
Real-Time Syst (2010) 46: 305–331
DOI 10.1007/s11241-010-9107-4

Schedulability and sensitivity analysis of multiple
criticality tasks with fixed-priorities

François Dorin · Pascal Richard ·
Michaël Richard · Joël Goossens

Published online: 23 September 2010
© Springer Science+Business Media, LLC 2010

Abstract Safety-critical real-time standards define several criticality levels for the
tasks. In this paper we consider the real-time systems designed under the DO-178B
safety assessment process (i.e., Software Considerations in Airborne Systems and
Equipment Certification). Vestal introduced a new multiple criticality task model to
efficiently take into account criticality levels in the schedulability analysis of such
systems. Such a task model represents a potentially very significant advance in the
modeling of safety-critical real-time softwares. Baruah and Vestal continue this in-
vestigation, with a new scheduling algorithm combining fixed and dynamic priority
policies. Another major design issue is to allow a system developer to determine how
sensitive is the schedulability analysis to changes in execution time of various soft-
ware components.

In this paper, we first prove that the well-known Audsley’s algorithm is optimal for
assigning priorities to tasks with multiple criticality levels. We then provide a proof
on the optimality of Vestal’s algorithm for optimizing the resource requirements to
schedule tasks with multiple criticality levels. We then present a sensitivity analysis
for multiple criticality tasks that is based on Bini et al. results on sporadic tasks.

Keywords Uniprocessor scheduling · Multiple criticality tasks · Sensitivity analysis

F. Dorin · P. Richard (�) · M. Richard
LISI/ENSMA, Avenue Clément Ader, Téléport 2, BP 40109, 86961 Chasseneuil duPoitou, France
e-mail: pascal.richard@univ-poitiers.fr

F. Dorin
e-mail: francois.dorin@ensma.fr

M. Richard
e-mail: richardm@ensma.fr

J. Goossens
Département d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe – C.P. 212,
1050 Brussels, Belgium
e-mail: joel.goossens@ulb.ac.be

mailto:pascal.richard@univ-poitiers.fr
mailto:francois.dorin@ensma.fr
mailto:richardm@ensma.fr
mailto:joel.goossens@ulb.ac.be

306 Real-Time Syst (2010) 46: 305–331

Table 1 The required design assurance level in the DO-178B

Level Failure condition Description

A Catastrophic Failure may cause a crash

B Hazardous Failure has a large negative impact on safety or performance, or reduces the
ability of the crew to operate the plane due to physical distress or a higher
workload, or causes serious or fatal injuries among the passengers

C Major Failure is significant, but has a lesser impact than a Hazardous failure (for ex-
ample, leads to passenger discomfort rather than injuries)

D Minor Failure is noticeable, but has a lesser impact than a Major failure (for example,
causing passenger inconvenience or a routine flight plan change)

E No Effect Failure has no impact on safety, aircraft operation, or crew workload

1 Introduction

Avionic software standards define several criticality levels which define several levels
of required confidence. For example, the RTCA DO-178B software standard (Author-
ity 1992) defines 5 levels of criticality, denoted from A to E. A failure of a A-criti-
cality task can have catastrophic results (i.e., crash of an airplane) whereas a failure
of a E-criticality task has no effect on the safety of the airplane. The failure condi-
tions, reported in Table 1, are categorized by their effects on the aircraft, crew, and
passengers.

A way to achieve a higher assurance on worst-case execution time is to enforce
time partitioning at run-time (Vestal 2007), as in the ARINC 653 standard (ARINC
1997). ARINC 653 is an Application Programming Interface that provides time par-
titioning among applications having different required Design Assurance Levels. The
time line is defined as a set of time partitions. Each partition has a fixed predetermined
amount of time. Each task (or a set of dependent tasks) is attached to a partition and
a popular scheduling algorithm is executed on each partition. Since each partition
has a fixed predetermined amount of allocated time, a partition cannot interfere with
another one. In other words, a task, which belongs to a partition A, cannot interfere
with a task which belongs to a partition B . Moreover, by affecting task with the same
required level of confidence on the same partition, it is possible to ensure temporal
isolation between tasks requiring different levels of confidence.

In practice, execution times of a recurring task are different from one execution to
another. Schedulability analysis of real-time systems is based on the worst-case exe-
cution time (WCET). The execution time of a task never exceeds its WCET otherwise
it is impossible to guarantee the system schedulability. Determining an exact WCET
value for every task occurrence is a very difficult problem. So in practice, WCETs
are upper bounds of execution requirements.

Since computing WCET is a complex problem, two different approaches can be
considered:

– The first one is to allow some WCET exceedance (for instance, due to a optimistic
approximation of the WCETs). Some models allow to take into account this kind
of problem. For example, Bougueroua, in Bougueroua et al. (2007), introduced the
notion of allowance to achieve this aim.

Real-Time Syst (2010) 46: 305–331 307

– The second one is to consider several levels of confidence for WCET. A high re-
quired confidence task have to never miss a deadline whereas a low required con-
fidence task can miss some deadline sometimes without great consequences on the
safety of the whole system. In such cases, the WCET of high required confidence
tasks have to be evaluated with the maximum possible precision because an under-
estimated value can cause the task to miss a deadline, which can be very critical
for the system, and an overestimated value can lead a feasibility test to conclude
that a task is not feasible whereas no deadline miss can occur at run-time. So, the
idea is to perform tight evaluation of the WCET for tasks having a high confidence
level and to allow more approximate (i.e., average) evaluation for tasks with low
confidence levels.

Next we will focus on the second approach defined in Vestal (2007). Vestal con-
jectures that “the more confidence one needs in a task execution time bound, the
larger and more conservative that bound tends to be in practice” (Vestal 2007). For
validating low criticality tasks, the worst-time observed during tests of normal op-
erational scenarios might be used rather than sophisticated methods for computing
WCET. In that way, resource requirement for scheduling multiple criticality systems
can be highly decreased if different degrees of execution time assurance are con-
sidered, thus software development costs as well as computation power of hardware
platforms can be reduced. Recently, in Vestal (2007), Baruah and Vestal (2008) is
introduced a new formal model for task sets that considers several WCETs instead of
a single one for each task. For a given task, these WCETs are computed according to
several confidence levels.

