mixed-criticality jobs. IEEE Trans Comput 61(8):1140–1152

Baruah S, Bonifaci V, D’Angelo G, Li H, Marchetti-Spaccamela A, van der Ster S, Stougie L (2012b)
The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems,
In: Proc of ECRTS

Baumann R (2005) Soft errors in advanced computer systems. IEEE Des Test Comput 22(3):258–266
Bini E, Buttazzo G (2005) Measuring the performance of schedulability tests. Real-Time Syst 30:129–154
Burns A, Davis R, Punnekkat S (1996) Feasibility analysis of fault-tolerant real-time task sets. In: Proc. of

the ECRTS, pp 522–527
Campbell A, McDonald P, Ray K (1992) Single event upset rates in space. IEEE Trans Nuclear Sci

39(6):1828–1835. doi:10.1109/23.211373 ISSN 0018–9499
Castillo X, McConnel R, Siewiorek DP (1982) Derivation and calibration of a transient error reliability

model. IEEE Trans Comput 37(7):658–671. doi:10.1109/TC.1982.1676063 ISSN 0018–9340
Chattopadhyay S, Kee CL, Roychoudhury A, Kelter T, Marwedel P, Falk H (2012) A unified WCET analysis

framework for multi-core platforms. In: Proc. of the RTAS, pp 99–108
Chetto H, Chetto M (1989) Some results of the earliest deadline scheduling algorithm. IEEE Trans Softw

Eng 15(10):1261–1269. doi:10.1109/TSE.1989.559777 ISSN 0098–5589
Davis R, Burns A (2009) Priority assignment for global fixed priority pre-emptive scheduling in multi-

processor real-time systems. In: Proc. of RTSS, pp 398–409
de Lima GM, Burns A (2003) An optimal fixed-priority assignment algorithm for supporting fault-tolerant

hard real-time systems. IEEE Trans Comput 52(10):1332–1346
de Niz D, Lakshmanan K, Rajkumar R (2009) On the scheduling of mixed-criticality real-time task sets.

In: Proc. of the RTSS, pp 291–300
Dorin F, Richard P, Richard M, Goossens J (2010) Schedulability and sensitivity analysis of multiple

criticality tasks with fixed-priorities. Real-Time Syst 46:305–331
Ekberg P, Yi W (2012) Bounding and shaping the demand of mixed-criticality sporadic tasks. In: Proc. of

the ECRTS
Ghosh S, Melhem R, Mossé D (1995) Enhancing real-time schedules to tolerate transient faults. In: Proc.

of the RTSS, pp 120–129
Guan N, Ekberg P, Stigge M, Yi W (2011) Effective and efficient scheduling of certifiable mixed-criticality

sporadic task systems. In: Proc. of RTSS, pp 13–23
Guan N, Lv M, Yi W, Yu G (2012) WCET analysis with MRU caches: challenging LRU for predictability.

In: Proc. of RTAS, pp 55–64
Han C-C, Shin KG, Wu J (2003) A fault-tolerant scheduling algorithm for real-time periodic tasks with

possible software faults. IEEE Trans Compt 52(3):362–372. doi:10.1109/TC.2003.1183950 ISSN 0018–
9340

Hiller M (2000) Executable assertions for detecting data errors in embedded control systems. In: Proc. of
the DSN

Huynh BK, Ju L, Roychoudhury A (2011) Scope-aware data cache analysis for WCET estimation. In: Proc.
of the RTAS, pp 203–212

Iyer RK, Rossetti DJ, Hsueh MC (1986) Measurement and modeling of computer reliability as affected by
system activity. ACM Trans Compt Syst 4(3):214–237 ISSN 0734–2071

Jhumka A, Hiller M, Claesson V, Suri N (2002) On systematic design of globally consistent executable
assertions in embedded software. In: Proceedings of the joint conference on Languages, compilers and
tools for embedded systems, pp 75–84

Kalla R, Sinharoy B, Starke WJ, Floyd M (2010) Power 7: ibm’s next-generation server processor. Micro
IEEE 30(2):7–15

Koren I, Krishna CM (2007) Fault-tolerant systems. Morgan Kaufmann
Lakshmanan K, de Niz D, Rajkumar R, Moreno G (2010) Resource allocation in distributed mixed-criticality

cyber-physical systems. In: Proc. of the ICDCS, pp 169–178
Lakshmanan K, de Niz D, Rajkumar R (2011) Mixed-criticality task synchronization in zero-slack schedul-

ing. In: Proc. of RTAS, pp 47–56

123

http://dx.doi.org/10.1109/23.211373
http://dx.doi.org/10.1109/TC.1982.1676063
http://dx.doi.org/10.1109/TSE.1989.559777
http://dx.doi.org/10.1109/TC.2003.1183950

Real-Time Syst (2014) 50:509–547 547

Leung JYT, Whitehead J (1982) On the complexity of fixed-priority scheduling of periodic real-time tasks.
Perform Eval 2:237–250

