
Real-Time Syst (2012) 48:789–825
DOI 10.1007/s11241-012-9162-0

Analysis and implementation of the multiprocessor
bandwidth inheritance protocol

Dario Faggioli · Giuseppe Lipari ·
Tommaso Cucinotta

Published online: 11 September 2012
© Springer Science+Business Media, LLC 2012

Abstract The Multiprocessor Bandwidth Inheritance (M-BWI) protocol is an ex-
tension of the Bandwidth Inheritance (BWI) protocol for symmetric multiprocessor
systems. Similar to Priority Inheritance, M-BWI lets a task that has locked a resource
execute in the resource reservations of the blocked tasks, thus reducing their blocking
time. The protocol is particularly suitable for open systems where different kinds of
tasks dynamically arrive and leave, because it guarantees temporal isolation among
independent subsets of tasks without requiring any information on their temporal pa-
rameters. Additionally, if the temporal parameters of the interacting tasks are known,
it is possible to compute an upper bound to the interference suffered by a task due
to other interacting tasks. Thus, it is possible to provide timing guarantees for a sub-
set of interacting hard real-time tasks. Finally, the M-BWI protocol is neutral to the
underlying scheduling policy: it can be implemented in global, clustered and semi-
partitioned scheduling.

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme FP7 under grant agreement No. 248465 “S(o)OS—Service-oriented
Operating Systems” and under grant agreement No. 246556, “RBUCE-UP”.

Electronic supplementary material The online version of this article
(doi:10.1007/s11241-012-9162-0) contains supplementary material, which is available to authorized
users.

D. Faggioli
Real-Time Systems Laboratory, Scuola Superiore Sant’Anna, Via G. Moruzzi 1, 56124 Pisa, Italy
e-mail: d.faggioli@sssup.it

G. Lipari (�)
Laboratoire Spécification et Vérification, École Normal Supérieure Cachan and PRES Universud
Paris, 61, Avenue du Président Wilson, 94235 Cachan, France
e-mail: giuseppe.lipari@lsv.ens-cachan.fr

T. Cucinotta
Alcatel-Lucent Bell Labs, Blanchardstown Business & Technology Park, Dublin, Ireland
e-mail: tommaso.cucinotta@alcatel-lucent.com

http://dx.doi.org/10.1007/s11241-012-9162-0
mailto:d.faggioli@sssup.it
mailto:giuseppe.lipari@lsv.ens-cachan.fr
mailto:tommaso.cucinotta@alcatel-lucent.com

790 Real-Time Syst (2012) 48:789–825

After introducing the M-BWI protocol, in this paper we formally prove its iso-
lation properties, and propose an algorithm to compute an upper bound to the in-
terference suffered by a task. Then, we describe our implementation of the protocol
for the LITMUSRT real-time testbed, and measure its overhead. Finally, we compare
M-BWI against FMLP and OMLP, two other protocols for resource sharing in multi-
processor systems.

Keywords Resource sharing · Real-time · Multiprocessors · Resource reservation ·
Priority inheritance

1 Introduction

Multi-core platforms are being increasingly used in all areas of computing. They con-
stitute an important step for the achievement of greater performance in the wide area
of high-end servers and high-performance computing, as witnessed by the movement
from the “frequency race” to the “core race”. Furthermore, they constitute a promis-
ing technology for embedded and real-time systems, where providing the same com-
puting power with multiple cores at reduced frequency may lead to advantages in
terms of power consumption, something particularly important for battery-operated
devices.

Therefore, an increasing effort is being dedicated in the real-time literature for
multiprocessor scheduling, analysis and design methodologies. Particularly, one of
the key challenges in this context is constituted by resource synchronisation proto-
cols, allowing multiple threads, possibly deployed on multiple cores, to access shared
resources still keeping serialisability (Herlihy and Wing 1990) of the accesses. On
symmetric shared-memory multi-core platforms, commonly used types of shared re-
sources are in-memory shared data structures used for communication and synchroni-
sation purposes. To avoid inconsistencies due to concurrency and parallelism, access
to shared data must be protected by an appropriate access scheme.

Many different approaches have been proposed so far, including lock-based tech-
niques, guaranteeing mutual exclusion among code sections accessing the same data,
but also wait-free (Cho et al. 2007) and lock-free (Anderson and Ramamurthy 1996)
techniques, which instead allow for true concurrent execution of the operations on the
data structures, via appropriate access schemes guaranteeing consistency of the oper-
ations. Recently, the transactional memory (TM) programming paradigm is gaining
momentum, thanks to its ability to make it easier to code certain types of interactions
of parallel software.

However, most widely used techniques in the programming practice so far are
based on mutually exclusive semaphores (a.k.a., mutexes): before accessing a shared
memory area, a task must lock a semaphore and unlock it after completing the access.
The mutex can be successfully locked by only one task at a time; if another task
tries to lock an already locked mutex, it is blocked, i.e. it cannot continue its normal
execution. The blocked task will be unblocked only when the mutex is unlocked by
its owner.

In single processor systems, the blocked task is removed from its ready queue,
and the scheduler chooses a new task to be executed. In multi-core systems, it may be
useful to let the blocked task execute a waiting loop, until the mutex is unlocked. Such

Real-Time Syst (2012) 48:789–825 791

technique is often called spin-lock or busy-wait. The advantage of busy waiting is that
the overhead of suspending and resuming the task is avoided, and this is particularly
useful when the time between the lock and the unlock operations is very short.

A resource access protocol is the set of rules that the operating system uses to
manage blocked tasks. These rules mandate whether a task is suspended or performs
a busy-wait; how the queue of tasks blocked on a mutex is ordered; whether the pri-
ority of the task that owns the lock on a mutex is changed and how. When designing
a resource access protocol for real-time applications, there are two important objec-
tives: (1) at run-time, we must use scheduling schemes and resource access protocols
to reduce the blocking time of important tasks; (2) off-line, we must be able to bound
such blocking time and account for it in a schedulability analysis methodology.

In this paper, we consider open real-time systems where tasks can dynamically
enter or leave the system at any time. Therefore, a run-time admission control scheme
is needed to make sure that the new tasks do not jeopardise the schedulability of the
already existing tasks. In addition, for robustness, security and safety issues, it is
necessary to isolate and protect the temporal behaviour of one task from the others.
In this way, it is possible to have tasks with different levels of temporal criticality
coexisting in the same system.

Resource Reservations (Rajkumar et al. 1998) were proved as effective techniques
to achieve the goals of temporal isolation and real-time execution in open systems.
Resource reservation techniques have initially been designed for the execution of
independent tasks on single processor systems. Recently, they were extended to cope
with hierarchical scheduling systems (Feng and Mok 2002; Shih and Lee 2003; Lipari
and Bini 2004), and with tasks that interact with each other using locks (Caccamo
and Sha 2001; Fisher et al. 2007; Nemati et al. 2011b). Lamastra et al. proposed the
Bandwidth Inheritance (BWI) protocol (Lamastra et al. 2001; Lipari et al. 2004) that
combines the Constant Bandwidth Server (Abeni and Buttazzo 1998) with Priority
Inheritance (Sha et al. 1990) to achieve bandwidth isolation in open systems.

The Multiprocessor BWI (M-BWI) protocol described in this paper is an ex-
tension of the original BandWidth Inheritance Protocol to symmetric multiproces-
sor/multicore systems. In order to reduce task waiting times in M-BWI, busy waiting
techniques are combined with blocking and task migration. The protocol does not re-
quire any information on the temporal parameters of the tasks; hence, it is particularly
suitable to open systems.

Nevertheless, the protocol supports hard real-time guarantees for critical tasks: if
it is possible to estimate such parameters as the worst-case execution times and du-
rations of the critical sections for the subset of tasks interacting with the task under
analysis, then an upper bound to the task waiting times can be computed. Therefore,
in this case it is possible to compute the reservation budget that is necessary to guar-
antee that the critical task will not miss its deadlines.

Finally, the M-BWI protocol is neutral to the underlying scheduling scheme, since
it can be implemented in global, clustered and semi-partitioned scheduling algo-
rithms.

1.1 Paper contributions

The contribution of this paper is three-fold. First, M-BWI is described and its for-
mal properties are derived and proved correct. Then, schedulability analysis for hard

792 Real-Time Syst (2012) 48:789–825

real-time tasks under M-BWI is presented. Finally, the implementation of M-BWI
in LITMUSRT , a well-known open-source testbed for the evaluation of real-time
scheduling algorithms,1 is also presented. An experimental evaluation of M-BWI per-
formed on such an implementation is presented and discussed.

A preliminary version of this work appeared in Faggioli et al. (2010). In this ex-
tended paper the discussion is more complete and formal; comparison with the FMLP
and OMLP protocols (Block et al. 2007; Brandenburg and Anderson 2012) have been
added; the evaluation is made through a real implementation of the proposed tech-
nique.

2 Related work

Several solutions exist for sharing resources in multiprocessor systems. Most of these
have been designed as extensions of uni-processor techniques (Rajkumar et al. 1988;
Rajkumar 1990; Chen and Tripathi 1994; Lopez et al. 2004; Gai et al. 2001;
Lakshmanan et al. 2009; Easwaran and Andersson 2009); fewer have been specif-
ically conceived for multiprocessor systems (Devi et al. 2006; Block et al. 2007).

The Multiprocessor Priority Ceiling Protocol (MPCP) (Rajkumar et al. 1988) and
its later improvement (Rajkumar 1990) constitute an adaptation of PCP to work
on fixed priority, partitioned multiprocessor scheduling algorithms. A recent vari-
ant (Lakshmanan et al. 2009) of MPCP differs from the previous ones in the fact that
it introduces spin-locks to lower the blocking times of higher priority tasks, but the
protocol still addresses only partitioned, fixed priority scheduling.

Chen and Tripathi (1994) presented an extension of PCP to EDF. Later on, Gai
et al. (2001) extended the SRP for partitioned EDF. The paper deals with critical
sections shared between tasks running on different processors by means of FIFO-
based spin-locks, and forbids their nesting.

Concerning global scheduling algorithms, Devi et al. (2006) proposed the analysis
for non-preemptive execution of global critical sections and FIFO-based wait queues
under EDF. Block et al. proposed FMLP (Block et al. 2007) and validated it for dif-
ferent scheduling strategies (global and partitioned EDF and Pfair). FMLP employs
both FIFO-based non-preemptive busy waiting and suspension blocking, depending
on the critical section being declared as short or long by the user. Nesting of critical
sections is permitted in FMLP, but the degree of locking parallelism is reduced by
grouping the accesses to shared resources.

Brandenburg and Anderson (2010, 2012) discuss the definition of blocking time
and priority inversion in multi-processor systems, and present the OMLP class of
protocols. Currently OMLP only supports non-locked resources. Recently, Easwaran
and Andersson presented the generalisation of PIP for globally scheduled multipro-
cessor systems (Easwaran and Andersson 2009). They also introduced a new solution,
which is a tunable adaptation of PCP with the aim of limiting the number of times a
low priority task can block a higher priority one. Recently Macariu proposed Limited

1More information is available at: www.litmus-rt.org.

http://www.litmus-rt.org

Real-Time Syst (2012) 48:789–825 793

Blocking PCP (Macariu 2011) for global deadline-based schedulers, but this protocol
does not support nesting of critical sections.