Baruah et al. (2010) presented another multiple criticality model dealing with a
collection of jobs (i.e., tasks are not periodically released). They proved that the
schedulability problem is NP-hard, even if two criticality levels are considered. In
Baruah et al. (2010) is presented on-line scheduling strategies for minimizing the
makespan (i.e., the length of the schedule) and provides several competitive analy-
sis results. This scheduling problem corresponds to existing problems taken from the
domain of UAV (Unmanned Aerial Vehicles) used for defense reconnaissance and
surveillance. In such real-world problems, the tasks are classified into two categories:

– flight-critical tasks: tasks require to ensure the UAV can fly,
– mission-critical tasks: tasks require to ensure the reconnaissance and surveillance

objectives.

In order to allow the UAV to fly, it has to be certified by a civilian Certification Au-
thorities. To deliver this certification, it is not necessary to take into account mission-
critical tasks and it can be done using multiple criticality task model.

The second major issue in the design of real-time systems is the sensitiv-
ity analysis in order to determine how sensitive is the feasibility of the sys-
tem according to changes in the execution times of software components (e.g.,
tasks). Popular feasibility analysis only provides little more than a yes or no an-
swer and there is still a lack of flexibility as far as the designer is concerned.
For overcoming such results, sensitivity analysis have been developed to estimate
what changes task parameters can be made while preserving system feasibility.

308 Real-Time Syst (2010) 46: 305–331

All seminal works concern Rate Monotonic scheduling and execution time analy-
sis to determine how may be increased WCET without causing deadlines to be
missed (Lehoczky et al. 1989; Klein et al. 1993; Katcher et al. 1993; Punnekkat
et al. 1997; Vestal 1994). These works have then been extended for analyzing
more complex real-time systems as in Racu et al. (2008) and to other possible
changes in task timing characteristics: WCET, deadlines or periods (Bini et al. 2008;
Bini and Buttazzo 2009; Balbastre et al. 2009) for citing only some relevant re-
cent works on these topics. We think that such an issue is quite important in time-
partitioned systems for allocating time budgets for softwares to be executed in dif-
ferent time-partitions (e.g., developed by independent software developer teams) as
well as for estimating possible software updates. To the best of our knowledge,
such sensibility analysis has never been investigated for multiple criticality task
sets.

1.1 This research

In this paper, we consider the seminal Vestal’s multiple-criticality task model. In
Baruah and Vestal (2008) is claimed that Vestal’s algorithm (i.e., defined in Vestal
2007) is optimal. We provide a complete proof of a refined result showing that the
original Audsley’s algorithm is actually optimal for this kind of problem. We then
analyze the sensitivity of system parameters from processor speed and task execution
requirements:

– What is the required processor speed so that a multiple criticality task set is schedu-
lable under Vestal’s algorithm. Precisely, we show that Vestal’s algorithm can be
easily adapted to compute such a processor speed.

– What is the allowed variations of WCETs of a task so that it is still schedulable.
For that purpose, we adapt the sensitivity analysis introduced by Bini et al. (2008)
for analyzing multiple criticality task systems scheduled under a FTP scheduling
policy.

Lastly, we extend our previous results by adding release jitters into the task model.
We will give several motivations why release jitter definition must depends on task
criticality levels.

1.2 Organization

The paper is organized as follows: Sect. 2 introduces the multiple criticality model
as well as some known results we will use later. We prove, in Sect. 3, the optimal-
ity of the original Audsley’s algorithm (Audsley 1991) for the kind of independent
task systems with constrained-deadlines under fixed-task-priority scheduling policy.
Section 4 deals with Vestal’s algorithm, and the fact the returned schedule has the
highest critical scaling factor among all the possible schedules. We provide also ex-
perimental results to compare the both algorithms. In Sect. 5, we performed sensitiv-
ity analysis on multiple criticality based systems followed by an example. In Sect. 6,
we extend our results to take into account release jitters in the multiple-criticality
model.

Real-Time Syst (2010) 46: 305–331 309

2 Task model, schedulability and sensitivity analysis

2.1 Task model

The model developed by Vestal (2007) is an extension of traditional sporadic task
model that takes into account several assurance levels for defining worst-case execu-
tion times (e.g., RTCA DO-178B defines 5 criticality levels).

Definition 1 L = {L1, . . . ,Lm} is an ordered set of m design assurance levels, where
Lm is the highest design assurance.

Each task will be assigned to a precise assurance level, but several execution times
will be defined for each task, one per assurance level, in order to perform efficient
schedulability analysis.

Definition 2 A sporadic multiple criticality task τi is defined by:

– a criticality level Li ∈ L,
– a relative deadline Di ,
– a minimal period Ti between two successive releases,
– m worst-case execution times Ci(�), � ∈ L that satisfies:{

Ci(�) = Ci(� + 1) if L1 ≤ � < Li

Ci(�) ≤ Ci(� + 1) if Li ≤ � ≤ Lm

(1)

In the previous definition of a task τi , the condition Ci(�) ≤ Ci(� + 1),Li ≤
� ≤ Lm enforces Vestal’s conjecture that “the more confidence one needs in a task
execution time bound, the larger and more conservative that bound tends to be in
practice.” We add the condition Ci(�) = Ci(� + 1),L1 ≤ � < Li in the definition
of a multiple-criticality task for avoiding problems while performing schedulability
analysis of multiple criticality task sets. This specific point will be developed in the
next section. Notice that the multiple criticality task model is a strict generalization
of the traditional sporadic task model (Baruah and Vestal 2008) in which all tasks are
specified with identical degree of assurance.

In the remainder, we consider fixed-task-priority scheduling policies: every task
has a fixed-priority that is never changed at run-time: πi is an integer that defines the
priority level assigned to τi . According to a fixed-priority scheduler, at any time, the
highest priority task is selected for execution among ready ones. We assume without
loss of generality that tasks are indexed according to priority levels (i.e., τ1 is assigned
to the highest priority level and τn to the lowest one). We also assume that tasks

have constrained-deadlines (i.e., Di ≤ Ti, i = 1, . . . , n). ui(�)
def= Ci(�)/Ti denotes

the processor utilization factor of task τi and the system utilization factor is the sum
of task utilization factors. Any task set having a utilization factor greater that 1 is
said overloaded and it is well known that such system cannot be scheduled by any
scheduling algorithm upon uniprocessor (e.g., Earliest Deadline First). We define the
worst-case response time Ri as the longest delay between the arrival of a request and
a completion among all τi executions.

