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Abstract An EDF-based task-splitting scheme for scheduling multiprocessor sys-
tems is presented in this paper. For m processors at most m − 1 tasks are split. The
first part of a split task is constrained to have a deadline equal to its computation
time. The second part of the task then has the maximum time available to complete
its execution on a different processor. The advantage of this scheme is that no spe-
cial run-time mechanisms are required and the overheads are kept to a minimum.
Analysis is developed that allows the parameters of the split tasks to be derived. This
analysis is integrated into the QPA algorithm for testing the schedulability of any task
set executing on a single processor under EDF. Evaluation of the C = D scheme is
provided via a comparison with a fully partitioned scheme. Different heuristics for
choosing the task to split are derived and evaluated. Issues pertaining to the imple-
mentation of the C = D scheme on Linux or via the Ada programming language are
also discussed.

Keywords Scheduling · Multiprocessors · Multi-core · Task-splitting

1 Introduction

Multiprocessor and multi-core platforms are currently the focus of considerable re-
search effort. There are a number of open theoretical questions and many practical
problems, all of which need to be addressed if effective and efficient real-time sys-
tems are to be hosted on these emerging platforms. One of key issues, that does not
exist with single processor systems, is the allocation of application tasks to the avail-
able processors. Many different schemes have been advocated and evaluated, from
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the fully partitioned to the totally global. It is unlikely that a single scheme will meet
the needs of all applications (Davis and Burns 2011).

In this paper we consider a task-splitting approach in which most tasks are stati-
cally partitioned, but a few (at most one per processor) are allowed to migrate from
one processor to another during execution. For each execution of one of these tasks it
is initially (statically) allocated to one processor, after a period of execution the task
moves to a (predefined) second processor where it completes its execution. When it
is next released it returns to the first processor. The motivation for this task-splitting
scheme is that it can benefit from most of the advantages of the fully partitioned
scheme, but can gain enhanced performance from its minimally dynamic behaviour.
A number of researchers have considered task-splitting (they are reviewed below).
In this paper we use an approach that utilises the effectiveness of EDF scheduling
for single processors whilst not requiring any particular run-time facilities from the
multi-core platform. It is low on overheads and hence it can form the basis for a
practical approach to scheduling real-time applications with near optimal use of the
processing resources.

Fully partitioned systems have the advantage that each processor is scheduled sep-
arately and hence standard single processor theory is applicable. The disadvantage
comes from the necessary ‘bin packing’ problem that must efficiently allocate tasks
to processors without overloading any of the processors—an overload would lead to
a deadline being missed at runtime. Globally scheduled systems do not suffer from
this bin packing problem, but they do have other difficulties to consider. At the the-
oretical level it seems that no simple dispatching scheme with low overheads can
optimally schedule all task sets (in particular those that include sporadic tasks and
arbitrary deadlines). At the practical level there are cache coherence problems that
may add significantly to the overheads of task migration. An approach that involves
a minimum amount of migration but allows a small number of tasks to be ‘split’, so
that the processor bins are better filled, clearly has many attractions.

1.1 System model and EDF analysis

We use a standard system model in this paper, incorporating the preemptive schedul-
ing of periodic and sporadic task systems. A real-time system, A, is assumed to con-
sist of n tasks (τ1 . . . τn) each of which gives rise to a series of jobs. Each task τi is
characterized by the following profile (Ci , Di , Ti ):

• A period or minimum inter-arrival time Ti ; for periodic tasks, this defines the exact
temporal separation between successive job arrivals, while for sporadic tasks this
defines the minimum temporal separation between successive job arrivals.

• A worst-case execution time Ci , representing the maximum amount of time for
which each job generated by τi may need to execute. The worst-case utilization
(Ui ) of τi is Ci/Ti . All tasks must have Ui ≤ 1. The total system utilisation, U , is
simply the sum of all these individual task utilisations.

• A relative deadline parameter Di , with the interpretation that each job of τi must
complete its execution within Di time units of its arrival. The absolute deadline of
a job from τi that arrives at time t is t + Di . In general, deadlines are arbitrary:
they can be less than, greater than or equal to the period values. We use the term
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implicit deadline for tasks with Di = Ti and constrained deadline for tasks with
Di ≤ Ti .

Once released, a job does not suspend itself. We also assume in the analysis, for
ease of presentation, that tasks are independent of each other and hence there is no
blocking factor to be incorporated into the scheduling analysis. General system over-
heads are ignored in this treatment. Their inclusion would not impact on the structure
of the results presented, but would complicate the presentation of these results. In
practice, these overheads must of course not be ignored (Burns and Wellings 2009).
We do however consider the extra overheads introduced by the task-splitting scheme.

There are no restrictions on the relative release times of tasks (other than the min-
imum separation of jobs from the same task). Hence we assume all tasks start at
the same instant in time—such a time-instant is called a critical instant for the task
system (Liu and Layland 1973). In this analysis we assume tasks do not experience
release jitter. We are concerned with analysis that is necessary, sufficient and sustain-
able (Baruah 2006).

The hardware platform consists of m identical processors. On each processor the
allocated tasks (including any that might be split) are scheduled by EDF. Therefore
with implicit deadlines there is a potential utilisation bound of m.

Exact analysis for EDF scheduled tasks on a single processor usually involves the
use of Processor-Demand Analysis (PDA) (Baruah et al. 1990, 1993). This test takes
the following form (the system start-up is assumed to be at time 0):

∀t > 0: h(t) ≤ t (1)

where h(t) is the total load/demand on the system (all jobs that have started since
time 0 and which have a deadline no greater than t). A simple formulae for h(t) is
therefore:

h(t) =
n∑

j=1

⌊
t + Tj − Dj

Tj

⌋

0
Cj (2)

n here is the number of tasks on this single processor, and ��0 is the floor function
capped below by 0 (i.e. minimum value it can furnish is 0).

The need to check all values of t is reduced by noting that only values of t that
correspond to job deadlines have to be assessed. Also there is a bound L on the values
of t that need to be checked. An unschedulable system is forced to fail inequality (1)
before the bound L. A number of values for L have been proposed in the literature.
A large value is obtained from the LCM of the task periods. A tighter value comes
from the synchronous busy period (Ripoll et al. 1996; Spuri 1996). This is usually
denoted by LB and is calculated by forming a recurrence relationship:

sq+1 =
n∑

i=1

⌈
sq

Ti

⌉
Ci (3)

The recurrence stops when sq+1 = sq , and then LB = sq . Note that the iterating
cycle is guaranteed to terminate if U ≤ 1 for an appropriate start value such as s0 =∑n

i=1 Ci .
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If U is strictly less than 1 then a simpler formulae for L is possible (Hoang et al.
2006):

LA = Max

{
D1, . . . ,Dn,

∑n
j=1(Tj − Dj)Uj

1 − U

}
(4)

With all available estimates for L there may well be a very large number of dead-
line values that need to be checked using inequality (1) and equation (2). This level
of computation has been a serious disincentive to the adoption of EDF scheduling
in practice. Fortunately, a new much less intensive test has recently been formu-
lated (Zhang and Burns 2008a, 2008b). This test, known as QPA (Quick convergence
Processor-demand Analysis), starts from time L and iterates backwards towards time
0 checking a small subset of time points. These points are proved (Zhang and Burns
2008a, 2008b to be adequate to provide a necessary and sufficient test.