As it comes to sharing resources in reservation-based systems, the first proposals
were made by Caccamo and Sha (2001), by Niz et al. (2001) and by Holman and
Anderson (2006). Regarding hierarchical systems,2 Behnam et al. (2007) and Fisher
et al. (2007) proposed specific protocols to deal with shared resources. In these pa-
pers, a server that has not enough remaining budget to complete a critical section
blocks before entering it, until the replenishment time. Davis and Burns (2006) pro-
posed a generalisation of the SRP for hierarchical systems, where servers that are
running tasks inside critical sections are allowed to overcome the budget limit.

Furthermore, there is work ongoing by Nemati et al. (2009a, 2009b, 2011a) on
both integrating the FMLP in hierarchical scheduling frameworks, or using a new
adaptation of SRP, called MHSRP, for resource sharing in hierarchically scheduled
multiprocessors.

Guan et al. (2011) addressed resource sharing in graph-based real-time task mod-
els, proposing a new protocol called ACP which tackles the particular issue that often
the actually accessed resources are determined only at run-time, depending on which
branches the code actually executes.

For all these algorithms, the correctness of the scheduling algorithm depends on
the correct setting of the parameters, among which there are worst-case computation
times and durations of critical section. If the length of a critical section is underesti-
mated, any task can miss a deadline. In other words, there is no isolation (or a very
limited kind of isolation) and an error can propagate and cause a fault in another part
of the system. For example, in Behnam et al. (2007) and Fisher et al. (2007), if the
length of a critical section on a global resource is underestimated, the system could
be overloaded and any task could miss its deadline.

To the best of our knowledge, the only two attempts to overcome this problem
are the BandWidth Inheritance protocol by Lamastra et al. (2001, 2004), and the
non-preemptive access to shared resources by Bertogna et al. (2008, 2011). These
approaches are well suited for open systems, but are limited to uni-processors. Also
limited to uniprocessors was the attempt at tackling priority inheritance in deadline-
based systems by Jansen et al. (2003), in which a protocol similar to priority-ceiling
was designed for EDF-based scheduling, and the schedulability analysis technique
based on the demand-bound function for EDF was extended for such a protocol.

3 System model

In this paper we focus on shared memory symmetric multiprocessor systems, con-
sisting of m identical unit-capacity processors that share a common memory space.

A task τi is defined as a sequence of jobs Ji,j —each job is a sequential piece of
work to be executed on one processor at a time. Every job has an arrival time ai,j

and a computation time ci,j . A task is sporadic if ai,j+1 ≥ ai,j + Ti , and Ti is the

2These, under certain assumptions and for the purposes of this paper, can be considered as a particular
form of reservation-based systems

794 Real-Time Syst (2012) 48:789–825

minimum inter-arrival time. If ∀j ai,j+1 = ai,j + Ti , then the task is periodic with
period Ti . The worst-case execution time (WCET) of τi is an upper bound on the
job computation time: Ci ≥ maxj {ci,j }. Real-time tasks have a relative deadline Di ,
and each job has an absolute deadline di,j = ai,j + Di , which is the absolute time by
which the job has to complete.

Hard real-time tasks must respect all their deadlines. Soft real-time tasks can toler-
ate occasional and limited violations of their timing constraints. Non real-time tasks
have no particular timing behaviour to comply with.

3.1 Critical sections

Concurrently running tasks often need to interact through shared data structures, lo-
cated in common memory areas. One way to avoid inconsistencies is to protect the
shared variables with mutex semaphores (also called locks). In this paper we de-
note shared data structures protected by mutex semaphores as software resources or
simply resources. In order to access a resource, a task has to first lock the resource
semaphore; only one task at time can lock the same semaphore. From now on, the
k-th mutex semaphore will simply be called resource, and it will be denoted by Rk .

When τj successfully locks a resource Rk , it is said to become the lock owner
of Rk , and we denote this situation with Rk → τj . If another task τi tries to lock Rk

while it is owned by τj , we say that τi is blocked on Rk : this is denoted with τi → Rk .
In fact, τi cannot continue its execution until τj releases the resource. Typically, the
operating system suspends τi until it can be granted access to Rk . Alternatively, τi

can continue executing a busy-wait, i.e. it still occupies the processor waiting in a
loop until the resource is released. When τj releases Rk , we say that it unlocks the
resource; one of the blocked tasks (if any) is unblocked and becomes the new owner
of Rk .

Notice that in this paper the term blocking refers only to a task suspension due
to a lock operation on an already locked resource. Other types of suspensions (for
example the end of a task job) are simply called suspensions or self-suspensions.
Also, notice that our definition of task blocking on a resource has no relationship
with the concepts of priority and priority inversion: it simply indicates that a task
cannot continue execution until the resource is released. Therefore, as it will become
more apparent in Sect. 6, the definition and results presented by Brandenburg and
Anderson (2010, 2012) do not apply to our case.

The section of code between a lock operation and the corresponding unlock oper-
ation on the same resource is called critical section. A critical section of task τi on
resource Rh can be nested inside another critical section on a different resource Rk

if the lock on Rh is performed between the lock and the unlock on Rk . Two critical
sections on Rk and Rh are properly nested when executed in the following order: lock
on Rk , lock on Rh, unlock on Rh and unlock on Rk . We assume that critical sections
are always properly nested.

In the case of nested critical sections, chained blocking is possible. A blocking
chain from a task τi to a task τj is a sequence of alternating tasks and resources:

Hi,j = {τi → Ri,1 → τi,1 → Ri,2 → ·· · → Ri,ν−1 → τj }

Real-Time Syst (2012) 48:789–825 795

such that τj is the lock owner on resource Ri,ν−1 and τi is blocked on Ri,1;3 each
other task in the chain accesses resources with nested critical sections, being the
lock owner of the preceding resource and blocking on the following resource. For
example, the following blocking chain H1,3 = {τ1 → R1 → τ2 → R2 → τ3} consists
of 3 tasks: τ3 that accesses R2, τ2 that accesses R2 with a critical section nested inside
a critical section on R1, and τ1 accessing R1. This means that at run-time τ1 can be
blocked by τ2, and indirectly by τ3. In this case τ1 is said to be interacting with τ2

and τ3.
A blocking chain is a “snapshot” of a specific run-time situation. However, the

concept of blocking chain can also be used to denote a potential situation that may
happen at run-time. For example, chain H1,3 can be built off-line by analysing the
critical sections used by each task, and then at run-time it may happen or not. There-
fore, in order to perform a schedulability analysis, it is possible to analyse the task
code and build a set of potential blocking chains to understand the relationship be-
tween the tasks. In the previous example, τ1 may or may not be blocked by τ3 in
a specific run. However, τ3 cannot be blocked by τ1, unless another blocking chain
H3,1 exists. Generally speaking τi can be blocked by τj if and only if a blocking
chain Hi,j exists.

Deadlock can be detected both off-line and on-line by computing blocking chains.
If a blocking chain contains the same task or the same resource twice, then a locking
cycle is possible, and a deadlock can happen at run-time. To simplify presentation,
and without loss of generality, in this paper we assume that deadlock is not possible.
Thus a task never appears more than once in each blocking chain, and all chains
are finite sequences. However, our implementation in Sect. 7 can detect deadlocks at
run-time.

We define the subset of tasks interacting with τi as follows:

Ψi = {τj |∃Hi,j }. (1)

Two tasks τi and τh are said to be non-interacting if and only if τj /∈ Ψi and τi /∈ Ψj .
The set of tasks that directly or indirectly interact with a resource Rk is defined as:

Γk = {
τj |∃Hj,h = {τj → ·· ·Rk → τh}

}
(2)

The ultimate goal of the M-BWI protocol is to provide bandwidth isolation between
groups of non-interacting tasks: if τj /∈ Ψi , then τj cannot block τi and it cannot
interfere with its execution (see Sect. 4).

3.2 Multiprocessor scheduling

In multiprocessor systems, scheduling algorithms can be classified into global, par-
titioned and clustered. Global scheduling algorithms have only one queue for ready
tasks, and the first m tasks in the queue are executed on the m available processors. As
a consequence, a task can execute on any of the m processors, and can migrate from
one processor to another even while executing a job. Global scheduling is possible on

3Notice that we have re-labelled both tasks and resources in the chain to highlight the blocking sequence.

796 Real-Time Syst (2012) 48:789–825

symmetric multiprocessor systems where all processors have equivalent characteris-
tics (e.g., the same instruction set architecture).

Partitioning entails a static allocation of tasks to processors. The scheduler man-
ages m different queues, one for each processor, and a task cannot migrate between
processors. Partitioned scheduling is possible on a wide variety of hardware platform,
including heterogeneous multiprocessors.

In clustered scheduling, the set of processors is divided into disjoint subsets (clus-
ters) and each task is statically assigned to one cluster. Global scheduling is possible
within each cluster: there is one queue for each cluster, and a task can migrate be-
tween processors of its assigned cluster. Again, each cluster must consist of equiva-
lent processors.

In this paper we assume that task migration is possible, i.e. that a task can occa-
sionally migrate from one processor to another one. Therefore, we restrict our atten-
tion to symmetric multiprocessors platforms.

Regarding the scheduling algorithm, we do not make any specific assumption. The
underlying scheduling mechanism can be global, partitioned or clustered scheduling.
However, for the latter two algorithms, we assume that a task can occasionally violate
the initial partitioning, and temporarily migrate from its assigned processor to another
one not assigned to it for the sake of shortening the blocking time due to shared re-
sources. For this reason, from now on we refer to these schedulers as semi-partitioned
schedulers.

The mechanism will be explained in greater details in Sect. 5.

3.3 Resource reservation

The main goal of our protocol is to guarantee timing isolation between non-
interacting tasks. An effective way to provide timing isolation in real-time systems
is to use the resource reservation paradigm (Rajkumar et al. 1998; Abeni and But-
tazzo 1998). The idea is to wrap tasks inside schedulable entities called servers that
monitor and limit the resource usage of the tasks.

A server Si has a maximum budget Qi and a period Pi , and serves one task.4 The
server is a schedulable entity: it means that the scheduler treats a server as it were a
task. Therefore, depending on the specific scheduling algorithm, a server is assigned
a priority (static of dynamic), and it is inserted in a ready queue. Each server then gen-
erates “jobs” which have computation times (bounded by the maximum budget) and
absolute deadlines. To distinguish between the absolute deadline assigned to server
jobs, and absolute deadlines assigned to real-time tasks, we call the former “schedul-
ing deadlines”.

The scheduling deadline is calculated by the reservation algorithm and it is used
only for scheduling purposes (for example in the CBS algorithm, Abeni and But-
tazzo 1998, the scheduling deadline is used to order the queue of servers according
to the Earliest Deadline First policy). When the server is dispatched to execute, the

4Resource reservation and servers can also be used as the basis for hierarchical scheduling, in which case
each server is assigned more than one task. In this paper, however, we will not take hierarchical scheduling
into account.

Real-Time Syst (2012) 48:789–825 797

Fig. 1 State machine diagram of a resource reservation server

server task is executed instead according to the resource reservation algorithm in use.
Notice that, when using resource reservations, priority (both static or dynamic) is as-
signed to servers, and not to tasks. A set of servers is said to be schedulable by a
scheduling algorithm if each server job completes before its scheduling deadline. In
general, schedulability of servers is not related with schedulability of the wrapped
tasks. However, if the set of servers is schedulable, and there is an appropriate rela-
tionship between task parameters and server parameters, server schedulability may
imply task schedulability. For example, when serving sporadic real-time tasks, if the
server maximum budget is not less than the task WCET, and the server period is not
larger than the task minimum inter-arrival time, then the task will meet its deadlines
provided that the server meets its deadlines.