310 Real-Time Syst (2010) 46: 305–331

Table 2 Task set that do not
satisfies Definition 1 τi Ti Di Li Ci(1) Ci(2)

1 5 5 1 1 2

2 5 5 2 2 5

2.2 Feasibility analysis

In Baruah and Vestal (2008) is presented a simple method for feasibility analysis of
multiple criticality tasks. From a multiple criticality task set τ can be defined the
corresponding sporadic task system τ ′ as follows:

Definition 3 From a multiple criticality sporadic task τi , we define a corresponding
traditional sporadic task τ ′

i defined by the 3-tuple (WCET, Relative Deadline, Period):
τ ′
i (Ci(Li),Di, Ti).

If no restrictions are placed upon the scheduling algorithms that may be used,
feasibility analysis can be done using the following result:

Theorem 1 (Baruah and Vestal 2008) A multiple criticality task set is feasible if and
only if the corresponding traditional sporadic system is feasible.

In Baruah and Vestal (2008) is presented a proof sketch of the previous the-
orem. But, the result is related to the basic underlying assumption that Ci(�) =
Ci(�+ 1),L1 ≤ � < Li . That is why we add that condition in Definition 2 in compar-
ison with multiple criticality task definitions presented in Vestal (2007) and Baruah
and Vestal (2008). Let us present a simple example exhibiting that such an assump-
tion is required for using Theorem 1 and schedulability tests that will be used in the
remainder. Let us consider the task set presented in Table 2. The classical feasibility
analysis of the corresponding task set concludes that it is infeasible if all tasks are
considered with the highest degree of assurance, since no algorithm can schedule a
task set having the utilization factor is greater than 1:

C1(L1)

T1
+ C2(L2)

T2
= 1.2 > 1 (2)

However, from a multiple criticality schedulability analysis, this task system is
schedulable when assigning the highest priority to the task τ2 and the lowest priority
to the task τ1. The corresponding worst-case response time R1 and R2 of tasks τ1 and
τ2, respectively:

R1 = C1(L1) = 5 ≤ D1 (3)

R2 = C1(L2) + C2(L2) = 3 ≤ D2 (4)

Thus, all deadlines seem to be met according to the feasibility test on the correspond-
ing traditional sporadic system which is obviously impossible in any overloaded
system. Next, we assume that task execution requirements must satisfy conditions
defined in (1) for every multiple criticality task.

Real-Time Syst (2010) 46: 305–331 311

2.3 Scheduling algorithms

For these multiple criticality systems, in Vestal (2007) is provided two fixed-task-
priority algorithms in order to schedule such systems: one based on period transfor-
mation based on Sha et al. (1986) and another based on a modification of the Auds-
ley’s priority assignment algorithm (Audsley 1991) (i.e., in fact a tie-breaker rule is
introduced in Audsley’s algorithm). In Baruah and Vestal (2008), these works were
completed to establish a link between popular sporadic task systems and multiple
criticality task systems. The corresponding sporadic task system is defined as the ini-
tial multiple criticality task set in which only the WCET corresponding to its critical
confidence level is considered for every task. They proved an interesting property for
the feasibility analysis: a multiple criticality sporadic task system is feasible if and
only if the corresponding traditional sporadic task system is feasible (i.e., schedulable
when temporal isolation of task executions is enforced by the operating system).

On-line scheduling algorithms can be classified into three different categories:
fixed-task-priority (FTP, all occurrences of a given task have the same priority as
for Rate Monotonic (RM) or Deadline Monotonic (DM) priority assignment poli-
cies); fixed-job-priority (FJP, every job has a fixed priority, but subsequent jobs of
a given task can have different priorities—Earliest Deadline First (EDF) is such an
algorithm); and lastly, Dynamic Priority (DP, the most general class of scheduling al-
gorithms). For Liu and Layland’s task systems, a classical result is that FTP schedul-
ing algorithms are dominated by EDF (Liu and Layland 1973). That is to say, if a
task system is schedulable by an FTP scheduling algorithm, then it is schedulable by
EDF. This result does not hold for multiple criticality task system since Baruah and
Vestal gave a counter-example of a task system which can be scheduled by FTP al-
gorithm and cannot be scheduled by EDF (Baruah and Vestal 2008). In other words,
FTP scheduling algorithms and EDF are incomparable.

To overcome the fact that EDF and FTP algorithms are not comparable, Vestal and
Baruah proposed an hybrid-priority scheduling algorithm able to schedule any task
system schedulable by Vestal’s algorithm and/or by EDF, that is to say by any FTP
algorithm or by EDF, since Vestal’s algorithm is optimal for the FTP algorithm class.
This hybrid-priority scheduling belongs to the class of the fixed job-priority (FJP)
scheduling. A last result provided in Baruah and Vestal (2008) is that this hybrid-
priority scheduling is not optimal in the FJP algorithm class.

We next detail Vestal’s modified version of the Audsley’s priority assignment al-
gorithm (Audsley et al. 1993) in order to define a feasible fixed-priority schedule.
Vestal’s algorithm is claimed to be optimal in the category of the fixed-task-priority
algorithms for independent task systems with constrained-deadlines (Baruah and
Vestal 2008), but no proof is provided (we will see that it is correct, but the algo-
rithm can be actually simplified).

The Audsley’s algorithm is based on the following observation: the response time
of a task depends only of the set of the higher priority tasks, and it is unnecessary to
know the exact priority assignment. So, the principle of the Audsley’s algorithm is
to enumerate each priority level from the lowest to the highest. At each priority level
is assigned the first task which is schedulable at this priority level (ties are broken
arbitrarily). If there is at least one priority level with no task which can be assigned
to it, then the task system is unschedulable using a fixed-task-priority algorithm.