A version of the QPA algorithm optimised for efficient implementation is encoded
in the following pseudo code in which D_min is the smallest relative deadline in the
system, and Gap is the common divisor of the computation times and deadlines. The
value of Gap is such that no two significant points in time (e.g. interval between two
adjacent deadlines) is less than Gap. For example, if all task parameters are given as
arbitrary integers then Gap will have the value 1.

t := L - Gap
while h(t) <= t and t >= D_min loop
t := h(t) - Gap

end loop
if t < D_min then
-- task set is schedulable

else
-- task set is not schedulable

end if;

In each iteration of the loop a new value of t is computed. If this new value is
less than the computed load at that point, the task set is unschedulable. Otherwise
the value of t is reduced during each iteration and eventually it must become smaller
than the first deadline in the system and hence the system is declared schedulable.

1.2 Previous related research

A number of papers have been published on partitioning and, specifically, task split-
ting. Andersson and Tovar introduced in 2006 (Andersson and Tovar 2006) an ap-
proach to scheduling periodic task sets with implicit deadlines, based on partitioned
scheduling, but splitting some tasks into two components that execute at different
times on different processors. They derived a utilisation bound depending on a pa-
rameter k, used to control the division of tasks into groups of heavy and light tasks.
A heavy task has a high utilisation. These tasks cause particular difficulties for par-
titioned systems. Indeed they lead to a utilisation bound of just 50% as only m tasks
each with a utilisation of 50 + δ% can be accommodated on m processors (for arbi-
trary small δ).

Andersson et al. later extended this approach to task sets with arbitrary dead-
lines (Andersson et al. 2008). They showed that first-fit and next-fit were not good
allocation strategies when task splitting is employed. Instead, they ordered tasks by
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decreasing relative deadline and tried to fit all tasks on the first processor before then
choosing the remaining task with the shortest relative deadline to be split. At run-
time, the split tasks are scheduled at the start and end of fixed duration time slots.
The disadvantage of this approach is that the capacity required for the split tasks is
inflated if these slots are long, while the number of preemptions is increased if the
time slots are short.

Bletsas and Andersson developed an alternative approach in 2009 based on the
concept of ‘notional processors’ (Bletsas and Andersson 2009). With this method,
tasks are first allocated to physical processors (heavy tasks first) until a task is en-
countered that cannot be assigned. Then the workload assigned to each processor is
restricted to periodic reserves and the spare time slots between these reserves organ-
ised to form notional processors.

A distinct series of developments lead to the introduction of the Ehd2-SIP al-
gorithm (Kato and Yamasaki 2007). Ehd2-SIP is predominantly a partitioning al-
gorithm, with each processor scheduled according to an algorithm based on EDF;
however, Ehd2-SIP splits at most m−1 tasks into two portions to be executed on two
separate processors. Ehd2-SIP has a utilisation bound of 50%. Kato and Yamasaki
presented a further semi-partitioning algorithm called EDDP (Kato and Yamasaki
2008a), also based on EDF, that splits at most m − 1 tasks across two processors.
The two portions of each split task are prevented from executing simultaneously by
EDDP, which instead defers execution of the portion of the task on the lower num-
bered processor, while the portion on the higher numbered processor executes. Dur-
ing the partitioning phase, EDDP places each heavy task with utilisation greater than
65% on its own processor. The light tasks are then allocated to the remaining pro-
cessors, with at most m − 1 tasks split into two portions. They showed that EDDP
has a utilisation bound of 65% for periodic task sets with implicit deadlines, and per-
forms well in terms of the typical number of context switches required which is less
than that of EDF due to the placement strategy for heavy tasks. Subsequently, Kato
and Yamasaki (2008b) also extended this approach to fixed task priority scheduling,
presenting an algorithm with a utilisation bound of 50%.

Kato et al. then developed a semi-partitioning algorithm called DM-PM (Deadline-
Monotonic with Priority Migration); applicable to sporadic task sets, and using fixed
priority scheduling (Kato and Yamasaki 2009). DM-PM strictly dominates fully par-
titioned fixed task priority approaches, as tasks are only permitted to migrate if they
will not fit on any single processor. Tasks chosen for migration are assigned the high-
est priority, with portions of their execution time assigned to processors, effectively
filling up the available capacity of each processor in turn. At run-time, the execu-
tion of a migrating task is staggered across a number of processors, with execution
beginning on the next processor once the portion assigned to the previous processor
completes. Thus no job of a migrating task returns to a processor it has previously
executed on. They showed that DM-PM has a utilisation bound of 50% for task sets
with implicit deadlines. Subsequently, they extended the same basic approach to EDF
scheduling; forming the EDF-WM algorithm (Kato et al. 2009) (EDF with Window
constrained Migration).

For fixed priority scheduling Lakshmanan et al. (2009) also developed a semi-
partitioning method for sporadic task sets with implicit or constrained deadlines. This



8 Real-Time Syst (2012) 48:3–33

method called PDMS-HPTS splits only a single task on each processor; the task with
the highest priority. Note that a split task may be chosen again for splitting if it has the
highest priority on another processor. PDMS-HPTS takes advantage of the fact that
under fixed priority preemptive scheduling, the response time of the highest priority
task on a processor is the same as its worst-case execution time; leaving the maxi-
mum amount of the original task deadline for the part of the task split on to another
processor to execute. They showed that for any task allocation, PDMS-HPTS has a
utilisation bound of at least 60% for task sets with implicit deadlines; however, if
tasks are allocated to processors in order of decreasing density (PDMS-HPTS-DS),
then this bound increases to 65%. Further, PDMS-HPTS-DS has a utilisation bound
of 69.3% if the maximum utilisation of any individual task is no greater than 0.41.
Notably, this is the same as the Liu and Layland bound for single processor systems
without the restriction on individual task utilisation. Subsequently, Guan et al. (2010)
developed the SPA2 partitioning/task-splitting algorithm which has the Liu and Lay-
land utilisation bound, assuming only that each task has a maximum utilisation of 1.

For a broader review of research appertaining to multiprocessor scheduling the
reader is referred to the survey paper by Davis and Burns (2011) from which the
above discussion is distilled.

1.3 Contribution and organisation

In this paper1 we motivate, describe and evaluate the behaviour of an EDF-based
C = D scheme in which a maximum of m − 1 tasks are split (for m processors).
What is distinctive about the developed C = D scheme is that it is straightforward to
implement (with no unusual RTOS functions required, only a standard timer); CPU
time monitoring is not necessary. The scheme has low overheads that can easily be
accommodated into the analysis. It also utilises an off-line analysis-based procedure
that exploits some key properties of EDF scheduling (for single processors). Note
it has some resemblance to the fixed priority scheme of Lakshmanan et al. (2009)
described above, in that the split task occupies its first processor for the minimum
elapsed time but maximum execution time; it effectively executes non-preemptively
on its first processor.