Many resource reservation algorithms have been proposed in the literature, both
for fixed priority and for dynamic priority scheduling. They differ on the rules for
updating their budget, suspending the task when the budget is depleted, reclaiming
unused budget, etc. However, all of them provide some basic properties: a reserved
task τi is guaranteed to execute at least for Qi time units over every time interval of
Pi time units; therefore, tasks are both confined (i.e., their capability of meeting their
deadlines only depends on their own behaviour) and protected from each other (i.e.,
they always receive their reserved share of the CPU, without any interference from
other tasks). The latter property is called timing isolation.

Two examples of resource reservation algorithms are the Constant Bandwidth
Server (CBS, Abeni and Buttazzo 1998), for dynamic priority scheduling, and the
Sporadic Server (SS, Sprunt et al. 1989), for fixed priority scheduling. To describe a
resource reservation algorithm, it is possible to use a state machine formalism. The
state machine diagram of a server for a general reservation algorithm is depicted in
Fig. 1. Usually, a server has a current budget (or simply budget) that is consumed
while the served task is being executed, and a priority. Initially the server is in the
Idle state. When a job of the served task is activated, the server moves to the Ac-
tive state and it is inserted in the ready queue of the scheduler; in addition, its
budget and priority are updated according to the server algorithm rules. When an ac-
tive server is dispatched, it becomes Running, and its served task is executed; while
the task executes, its budget is decreased. From there on, the server may:

798 Real-Time Syst (2012) 48:789–825

– become Active again, if preempted by another server;
– become Recharging, if its budget is depleted;
– become Idle, if its task self-suspends (for example because of an end of job

event).

On the way out from Recharging and Idle, the reservation algorithm checks
whether the budget and the priority/deadline of the server needs to be updated.
A more complete description of the state machine for algorithms like the CBS (Abeni
and Buttazzo 1998) can be found in Mancina et al. (2009).

4 The bandwidth inheritance protocol

If tasks share resources using the resource reservation paradigm, they might start
interfering with each other. In fact, a special type of priority inversion is possible in
such a case, due to the fact that a server may exhaust its budget while serving a task
inside a critical section: the blocked tasks then need to wait for the server to recharge
its budget. If the server is allowed to continue executing with a negative budget,
scheduling anomalies appear that may prevent schedulability analysis, as explained
for example in Lipari et al. (2004, 2008).

For uni-processor systems, the Bandwidth Inheritance Protocol (BWI, see Lipari
et al. 2004) solves this issue by allowing server inheritance. The server of a lock-
owner task can leverage not only its own budget to complete the critical section, but
also the inherited budgets of servers possibly blocked on the lock it is owning.

This mechanism is similar to the Priority Inheritance mechanism. It helps the lock-
owner to anticipate the resource release. Moreover, tasks that are not involved in the
resource contention are not influenced, thus preserving timing isolation between non-
interacting tasks.

A more detailed description of the BWI protocol and its properties can be found in
Lipari et al. (2004). In this paper we extend the BWI protocol to the multi-processor
case.

In Santos et al. (2008), BWI has been extended with the Clearing Fund algorithm.
The idea is to pay back the budget that a task steals to other tasks by means of the
bandwidth inheritance mechanism. While a similar technique can also be applied to
M-BWI, for simplicity in this paper we restrict our attention to the original BWI
protocol, and we leave an extension of the Clearing Fund algorithm as future work.

5 Multiprocessor bandwidth inheritance

When trying to adapt the BWI protocol to multiprocessor systems, the problem is
to decide what to do when a task τA tries to lock a resource R whose lock owner
τB is executing on a different processor. It makes no sense to execute τB on more
than one CPU at the same time. However, just blocking τA and suspending the server
may create problems to the resource reservation algorithm: as shown in Lipari et al.
(2004), the suspended server must be treated as if its task completed its job; and the
task unblocking must be considered as a new job. Whereas this strategy preserves

Real-Time Syst (2012) 48:789–825 799

the semantic of the resource reservation, it may be impossible to provide any timing
guarantee to τA.

To solve this problem, M-BWI lets the blocked task τA perform a busy-wait inside
its server. However, if the lock owner τB is not executing, because its server has
been preempted (or exhausted its budget during the critical section) the inheritance
mechanisms of BWI takes place and τB is executed in the server of the blocked task
τA, thus reducing its waiting time. Therefore, it is necessary to understand what is the
status of the lock owner before taking a decision on how to resolve the contention.
It is also important to decide how to order the queue of tasks blocked on a locked
resource.

5.1 State machine

A server using the M-BWI protocol has some additional states. The new state ma-
chine is depicted in Fig. 2 using the UML State Chart notation. In this diagram we
show the old states grouped into a composite state called Reservation. As long as the
task does not try to lock a resource, the server follows its original behaviour and stays
inside the Reservation state.

Now, let us describe the protocol rules. Let λj denote the set of blocked tasks
waiting for τj to release some resource: λj = {τk | τk → ·· · → τj }. Let ρk denote
the set of all tasks blocked on resource Rk including the current lock-owner. Also, let
Λj denote the set of servers currently inherited by τj (Sj included): Λj = {Sk | τk ∈
λj } ∪ {Sj }.
– Locking rule. When the task τi executing inside its server Si tries to lock a re-

source Rk , the server moves into the BWI composite state, and more specifically
inside the BWI.Running state, which is itself a state composed of two sub-states,
Executing and Spinning. The set ρk now includes τi . We have two cases to
consider:

(a) If the resource is free, the server simply moves into the BWI.Running.
Executing sub-state and executes the critical section.

(b) If the resource is occupied, then the chain of blocked tasks is followed un-
til one that is not blocked is found (this is always possible when there is no
deadlock), let it be τj . Then, τj inherits server Si , i.e. Si is added to Λj . If
τj is already executing in another server on another processor, then Server Si

moves into the BWI.Running.Spinning sub-state. Otherwise, it moves
into BWI.Running.Executing and starts executing τj . This operation
may involve a migration of task τj from one server to another one running
on a different processor.

Notice that in all cases Si remains in the BWI.Running state, i.e. it is not sus-
pended.

– Preemption rule. When server Si is preempted while in the BWI.Running state,
it moves to the BWI.Active state. We have two cases:

(a) If the server was in the BWI.Running.Spinning sub-state, it simply
moves to BWI.Active;

800 Real-Time Syst (2012) 48:789–825

F
ig

.2
St

at
e

m
ac

hi
ne

di
ag

ra
m

of
a

re
so

ur
ce

re
se

rv
at

io
n

se
rv

er
w

he
n

M
-B

W
I

is
in

pl
ac

e

Real-Time Syst (2012) 48:789–825 801

(b) Suppose it was in the BWI.Running.Executing state, executing
task τj . Then the list Λj of all servers inherited by τj is iterated to see
if one of the servers Sk ∈ Λj is running. This means that Sk must be in
the BWI.Running.Spinning sub-state. Then, Sk moves to the BWI.
Running.Executing sub-state and will now execute τj (transition sig
in the figure).

If there is more than one server in Λj that is BWI.Running.Spinning,
only one of them is selected and moved to BWI.Running.Executing, for
example the one with the largest remaining budget, or the one with the earliest
deadline.

This operation may involve a migration of task τj from server Si into
server Sk .

– Recharging rule. If the budget of a server in the BWI.Running state is ex-
hausted, the server moves to the BWI.Recharging state. This rule is similar
to the Preemption rule described above, so both cases (a) and (b) apply.

– Dispatch rule. If server Si in the BWI.Active state is dispatched, it moves to
the BWI.Running state. This rule is similar to the locking rule described above,
and there are two cases to consider:

(a) The lock-owner task is already executing in another server on another proces-
sor: then Si moves to the BWI.Running.Spinning sub-state.

(b) The lock-owner task is not currently executing; then Si moves to the
BWI.Running.Executing sub-state and starts executing the lock-owner
task.

– Inner locking. If a task that is already the lock owner of a resource Rl tries to
lock another resource Rh (this happens in case of nested critical section), then it
behaves like in the locking rule above. In particular, if the resource is occupied,
the lock owner of Rh is found and inherits Si . If the lock-owner is already run-
ning in another server, Si moves from the BWI.Running.Executing to the
BWI.Running.Spinning sub-states (transition inn-lock in the figure).

– Unlocking rule. Suppose that a task τj is executing an outer critical section
on resource Rk and unlocks it. Its current executing server must be in the
BWI.Running.Executing sub-state (due to inheritance, it may or may not
be Sj).

If there are blocked tasks in ρk , the first one (in FIFO order) is woken up, let it
be τi . The unblocked task τi will inherit all servers that were inherited by τj , and
all inherited servers are discarded from Λj (excluding Sj):

Λi ← Λi ∪ Λj \ Sj

Λj ← Sj

(3)

Sj goes out of the BWI composite state (transition unlock) and returns
into the Reservation composite state, more precisely into its Reserva-
tion.Running sub-state. Notice that this operation may involve a migration
(task τj may need to return executing into its own server on a different processor).

– Inner unlocking rule. If a task τj is executing a nested critical section on re-
source Rk and unlocks it, its currently executing server continues to stay in the

802 Real-Time Syst (2012) 48:789–825

BWI.Running.Executing sub-state. If there are blocked tasks in ρk waiting
for Rk , then the first one (according to the FIFO ordering) is woken up, let it be τi ,
and the sets are updated as follows:

ρk ← ρk \ τj

∀τh ∈ ρk

{
Λj ← Λj \ Sh

Λi ← Λi ∪ Sh

This operation may involve a migration.
– Suspension rule. While holding a resource, it may happen that a task τj self sus-

pends or blocks on a resource that is not under the control of the M-BWI protocol.
This should not be allowed in a hard real-time application, otherwise it becomes
impossible to analyse and test the schedulability. However, in a open system, where
not everything is under control, it may happen that a task self-suspends while hold-
ing a M-BWI resource.

In that case, all the servers in Λj move to BWI.Idle and are removed from
the scheduler ready queues until τj wakes up again. When waking up, all servers
in Λj move to the BWI.Active state and the rules of the resource reservation
algorithm are applied to update the budget and the priority of each server.

5.2 Examples

We now describe two complete examples of the M-BWI protocol. In the following
figures, each time-line represents a server, and the default task of server SA is τA,
of server SB is τB , etc. However, since with M-BWI tasks can execute in servers
different from their default one, the label in the execution rectangle denotes which
task is executing in the corresponding server. White rectangles are tasks executing
non critical code, light grey rectangles are critical sections and dark grey rectangles
correspond to servers that are busy waiting. Which critical section is being executed
by which task can again be inferred by the execution label, thus A1 denotes task τA

executing a critical section on resource R1. Finally, upside dashed arrows represent
“inheritance events”, i.e., tasks inheriting servers as consequences of some blocking.

The schedule for the first example is depicted in Fig. 3. It consists of 3 tasks,
τA, τB, τC , executed on 2 processors, that access only resource R1.