312 Real-Time Syst (2010) 46: 305–331

Vestal modified this algorithm in the following way: instead of taking the first task
which can be scheduled at a given priority level, Vestal’s algorithm assigns the task
with the highest critical scaling factor as defined in Lehoczky et al. (1989). This criti-
cal scaling factor �i corresponds to the maximum scaling factor � for task computa-
tion times (i.e., factor by which all Ci can be multiplied without a deadline failure if
a factor � less than or equal to �i is considered). Thus, if � is increased beyond the
factor �i , a deadline will be missed. The utilization factor corresponding to the criti-
cal scaling factor defines the breakdown utilization of a task set. In the next definition,
we precisely define the critical scaling factor associated to a task τi assigned to crit-
icality level Li (please notice that this definition is only a restatement of Lehoczky’s
definition presented (Lehoczky et al. 1989) in order to take into account that tasks
have several execution requirements):

Definition 4 The critical scaling factor associated to a task τi is a threshold value of
the scaling factor for all task execution times:

�i
def=

[
min
t∈Si

i∑
j=1

Cj(Li)

t

⌈
t

Tj

⌉]−1

(5)

where Si is the set of scheduling points as defined in Lehoczky et al. (1989):

Si
def=

{
kTj |j = 1, . . . , i − 1; k = 1, . . . ,

⌊
Di

Tj

⌋}
∪ Di (6)

We give an example of Vestal’s assignment algorithm in Fig. 1. The upper table
summarizes the task characteristics. The bottom table is a trace of Vestal’s algorithm.
For example, when we are looking for a task to assign at the priority level 3, we
compute the critical scaling factor of each task, and we choose the one having the
highest critical scaling factor which is, in this case, τ3. So, we continue this process
at the priority level 2 without forget to remove task τ3. The task with the highest
critical scaling factor at this level is τ0, so τ0 is assigned at the priority level 2. And
so on.

The critical scaling factor of the system is given by the minimum of the critical
scaling factor of each task when all tasks are assigned a priority. In this case, the
critical scaling factor of the system is determined by the critical scaling factor of τ3.

Baruah and Vestal (2008) claimed that this algorithm is optimal for scheduling
independent task sets with constrained-deadlines under a fixed-task-priority policy
without providing a complete proof. We will prove in Sect. 3 that the original Auds-
ley’s algorithm already is optimal for this schedulability analysis problem (i.e., with-
out considering the critical scaling factors as a tie breaking rule). Furthermore, our
proof is also valid for establishing that Vestal’s algorithm is optimal. We will also
show in Sect. 4 that Vestal’s algorithm returns a schedule having the highest possible
critical scaling factor.

Real-Time Syst (2010) 46: 305–331 313

Fig. 1 Vestal’s priority
assignment trace

τi Ti Di Li Ci(1) Ci(2)

0 164 104 1 7 17
1 89 44 2 4 4
2 191 80 1 12 16
3 283 283 2 85 85

Priority Trace

3

�τ0 = 0.928571

�τ1 = 0.360656

�τ2 = 0.740741

�τ3 = 1.69461

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒ π3 = 3

2

�τ0 = 3.86957

�τ1 = 1.18919

�τ2 = 3.47826

⎫⎪⎬
⎪⎭ ⇒ π0 = 2

1
�τ1 = 2.2

�τ2 = 5

}
⇒ π2 = 1

0 �τ1 = 11
} ⇒ π1 = 0

� = min�i
= 1.69461

2.4 Sensitivity analysis

In this section we present known results on sensibility analysis of sporadic tasks.
These works will be reused in Sect. 5 for developing the sensibility analysis of mul-
tiple criticality tasks.

From an historical point of view, the definition of the critical scaling factor was the
first step for performing sensitivity analysis of independent task systems under Rate
Monotonic scheduling policy. The idea of Lehoczky (1990) considers the changes of
all execution times by a give factor up to a breakdown utilization (i.e., a deadline will
be missed). Vestal (1994) reused the critical scaling factor definition for real-time
systems where task deadlines are equal to their periods and blocking times are linear
combination of resource access times. The idea is to introduce slack variables in each
Lehoczky’s inequality for converting them into equalities that are then trivially solved
to yield the value of the slack variable. The obtained values are then used to derive
upper bounds of the task execution times. The method is generalized to the case of
tasks composed of several modules, by replacing the computation time Ci with a
linear combination of the computation times of individual modules and reused for
determining upper bounds of task WCET.

Previous approaches are based on analytical approaches for determining execu-
tion time limits. In Punnekkat et al. (1997), Racu et al. (2008) are used numerical
algorithms for determining these bounds by combining a binary search (e.g., branch
and bound, depth search, etc.) with a slightly modified version of a schedulability
test (e.g., response time analysis). Enhanced stochastic algorithms based on evolu-

314 Real-Time Syst (2010) 46: 305–331

Fig. 2 Example of the
representation of the C-space of
a system composed of 2 tasks,
with T1 = D1 = 9.5 and
T2 = D2 = 22

tionary search techniques (e.g. genetic algorithms) have been proposed in Racu et al.
(2008) for performing multi-dimensional sensitivity analysis. While providing inter-
esting results in practice for realistic systems, these approaches do not allow to define
an exact characterization of feasible regions of task parameters.

Bini et al. (2008) performed a multi-dimensional sensitivity analysis which ex-
tends the Lehoczky’s one. Two methods are described: one to perform schedulability
in the C-space (i.e., studying the modification of the execution time Ci of the tasks),
and an other in the f -space (i.e., studying the modification of the period Ti of the
tasks). This method allows to represent graphically these feasibility spaces of task
parameters (i.e., Fig. 2 for an example of a C-space graphically represented).

In the following, we focus on schedulability in C-space since we are interested by
the impact of using a model with several WCETs per task instead a single one. That
method will be extended to multiple criticality tasks in Sect. 5.

The method to perform sensitivity analysis on the C-space allows to choose the
direction in which we want to perform the analysis, that is to say to choose which
subset of tasks we want to study, and the weighting for each task.

The starting point of the method is the fact that a task system is schedulable if, and
only if:

max
1≤i≤n

min
t∈Si

i∑
j=1

Cj

⌈
t

Tj

⌉
≤ t (7)

or, in a vectored form:

max
1≤i≤n

min
t∈Si

Cini(t) ≤ t (8)

where Ci is a vector of the i highest priority task Ci = (C1,C2, . . . ,Ci), and ni(t) =
(� t

T1
�, � t

T2
�, . . . , � t

Ti−1
�,1).

By replacing Ci by Ci + λdi in (8), we obtain (the complete proof can be found
in Bini et al. 2008):

λ = min
i=1,...,n

max
t∈ sched(Pi)

t − ni(t)Ci

ni(t)di

(9)

where λ is a scaling factor and sched(Pi) is a subset of Si .

Real-Time Syst (2010) 46: 305–331 315

The vector di corresponds to the studied direction. If we want to perform schedul-

ability analysis on τk only, then di is equal to ((0, . . . ,0,

kth element︷︸︸︷
1, 0, . . . ,0︸ ︷︷ ︸

i elements

).

If we want to perform a sensitivity analysis on the whole system, then di must be
equal to Ci . The corresponding analysis leads to define the critical scaling factor of
the system.