We leave for future work the development of a utilisation bound. We also leave
open the question as to the best ‘bin-packing’ algorithm to use in conjunction with
the scheme. We make no attempt to deal with ‘heavy’ tasks differently from ‘light’
ones; although some of the ‘bin-packing’ schemes such as largest utilisation first do
deal with heavy tasks first. Again this might lead to further improvements. Rather
our motivation here is to illustrate the usefulness of a very basic and straightforward
approach. For this reason the current paper does not include a detailed comparison
with other task splitting schemes.

The remainder of the paper contains two main sections. The first describes the
C = D scheme, the other provides an evaluation. Conclusions are presented in
Sect. 6.

1A preliminary version of this paper was presented at RTNS 2010 (Burns et al. 2010).
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2 The C = D partitioning scheme

In this section we develop the partitioning scheme by first noting some useful prop-
erties of EDF scheduling of single processors. These properties can be exploited by
employing the QPA scheme to explore the characteristics of any particular task set’s
parameters.

2.1 Motivational characteristic of EDF systems

Consider a task set with D = T for all tasks and a total utilisation of 1. For example
a simple system of 5 identical tasks with C = 2 and T = D = 10. This task set is
clearly deemed schedulable on a single processor by use of the standard utilisation
test (as U = 1) (Liu and Layland 1973); it is not necessary to employ QPA. However,
using an extension of QPA (Zhang 2010) for sensitivity analysis it is possible to ask
the question: ‘For each task (separately), what is the minimum value of D that will
still deliver a schedulable system?’ As now D < T for one task, a utilisation based
test is not applicable2; hence QPA is employed. For this task set, each task can have
its deadline reduced to the minimum value of 2 (i.e. D = C) and the system remains
schedulable. The intuition here is that a single task (τi ) with Di = Ci can be accom-
modated if there is sufficient slack within the other tasks (for example, if no other
task (τj ) has Tj − Cj < Ci ). The optimal behaviour of EDF can accommodate one
task with an extreme requirement of D = C. These observations are also supported
by the work of Balbastre et al. (2006).

A less constrained example is given in Table 1. Here again the total utilisation
is 1 and all tasks have D = T . There are seven tasks and a range of periods from
10 to 48. Sensitivity analysis again shows that if each task is individually assessed
to see what its minimum deadline could be then all but one of the tasks can have
its deadline reduced to its computation time without jeopardising schedulability. The
one that cannot, has the longest period (and deadline). It can actually get 5 ticks (units
of execution time) in 5, but the 6th tick takes until time 26.

The behaviour shown by this example is typical. To consider how typical a number
of random task sets were generated and evaluated. The UUniFast algorithm (Bini and

Table 1 Example task set
Task T D C Min D

τ1 10 10 1 1

τ2 12 12 3 3

τ3 15 15 3 3

τ4 16 16 2 2

τ5 20 20 3 3

τ6 40 40 2 2

τ7 48 48 6 26

2Strictly, a sufficient density test could be used but this would lead to a result of unschedulable.
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Fig. 1 Task sets with one C = D task

Buttazzo 2005) was employed to generate 10,000 task sets per experiment, each with
implicit deadlines, i.e. D = T . If the utilisation of each task set is fixed at 1, 60.23%
of these task sets had at least one task that could have its deadline reduced to its
execution time (the number of tasks in these experiments was between 20 and 100,
and the ratio of longest to shortest period was 2). For utilisation of .95 the percentage
rose to 99.10%, and for utilisation of .9 the result was over 99.999%. Figure 1 shows
the percentage of task sets with at least one C = D task for various utilisation levels
and 10 tasks.

These results imply that, in a multiprocessor system, a high level of utilisation can
be achieved by allowing C to equal D for the first part of any split task. To try and fit
more than this value on to the first processor would require a much longer deadline—
leaving a much shorter interval for the second part of the task, which in turn would
constrain the scheduling of the processor that is assigned the second part of the task.

2.2 The C = D scheme

The task splitting scheme introduced in this paper involves two distinct activities:
the mapping of complete tasks to the available processors, and the choice of which
tasks to split and their allocation. These two activities give rise to a number of strate-
gies/heuristics for employing the basic C = D scheme:

• the allocation of complete tasks to processors, referred to as the ‘bin-packing’
phase can take a number of forms including first-fit and best-fit, and can be based
on different task parameters, for example decreasing density or decreasing utilisa-
tion;

• the choice over which task to split can also be based on different task parameters
including increasing deadline or increasing computation time;

• finally the phasing of the allocation and splitting activities—this could be under-
taken in an integrated way or be undertaken serially with the allocation of most
tasks occurring first followed by the splitting of the few tasks that were reserved
for this activity.

These strategies are considered further in Sect. 3. And an evaluation of a number
of these strategies is given in Sect. 4. In the following, a simple example strategy is
defined which uses an integrated approach with ‘first-fit’ bin packing for tasks that
can be assigned to one processor and ‘next-fit’ for tasks to be split:
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• Each processor (p) is ‘filled’ with tasks until no further task can be added without
leading to unschedulability of the processor.

• A single non-allocated task, τs with profile (Cs , Ds , Ts ) is then split so that the first
part is retained on processor p and the task load on that processor is schedulable.

• The first part of the split task (τ 1
s ) has the constraint that its deadline is reduced to

be equal to the maximum computation time that can be accommodated. Its profile
is therefore (C1

s , D1
s = C1

s , Ts ).
• The second part of the split task (τ 2

s ) has the derived profile (C2
s = Cs − C1

s , D2
s =

Ds − D1
s , Ts ). It is allocated to processor p + 1.

• The scheme continues by allocating further tasks to processor p + 1 until that
processor can no longer accommodate a further complete task. Another task is
then chosen to be split between processor p + 1 and p + 2.

An example split task would be one that originally had the profile (5,30,30)—i.e.
5 units of execution every 30 with a deadline of 30. After splitting, its first part may
be restricted to (2,2,30) and hence its second part would be (3,28,30). The second
part being released 2 units of time after the first part.

In the required schedulability analysis of the processor with the second part of the
task, the worst-case critical instant of all tasks being released together is assumed. If
the processor is schedulable when all task are released at the same time then it will
remain schedulable if there is a phased release between any two tasks, as there might
be between the second part of one split task and the first part of another split task.

The implementation of this C = D scheme is straightforward and requires no spe-
cial features of the RTOS (other than support for EDF scheduling, task affinities and
the identification of deadlines, see Sect. 5.2). The scheduling analysis, and the means
by which the C1

s values are found, is considered in the next section. In terms of im-
plementation, the following aspects are pertinent.

• The split task (τs ), when released for execution at time t on processor p, will
execute on p until time t + D1

s . Computation time need not be measured by the
RTOS, the task migration occurs after a period of ‘real’ (elapse) time—only a
standard timer is needed. In effect the first part of the split task will execute non-
preemptively as it has D = C on its release.