Li H, Baruah S (2010a) Load-based schedulability analysis of certifiable mixed-criticality systems. In: Proc.
of EMSOFT, pp 99–108

Li H, Baruah S (2010b) An algorithm for scheduling certifiable mixed-criticality sporadic task systems. In:
Proc. of RTSS, pp 183–192

Liberato F, Melhem R, Mossé D (2000) Tolerance to multiple transient faults for aperiodic tasks in hard
real-time systems. IEEE Trans Compt 49(9):906–914

Madeira H, Camoes J, Silva JG (1991) A watchdog processor for concurrent error detection in multiple
processor systems. Microprocess Microsyst 15(3):123–130

Many F, Doose D (2011) Scheduling Analysis under Fault Bursts. In: Proc. of the RTAS, pp 113–122
Meixner A, Bauer ME, Sorin DJ (2007) Argus: low-cost, comprehensive error detection in simple cores.

In: Proc. of the annual IEEE/ACM int. symp. on Microarchitecture, pp 210–222
Mok AK, Feng X, Chen D (2001) Resource partition for real-time systems. In: Proc. of the RTAS, p 75
Mollison MS, Erickson JP, Anderson JH, Baruah SK, Scoredos JA (2010) Mixed-criticality real-time

scheduling for multicore systems. In: Proc. of ICESS, pp 1864–1871
Pandya M, Malek M (1998) Minimum achievable utilization for fault-tolerant processing of periodic tasks.

IEEE Trans Compt 47(10):1102–1112. doi:10.1109/12.729793 ISSN 0018–9340
Pathan RM (2012) Schedulability analysis of mixed-criticality systems on multiprocessors. In: Proc. of

ECRTS, pp 309–320
Pellizzoni R, Meredith P, Caccamo M, Rosu G (2008) Hardware runtime monitoring for dependable COTS-

based real-time embedded systems, In: Proc of the RTSS
Pellizzoni R, Meredith P, Nam M, Sun M, Caccamo M, Sha L (2009) Handling mixed-criticality in soc-based

real-time embedded systems. In: Proc. of EMSOFT
Petters SM, Heffernan M, Elphinstone K (2009) Towards real multi-criticality scheduling. In: Proc. of

RTCSA, pp 155–164
Punnekkat S, Burns A, Davis R (2001) Analysis of checkpointing for real-time systems. Real-Time Syst

20(1):83–102. doi:10.1023/A:1026589200419 ISSN 0922–6443
Raju SCV, Rajkumar R, Jahanian F (1992) Monitoring timing constraints in distributed real-time systems.

In: Proc. of the RTSS, pp 57–67
Santy F, George L, Thierry P, Goossens J (2012) Relaxing mixed-criticality scheduling strictness for task

sets scheduled with FP. In: Proc. pf the ECRTS, pp 155–165
Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L (2002) Modeling the effect of technology trends

on the soft error rate of combinational logic. In: Proc. of the DSN, pp 389–398
Short M, Proenza J (2013) Towards efficient probabilistic scheduling guarantees for real-time systems

subject to random errors and random bursts of errors. InL Proc. of the ECRTS, pp 259–268. doi:10.
1109/ECRTS.2013.35

Siewiorek DP, Kini V, Mashburn H, McConnel S, Tsao M (1978) Experiences with fault tolerance in
multiprocessor systems. Proc IEEE 66(10):1199 ISSN 0018–9219

Srinivasan J, Adve SV, Bose P, Rivers JA (2004) The impact of technology scaling on lifetime reliability.
In: Proceedings of the international conference on dependable systems and networks, pp 177–186

Tamas-Selicean D, Pop P (2011) Design optimization of mixed-criticality real-time applications on cost-
constrained partitioned architectures. In: Proc. of RTSS, pp 24–33

Vestal (2007) Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In: Proc. of RTSS, pp 239–243

Yoon M, Kim J, Sha L (2011) Optimizing tunable wcet with shared resource allocation and arbitration in
hard real-time multicore systems. In: Proc. of the RTSS, pp 227–238

123

http://dx.doi.org/10.1109/12.729793
http://dx.doi.org/10.1023/A:1026589200419
http://dx.doi.org/10.1109/ECRTS.2013.35
http://dx.doi.org/10.1109/ECRTS.2013.35

	Fault-tolerant and real-time scheduling for mixed-criticality systems
	Abstract
	1 Introduction
	2 Fault and task model
	2.1 Fault model
	2.2 Task model

	3 Certification and the FTMC algorithm
	4 Considerations for schedulability analysis
	5 Overview of schedulability analysis
	6 Schedulability analysis: LO criticality
	7 Schedulability analysis: HI criticality
	7.1 Priority assignment using audsley's OPA algorithm
	7.2 Dealing with more than two criticality levels

	8 Empirical investigation
	9 Related work
	10 Conclusion
	References