The schedulability in the C-space is a generalization of the schedulability analysis
introduced by Lehoczky (1990) in the sense that the computation of a critical fac-
tor for a single task or for the whole tasks system are particular cases of the Bini’s
method. Indeed, Bini’s method allows to choose the direction on which the sensitiv-
ity analysis is performed. Thus, it is possible to study only one task, the whole task
system or any subset of tasks of the system.

In this paper, one of our contributions is to adapt this algorithm to multiple criti-
cality task systems (see Sect. 5) in the case of sensitivity analysis on the C-space.

3 Optimality of Audsley’s algorithm

We first prove that Vestal’s algorithm is optimal. Note that neither in Vestal (2007) nor
in Baruah and Vestal (2008) give such a complete proof. More precisely, we prove
a refined result: the tie breaker that exploit critical scaling factors in Vestal’s algo-
rithm can be removed without losing optimality in the priority assignment process.
By removing the tie breaker, Vestal’s algorithm is equivalent to Audsley’s algorithm.
Thus, if there exists a feasible priority assignment for multiple criticality task, then
Audsley’s algorithm will find it.

Theorem 2 The Audsley’s algorithm is optimal for scheduling multiple criticality in-
dependent task systems with constrained-deadlines under a fixed-task-priority policy.

To prove this theorem, we will use the lemmas described next:

Lemma 1 When studying a specific task τi , we can consider corresponding task
system instead of a multiple criticality task system, with the WCETs corresponding to
the ones on critical level Li , the criticality level of the studied task τi .

Proof This lemma can be deduced from the definition of a multiple criticality task
system. When we compute the worst-case response time (WCRT) of the task τi , we
consider only the WCET of the criticality level of τi as we can see in the following
equation, which is the modified version of the Joseph and Pandya’s equation (Joseph
and Pandya 1986) introduced by Vestal (2007) to compute the WCRT for multiple
criticality systems:

Ri =
i∑

j=1

⌈
Ri

Tj

⌉
Cj (Li) (10)

316 Real-Time Syst (2010) 46: 305–331

Thus, when we are studying the task τi , we can consider only a classical task
system with the WCETs corresponding to the WCET of the criticality level of τi , that
is to say Li . �

If we have a look to the task system given in Fig. 1, we can see that the critical
scaling factor of task τ1, when assigned at the priority 2, is greater than the critical
scaling factor of the task τ1, when assigned at the priority 3 (i.e., at a lower priority
level). This intuitive result is summarized in the following lemma:

Lemma 2 Let τi to be a task which has a critical factor of �i,j when assigned of the
priority j . If τi is assigned of the priority j − 1 then the critical factor of τi for this
priority verifies �i,j < �i,j−1.

Proof For the following proof, we will consider a task τi which can be assigned at
the level priority j or j − 1. It is important to notice that the only difference between
these two assignments is that the set of higher priority tasks, when τi is assigned at the
priority level j contains one additional task than the set of higher priority tasks when
τi is assigned at the priority level j − 1. By convenience, we suppose the additional
task to be τj , but since the task set of higher priority tasks are not ordered, it can be
any higher priority task.

By definition, from Lehoczky (1990)

�i,j
def=

[
min
t∈Si,j

1

t

j∑
k=1

Ck(Li)

⌈
t

Tk

⌉]−1

(11)

�i,j−1
def=

[
min

t∈Si,j−1

1

t

j−1∑
k=1

Ck(Li)

⌈
t

Tk

⌉]−1

(12)

These definitions were just adapted to multiple criticality task systems, replacing
classical WCET Ck by multiple criticality task WCET at level Li which is equal to
Ck(Li).

Si,j denotes the set of scheduling points for the task τi when assigned of the pri-
ority j . This set is defined by the following equation:

Si,j
def=

{
kTm|m = 1, . . . , j ; k = 1, . . . ,

⌊
Di

Tm

⌋}
∪ {Di} (13)

We were aware that Bini et al. introduced in Bini and Buttazzo (2004) a sufficient
subset of scheduling points, but for our proof, we need to consider the set of all
scheduling points.

So, according to (11) and (12), there exists tj and tj−1 such as

�i,j =
[

1

tj

j∑
k=1

Ck(Li)

⌈
tj

Tk

⌉]−1

(14)

Real-Time Syst (2010) 46: 305–331 317

�i,j−1 =
[

1

tj−1

j−1∑
k=1

Ck(Li)

⌈
tj−1

Tk

⌉]−1

(15)

One can remark than Si,j−1 ⊂ Si,j . So, we have two cases to take into account:
tj ∈ Si,j−1 and tj /∈ Si,j−1:

– If tj ∈ Si,j−1. It is obvious that:

∀t,
1

t

j∑
k=1

Ck(Li)

⌈
t

Tk

⌉
>

1

t

j−1∑
k=1

Ck(Li)

⌈
t

Tk

⌉
(16)

So, if t = tj then:

1

tj

j∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
>

1

tj

j−1∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
(17)

Since tj ∈ Si,j−1 and tj−1 minimize 1
t

∑j−1
k=1 Ck(Li)� t

Tk
� (see definition of tj−1,

(15)), we have:

1

tj−1

j−1∑
k=1

Ck(Li)

⌈
tj−1

Tk

⌉
≤ 1

tj

j−1∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
(18)

Equations (17) and (18) give:

1

tj−1

j−1∑
k=1

Ck(Li)

⌈
tj−1

Tk

⌉
<

1

tj

j∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
(19)

That is to say:

�i,j−1 > �i,j (20)

– Now, we consider the case when tj /∈ Si,j−1.
By definition, we have to notice that Di = max(Si,j) and Di = max(Si,j−1).