• At time t + D1
s the task’s affinity is changed from p to p + 1. The task will now

execute (preemptively) on processor p + 1 with a deadline of t + D1
s + D2

s which
is equivalent to t + Ds , the original task deadline.

It follows directly from this implementation scheme that the two parts of the task
can never execute concurrently. No further run-time action is needed to ensure that
this necessary constraint is satisfied. At run-time there is actually only one thread per
split task that moves/migrates between the two processors. It also follows that there
are at most m − 1 split tasks.

Before giving the required analysis, and reporting on an evaluation of this C = D

scheme, two useful properties of the scheme are worth emphasising. These prop-
erties are only strictly true if the overhead of splitting a task is ignored—they are
however indicative of the benefits that would be manifest when realistic overheads
are included. Again consider a completely allocated task set in which task τs is split
between processors p and p + 1. If it were not to be split (i.e. a fully partitioned
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scheme was being employed) then all of τs would need to be allocated to processor
p + 1.

Property 1 With the C = D scheme, processor p is making a positive contribution
to scheduling the task set.

This is clearly true as p has all of the ‘un-split’ load plus some further work. Its
overall utilisation is going to be closer to 1.

Property 2 With the C = D scheme, processor p + 1 is not making a negative con-
tribution to scheduling the task set.

This follows from the sustainability (Baruah 2006) of single processor EDF
scheduling. In the fully partitioned scheme processor p + 1 must accommodate all of
τs ; it guarantees Cs within Ds . Now if Cs is guaranteed within Ds then Cs − X must
have been accommodated within Ds − X for all positive X (X < Cs ). For example,
if 5 ticks are to occur within an interval of 20 ticks then 4 ticks must be completed
within 19. It follows that accommodating τ 2

s cannot be harder than accommodating
τs in a schedulability sense. However as the required computation time is reduced
then the utilisation load on processor p + 1 is also reduced, thereby increasing the
potential capacity of the processor to accommodate extra work.

This latter property is an important one as it implies that any partitioning scheme
can be used with this C = D scheme. Any ‘bin packing’ algorithm that gives an
effective mapping of tasks to processors can form the starting point for the scheme.
Of course if, for some task set, a partitioning scheme delivers 100% utilisation then
task splitting cannot improve the allocation. But if there is spare capacity then the
splitting of some task that was previously allocated to just one processor may improve
the mapping, but cannot make it worse (if overheads are ignored).

More formally, it follows that the C = D task splitting scheme dominates any par-
titioning scheme. Assume a system has been developed using a specific partitioning
approach. All n tasks are therefore allocated to the m processors. Order the proces-
sors (from 1 to m). Start with the first processor and attempt to bring to this processor
a part of any task from the second processor. If no task on the second processor can
be split then the first processor is unchanged. But if some initial part of any task can
be ‘brought forward’ on to the first processor then the utilisation of the first proces-
sor is increased, the schedulability of the second processor is unaffected, but its total
utilisation is reduced. Repeat this process for the second and subsequent processors
(up to processor m − 1). No anomalies are possible, the system remains schedulable
but the number of processors needed may be reduced or the utilisation of the final
processor may be reduced. Either way the task splitting scheme performs as well or
better than any partitioning scheme. This informal proof of dominance applies to the
particular case where the starting point for task splitting is the fully allocated scheme
delivered by a non-splitting partitioning approach. Where splitting and allocation are
integrated it does not follow that the result is inevitable better than just using alloca-
tion; it is possible that a poor choice for splitting may cause allocation problems later
in the process.



Real-Time Syst (2012) 48:3–33 13

When overheads are taken into account (for example, cost of migration and any
penalty for disturbing the cache) then if the run-time cost of splitting the task is δ

there is a potential overall gain if δ < C1
s . This follows from the observation that

the resulting execution time of the second part of the task will be C2
s = Cs − C1

s + δ

which will be less than the original computation time when the additional overhead is
so bounded. The gain is only ‘potential’ as the deadline for the task has been reduced.

Note that although the C = D task splitting scheme dominates any partitioning
method, the best overall scheme may not result from this approach—see evaluation
section (Sect. 4).

2.3 C = D sensitivity analysis

To employ the C = D scheme, an effective means of computing the value of C1
s must

be provided. This is developed in this section. First a basic approach is given, then
means of making the scheme more efficient are considered.

Assume a schedulable processor p becomes unschedulable when task τs is added.
This task must therefore be split with only the first part, with parameters (C1

s , D1
s =

C1
s , Ts ), being allocated to p. The following steps are undertaken to derive C1

s .

1) Choose (initially) C1
s (< Cs ) so that the utilisation of processor p is 1.

2) Set D1
s ← C1

s .
3) Compute L, the maximum ‘test’ interval (using LB if U = 1—see Sect. 1.1).
4) Start from L working backward with the QPA scheme.
5) If there is a failure, recompute a reduced C1

s (and hence D1
s )—see below.

6) If the newly computed value of C1
s is 0 then exit—no portion of the task can be

accommodated on processor p.
7) Continue working backward towards time Dmin (the shortest deadline of any task

on that processor) then repeat from step 3 if there has been a failure; if no failure
then the current value of C1

s is the optimum one.

Assuming there is a failure at time t , i.e. h(t) > t . The value of C1
s must be reduced.

The recomputed value of C1
s follows directly from the demand function at the point

of the failure. In the interval from 0 to t the amount of time that all the other tasks
require, Oth(t), is given by:

Oth(t) =
∑

τj ∈p

τj �=τs

⌊
t + Tj − Dj

Tj

⌋
Cj

where the summation is over all the other tasks assigned to processor p (not includ-
ing τs ).

In the remaining time (t minus this value) there will be

⌊
t + Ts − D1

s

Ts

⌋

releases of τs .
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This implies that each release must have a maximum computation time given
by:

C1
s = (t − Oth(t))

/⌊
t + Ts − D1

s

Ts

⌋
(5)

The D1
s term must then be replaced by the C1

s term:

C1
s ← (t − Oth(t))

/⌊
t + Ti − C1

s

Ti

⌋
(6)

giving a formulation in which the unknown parameter, C1
s , is on both sides of the

equation. To compute C1
s requires a recurrence solution:

C1
s (r + 1) ← (t − Oth(t))

/⌊
t + Ti − C1

s (r)

Ti

⌋
(7)

The starting value, C1
s (1), is that computed in step 1 when U = 1. If processor p

is schedulable without τs (which is the assumption) then (7) will provide a solution;
that is, there exists a v such that C1

s (v + 1) = C1
s (v) = C1

s . Note the sequence C1
s (1),

C1
s (2), . . . , is monotonically non-increasing. In exceptional circumstances (when the

processor cannot accommodate any further load) the value of C1
s will be zero.

The fact that the repeated application of (7) delivers the optimal (i.e. largest) value
for C1

s is obtained from the following observations. If C1
s (1) is a solution to (7) then

it must be optimal as U equals 1. Otherwise, for each iteration of the equation, a
value C1

s (r + 1) is computed which is the maximum computation time for C1
s that

is achievable with a deadline of D1
s = C1

s (r) ≥ C1
s (r + 1). The deadline is then

reduced and the new maximum value of C1
s computed. When C1

s (r + 1) = C1
s (r)

the deadline is equal to the computation time and computation time is at its largest
value.