At time 6, τB tries to lock R1, which is already owned by τC , thus τC inherits SB

and starts executing its critical section on R1 inside it. When τA tries to lock R1 at

Fig. 3 First example, 3 tasks on 2 CPUs and 1 resource

Real-Time Syst (2012) 48:789–825 803

Fig. 4 Second example, 5 tasks on 2 CPUs with 2 resources—task τC accesses R1 inside R2

time 9, both τC and τB inherit SA, and both SA and SB can execute τC . Therefore,
one of the two servers (SA in this example) enters the Spinning state. Also, the FIFO
wake-up policy is highlighted in this example: when, at time 14, τC releases R1, τB

grabs the lock because it issued the locking request before τA.
The second example, depicted in Fig. 4, is more complicated by the presence of 5

tasks on 2 processors, two resources, and nested critical sections: the request for R1
is issued by τC at time 7 when it already owns R2.

Notice that, despite the fact that both τD and τE only use R2, they are blocked by
τA, which uses only R1. This is because the behaviour of τC establishes the block-
ing chains HD,A = {τD → R2 → τC → R1 → τA} and HE,A = {τE → R2 → τC →
R1 → τA}. For the same reason SD and SE are subject to interference either by busy
waiting or executing τA until it releases R1. This is a blocking-chain situation similar
to what happens with priority inheritance in single processor systems.

5.3 Proof of correctness

In this section, we will prove the correctness of the protocol. Let us start by defining
what we mean by “correct protocol”:

– First of all, we require that a task is never executed on two processors at the same
time.

– Second, we require that the server is never blocked: that is, if task τi blocks, its
server Si will continue to execute either a busy-wait or some other task. Server
Si can suspend due to recharging, but it will never move to the BWI.Idle state,
unless its currently executing task self-suspends.

– Finally, we require that, if a schedulability test deems the set of reservations to
be schedulable when access to resources is ignored, then no server will miss its
deadline at run-time when executed with the corresponding scheduling algorithm.

Notice that at this point we do not assume a specific scheduling algorithm (fixed or
dynamic priority, semi-partitioned or global): we only assume a resource reservation

804 Real-Time Syst (2012) 48:789–825

algorithm, and an appropriate schedulability test for the admission control of reser-
vations. The only requirement is that the set of reservations be schedulable on the
selected combination of scheduling algorithm and hardware platform when access to
resources is not considered.

Lemma 1 If M-BWI is used as a resource access protocol, a task never executes on
more than one server at the same time.

Proof Suppose that τj is a lock owner that has inherited some server. For τj to ex-
ecute in more than one server, at least two servers in Λj should be in the Run-
ning.Executing sub-state. However, the Locking rule specifically forbids this
situation: in particular, in case (b), the protocol looks at the lock owner task τj , ad if
it already executing (i.e. if its server is in the BWI.Running.Executing), then
the server of the new blocked task goes into BWI.Running.Spinning state.

Similar observations hold for the Dispatch and Inner locking rules. Hence the
lemma is proved. �

Lemma 2 Consider a set of reservations that uses the M-BWI protocol to access
shared resources. Further, suppose that task τi and all tasks in Ψi never suspend
inside a critical section, and never access a resource not handled by M-BWI. Then,
when in the BWI state, server Si always has exactly one non-blocked task to serve
and never enters the BWI.Idle state.

Proof The second part of the Lemma holds trivially: in fact, in order for Si to enter
the BWI.Idle state, it must happen that τi or any of the tasks from which it is
blocked, self suspends while inside a critical section, against the hypothesis.

It remains to be proved that Si has always exactly one non-blocked task to serve.
In M-BWI a server can be inherited by a task due to blocking. This happens in the
Locking and Inner locking rules. Also, in the Unlocking and Inner unlocking rules,
a task can inherit many servers at once. Therefore, a task can execute in more than
one server.

We will now prove that, when in the BWI state, server Si has at most one non-
blocked task to serve. By Induction. Let us denote with t0 the first instant in which
τi accesses a resource, entering state BWI. The lemma trivially holds immediately
before t0. Assume the lemma holds for all instants before time t , with t ≥ t0.

Suppose a task blocks at time t . In the Locking rule a task τi may block on a
resource already occupied by another task τj . As a consequence, τj inherits Si . Si

had only one non-blocked task (τi) before this event: hence, it has only one non-
blocked task (τj) after the event. A similar observation is valid in the Inner Locking
rule.

Suppose that a task τj releases a resource Rk at time t . In the Unlocking rule, τj

wakes up one task τi that inherits all servers in Λj , except Sj . All these servers had
only one non-blocked task (τj) to serve before t ; they still have one non-blocked task
(τi) to serve after t . A similar observation holds for the Inner unblocking rule.

No other rule modifies any of the sets Λi . Hence the lemma is proved. �

Real-Time Syst (2012) 48:789–825 805

The previous lemma implies that, under M-BWI, a server is never suspended be-
fore its task completes its job, unless the task itself (or any of its interfering tasks) self
suspends inside a critical section. This is a very important property because it tells
us that, from an external point of view, the behaviour of the reservation algorithm
does not change. In other words, we can still view a server as a sporadic task with
WCET equal to the maximum budget Qi and minimum inter-arrival time equal to
Pi , ignoring the fact that they access resources. Resource access, locking, blocking
and busy wait have been “hidden” under the M-BWI internal mechanism. Therefore,
we can continue to use the classical schedulability tests to guarantee that the servers
will never miss their deadlines. This is formally proved by the following conclusive
theorem.

Theorem 1 Consider a set of reservations that is schedulable on a system when
access to resources is ignored, and that uses M-BWI as a resource access protocol.
Then, every server always respects its scheduling deadline.

Proof Theorem 2 proves that a server is never blocked: a server can become idle (ei-
ther Reservation.Idle or BWI.Idle) only if it self suspends or if it is blocked
by a task that self suspends.

Notice in Fig. 2 that the states inside Reservation and the states inside
BWI were named alike with the purpose of highlighting the similarity between
the two composite states. A server can move from Reservation.Running to
BWI.Running and vice versa through a lock/unlock operation on a resource man-
aged by the M-BWI protocol. Notice also that the server moves from one state to
another inside each high level composite state responding to the same events: a pre-
emption event moves a server from Running to Active in both composite states; a
bdg_exhausted event moves the server from Running to Recharging in both
composite states; etc. Also, the operations on the budget and priority of a reservation
are identical in the two composite states, except that, while inside the BWI composite
state, a server can execute a different task than its originally assigned one.

Therefore, from the point of view of an external observer, if we hide the pres-
ence of the two high level composite states, Reservation and BWI, and the lock
and unlock events, then the behaviour of any server Si cannot be distinguished from
another server with the same budget and period that does not access any resource.

In any resource reservation algorithm, the schedulability of a set of reservations
(i.e. the ability of the servers to meet their scheduling deadlines) depends only on
their maximum budgets and periods. Since by hypothesis the set of reservations is
schedulable on the system when ignoring resource access, it follows that the set of
reservations continues to be schedulable also when resource access is considered. �

The most important consequence of Theorem 1 is that the ability of a server to
meet its scheduling deadline is not influenced by the behaviour of the served tasks,
but only by the global schedulability test for reservations. Therefore, regardless of
the fact that a task accesses critical sections or not, and for how long, the server will
not miss its scheduling deadlines.

The first fundamental implication is that, to ensure that a task τi will complete
before its deadline under all conditions, we must assign it a server Si with enough

806 Real-Time Syst (2012) 48:789–825

budget and an appropriate period. If τi is sporadic and does not access any resource,
it suffices to assign Si a budget no less than the task’s WCET, and a period no larger
than the task’s minimum inter-arrival time. In fact, the server will always stay inside
the Reservation composite state and will not be influenced by the presence of
other tasks in the system. We say that task τi is then temporally isolated from the rest
of the system.

If τi does access some resource, then Si can be inherited by other tasks due to
blocking and the server budget can be consumed by other tasks. However, the set of
tasks that can consume Qi is limited to Ψi , i.e. the set of interacting tasks for τi . To
ensure the schedulability of τi , we must assign Si enough budget to cover for the task
WCET and the duration of the critical sections of the interacting tasks. If a task does
not belong to Ψi , then it cannot inherit Si and cannot influence the schedulability
of τi .

The conclusion is that M-BWI guarantees temporal isolation: it restricts the inter-
ference between tasks, and makes sure that only interacting tasks can interfere with
each other.

6 M-BWI interference analysis

In the previous section we have demonstrated that M-BWI does indeed provide tem-
poral isolation, without requiring any knowledge of the tasks temporal parameters.
Also, M-BWI seamlessly integrates with existing resource reservation schedulers.
Therefore, it is possible to avoid the difficult task of performing temporal analysis
for soft real-time systems; for example, adaptive scheduling strategies (Palopoli et al.
2008; Cucinotta et al. 2010) may be used at run-time to appropriately dimension the
budgets of the reservations.

Open systems may also include hard real-time applications, for which we must
guarantee the respect of every temporal constraint. To perform an off-line analysis
and provide guarantees, it is necessary to estimate the parameters (computation times,
critical sections length, etc.) of the hard real-time tasks. Without isolation, however,
the temporal parameters of every single task in the system must be precisely esti-
mated. In M-BWI, this analysis can be restricted to the subset of tasks that interact
with the hard real-time task under analysis. In particular, this is required to be able to
compute the interference of interacting tasks.

The interference time Ii is defined as the maximum amount of time a server Si is
running but it is not executing its default task τi . In other words, Ii for Si is the sum
of two types of time interval:

– the ones when tasks other than τi execute inside Si ;
– the ones when τi is blocked and Si busy-waits in BWI.Running.Spinning

state.

Schedulability guarantees to hard real-time activities in the system are given by
the following theorem.

Theorem 2 Consider a set of reservations schedulable on a system when access to
resources is not considered. When M-BWI is used as a resource access protocol,

Real-Time Syst (2012) 48:789–825 807

hard real-time task τi , with WCET Ci and minimum inter-arrival time Ti , attached to
a server Si = (Qi ≥ Ci + Ii,Pi ≤ Ti), never misses its deadline.

Proof By contradiction. From Theorem 1, no server in the system misses its schedul-
ing deadline. In order for τi to miss its deadline, the server has to go into the recharg-
ing state before τi has completed its instance. It follows that, from the activation of
the task instance, the server has consumed all its budget by executing part of task τi

and other interfering tasks. However, the amount of interference is upper bounded by
Ii , the computation time of τi is upper bounded by Ci , and Qi ≥ Ci + Ii . Hence, the
server never reaches the recharging state, and the theorem follows. �

Computing a bound on the interference for a hard real-time tasks is not easy in
the general case of nested critical sections. In the following, we propose an algorithm
to compute an upper bound to the interference that exhaustively checks all possi-
ble blocking conditions. The algorithm has super-exponential complexity, because it
looks at all possible permutations of sequences of blocking tasks. However, consider
that this algorithm is to be executed off-line; also, consider that in most practical
cases, the number of resources and tasks involved in the computation is relatively
small (i.e. below 10).

In the following, we also assume that the underlying scheduling algorithm is
global EDF, which means that on a multiprocessor platform with m processors there
is one global queue of servers, and the first m earliest deadline servers execute on the
m processors. Also, we assume the Constant Bandwidth Server (Abeni and Buttazzo
1998) as resource reservation algorithm.

6.1 Interference computation

We start by observing that the two types of interference that a server can be subject
to are “equivalent” from the point of view of the blocked task.

Theorem 3 The interference for a server Si is given by the sum of one or more
instances of critical sections of tasks in Ψi .

Proof Theorem 2 states that a server never blocks. It follows that when a task τi tries
to access a resource that is already locked by another task τj , there are two possible
cases. In one case, task τj is not executing because it is not the earliest deadline task,
or because its server budget is 0. In this case, Si inherits the locking tasks τj .