Since tj /∈ Si,j−1, we have tj �= Di . So,

∃tk ∈ Si,j−1, tj < tk (21)

We can notice than
∑j−1

k=1 Ck(Li)� t
Tk

� is a piecewise function and tj is not a
point of discontinuity since tj /∈ Si,j−1, so:

∃tk ∈ Si,j−1,{
tk > tj∑j−1

k=1 Ck(Li)� tj
Tk

� = ∑j−1
k=1 Ck(Li)� tk

Tk
�

(22)

318 Real-Time Syst (2010) 46: 305–331

Moreover,

j−1∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
<

j∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
(23)

So, (22) and (23) lead to:

j−1∑
k=1

Ck(Li)

⌈
tk

Tk

⌉
<

j∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
(24)

Since tk > tj , we have 1
tk

< 1
tj

. And, if we use (24), we have:

1

tk

j−1∑
k=1

Ck(Li)

⌈
tk

Tk

⌉
<

1

tj

j∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
(25)

By definition of tj−1 (i.e., (15)), we have

1

tj−1

j−1∑
k=1

Ck(Li)

⌈
tj−1

Tk

⌉
= min

t∈Si,j−1

1

t

j−1∑
k=1

Ck(Li)

⌈
t

Tk

⌉
(26)

And then, since tk ∈ Si,j−1:

1

tj−1

j−1∑
k=1

Ck(Li)

⌈
tj−1

Tk

⌉
≤ 1

tk

j−1∑
k=1

Ck(Li)

⌈
tk

Tk

⌉
(27)

If we combine (25) and (27), we obtain:

1

tj−1

j−1∑
k=1

Ck(Li)

⌈
tj−1

Tk

⌉
<

1

tj

j∑
k=1

Ck(Li)

⌈
tj

Tk

⌉
(28)

That is to say,

�i,j−1 > �i,j (29)

We proved that in both cases (tj ∈ Si,j−1 and tj /∈ Si,j−1), �i,j−1 > �i,j . This prove
the lemma. �

Now, we have the material to prove Theorem 1.

Proof of Theorem 1 Using Lemma 1, studying the schedulability of a multiple crit-
icality task can be done by studying the schedulability of the equivalent task system
on the criticality level of the studied task. And taking into account Lemma 2, the
critical scaling factor of a task can only increase when we assign the task to a higher
priority level. In other word, the interference due to higher priority tasks can only
decrease.

Real-Time Syst (2010) 46: 305–331 319

Thus, if a task is schedulable at a priority level j , then it is schedulable when
assigned of a higher priority. Since the hypothesis of the classical task model are also
respected in the case of the multiple criticality task model, we can deduce that the
Audsley’s algorithm is also optimal for multiple criticality task systems. �

And having the previous theorem, we can easily state the following theorem:

Theorem 3 The Vestal’s algorithm is optimal to schedule a set of independent tasks
with constrained-deadlines under a fixed-task-priority scheduling policy.

Proof Since Vestal’s algorithm is a particular case of Audsley’s algorithm (i.e., task
critical scaling factors are used for breaking ties), and since Audsley’s algorithm is
optimal due to Theorem 1, we can conclude that Vestal’s algorithm is also optimal
to schedule independent task systems with constrained-deadlines under fixed-task-
priority policy. �

4 Processor speed

4.1 Maximization of the critical scaling factor

For multiple criticality task systems, Audsley’s algorithm is optimal. But, if the
system is not schedulable, then computing the minimum amount of supplementary
processor speed so that the system becomes schedulable under a FTP assignment is
an important issue for system designers.

Clearly, for sporadic tasks with constrained-deadlines, priority assignment
(i.e., DM) and speed up factor computation are independent problems. We prove
next that such a result is also valid for multiple criticality task system and further-
more that both problem can be solved simultaneously (i.e., the speed up factor can be
computed in a greedy manner while performing the priority assignment).

Algorithm 1 presents an implementation of our algorithm in pseudo-code. It com-
putes a priority assignment and a critical scaling factor �∗. The function �(τi, τ)

computes the critical scaling factor of the task τi when the higher or equal priority
task set is equal to τ .

If the critical scaling factor �∗ is greater than 1, then it corresponds to the max-
imum factor by which we can divide the processor speed without having deadline
failure. If �∗ < 1, then the initial task set is not schedulable and �∗ corresponds to
the minimum factor by which the processor speed must be accelerated to lead to a
schedulable task system.

The main result (i.e., Theorem 4) will be based on the following property:

Lemma 3 Let τ denote a task system and τi and τj be two tasks with τi having a
higher priority than τj . If the critical scaling factor of the task τi at the priority level
of τj is greater than the critical factor of the task τj at the same level, then inserting
the task τi at the priority level of the task τj can only increase the critical factor �

of the task system.

320 Real-Time Syst (2010) 46: 305–331

Algorithm 1 Processor speed modulation and priority assignment
Require: τ ∗ = set of tasks to schedule
Ensure: �∗ = maximum scaling factor
Ensure: τ̃ = scheduled task system

τ ⇐ τ ∗
τ̃ ⇐ ∅
for j from n to 1 do

τVestal = ∅
for τA ∈ τ do

if τVestal = ∅ then
τVestal ⇐ τA

�∗ = �(τA, τ)

else
if �(τVestal, τ) < �(τA, τ) then

τVestal ⇐ τA

end if
end if

end for
π(τVestal) ⇐ j

τ ⇐ τ − {τVestal}
τ̃ ⇐ τ̃ ∪ {τVestal}
if �(τVestal, τ) < �∗ then

�∗ ⇐ �(τVestal, τ)

end if
end for

Fig. 3 Scheme of the
transformation

Proof We will use an interchange argument to prove the result. Figure 3 represents
the basis of the transformation. Each zone corresponds to the following:

Real-Time Syst (2010) 46: 305–331 321

– Zone 1 is composed of tasks with higher priority than task τi ,
– Zone 2 is composed of tasks with intermediate priority, that is to say with lower

priority than τi but higher priority than τj ,
– Zone 3 is composed of tasks with lower priority than the task τj .

If we study the evolution of the critical scaling factor of each task when performing
the transformation, we can observe that:

– The critical factor of tasks in Zone 1 are not modified by the priority modifications
of tasks with lower priority,

– The critical factor of tasks in Zone 3 are not modified by the modifications of the
priority order of tasks of higher priority,

– The critical factor of tasks in Zone 2 can only increase due to Lemma 2.

And if we perform the transformation, it is, by hypothesis because task τi has a
higher critical scaling factor at priority level of τj than τj .

In other words, in all the cases, the critical scaling factor of each task can be
either unchanged or increased, except for task τi . But by assumption the new critical
scaling factor of task τi is greater than the old critical scaling factor of task τj . The
result follows. �

Now, using this lemma, it is easy to prove the following theorem.

Theorem 4 Vestal’s algorithm returns a priority assignment with the greatest critical
scaling factor of tasks (i.e., minimum speed up factor if the system is not schedulable
under a unit-speed processor).