The double reduction of C1
s and D1

s is the reason why the approach requires
(within step 7) that if there is any recomputed values then the algorithm must re-
turn to step 3 and check from L again. If only a task’s computation time is being
reduced then only a single pass of the QPA algorithm is needed. Having reduced C1

s

to remove the failure at time t then it has been proved (Zhang 2010) that all values
greater then t will remain safe (no deadline failures). Unfortunately when D1

s is also
reduced it is possible (though unlikely) that a new failure point (f ) may arise with
t < f < L.

It is possible to compute a new starting value of L that would be smaller than
the original value; but this optimisation is not explored further here. Rather a simple
scheme is used that returns to the original L if there has been any failure identified.
Only when there has been no failure does the algorithm terminate and the resulting
C1

s is then the largest possible computation for the first phase of the split task compat-
ible with the C = D constraint. Note that termination is assured (for Rational-valued
parameters) as each iteration must reduce the value of C1

s .
The above scheme, whilst straightforward in its form, suffers from a potentially

exponential growth in execution time due to:
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Table 2 Two processor task set
Task T D C p

τ1 100 100 66 1

τ1
2 100 34 34 1

τ2
2 100 66 33 2

τ3 100 100 66 2

• A starting value of U = 1 which means that LB must be used, and
• When U = 1, LB is equal to the LCM of the periods of the tasks assigned to the

processor, and that may be very large.

In the evaluation section (below) task sets are generated randomly. With U = 1
and D = T , for twenty or more tasks the LCM (and hence LB ) could indeed be
prohibitively large. To counter this an alternative scheme is possible. Rather than
start with U = 1 a value of, say, U = 0.9999 is used. Now LA (4) can be employed
and a reasonable starting value can be computed. An inspection of (4) shows that for
most tasks (in our evaluations) T = D and hence there are only two terms (from the
two split tasks) in the formulation for each processor (indeed for the first and last
processor there is only one).

If, when starting from U = 0.9999, a failure is found (and therefore C1
s and D1

s

are reduced) then the scheme will deliver the optimal value of C1
s . If no failure is

found then either a suboptimal result, but with a processor utilisation of 0.9999, could
be deemed accepted or the process repeated with U = 0.99995 etc. In practice a
utilisation of exactly 1 would never be used as some level of tolerance would be
expected.

2.4 Illustrative examples

For a very simple first example consider three tasks each with C = 66 and D = T =
100. Clearly the utilisation of this task set is almost 2 (actually 1.98). A fully parti-
tioned approach would require three processors (one per task). The C = D scheme
delivers a two processor system (even when a migration overhead of 1 is assumed).
Table 2 contains the details of the split task.

The second task (τ2) executes first for 34 ticks on processor 1 with task τ1. It
has a computation time equal to deadline equal to 34. Processor 1 is schedulable. The
second part of τ2 is released at time 34, its has a computation time of 33 (66−34+1)

and a deadline of 66. Processor 2 containing all of τ3 and this second part (τ 2
2 ) is also

schedulable.
An alternative model for the overhead is that the migration takes 1 unit of time so

that τ 2
2 is released at time 35 with a computation time of 32 and a relative deadline

of 65. But note that requiring 33 units of computation in 66 must imply that 32 are
provided in 65—hence schedulability of the first formulation implies schedulability
of the second.

For another example consider again the task set given in Table 1. This has a total
utilisation of 1. In Table 3 the computation times of the tasks are increased to give a
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Table 3 Three processor
example Task T D C U

τ1 10 10 5 .5

τ2 12 12 6 .5

τ3 15 15 6 .4

τ4 16 16 6 .375

τ5 20 20 9 .45

τ6 40 40 14 .35

τ7 48 48 16 .333

Table 4 Three processor
example Task T D C p

τ1 10 10 5 3

τ2
2 12 11 5 3

τ1
2 12 1 1 2

τ5 20 20 9 2

τ3 15 15 6 2

τ2
4 16 11 1 2

τ1
4 16 5 5 1

τ6 40 40 14 1

τ7 48 48 16 1

total utilisation of approximately 2.9. In this example the cost of migrating the two
split tasks is ignored.

A simple first fit allocation scheme is used based on smallest utilisation first3 (so
the order of tasks is τ7, τ6, τ4, τ3, τ5, τ2 and τ1). For processor 1, τ7 and τ6 can be
fully allocated; τ4 is then split—processor 1 can accommodate 5 units of computation
time (with a deadline of 5) leaving 1 to be provided on processor 2. On processor 2,
τ 2

4 has a deadline of 11 (16 − 5). Also on to this processor can be allocated τ3 and
τ5, leaving τ2 or τ1 to be split (they have the same utilisation). Splitting τ2 leaves the
final processor with most of τ2 and all of the final task, τ1. Table 4 has the derived
parameters for this task set.

The computed utilisations of the three processors are 0.9958, 0.9958 and 0.9545
(actually the value of τ 1

4 has been rounded down slightly to 5, if the actual value is
used the utilisation of the first processor is 1). Obviously the utilisation of the final
processor in any allocation is arbitrary—it depends on the task set’s total utilisation.
But the utilisation of the first 2 processors, in this example, give an indication of the
effectiveness of the scheme. In the next section we will evaluate the C = D scheme
over a large set of randomly generated task sets. The evaluation criteria for the first
experiment will be the average utilisation of the first m−1 processors—the closer this

3This scheme is chosen here to illustrate the versatility of the C = D approach—in the evaluation section
below the opposite and more effective ordering is used (decreasing utilisation/density).
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is to 1 the better the scheme. We leave to future work the derivation of a utilisation
lower bound for the scheme.

3 Strategies for selecting tasks to split

In this section, we present two strategies aimed at choosing which tasks to split. Both
of these strategies build on an underlying partitioning algorithm which uses First-
Fit allocation, and the exact EDF schedulability test, QPA, described in Sect. 1.1 to
determine the schedulability of the tasks assigned to each processor.

In the following, we use the term packing order to refer to the order in which tasks
are selected for allocation (of the whole task) to a processor, and splitting order to
refer to the order in which tasks are selected for splitting. Different heuristics can be
used to define these two orders, for example decreasing density is an effective packing
order, while minimum (i.e. increasing) deadline is an effective splitting order.

The two strategies are as follows:

1) Continuous: the choice of which tasks to split occurs during task allocation, and
so is affected by both the packing order and the splitting order.

2) Pre-selection: a subset of the tasks is pre-selected for splitting. Tasks that are not
preselected are not split and are all allocated to processors prior to the subsequent
allocation and splitting of the preselected tasks. With this strategy, the tasks that
are split are chosen solely according to the splitting order.

The continuous strategy requires only a single pass over the set of tasks, and is
described by the pseudo code shown in Algorithm 1 (in which all the tasks are initially
‘unassigned’).