In the second case, τj is executing on a different processor, so τi blocks and Si

spin locks, waiting for the τj to release the resource. It is easy to see that in both cases
τi has to wait the same amount of time, that is the duration of the critical section of
τj plus the possible interference time that τj can be subject to (due for example to
nested critical sections). �

Theorems 2 and 3, combined together, tell us that there can be no indirect blocking
in M-BWI.

Therefore, in order to compute the interference, we will assume that each one
of the n tasks in the system executes on its own dedicated processor with a server

808 Real-Time Syst (2012) 48:789–825

that has maximum budget equal to its period. In this way, all active tasks are ready
to execute, and the only possible type of interference is the second one (spin-lock).
Also, in computing the interference for a job of task τi , we will assume that all other
tasks will have minimal period and are always ready to interfere with τi . In this way
we will compute a pessimistic but safe upper bound on the interference.

Once such upper bound has been computed on the dedicated virtual processors,
we can go back to the original system with m < n shared processors scheduled by
global EDF, and in the worst-case the interference will not be larger than the one
computed on the dedicated virtual processor platform.

We now compute the interference on the dedicated virtual multiprocessor plat-
form. Let us start by modelling the critical sections.

We enumerate all critical sections of a task, and we denote by cs
(j)
i the j-th critical

section of task τi . Also, the algorithm will make use of the following notation:

– R(cs
(j)
i) is the resource accessed by the critical section.

– csseti (Rk) is the set of all critical sections of task τi that access Rk .
– outer(cs

(j)
i) is the set of all critical sections within which cs

(j)
i is nested. If cs

(j)
i is

an outermost critical section, outer(cs
(j)
i) = ∅.

– bres(cs
(j)
i) is the set of all resources that have to be locked before task τi can

access critical section cs
(j)
i . In practice, it is the set of all resources accessed by

the critical sections in outer(cs
(j)
i), and of course it can be empty if cs

(j)
i is an

outermost critical section.
– outmosti the set of outermost critical sections of task τi

– inner′(cs
(j)
i) is the set of critical sections that are directly nested inside cs

(j)
i .

– inner(cs
(j)
i) is the set of all critical sections nested inside cs

(j)
i , (i.e., the transitive

closure of function inner′() on cs
(j)
i).

The algorithm for the computation of the interference is reported in Fig. 5. The
algorithm consists of three functions: INTERFERENCE is the main function that is
called by the user to compute the interference for a task τi . In turn, it calls function
COMPUTEINTERFERENCE which performs the actual computation.

COMPUTEINTERFERENCE is a recursive function that takes 4 parameters. The
first one is the task on which we want to compute the interference; the second one,
CSSET, is the set of the critical sections of τi on which we want to compute the
interference; the third parameter, BTASKS, is a set of blocking tasks (i.e. tasks that,
in the enumerated scenario under analysis, have already blocked task τi on this or on
some other critical section on another resource); the fourth parameter, BRES, is the
set of locked resources, i.e. resources that have already been locked by some of the
tasks in BTASKS.

The task can in principle block on each critical section in CSSET, therefore we
have to sum the interference for each one of these critical sections. For each critical
section, the set of tasks that can block τi is given by Θ = Γ (R(cs)) \ Btasks (line 8).

The algorithm then explores all possible orderings in which the tasks in Θ block
task τi on the current critical section (the cycle at lines 11–14). To understand why
this is important, let us analyse one simple example.

Real-Time Syst (2012) 48:789–825 809

1: function INTERFERENCE(τi)
2: return COMPUTEINTERFERENCE(τi ,outermosti , {τi},∅)
3: end function

4: function COMPUTEINTERFERENCE(τi ,CSSet,BTasks,BRes)
5: sum ← 0
6: for all cs ∈ CSSet do
7: LocalBRes ← BRes ∪ {R(cs)}
8: Θ ← Γ (R(cs)) \ Btasks
9: flag ← true

10: partial ← 0
11: while flag do
12: partial ← max{partial, COMPUTEPERMUTATION(τi ,Θ,R(cs),BTasks,LocalBRes)}.
13: flag ← NEXTPERMUTATION(Θ)

14: end while
15: sum ← sum + partial + COMPUTEINTERFERENCE(τi , inner′(cs),BTasks,LocalBRes)
16: end for
17: return sum
18: end function

19: function COMPUTEPERMUTATION(τi ,Θ,Rk,BTasks,BRes)
20: sum ← 0
21: LocalBRes ← BRes
22: for all τj ∈ Θ do
23: LocalBTask ← BTasks ∪ {τ }
24: maxl ← 0
25: MaxLocalBRes ← LocalBRes
26: for all csj ∈ cssetj(Rk) do
27: if bres(csj) ∩ BRes ≡ ∅ then
28: TempBRes ← LocalBRes ∪ bres(csj)
29: l ← length(csj)+COMPUTEINTERFERENCE(τj , inner′(csj),LocalBTask,TempBRes)
30: if maxl < l then
31: maxl ← l

32: MaxLocalBRes ← TempBRes
33: end if
34: end if
35: end for
36: sum ← sum + maxl
37: LocalBRes ← MaxLocalBRes
38: end for
39: return sum
40: end function

Fig. 5 Algorithm for computing the interference

Example Consider three tasks: τ1 accesses R2; τ2 and τ3 both access R2 with a crit-
ical section nested inside another critical section on R1. It is easy to show that τ2
and τ3 cannot both block τ1 on R2. By contradiction: since access is granted in FIFO
order, the fact that τ1 has to wait for both τ2 and τ3 to release R2 implies that both
tasks must have issued a request on R2 before τ1 issues its request on R2. However,
this means that both tasks must have successfully locked resource R1, because both
access R2 with critical sections nested inside critical sections on R1: this contradicts
the mutual exclusion on R1, hence only one between τ2 and τ3 can block τ1 on R2.

In the general case, we have to try all permutations of the tasks in Θ that can possi-
bly block τi . For this reason, the algorithm performs a while cycle (line 11) in which
it explores all possible permutations, computing the interference for each permutation

810 Real-Time Syst (2012) 48:789–825

by invoking function COMPUTEPERMUTATION, and selecting the maximum. Func-
tion NEXTPERMUTATION generates a new permutation of set Θ and returns false if
no more permutations are possible.

After performing this step, function COMPUTEINTERFERENCE is called recur-
sively on inner critical sections of CS (second parameter inner′(cs)), by passing the
set of blocking tasks and blocking resources (the latter one now contains resource
R(cs)).

Function COMPUTEPERMUTATION performs the actual computation. It first se-
lects the first task in the sequence (let it be task τj); then it selects the set of critical
sections of this task on the resource Rk . Of course, τj can block τi only on one of
those critical sections, hence it is necessary to see which one causes the worst-case
interference. Hence, the algorithm first analyses if the set of resources in BRES(csj)

is free (line 27); if it is not, it means that the task cannot arrive before τi and lock
the resource, otherwise some mutual exclusion constraint is violated. If it is possi-
ble, then we have to compute the length of the critical section plus the maximum
interference that τj can suffer on this critical section; therefore, we recursively in-
voke function COMPUTEINTERFERENCE on τj (line 29). Among all possible critical
sections of τj we select the one that produces the maximum interference on τi (lines
31–32). We perform this computations for all tasks in Θ , keeping track at each cycle
of the blocking resources and of the blocking tasks (lines 23 and 37).

Example In the previous example, consider the first permutation {τ2, τ3}. Function
COMPUTEPERMUTATION will first add τ2 to the list BTASKS (line 23); then it will
look at all critical sections of τ2 on R2 (line 26); then it will compute BRES(CSJ) =
{R1}, and add it to the list of blocked resources TEMPBRES; then it will add the
duration of its critical section on R2 (line 29). Since it has no other inner critical
section, it exits from the loop setting LOCALBRES to {R1}. Now it goes back to
line 22, adding τ3 to BTASKS. However, it will realise that τ3 cannot contribute to
the interference because BRES(csj) ∩ BRES = {R1} is non-empty.

Convergence and deadlock The algorithm converges, since at each recursive step
function COMPUTEINTERFERENCE is called with larger sets BTASKS and a larger
BRES.

The algorithm is correct under the assumption that there is no deadlock. We as-
sume that deadlock is avoided by making sure that resources are totally ordered and
nested critical sections access resources according to the selected order. More for-
mally, if ≺ is the total order relationship between resources, we require that:

∀cs
(j)
i , ∀Rk ∈ bres

(
cs

(j)
i

)
, Rk ≺ R

(
cs

(j)
i

)

Proof of correctness We now prove the relationship between the interference com-
puted by the algorithm in Fig. 5 and the interference in the shared system.

Theorem 4 Consider a system consisting of n tasks {τ1, τ2, . . . , τn}, each one served
by a server Si with parameters (Qi,Pi), scheduled by Global EDF on m processors,
and M-BWI as a resource access protocol.

The interference time I ′
i computed by Algorithm Interference (Fig. 5) is an upper

bound on the worst case interference Ii of task τi .

Real-Time Syst (2012) 48:789–825 811

Proof Suppose that for some task τi , interference Ii > I ′
i . From Theorem 3 it follows

that some critical section contributes to Ii but not to I ′
i . This means that some possible

blocking chain H was not explored by the algorithm.
Now we will prove that this cannot happen, thus showing that all possible blocking

chains are explored, by using induction.
Base of the induction step. Suppose that the blocking chain has length 3, i.e.

H = {τi → Rk → τj }. Then, τj ∈ Θ for task τi (line 8), and all feasible critical
sections of τj on Rk are explored by function COMPUTEPERMUTATION (cycle at
lines 25–35), and are therefore accounted for in Ii .

Induction hypothesis. Suppose that, for all τl , all blocking chains Hi,l of length
n ≥ 3 have been accounted for in I ′

i . Consider a blocking chain Hi,j of length n + 2
(if any): Hi,j = {τi → ·· ·Rp → τl → Rk → τj }. By the induction step, the sub-chain
Hi,l = {τi,→ ·· · τl} has been explored. Also, τl accesses Rk with a critical section
nested inside a critical section on Rp . While computing the interference caused by the
critical section csl of τl on Rp , the algorithm also takes into account the interference
caused by all inner critical sections (line 29), including the one of τj on Rk . Finally,
consider that all permutations are considered, including the one in which τj arrives
before τl .

Therefore, by induction we conclude that all possible blocking chains are explored
in all possible orders. �

Complexity The algorithm is very complex. It explores all possible blocking chains
starting from every outermost critical section of τi . Since the while cycle at line 11
is performed O(p!), where p = |Θ|, and function INTERFERENCE is recursive, the
algorithm has super-exponential complexity.

However, it is important to highlight that the algorithm will be executed off-line;
that the complexity is greatly reduced when critical sections are not nested; and that
the number of interacting tasks in practical applications is usually low. In all our
simulations (see Sect. 8) with |Θ| ≤ 6, we have never experienced a computation
time of the algorithm superior to one second on a modern PC. With |Θ| = 10 the
duration of the algorithm is around 2–3 minutes; for a larger number of tasks, the
algorithm becomes intractable.

The algorithm is pessimistic; we do not take into account task periods or server
periods in the analysis, therefore it may be that the actual worst-case interference
time is lower than the one computed by this algorithm.

On the other hand, please notice that this algorithm can be applied to a more gen-
eral setting than M-BWI systems: in particular, it can be used for a system consisting
of a set of tasks, partitioned onto a multi-processor platform, which access global
resources with a FIFO policy.