Proof Let τ denote the task system. This task system is composed of n tasks,
τ1, . . . , τn, and each task is assigned to a priority. To prove the result, we build-up
Vestal’s schedule from τ using Lemma 3. The method is straightforward: we are
looking for the task having the highest critical scaling factor at the priority level n

among the tasks having a priority higher or equal to n. Then, we insert this task to
this level. Due to Theorem 2, the critical scaling factor of the new task system τ ′ is
greater or equal to the critical scaling factor of �. We repeat this operation, replacing
τ by τ ′ and looking for the task to insert at the level priority n − 1, and so on until
the studied priority task level is equal to 1.

By this way, we construct a new schedule from the initial one, which is the same
than this one produced by Vestal’s algorithm because in both cases, the same task
selection is performed. Since the transformation used can only increase the critical
scaling factor of the initial task set τ and since the initial task set τ can represent
any task set, we can conclude that the task set resulting of Vestal’s algorithm has the
highest possible critical scaling factor for fixed-task-priority policy. This proves the
Theorem 4. �

So, Vestal’s algorithm, by providing a schedule with the highest possible critical
scaling factor, has a great interest since it offers a simple way to define the minimum
processor requirement so that a multiple criticality task set is schedulable.

322 Real-Time Syst (2010) 46: 305–331

4.2 Experimental results

We compute the scaling factor of a system of tasks scheduled by Vestal’s algorithm
and by Audsley’s algorithm in order to compare computational power of required
computing platform. For this purpose, we performed a statistical analysis, based on
the following characteristics:

– the number of tasks was chosen in the set {10, 20, 30}
– the utilization factor of the whole systems vary from 0.05 to 0.95 using a step

of 0.05
– we perform 10 000 runs per configurations

The generation of task systems follow the following procedure:

– the utilization factor of each task is generated using UUniFast algorithm of Bini
and Buttazzo (2004).

– the period Ti of the task τi is randomly generated in the range [100,3000].
– the deadline of the task τi are set to its period Ti .
– the criticality level Li of each task τi is randomly chosen in the set {1,2,3,4,5}.
– the execution time Ci(Li) at the level Li of the task τi is computed from the

utilization factor and the period of the task.
– the execution times for lower criticality levels (i.e., � < Li) are set to Ci(Li).
– the execution times for higher criticity levels (i.e., � > Li) are set randomly in the

range [Ci(Li),Di] so that constraints defined in (1) are both satisfied.

The column gain corresponds to the relative gain in percent of the critical scaling
factor obtained by Vestal’s algorithm against the Audsley’s one. It corresponds to the
following formula:

gain = �v − �a

�a

∗ 100 (30)

where �a corresponds to the critical scaling factor when the Audsley’s algorithm is
considered and �v corresponds to the Vestal’s one. Since we have shown (i.e., in
Theorem 4) that the schedule obtained by Vestal’s algorithm has the highest critical
scaling factor for a given task system, we are sure that the following condition is
always satisfied:

�a ≤ �v (31)

We can see in Fig. 5 that the gain is more important when the utilization factor
of the task system is low. It can be easily explained: for task systems with a small
workload, there exists a lot of schedulable configurations and Audsley’s algorithm
picks one of them without any additional criteria. Thus, since the number of feasible
solution is huge, the solution computed by Audsley’s algorithm can be far away from
the optimal critical factor obtained by Vestal’s algorithm.

Whereas for a high loaded task systems, there exists few feasible schedules and
then the chance of Audsley’s algorithm to pick up an nearly optimal schedule is high.
Thus, for such task systems, the gain will be small.

Real-Time Syst (2010) 46: 305–331 323

U 10 tasks 20 tasks 30 tasks

Gain Identical
schedule

Gain Identical
schedule

Gain Identical
schedule

0.05 807.06% 0.11% 751.18% 0.00% 726.76% 0.00%
0.10 351.53% 0.44% 305.64% 0.04% 275.53% 0.00%
0.15 209.14% 1.32% 173.22% 0.23% 153.29% 0.14%
0.20 142.76% 2.46% 115.85% 0.85% 97.63% 0.68%
0.25 102.97% 3.99% 83.05% 1.82% 67.56% 1.19%
0.30 77.70% 5.56% 62.30% 2.68% 50.60% 2.04%
0.35 59.39% 7.41% 47.78% 3.92% 38.54% 2.85%
0.40 45.71% 8.86% 37.81% 4.72% 30.46% 3.03%
0.45 35.71% 11.26% 29.75% 5.76% 24.80% 4.25%
0.50 27.65% 12.96% 23.72% 7.45% 20.80% 5.01%
0.55 21.16% 16.16% 18.90% 8.52% 16.31% 6.65%
0.60 15.81% 19.66% 14.96% 9.31% 12.76% 6.44%
0.65 11.45% 23.94% 10.82% 13.21% 9.72% 8.66%
0.70 7.75% 30.16% 7.65% 14.27% 7.22% 10.06%
0.75 4.41% 41.63% 4.75% 19.40% 4.58% 12.13%
0.80 2.03% 57.83% 2.16% 34.56% 1.89% 27.24%
0.85 0.88% 70.58% 0.82% 55.98% 0.46% 58.33%
0.90 0.29% 82.03% 0.12% 71.42% 0.00% 100.00%
0.95 0% 100.00% 0.00% 100.00% 0.00% 100.00%

Fig. 4 Comparison results

Fig. 5 Evolution of the gain depending of the number of tasks

These results are also confirmed with the ratio of identical schedules obtained by
Vestal’s algorithm and Audsley’s algorithm in Fig. 4:

324 Real-Time Syst (2010) 46: 305–331

– for low loaded task systems, the chance to have the same schedule is low: less than
1% for ten tasks and an utilization factor of 0.10,

– for high loaded task systems, the chance to have the same schedule is high: greater
than 50% for ten tasks and a utilization factor of 0.8.

If we want to reduce the power consumption of low loaded systems, then we can
see we can reduce the processor speed by at least a factor of 2 in average if the
utilization factor of the system is less than 0.2. Even if the gain decreases with the
load of the system, it is still noticeable for medium loaded system. However, for
systems with high utilization factor, the gain is insignificant (less than 2% for systems
with a load greater than 0.8).

We also check the influence of the number of criticality levels on the gain
(cf. Fig. 6). We can notice that the number of criticality levels has a weak influence.
It is just noticeable that, for systems with very low utilization factor (less than 0.2),
higher the number of criticality levels is, then lower the gain of Vestal’s algorithm on
Audsley’s one is.