1 P = 0 //P = 1 is the first processor
2 while(unassigned tasks) {
3 P=P+1 //next processor
4 for each unassigned task T in packing order {
5 if (task T is schedulable on processor P){
6 assign task T to processor P
7 }
8 }
9 if(unassigned tasks) {
10 S = first unassigned task in splitting order
11 determine the max C=D values for the first
12 part (S1) of task S on processor P
13 allocate S1 to processor P
14 the second part (S2) is now an unassigned
15 task
16 }
17 }

Algorithm 1: Continuous strategy

The pre-selection strategy requires multiple passes over the set of tasks. The idea here
is to use the minimum number of pre-selected tasks, such that after the remaining
tasks have been allocated (without splitting), the pre-selected (splitable) tasks can
utilise spare capacity on all of the processors used. However, prior to completing task
allocation, it is not possible to determine what this minimum number of pre-selected
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tasks should be. To address this problem requires iteration over increasing numbers
of preselected tasks (starting from just one) until the number pre-selected becomes
just enough to utilise capacity on all of the processors. The pseudo code for the pre-
selection strategy is given in Algorithm 2.

1 repeat = true
2 K = 0 //number of tasks that can be split
3 while(repeat) {
4 repeat = false
5 K = K + 1
6 P = 0 // P = 1 is the first processor
7 pre-sel tasks = the first K tasks in splitting order
8 unassigned tasks = the tasks not pre-selected
9 while(unassigned tasks) {
10 P=P+1 //next processor
11 for each unassigned task T in packing order {
12 if (task T is schedulable on processor P){
13 allocate task T to processor P
14 }
15 }
16 }
17 usedP = P // number of processors used
18 P = 1 // P = 1 is the first processor
19 unassigned tasks = pre-sel tasks
20 while(unassigned tasks) {
21 S = first unassigned task in splitting order
22 if (task S is schedulable on processor P){
23 allocate task S to processor P
24 }
25 else {
26 split task S into two parts S1 and S2
27 determine the max C=D values for the first
28 part (S1) of task S on processor P
29 allocate S1 to processor P
30 second part (S2) is now an unassigned task
31 P = P + 1 // next processor
32 }
33 }
34 if(P < usedP) {
35 repeat = true
36 }
37 }

Algorithm 2: Pre-selection strategy

Both the continuous and pre-selection strategies can be used with a variety of pack-
ing orders and splitting order heuristics. Note that some splitting heuristics will actu-
ally lead to the same task being split more than once. It will have a first phase (with
D = C) a second, third or more phases with D = C and a final phase with the remain-
ing computation time being delivered within the remaining deadline. The analysis of
this variant of the algorithm is identical to that presented for the normal two phase
model. At most there will be m splits (for m processors). This can range from m tasks
split once to a single task split m times (or any position between these extremes).

4 Empirical investigation

In this section, we present an empirical investigation, examining the effectiveness of
our approach to task splitting and the two strategies described in the previous section.
Please note the graphs are best viewed online in colour.
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4.1 Task set parameter generation

The task set parameters used in our experiments were randomly generated as follows:

• Task utilisations were generated using the UUnifast-Discard algorithm (Davis and
Burns 2009, 2010), giving an unbiased distribution of utilisation values.

• Task periods were generated according to a log-uniform distribution with a factor
of 100 difference between the minimum and maximum possible task period. This
represents a spread of task periods from 10 ms to 1 second, as found in many hard
real-time applications.

• Task execution times were set based on the utilisation and period selected: Ci =
Ui/Ti .

• To generate constrained deadline task sets (for the second experiment), task dead-
lines were assigned according to a uniform random distribution, in the range
[Ci ,Ti ].

4.2 Algorithms investigated

We investigated the performance of five algorithms all of which are based on First-
Fit partitioning (Lopez et al. 2000) and use Decreasing Density (DD) as the packing
order as it is widely recognised as an effective packing heuristic (Johnson 1974; Yao
1980; Davis and Burns 2011).

1) “EDF Partition (DD)”: This is the baseline algorithm with no task splitting, just
First-Fit Decreasing Density partitioning.

2) “EDF Split (DD-MaxD)”: This is Algorithm 1, with Decreasing Density as the
packing order and Maximum (Decreasing) Deadline as the splitting order.

3) “EDF Split (DD-MaxDen)”: This is Algorithm 1, with Decreasing Density as both
the packing order and the splitting order.

4) “EDF Split (DD-MinD)”: This is Algorithm 1, with Decreasing Density as the
packing order and Minimum (Increasing) Deadline as the splitting order.

5) “EDF Split then Pack(DD-MinD)”: This is Algorithm 2 using the pre-selection
strategy, with Decreasing Density as the packing order and Minimum (Increasing)
Deadline as the splitting order.

4.3 Experiment 1

In this experiment, we generated 1000 task sets with cardinalities of 6, 8, 12, 20, and
36, and a total utilisation of 4 (or cardinalities of 16, 20, 28, 44 and 76 and a utilisation
of 8). We allowed each algorithm as many processors as it required to schedule each
task set. For each algorithm, and each task set, we determined the average utilisation
of the fully occupied processors; that is the processors which were allocated tasks
with the exception of the highest indexed (partially used) processor. Figure 2 shows,
for implicit deadline task sets, the median (50 percentile) of the average utilisation
of fully occupied processors for each algorithm and value of task set cardinality. The
error bars indicate the 25 and 75 percentiles. For implicit deadline task sets there
is a clear, potentially achievable, upper bound of 1. For large numbers of tasks this
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Fig. 2 Performance with U = 4 and D = T

bound is approached for the C = D task splitting schemes. It is also approached,
though more slowly, by the baseline partitioning scheme. With smaller numbers of
tasks there is a significant improvement demonstrated by the task splitting schemes
using Minimum Deadline as the splitting order. For example, for 8 tasks with an
average utilisation of 0.5 each, the average utilisation of the 4 ‘full’ processors is
approximately 98% using Algorithm 1, and over 99% using the pre-selection strat-
egy (Algorithm 2). Note also that the 25 and 75 percentile bounds are much closer
together for Algorithm 2.

For task sets with cardinalities of 16, 20, 28, 44, and 76, and a total utilisation
of 8, the results are shown in Fig. 3. The results are broadly similar to those for
a utilisation of 4. We note that as the number of tasks increases the probability of
achieving a very high utilisation for the first few processors increases, and so does
the average utilisation achieved by all of the algorithms.

We experimented with a range of different heuristics for the task splitting order,
including minimum execution time and minimum period, as well as maximum execu-
tion time and maximum period. We found that these minimum (maximum) heuristics
gave very similar results to those for minimum (maximum) deadline. This is because
there is a strong correlation between the values of these parameters; if a task has a
large period, then it is likely that it will also have a long deadline and large execution
time.