7 Implementation in LITMUSRT

The M-BWI protocol has been implemented on the real-time scheduling and synchro-
nisation testbed called LITMUSRT , developed and maintained by the UNC real-time
research group. Having a real implementation of the protocol allows us to perform

812 Real-Time Syst (2012) 48:789–825

more complex evaluations than just simulations, and get real data about scheduling
overheads and actual execution times of the real-time tasks, as well as to measure
performance figures.

LITMUSRT was chosen as the basis for the implementation of M-BWI because it is
a well-established evaluation platform (especially for scheduling and synchronisation
overheads) in the real-time research community. In fact, LITMUSRT includes feather-
trace, an efficient and minimally intrusive mechanism for recording timestamps and
tracing overheads of kernel code paths. Moreover, it already supports a variety of
scheduling and synchronisation schemes. Therefore it will be easier (in future works)
to adapt M-BWI to them and compare it with other solutions. The current version of
LITMUSRT is available as a patch against Linux 2.6.36, or via UNC git repository
(see LITMUSRT web page).

LITMUSRT employs a “plug-in based” architecture, where different scheduling
algorithms can be “plugged”, activated, and changed dynamically at run-time. Con-
sistently with the remainder of this paper, M-BWI has been implemented for global
EDF, i.e., inside the plug-in called C-EDF (since it also supports clustered schedul-
ing if configured accordingly). Our M-BWI patch against the development trunk
(the git repository) version of LITMUSRT is available at: http://retis.sssup.it/people/
tommaso/papers/RTSJ11/index.html.

This section reports the principal aspects and the fundamental design choices that
drove the implementation.

7.1 Implementing the constant BandWidth server

As the first step, the C-EDF plug-in has been enriched with the typical deadline
postponement of the CBS algorithm, which was not included in the standard distri-
bution of LITMUSRT . After this modification it is possible for a task to ask for budget
enforcement but, upon reaching the limit, to have it replenished and get a deadline
postponement, rather than being suspended till the next period. This is done by a new
parameter in the real-time API LITMUSRT offers to tasks, called budget_action
that can be set to POSTPONE_DEADLINE.

Of course, CBS also prescribes that, when a new instance arrives, the cur-
rent scheduling parameters need to be checked against the possibility of keep-
ing using them, or calculating a new deadline and issue a budget replenishment.
This was realised by instrumenting the task wake-up hook of the plug-in, i.e.,
cedf_task_wake_up.

The amount of modified code is small (8 files changed, 167 lines inserted,
33 deleted), thanks to the extensible architecture of LITMUSRT and to the high level
of separation of concerns between tasks, jobs and budget enforcement it achieves.

7.2 Implementing proxy execution

The fundamental block on top of which M-BWI has been implemented is a mecha-
nism known as proxy execution. This basically means that a task τi can be the proxy
of some other tasks τj , i.e., whenever the scheduler selects τi , it is τj that is actually
dispatched to run. It is a general mechanism, but it is also particularly well suited for
implementing a protocol like M-BWI.

http://retis.sssup.it/people/tommaso/papers/RTSJ11/index.html
http://retis.sssup.it/people/tommaso/papers/RTSJ11/index.html

Real-Time Syst (2012) 48:789–825 813

Thanks to the simple plug-in architecture of LITMUSRT , the implementation of
this mechanism was rather simple, although some additional overhead may have
been introduced. In fact, it has been necessary to decouple what the scheduling al-
gorithm thinks it is the “scheduled” task (the proxy), from the task that is actually
sent to the CPU (the proxied). Also, touching the logic behind the implementation of
the scheduling algorithm (global or clustered EDF, in this case) can be completely
avoided, and the code responsible for priority queues management, task migration,
etc., keeps functioning the same as before the introduction of proxy execution.

If tasks are allowed to block or suspend (e.g., for the purpose of accessing an
I/O device) while being proxied, this has to be dealt with explicitly (it corresponds
to transition from BWI.Running to BWI.Idle in the state diagram of Fig. 2). In
fact, when a task self-suspends, it is necessary to remove all its proxies from the ready
queue. However, walking through the list of all the proxies of a task is O(n)—with n

number of tasks blocked on the resources the task owns when it suspends—overhead
that can be easily avoided, at least for this case. In fact, the proxies of the suspending
task are left in the ready queue, and it is only when one of them is picked up by
the scheduler that, if the proxied task is still not runnable, they are removed from
the queue and a new candidate task is selected. On the other hand, when a task that is
being proxied by some other tasks wakes up, not only that task, but also all its proxies
have to wake up. In this case, there is no way for achieving this than going through
the list of all the waking task’s proxies, during its actual wake-up, and putting all of
them back to the ready queue.

In LITMUSRT , self-suspension and blocking are handled by the same func-
tion cedf_task_block. Therefore, to implement the correct behaviour, cedf_
task_block and cedf_reaktask_wake_up have been modified. For each
task, a list of tasks that are proxying it at any given time is added to the process control
block (task_struct). The list is updated when a new proxying relationship is es-
tablished or removed, and it is traversed at each self-suspension or wake-up of a prox-
ied task. Each task is provided with a pointer to its current proxy (proxying_for)
which is filled and updated when the proxying status of the task changes. Such field is
also referenced within the scheduler code, in order to determine whether the selected
task is a proxy or not.

Implementing proxy execution was more complex than just adding budget post-
ponement (478 line additions, 74 line deletions).

As a final remark, consider that when resource reservations are being used, the
budgets of the involved servers need to be properly managed while the proxy execu-
tion mechanism is triggered. The details of the budget updating are described in the
next section.

7.3 Implementing multiprocessor BandWidth inheritance

Using a mechanism like proxy execution, implementing M-BWI is a matter of having
FIFO wait queues for locks and taking care of the busy waiting of all the proxies
whose proxying task is already running on some CPU.

The former is achieved by adding a new type of lock (bwi_semaphore) in the
LITMUSRT kernel, backed up with a standard Linux waitqueue, which supports

814 Real-Time Syst (2012) 48:789–825

FIFO enqueue and dequeue operations. Each semaphore protects its internal data
structures (mainly the waitqueue and a pointer to the owner of the lock itself) by
concurrent access from more than one CPU at the same time by a non-interruptible
spin-lock (a native Linux spinlock_t). Moreover, when the locking or releasing
code for a lock needs to update a proxying_for field, it is required for it to acquire
the spin-lock that serialises all the scheduling decision for the system (or for the
cluster) of the LITMUSRT scheduler.

For the busy wait part, a special kernel thread (a native Linux kthread) called
pe_stub-k is spawned for each CPU during plug-in initialisation, and it is initially
in a blocked state. When a task τi running on CPU k needs to busy wait, this special
thread is selected as the new proxy for τi , while the real value of proxying_for
of τi is cached. Therefore, pe_stub-k executes in place of τi , depleting its budget
τi as it runs.

The special thread checks if the real proxied task of τi is still running somewhere;
LITMUSRT provides a dedicated field for that in the process control block, called
scheduled_on. Such field is accessed and modified by the scheduler, thus holding
the scheduling decision spin-lock is needed for dealing with it. However, the busy
waiting done by pe_stub-k must be preemptive and with external interrupts en-
abled for CPU-k. Therefore, pe_stub-k performs the following loop:

1. it checks if the real proxying task of τi is still running somewhere by looking at
scheduled_on without holding any spin-lock;

2. as soon as it reveals something changed, e.g., scheduled_on for the proxying
task becomes NO_CPU, it takes the spin-lock and checks the condition again:

– if it is still NO_CPU it means the proxying task has been preempted or sus-
pended and, through a request for rescheduling, it tries to start running it;

– if it is no longer NO_CPU, someone has already started executing the proxying
task (recall the busy wait performed inside pe-stub-k is preemptable), thus
it goes back to point 1.

8 Simulation results

The algorithm for computing an upper bound on the interference time described in
Sect. 6.1 can be used to evaluate how large is the impact of M-BWI on the schedu-
lability of hard real-time tasks in the system. To this end, we performed an analysis
of the algorithm on synthetically generated task sets, and we compared the results
against two other protocols: the Flexible Multiprocessor Locking Protocol—FMLP
(Block et al. 2007), which allows nested critical sections and mixes suspension and
spin-lock blocking mechanisms; and the Optimal Multiprocessor Locking family of
Protocols—OMLP (Brandenburg and Anderson 2012), which combines FIFO queue-
ing with Priority-based queueing of blocked tasks in order to optimise blocking time.
However, at the time of this writing, OMLP did not support nested critical sections.5

5Very recently, Ward and Anderson proposed an extension of OMLP to support nested critical sections
(Ward and Anderson 2012).

Real-Time Syst (2012) 48:789–825 815

Table 1 Parameters of the simulation

Symbol Description Values

m number of processors 2, 4, 6

n number of tasks 2 or 3 times the number of processors

s number of short resources 2, 4, 6

l number of long resources 0, 2

t threshold between short an long resource from 0.05 to 0.5 in steps of 0.05 (ms)

g number of resource groups 1, 2, 3

z nesting probability 10% or 0%

u utilisation per processor from 0.28 to 0.72 in steps of 0.04

To perform the experiments we generated tasks sets according to the parameters
reported in Table 1.6

Since the FMLP protocol distinguishes between short and long resources, we gen-
erates a number of short and long resources for the system, denoted by s and l, re-
spectively. Critical sections on short resources have duration in [0.05, t) milliseconds,
where t is the threshold parameter; long critical sections have duration in [t,0.5] mil-
liseconds.

A task can have 1, 2 or 3 critical sections, with uniform probability equal to 0.9,
0.4 and 0.1, respectively. A critical section can be nested with probability equal to
0.1, and again it can have 1, 2, or 3 nested critical sections with the above proba-
bility. Long critical sections cannot be nested inside short critical sections. To avoid
deadlock, we enumerated all resources, and guaranteed that a critical section on re-
source with a certain id cannot be nested inside a critical section on a resource with a
higher id.

Task periods are generated with log-uniform distribution between 50 and 1000
milliseconds in steps of 50 milliseconds. Computation times are generated by using
the randfixedsum algorithm (Emberson et al. 2010), which guarantees a uniform dis-
tribution of computation times with a fixed utilisation equal to u. Execution times are
inclusive of the duration of their critical sections.

Resources and tasks are divided into g groups (see Table 1). A task can only access
resources from its own group. The simulation parameters have been set so that a group
has at least two tasks and one resource, and no more than 6 tasks each. We kept the
number of tasks per group limited because of the long execution time of the algorithm
for computing the interference of M-BWI when the number of tasks accessing a given
resource exceeded 6. We believe however that the results reported here are valid for
a larger number of tasks per resource. Resource groups have been introduced in the
simulation to highlight the isolation properties of M-BWI.

We generated 100 task sets for each combination of all these parameters. For each
task set we first tested schedulability using the iterative test by Bertogna and Cirinei

6The test program is available on-line as supplementary material at www.springerlink.com.

http://www.springerlink.com

816 Real-Time Syst (2012) 48:789–825

(2007). If the task set was schedulable, the three protocols were analysed: we com-
puted the interference time for M-BWI using the algorithm in Fig. 5; we applied
the analysis described in Block et al. (2007) for FMLP and the analysis described in
Brandenburg and Anderson (2012) for OMLP to compute the blocking times. Then,
we added the interference/blocking times to the computation times of the tasks, and
we run again the schedulability test, recording the number of schedulable task sets
for each protocol.

The remainder of this section shows some of the results of these simulations.

8.1 M-BWI vs. FMLP

In these experiments the nesting probability has been set equal to 0.1. All simulation
experiments have shown that M-BWI and FMLP have similar performance, with M-
BWI slightly better than FMLP, except in some specific combination of parameters.

In Fig. 6 we report two typical performance result. At the top of the graph we
report the most important parameters of the simulation; on the x axis we report the
total utilisation, whereas on the y axis we report the number of schedulable task sets.
The figure shows three lines: the top red line represents the number of schedulable
task sets when interference and blocking is ignored; the green and blue lines show the
number of schedulable task sets with M-BWI and FMLP, respectively. It is evident
that in this case M-BWI is slightly better than FMLP.

Most of the experiments with different combination of parameters follow a sim-
ilar pattern. For example, in Fig. 6b we show what happens when l = 0 (no long
resources), and t = 0.50 (threshold set to maximum value). In this case, FMLP sees
all resources as short, and always performs a busy waiting; however, in this case
a “short” resource can have a duration up to 500 µs. In this case there is no much
difference between the two protocols.

The difference is more evident with other combination of parameters. In Fig. 7, we
see that for higher number of processors and higher number of tasks, M-BWI outper-
forms FMLP, with or without long resources. Also, in general the number of resource
groups has a slight beneficial influence on the performance of M-BWI, thanks to the
isolation properties of this protocol.

Fig. 6 Typical performance scenarios

Real-Time Syst (2012) 48:789–825 817

Fig. 7 Two example scenarios in which M-BWI outperforms FMLP

Fig. 8 Two scenarios in which FMLP is better than M-BWI

One combination of parameters favours FMLP. In Fig. 8 we see that for m = 2
and n = 6, and only short resources, FMLP actually performs better than M-BWI.
This is probably due to the fact that FMLP uses one single lock for all nested critical
sections. In this way concurrency is reduced, but it avoids the problem of multiple
interference on the external and internal critical section, a problem to which M-BWI
is subject. In all our simulation, the combination of m = 2, n = 6, g = 1, l = 0 is the
only one in which FMLP performs substantially better than M-BWI. However, this
means than none of the two protocols dominates the other. Also, this opens a new line
of research: to investigate when it is advantageous to group together locks for nested
critical sections. We defer such investigation to a future paper.

In Fig. 9, we show the impact of the threshold on the performance of the two
protocols. The threshold sets an upper bound to the duration of short critical sections;
in case long resources are present, it also sets a minimum upper bound on the duration
of long critical sections. In Fig. 9 we can see that the threshold has a minor effect
mainly on FMLP. In general, the threshold has a minor impact on schedulability with
respect to other important parameters, like number of tasks and number of processors.

818 Real-Time Syst (2012) 48:789–825

Fig. 9 Two scenarios in which the performance of FMLP decreases by increasing the threshold

Fig. 10 When m = 2 and n = 6 and critical sections are not nested, all protocols behave similarly (see
Fig. 8)

8.2 No nested critical sections

If we exclude the possibility of nested critical sections, it is possible to compare
M-BWI with OMLP, a protocol generally superior to FMLP which has been demon-
strated to be asymptotically optimal. Therefore, in the set of experiments described
in this section, we set the nesting probability to 0.

First of all, let us confirm our interpretation of the results shown in Fig. 8. In
Fig. 10, we see the results with the same parameters and no nested critical sections,
and we observe that both OMLP and M-BWI behave slightly better than FMLP. This
confirms that the superior performance of FMLP in the experiments of Fig. 8 is due
to the positive effect of grouping access to nested critical sections.

In almost all experiments, the performance of M-BWI and OMLP are so similar
that the two curves are indistinguishable. Two typical scenarios are shown in Fig. 11.
In some rare cases, M-BWI shows a very small improvement over OMLP: two exam-
ples are shown in Fig. 12. This is probably due to the isolation properties unique to
the M-BWI protocol. Also in this case we show the impact of the threshold in Fig. 13:
again, the impact is minor. However, notice the great distance between the curves of
FMLP and the curves of OMLP and M-BWI.

Real-Time Syst (2012) 48:789–825 819

Fig. 11 M-BWI and OMLP have very similar performance

Fig. 12 Two examples where M-BWI is slightly better than OMLP

Fig. 13 The impact of threshold on M-BWI and OMLP

9 Experimental results

In this section, we report performance figures obtained by running synthetically gen-
erated task sets on our implementation of M-BWI on the LITMUSRT operating sys-
tem. The aim is to gather insights about how much overhead the protocol entails

820 Real-Time Syst (2012) 48:789–825

Fig. 14 Average duration of the
scheduling function, along with
the measured standard deviation
(vertical segments)

when executing on real hardware. We have generated the task sets parameters as de-
scribed in Sect. 8. The hardware platform consists of a AMD Opteron processor with
48 cores, running at 1.9 GHz frequency. The cores are organised into 4 “islands”
of 6 cores each, and all cores inside an island share the same L2 cache. In the ex-
periments we selected only one island, and disabled the other three. In this way, the
performance figures do not depend on unpredictable behaviours due to cache con-
flicts.

Therefore, 10 randomly chosen task sets among the ones generated for 6 CPUs,
with different number of tasks N have been executed for 10 minutes each, while trac-
ing the overheads with Feather-trace (Brandenburg and Anderson 2007). The number
of short resources was fixed Nshort = 2 · N and Nlong = M

2 = 3.
In this work, the scheduling overhead (i.e. the duration of the main scheduling

function), the amount of time tasks wait (either being preempted, proxying or busy
waiting) for a resource and the duration of lock and unlock operations are considered.

Scheduling overhead To evaluate the impact of M-BWI on the scheduler, we mea-
sured how long it takes for taking a scheduling decision in the following cases:
(i) original LITMUSRT running the generated tasks sets but with tasks not issuing
any resource request during their jobs (“Original” in the graphs); (ii) M-BWI en-
abled LITMUSRT but, again, with tasks not issuing resource requests (“No Res.” in
graphs); (iii) M-BWI enabled LITMUSRT with tasks actually locking and unlocking
resources as prescribed in the task set (“M-BWI” in the graphs). Figure 14 shows the
average duration of the scheduler function along with the standard deviation for the
three cases, varying the number of tasks. The actual impact of M-BWI on the sched-
uler is limited, since the duration of the scheduling function is comparable for all the
three cases, and independent from the number of tasks (when they exceed the num-
ber of available cores). In fact, in the proposed implementation, tasks that block do
not actually leave the ready-queue, but stay there and act like proxies, and therefore
the number of tasks the scheduler has to deal with is practically the same in all the
three cases. It is, however, worth to note that the complexity added for enabling the
proxying logic does not impair scheduling performances at noticeable levels.

Lock and unlock overheads We also measured the overhead associated with the
slow paths of locking and unlocking operations in the M-BWI code. For the lock
path, we measured how long it takes, once it has been determined that a resource
is busy, to find the proxy and ask the scheduler to execute it. In the unlock path,
we measured how long it takes, once it has been determined that there are queued

Real-Time Syst (2012) 48:789–825 821

Fig. 15 Average lock and
unlock slow paths durations in
LITMUSRT with M-BWI
(vertical segments highlight the
measured standard deviation
figures)

Fig. 16 Average resource
waiting time as a function of the
number of tasks. The vertical
segments denote the measured
standard deviation figures

task waiting for the resource to be released, to reset the proxy relationship for the
unlocking task and build up a new one for the next owner.

Figure 15 shows the average lock and unlock overheads with standard deviations.
In general, locking requires less overhead than unlocking. This can be easily under-
stood observing that, in this implementation, a lock operation only has to setup the
blocking task as a proxy and then asks the scheduler to put this under operation. Un-
locking requires to reset a proxy back to a normal task and finding the new owner of
the resource, but also updating the proxying relationship with the new owner in all
the tasks that are waiting for the resource and that were proxying the releasing task.

Waiting times Figure 16 shows the average and standard deviation of the resource
waiting time, i.e., the time interval that elapses from when a task asks to lock a re-
source and when it actually is granted such permission. In M-BWI, during this time,
the task can lie in the ready-queue, preempted by others, it can run and act as a
proxy for the lock owner or it can busy wait, if the lock owner is already executing
elsewhere. The idea behind this experiment is to show that in average, the delay in
acquiring the resource is limited. Such information can be useful to soft real-time
programmers that can have an idea of the average case in a practical setting.

Figure 16 shows that, on average, waiting for a resource happens for time inter-
val comparable with the length of the critical sections (short ones range from 50 to
200 µs, long ones up to 500 µs). Obviously there are cases where the resource is
available immediately or when the waiting time is large. Consider that, in these ex-
periments, long critical sections were also present, each one of them able to last up to
500 µs, which is about the maximum value for the waiting time in the worst possible
case. Interestingly, when the number of tasks becomes high enough, the waiting time
tends to decrease. This mainly happens because of two reasons: first, it is less likely
for many tasks to insist on the same resources; second, it is more likely for resource

822 Real-Time Syst (2012) 48:789–825

waiting tasks to have at least one running proxy helping the lock owner in releasing
the lock, thus shortening its waiting time.

10 Conclusions and future work

In this paper, we presented the Multiprocessor Bandwidth Inheritance (M-BWI) pro-
tocol, an extension of BWI to symmetric multiprocessor systems. The protocol guar-
antees temporal isolation between non-interacting tasks, a property that is useful in
open systems, where tasks can join and leave the system at any time. Like the Priority
Inheritance Protocol, M-BWI does not require the user to specify any additional pa-
rameter, therefore it is readily implementable in real-time operating systems without
any special API. We indeed implemented the protocol on the LITMUSRT real-time
testbed, and we measured the overhead which is almost negligible for many practical
applications. However, it is also possible to perform off-line schedulability analysis:
by knowing the task-resource usage and the lengths of the critical sections, it is pos-
sible to compute the interference that a task can have on its resource reservation by
other interacting tasks.

In the future we want to extend the protocol along different directions. First of
all, it would be interesting to provide interference analysis also for partitioned and
clustered scheduling algorithms, and compare it against other algorithms like M-SRP
and M-PCP. Also, we would like to implement the Clearing Fund mechanism (Santos
et al. 2008) to return the bandwidth stolen by an interfering task to the original server.

Finally, we would like to implement M-BWI on Linux, on top of the SCHED_
DEADLINE patch (Lelli et al. 2011), in order to provide support to a wider class of
applications.