We also repeated this experiment for constrained deadline task sets. Here the
‘achievable’ upper bound is not straightforward to compute, but the effectiveness
of the C = D task splitting schemes is clear to see in Figs. 4 and 5.
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Fig. 3 Performance with U = 8 and D = T

Fig. 4 Performance with U = 4 and D ≤ T
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Fig. 5 Performance with U = 8 and D ≤ T

4.4 Experiment 2

In this experiment, the task set utilisation was varied from 0.025 to 0.975 times the
number of processors in steps of 0.025. For each utilisation value, 1000 task sets
were generated and the schedulability of those task sets determined using the five
algorithms, assuming the fixed number of processors studied. The graphs plot the
percentage of task sets generated that were deemed schedulable in each case. Note
the lines on all of the graphs appear in the order given in the legend.

Figures 6 and 7 illustrate the performance of the algorithms for 4 and 8 processor
systems respectively, with implicit deadline tasksets, and two tasks per processor (i.e.
8 tasks in the 4 processor case, and 16 tasks in the 8 processor case). In Fig. 6, just
under 90% of the tasksets generated where schedulable using the baseline partitioning
algorithm ‘EDF Partition (DD)’ at a utilisation of 0.89m, where m is the number of
processors, whereas, with the pre-selection task splitting algorithm ‘EDF Split then
Pack(DD-MinD)’, the same proportion of tasksets were schedulable at a utilisation of
0.99m. Figure 7 shows a similar level of performance improvement in the 8 processor
case.

We repeated this experiment for constrained deadline task sets. Figure 8 shows the
percentage of constrained-deadline task sets that were deemed schedulable by each
algorithm on a 4 processor system, with Fig. 9 showing similar results for an 8 pro-
cessor system. These results indicate a significant improvement in schedulability over
the baseline partitioning algorithm. For example, in the 4 processor case (Fig. 8) with
EDF Partition (DD), approximately 50% of the tasksets generated with a utilisation
of 0.8m were unschedulable. Whereas, with the C = D task splitting scheme using
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Fig. 6 Performance with 4 processors, 8 tasks and D = T

Fig. 7 Performance with 8 processors, 16 tasks and D = T
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Fig. 8 Performance with 4 processors, 8 tasks and D ≤ T

Fig. 9 Performance with 8 processors, 16 tasks and D ≤ T
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pre-selection (“EDF Split then Pack(DD-MinD)”), 50% of the generated tasksets did
not become unschedulable until a total utilisation of 0.86m. In the 8 processor case,
the equivalent figures are 0.825m for the baseline algorithm, and 0.875m for the pre-
selection task-splitting approach. This equates to an improvement of 6% in the usable
processor capacity.

5 Implementation considerations

One of the motivations for the C = D scheme is that it is of practical utility. The
previous section has shown how it compares favourable with fully partitioned ap-
proaches. In this section we consider how it might be implemented on a real multi-
core platform where overheads and ease of use are important issues. Although full
experimental evaluation has yet to be carried out (it forms part of future work) it is
possible to consider the programmability aspects of the scheme. Two implementation
technologies are evaluated, first a concurrent programming language (Ada 2012), and
second the Linux operating system.

5.1 Ada approach

First a representation of the multiprocessor platform is required. In Ada a simple
integer type is used to represent the range of CPUs (CPU_Range); the following
package is defined:

package System.Multiprocessors is
pragma Preelaborate(Multiprocessors);
type CPU_Range is range 0 .. <implementation-defined>;
Not_A_Specific_CPU : constant CPU_Range := 0;
subtype CPU is CPU_Range range 1 .. CPU_Range’Last;
function Number_Of_CPUs return CPU;

end System.Multiprocessors;
%\end{alltt}

A task that is partitioned to execute on just a single processor (say, CPU 2) can be
have its CPU fixed at the time declaration:

task Normal is
pragma Relative_Deadline(Milliseconds(50));
pragma CPU(2);

end Normal.

This task has also been given a static relative deadline of 50 ms. The Ada program
can be instructed to use EDF scheduling (on all processors) by use of the following
pragma:

pragma Task_Dispatching_Policy(EDF_Across_Priorities);

EDF scheduling is supported by the following package:
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package Ada.Dispatching.EDF is
subtype Deadline is Real_Time.Time;
Default_Deadline : constant Deadline :=

Real_Time.Time_Last;
procedure Set_Deadline(D : Deadline;

T : Task_Identification.Task_ID :=
Task_Identification.Current_Task);

procedure Delay_Until_And_Set_Deadline(
Delay_Until_Time : Real_Time.Time;
TS : Real_Time.Time_Span);

function Get_Deadline(T : ask_Identification.Task_ID :=
Task_Identification.Current_Task) return Deadline;

end Ada.Dispatching.EDF;

and hence the code pattern for this normal task is as follows:

task body Normal is
Next : Time;
Period : Time_Span := Milliseconds(50);

-- equal to full deadline
begin

Next := Ada.Real_Time.Clock;
loop

-- code of application
Next := Next + Period;
Delay_Until_And_Set_Deadline(Next, Next+Period);
-- this suspends the task until time of next release
-- and fixes the new absolute deadline at that time
-- to be release time plus 50 ms

end loop;
end Normal;

For multiprocessor scheduling a further language-defined package is required to rep-
resent the collection of CPUs on which a task can execute. Part of this packages
definition is

with Ada.Real_Time;
with System; use System;
package Multiprocessors.Dispatching_Domains is

Dispatching_Domain_Error : exception;
type Dispatching_Domain (<>) is limited private;
System_Dispatching_Domain : constant Dispatching_Domain;

...
procedure Set_CPU(P : CPU_Range;

T : Task_Id := Current_Task);
function Get_CPU(T : Task_Id := Current_Task)

return CPU_Range;
procedure Delay_Until_And_Set_CPU(Delay_Until_Time

: Ada.Real_Time.Time; P : CPU_Range);
end Multiprocessors.Dispatching_Domains;

The type Dispatching_Domain represents a series of processors on which a
task may execute. Each processor is contained within exactly one Dispatching_
Domain. To implement the C = D scheme only a single Dispatching_Domain
is employed and all non-split tasks are statically allocated to exactly one CPU. Any
split task however must migrate at time D after being released. To effect this migra-
tion a ‘timer’ is defined. In Ada a timer is code (in the form of a handler procedure)
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that is executed when the system clock reaches a specific time. In the following ex-
ample the handler is programmed to extend the deadline of the task (by the amount
Extra) and to move the task to CPU 1. In this code Client is an abstract pointer
to the task; it is a task ID.

procedure Handler(TM :in out Timer) is
New_Deadline : Deadline;

begin
New_Deadline := Get_Deadline(Client);
-- obtains the deadline of the
-- Client task to be moved
Set_Deadline(New_Deadline + Extra, Client);
-- extends deadline by fixed amount
Set_CPU(1,Client);
-- moves task to processor 1

end Handler;

To illustrate the code required to program a split task, consider an example of a
periodic task with period 20 ms, an initial phase with deadline 5 ms (i.e. C = D = 5),
and hence an Extra value (as used above) of 15 ms. The task (called Split), which
executes first on CPU 0, has a simple form:

task Split is
pragma Relative_Deadline(Milliseconds(20));

end Split.

task body Split is
Id : Task_ID := Current_Task;
Next : Time;
Period : Time_Span := Milliseconds(20);
First_Deadline : Time_Span := Milliseconds(5);

begin
Set_CPU(0);
Next := Ada.Real_Time.Clock;
loop

Switch.Set_Handler(First_Phase,Switcher.Handler’Access);
-- set up handler as defined above

-- code of application

Next := Next + Period;
Set_CPU(0); -- return task to initial CPU
Delay_Until_And_Set_Deadline(Next, Next+First_Deadline);

end loop;
end Split;

Further details of this example are to be found elsewhere (Burns and Wellings
2010)—where the task switching algorithm is used to illustrate the usefulness of some
new language features for Ada.