References

Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-time systems. In: Proceedings
of the IEEE real-time systems symposium, Madrid, Spain, pp 4–13

Anderson JH, Ramamurthy S (1996) A framework for implementing objects and scheduling tasks in lock-
free real-time systems. In: Proceedings of the IEEE real-time systems symposium (RTSS). IEEE
Computer Society, Los Alamitos, pp 94–105

Behnam M, Shin I, Nolte T, Nolin M (2007) Sirap: a synchronization protocol for hierarchical resource
sharing real-time open systems. In: Proceedings of the 7th ACM and IEEE international conference
on embedded software

Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled symmetric multiprocessor
platforms. In: Proceedings of the 28th IEEE real-time systems symposium. RTSS, Tucson, AZ, USA

Bertogna M, Checconi F, Faggioli D (2008) Non-preemptive access to shared resources in hierarchical
real-time systems. In: Proceedings of the 1st workshop on compositional theory and technology for
real-time embedded systems, Barcelona, Spain

Block A, Leontyev H, Brandenburg BB, Anderson JH (2007) A flexible real-time locking protocol for
multiprocessors. In: Proceedings of the 13th IEEE international conference on embedded and real-
time computing systems and applications, pp 47–56

Brandenburg BB, Anderson JH (2007) Feather-trace: a light-weight event tracing toolkit. In: Proceedings
of the international workshop on operating systems platforms for embedded real-time applications
(OSPERT)

Brandenburg BB, Anderson JH (2010) Optimality results for multiprocessor real-time locking. In: Pro-
ceedings of the IEEE real-time systems symposium (RTSS). IEEE Computer Society, Los Alamitos,
pp 49–60

Real-Time Syst (2012) 48:789–825 823

Brandenburg BB, Anderson JH (2012) The omlp family of optimal multiprocessor real-time locking pro-
tocols. Des Autom Embed Syst. doi:10.1007/s10617-012-9090-1

Caccamo M, Sha L (2001) Aperiodic servers with resource constraints. In: Proceedings of the 22nd IEEE
real-time systems symposium (RTSS 2001), pp 161–170. doi:10.1109/REAL.2001.990607

Chen CM, Tripathi SK (1994) Multiprocessor priority ceiling based protocols. Technical report, College
Park, MD, USA

Cho H, Ravindran B, Jensen ED (2007) Space-optimal, wait-free real-time synchronization. IEEE Trans
Comput 56(3):373–384

Cucinotta T, Checconi F, Abeni L, Palopoli L (2010) Self-tuning schedulers for legacy real-time applica-
tions. In: Proceedings of the 5th European conference on computer systems (Eurosys 2010), Paris,
France. European chapter of the ACM SIGOPS

Davis RI, Burns A (2006) Resource sharing in hierarchical fixed priority pre-emptive systems. In: Pro-
ceedings of the IEEE real-time systems symposium

Devi UC, Leontyev H, Anderson JH (2006) Efficient synchronization under global edf scheduling on
multiprocessors. In: Proceedings of the 18th Euromicro conference on real-time systems, pp 75–84

Easwaran A, Andersson B (2009) Resource sharing in global fixed-priority preemptive multiprocessor
scheduling. In: Proceedings of IEEE real-time systems symposium

Emberson P, Stafford R, Davis R (2010) Techniques for the synthesis of multiprocessor task sets. In: First
international workshop on analysis tools and methodologies for embedded and real-time

Faggioli D, Lipari G, Cucinotta T (2008) An efficient implementation of the bandwidth inheritance proto-
col for handling hard and soft real-time applications in the Linux kernel. In: Proceedings of the 4th
international workshop on operating systems platforms for embedded real-time applications (OS-
PERT 2008), Prague, Czech Republic

Faggioli D, Lipari G, Cucinotta T (2010) The multiprocessor bandwidth inheritance protocol. In: Proceed-
ings of the 22nd Euromicro conference on real-time systems (ECRTS 2010), pp 90–99

Feng X, Mok AK (2002) A model of hierarchical real-time virtual resources. In: Proceedings of the 23rd
IEEE real-time systems symposium, pp 26–35

Fisher N, Bertogna M, Baruah S (2007) The design of an EDF-scheduled resource-sharing open environ-
ment. In: Proceedings of the 28th IEEE real-time system symposium

Gai P, Lipari G, di Natale M (2001) Minimizing memory utilization of real-time task sets in single and
multi-processor systems-on-a-chip. In: Proceedings of the IEEE real-time systems symposium

Guan N, Ekberg P, Stigge M, Yi W (2011) Resource sharing protocols for real-time task graph systems. In:
Proceedings of the 23rd Euromicro conference on real-time systems (ECRTS 2011), Porto, Portugal

Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans
Program Lang Syst 12:463–492. doi:10.1145/78969.78972

Holman P, Anderson JH (2006) Locking under pfair scheduling. ACM Trans Comput Syst 24(2):140–174.
doi:10.1145/1132026.1132028

Jansen PG, Mullender SJ, Havinga PJ Scholten H (2003) Lightweight edf scheduling with deadline inher-
itance. Technical report 2003-23, University of Twente. http://doc.utwente.nl/41399/

Lakshmanan K, de Niz D, Rajkumar R (2009) Coordinated task scheduling, allocation and synchronization
on multiprocessors. In: Proceedings of IEEE real-time systems symposium

Lamastra G, Lipari G, Abeni L (2001) A bandwidth inheritance algorithm for real-time task synchroniza-
tion in open systems. In: Proceedings of the 22nd IEEE real-time systems symposium

Lelli J, Lipari G, Faggioli D, Cucinotta T (2011) An efficient and scalable implementation of global edf in
Linux. In: Proceedings of the international workshop on operating systems platforms for embedded
real-time applications (OSPERT)

Lipari G, Bini E (2004) A methodology for designing hierarchical scheduling systems. J Embed Comput
1(2)

Lipari G, Lamastra G, Abeni L (2004) Task synchronization in reservation-based real-time systems. IEEE
Trans Comput 53(12):1591–1601

Lopez JM, Diaz JL, Garcia DF (2004) Utilization bounds for EDF scheduling on real-time multiprocessor
systems. Real-Time Syst 28:39–68

Macariu G (2011) Limited blocking resource sharing for global multiprocessor scheduling. In: Proceedings
of the 23rd Euromicro conference on real-time systems (ECRTS 2011), Porto, Portugal

Mancina A, Faggioli D, Lipari G, Herder JN, Gras B, Tanenbaum AS (2009) Enhancing a dependable
multiserver operating system with temporal protection via resource reservations. Real-Time Syst
43(2):177–210

http://dx.doi.org/10.1007/s10617-012-9090-1
http://dx.doi.org/10.1109/REAL.2001.990607
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/1132026.1132028
http://doc.utwente.nl/41399/

824 Real-Time Syst (2012) 48:789–825

Nemati F, Behnam M, Nolte T (2009a) An investigation of synchronization under multiprocessors hier-
archical scheduling. In: Proceedings of the work-in-progress (WIP) session of the 21st Euromicro
conference on real-time systems (ECRTS’09), pp 49–52

Nemati F, Behnam M, Nolte T (2009b) Multiprocessor synchronization and hierarchical scheduling. In:
Proceedings of the first international workshop on real-time systems on multicore platforms: theory
and practice (XRTS-2009) in conjunction with ICPP’09

Nemati F, Behnam M, Nolte T (2011a) Independently-developed real-time systems on multi-cores with
shared resources. In: Proceedings of the 23rd Euromicro conference on real-time systems (ECRTS
2011), Porto, Portugal

Nemati F, Behnam M, Nolte T (2011b) Sharing resources among independently-developed systems on
multi-cores. ACM SIGBED Rev 8(1)

Niz DD, Abeni L, Saewong S, Rajkumar RR (2001) Resource sharing in reservation-based systems. In:
Proceedings of the 22nd IEEE real-time systems symposium, pp 171–180

Palopoli L, Abeni L, Cucinotta T, Lipari G, Baruah SK (2008) Weighted feedback reclaiming for multi-
media applications. In: Proceedings of the 6th IEEE workshop on embedded systems for real-time
multimedia (ESTIMedia 2008), Atlanta, GA, pp 121–126. doi:10.1109/ESTMED.2008.4697009

Rajkumar R (1990) Real-time synchronization protocols for shared memory multiprocessors. In: Proceed-
ings of the international conference on distributed computing systems, pp 116–123

Rajkumar R, Sha L, Lehoczky J (1988) Real-time synchronization protocols for multiprocessors. In: Pro-
ceedings of the ninth IEEE real-time systems symposium, pp 259–269

Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource kernels: a resource-centric approach to
real-time and multimedia systems. In: Proceedings of the conference on multimedia computing and
networking

Santos R, Lipari G, Santos J (2008) Improving the schedulability of soft real-time open dynamic systems:
the inheritor is actually a debtor. J Syst Softw 81(7):1093–1104. doi:10.1016/j.jss.2007.07.004

Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: an approach to real-time synchro-
nization. IEEE Trans Comput 39(9)

Shih I, Lee I (2003) Periodic resource model for compositional real-time guarantees. In: Proceedings of
the 24th real-time systems symposium, pp 2–13

Sprunt B, Sha L, Lehoczky J (1989) Aperiodic task scheduling for hard-real-time systems. Real-Time Syst
1(1):27–60

van den Heuvel MM, Bril RJ, Lukkien JJ (2011) Dependable resource sharing for compositional real-time
systems. In: 2011 IEEE 17th international conference on embedded and real-time computing systems
and applications. IEEE Press, New York, pp 153–163. doi:10.1109/RTCSA.2011.29

Ward B, Anderson J (2012) Nested multiprocessor real-time locking with improved blocking. In: Proceed-
ings of the 24th Euromicro conference on real-time systems

Dario Faggioli received his PhD from the Scuola Superiore Sant’Anna
(Pisa, Italy) in 2012. His research interests are in real-time scheduling
and synchronization algorithms for open real-time system. In particu-
lar, he focused on QoS guarantee provisions for soft real-time appli-
cations running on general-purpose operating systems, such as Linux.
Since October 2011, he is employed by Citrix Systems R&D Xen Open
Source virtualization platform.

http://dx.doi.org/10.1109/ESTMED.2008.4697009
http://dx.doi.org/10.1016/j.jss.2007.07.004
http://dx.doi.org/10.1109/RTCSA.2011.29

Real-Time Syst (2012) 48:789–825 825

Giuseppe Lipari is Associate Professor of Computer Engineering at
Scuola Superiore Sant’Anna. His research interests are in real-time sys-
tems, real-time operating systems, scheduling algorithms, embedded
systems, wireless sensor networks. He is IEEE Senior Member, and
author of more than 90 articles in peer reviewed conferences and jour-
nals. From April 2012 he is a Visiting Researcher at École Normale
Supérieure, de Cachan, France, for a two year period.

Tommaso Cucinotta graduated in Computer Engineering at the Uni-
versity of Pisa (Italy) in 2000, and received the PhD degree in Computer
Engineering from the Scuola Superiore Sant’Anna of Pisa in 2004. He
has been Assistant Professor of Computer Engineering at the Real-Time
Systems Laboratory (ReTiS) of Scuola Superiore Sant’Anna, with re-
search interests mainly in the areas of real-time and embedded systems,
with a particular focus on real-time support for general-purpose Oper-
ating Systems, and security, with a particular focus on smart-card based
authentication. Since January 2012, he is a researcher at Bell Laborato-
ries, Alcatel Lucent in Dublin (Ireland), with a focus in resource man-
agement for time-sensitive workloads and security in cloud computing.

	Analysis and implementation of the multiprocessor bandwidth inheritance protocol
	Abstract
	Introduction
	Paper contributions

	Related work
	System model
	Critical sections
	Multiprocessor scheduling
	Resource reservation

	The bandwidth inheritance protocol
	Multiprocessor bandwidth inheritance
	State machine
	Examples
	Proof of correctness

	M-BWI interference analysis
	Interference computation
	Convergence and deadlock
	Proof of correctness
	Complexity

	Implementation in LITMUSRT
	Implementing the constant BandWidth server
	Implementing proxy execution
	Implementing multiprocessor BandWidth inheritance

	Simulation results
	M-BWI vs. FMLP
	No nested critical sections

	Experimental results
	Scheduling overhead
	Lock and unlock overheads
	Waiting times

	Conclusions and future work
	References