5.2 Linux approach

To obtain a similar level of programmability when implementing on the Linux OS
it must be possible to get the necessary behaviour from the use of only user level
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APIs. Here we step through the required functionality using the IRMOS implemen-
tation (Checconi et al. 2009)4 which implements an EDF scheduling class for the
Linux kernel (Faggioli et al. 2009). Note the basic approach of Linux on a multicore
platform is a partitioned one. Each processor has its own run queue, and a thread can
only reside on a single queue. To aid more global schemes the Linux kernel supports
PUSH and PULL primitives to move a thread from one run queue to another. At the
user level these primitives can be accessed by altering a thread’s execution mask.

First, the basic C = D scheme requires support for partitioned multiprocessor
scheduling. A thread (with thread id tid) would be fixed to processor 0, say, by ma-
nipulating its mask:

cpu_set_t mask; // declare a mask

CPU_ZERO(&mask); // set~all entries to zero
CPU_SET(0, &mask); // set pin (bit) on CPU 0 only
sched_setaffinity(tid, sizeof(mask), &mask);

Assume that the thread to be split is a periodic thread that is released by
the action of an absolute timer (TIMER_ABSTIME) using an accurate clock
(CLOCK_MONOTONIC with nanosecond precision). Another timer is then used
(with the same clock) to fire when the migration should occur. The easiest way
to react to this timer is to define another thread that wakes up (using clock_
nanosleep()) at ‘migration time’. This high priority ‘migrator’ thread then
changes the deadline and the affinity of the ‘client’ thread (identified by tid). As-
suming the thread should move to cpu1, first an appropriate mask for that processor
is declared:

cpu_set_t mask1; // declare a mask

CPU_ZERO(&mask1); // set~all entries to zero
CPU_SET(1, &mask1); // set pin on CPU 1

the code to be executed by the migrator thread is simply:

sched_setaffinity(tid, sizeof(mask1), &mask1);

The result of the setaffinity() call is that the thread disappears from the run
queue of CPU 0, and it appears on the run queue of CPU 1.

In the IRMOS implementation a thread has a budget and a deadline. If the budget is
exhausted the thread is postponed. In the C = D scheme it is not necessary to monitor
execution times, and hence the budget values are not actively used. The migrating task
is given a reservation on both cpus. A reservation being a pair of values: (C,D)—
computation time and relative deadline. Assume it has a C = D value of 4 ms and an
overall deadline of 30 ms (and a total computed WCET of 10 ms, including runtime
overheads—see following discussion). Its reservation on cpu0 will be (5, 4) and on
cpu1 it will be (6, 26). The value 5 is chosen to be higher than the deadline value
of 4 (so its budget is never exhausted—note kernel-level admission control must be
disabled to enable this to be done). As the thread moves cpus its reservation on cpu0
goes idle (ready to be reset when the task returns to cpu0) whilst its reservation on

4The IRMOS scheduler code is available from: http://sourceforge.net/aquosa/linux-irmos.

http://sourceforge.net/aquosa/linux-irmos
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cpu1 becomes active. The reservation on cpu1 is also used by the migrator thread
when it is released.

At the end of the thread’s execution (for this job) the thread will sleep awaiting
the timer signal that will release the migrator thread which will first reset its client
thread’s affinity to cpu0 and then release the thread for its next job’s execution.

5.3 Overheads

Any real implementation must adapt the ‘theoretical’ scheduling analysis equations
to include parameters for the overheads that inevitable arise with whatever operating
system the multi-tasking application is executing on. For single processor analysis
this is achieved by adding extra execution time to the tasks (to capture context switch
times) and by adding extra (high priority) tasks to represent the overheads of in-
terrupts and OS functions such as delay queue manipulation (Burns and Wellings
2009). For multiprocessor systems there is a further source of overhead to consider,
that caused by migrating a task from one processor to another.

The cost of this migration is platform dependent. However, if there is cache coher-
ence between the processors then there are examples in which the cost of migration
is of a similar order to that of the normal context switch (Bastoni et al. 2010). These
findings, by Bastoni, Brandenburg and Anderson, are based on real measurements
of an extensive number of experiments on actual multiprocessor hardware (i.e. not
simulations).

Any split task must therefore have two extra ‘context switch times’ added to its
execution time. The first phase of the task cannot have its execution time extended
(without jeopardising schedulability), and hence its final phase requirement must be
extended—this was illustrated by the first example in Sect. 2.4.

At a practical level it would always be necessary to bound the minimum size of
the initial phase of a split task to be greater than the extra overheads introduced into
the system by the required task migration.

In a real application tasks will often take less computation time than their worst-
case. In some situations a job may actually complete before its migration time, in
which case migration would not occur and the task would remain on its initial pro-
cessor.

6 Conclusions

This paper has introduced a task splitting scheme for EDF scheduled identical mul-
tiprocessors. The motivation for the scheme is ease of implementation and low over-
heads. For m processors at most m− 1 tasks are split. Each processor runs a standard
EDF policy, with the split tasks changing their affinities after a fixed period of elapse
time after their releases. The first part of any split task is constrained to have its dead-
line equal to its computation time. It therefore runs (in effect) non-preemptively on
its initial processor. This provides the maximum time possible, on the subsequent
processor, for the task to complete the remainder of its computation time. Analysis is
provided by which the optimal parameters of the split task can be obtained.
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Evaluation over a wide range of randomly generated task sets is provided and
these results indicate that the scheme does indeed have promising performance. For
example, the average utilisation of the ‘full’ processors for experiments with 8 tasks
with a total utilisation of 4 rose from less than 0.89 for strict partitioning to over
0.99 for a C = D strategies. Nevertheless a number of issues for further study are
immediately apparent.

• An evaluation is needed for task sets with arbitrary deadlines.
• An evaluation is needed of the run-time effectiveness of the scheme when com-

pared with other EDF-based task-splitting approaches.
• Other approaches to task allocation need to be considered, including other first fit

methods such as largest D − C first, and largest T/C first—also various possible
best fit and next fit algorithms.

• The development of utilisation-based bounds for this C = D scheme.
• The incorporation of possible pre-allocation schemes for heavy (high utilisation)

tasks—this has proved to be a useful approach with other partitioning schemes.

The overall conclusion of this study, confirming the views expressed in a number
of papers on similar approaches, is that minimal task splitting seems to be a practi-
cally useful means of scheduling multiprocessor systems. Most of the advantages of
the purely partitioned approach are maintained, but higher levels of processor utilisa-
tion can be delivered. At the same time few of the disadvantages of the purely global
approach are encountered.
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