5 Sensitivity analysis on WCET

We next adapt the Bini et al. sensitivity analysis (i.e., initially developed for classi-
cal real-time task systems Bini et al. 2008) to multiple criticality task systems. We
only focus to the sensitivity analysis in the C-space, since the multiple criticality
task model distinguishes from classical sporadic task systems by considering a set of
WCETs for every task.

5.1 Sensitivity analysis in the C-space

We extend the sensitivity analysis in the C-space by analyzing tasks at the same
critical level. Instead of having one λ in the studied direction d , we define one λ� per
criticality level �.

λ�
def= min

i=1,...,n
Li=�

max
t∈ sched(Pi)

t − ni(t)Ci (�)

ni(t)di

(32)

A particular attention must be focused on the modified Ci . Indeed, the modifica-
tions can break a basic assumption of multiple criticality system expressed by (1)
(a complete example is detailed in the next section). In practice, such a problem can
be easily solved by setting (1) as a constraint in Bini et al. sensitivity analysis method.
Precisely, it is necessary to normalize execution requirements of every task so that the
assumption on execution time stated in the task model is respected (i.e., (1)).

For that purpose every time that (1) is not satisfied:

∃�, Ci(�) > Ci(� + 1) (33)

then, we assign the value of Ci at criticality level � + 1 to the Ci at criticality level �

Ci(�) ← Ci(� + 1) (34)

Real-Time Syst (2010) 46: 305–331 325

Fig. 6 Influence of the number of criticality levels

326 Real-Time Syst (2010) 46: 305–331

Table 3 Example of a multiple
criticality tasks system τi Ti Di Li Ci(1) Ci(2)

τ1 137 65 1 9 29

τ2 286 139 2 86 86

τ3 248 168 1 32 160

5.2 Example

After this simple normalization step, Bini et al. sensitivity analysis can be easily
performed. Let study the example of multiple criticality task system where character-
istics are given in Table 3.

And let focus on the task τ2 on which we will perform the sensitivity analysis.
Bini et al. (2008) showed that when the schedulability analysis is performed only on
a single task, (32)1 can be rewritten in:

δCmax
k = min

i=k,...,n
max

t∈ sched(Pi)

t − ni(t)Ci

� t
Tk

� (35)

To apply the sensitivity analysis, scheduling points must be computed. Bini and
Buttazzo (2004) use these recursive definition to find them:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sched(Pi)
def= Pi−1(Di)

P0(t)
def= {t}

Pi (t)
def= Pi−1(� t

Ti
�Ti) ∪ Pi−1(t)

(36)

Applying (36) to τ2 and τ3 to have their scheduling points give us the following
sets:

sched(P2) = {T1,D2} (37)

sched(P3) = {T1,D3} (38)

So, we can now compute the critical scheduling factor for task τ2 and τ3 (a trace
of the computations can be found in Table 4):

δC2 = max(22,−5) = 22 (39)

δC3 = max(10,32) = 32 (40)

1We do not use the Bini’s notation �Cmax
k

to avoid possible confusion with the critical scaling factor �.
We use δCmax

k
instead.

Real-Time Syst (2010) 46: 305–331 327

Table 4 Trace of the δCi
τ2 τ3

t δC2 t δC3

137 22 137 10

139 −5 168 32

Table 5 Sensitivity analysis
before normalization step τi Ti Di Li Ci(1) Ci(2)

τ1 137 65 1 9 29

τ2 286 139 2 118 108

τ3 248 168 1 32 160

Table 6 Sensitivity analysis
after normalization step τi Ti Di Li Ci(1) Ci(2)

τ1 137 65 1 9 29

τ2 286 139 2 108 108

τ3 248 168 1 32 160

Having these δCi , we can now compute the critical scaling factor per criticality
level:

δCmax
2 (1) = min

i=1,...,n∧Li=1
(δCi) = min({δC3}) (41)

δCmax
2 (2) = min

i=1,...,n∧Li=2
(δCi) = min({δC2}) (42)

If we apply the modification to the task system, we obtain the system shows in
Table 5. We can easily see that the basic hypothesis of multiple criticality task sys-
tem (1) is not satisfied for task τ2 since C2(1) > C2(2). So, we have to perform a
normalization step, as describe in the previous section.

After normalization, we obtain the task system describes in Table 6. Figure 7
shows the multiple criticality C-space for the task τ2, that is to say the possible value
for C2(1) and C2(2) in order to satisfy (1).

6 Release jitters

6.1 Traditional release jitter

Audsley et al. (1993) introduced the notion of release jitter for assigning priorities
to static priority tasks. The aim of the release jitter is to model a delay between the
arrival of a task and its release (i.e., overhead introduced by the real-time kernel or
delay introduced by input communications). Release jitters needs to be considered as
soon as the assumption that a task is always released as soon as it arrives. So, taking

328 Real-Time Syst (2010) 46: 305–331

Fig. 7 Multiple criticality
C-space for task τ2

into account task release jitters allow us to have tasks which may be delayed after its
arrival in the system. The release jitter of a task τi is denoted by Ji .

We will see that introducing the release jitters in multiple-criticality task systems
will be as simple as adding the release jitters in the Liu and Layland seminal task
model. It is well known that introducing release jitters for computing worst-case re-
sponse time is obtained by modifying (10) as follows:

Ri =
i∑

j=1

⌈
Ri + Jj

Tj

⌉
Cj(Li) (43)

6.2 Multiple criticality jitter

In the following, we made no assumption about the link between task release jit-
ters and task criticality levels. Precisely, release jitters model overheads due to the
real-time kernel that can be evaluated using different methods for estimating the cor-
responding worst-case execution times. Thus, we can consider that the release jitter
is no more a constant but can depends on the criticality levels of tasks. For low crit-
ical tasks, release jitters can be ignored, and then set to zero whereas for high criti-
cal tasks, a non-null release jitter can be assigned with the same constraints that for
worst-case execution times:

Ji(�) ≤ Ji(� + 1), ∀� (44)

In this case, to take into account this multiple criticality task jitter, formulas as
extended in the same as it is done for classical task systems. The main difference is
the criticality of the studied task that must be taken into account. As a consequence,
(10) becomes:

Ri =
i∑

j=1

⌈
Ri + Jj (Li)

Tj

⌉
Cj (Li) (45)

where Lj (�) denotes the release jitter of the task τj for the criticality level �.

Real-Time Syst (2010) 46: 305–331 329

7 Conclusion and future work

In this article, we investigate the multiple criticality task scheduling model intro-
duced in Vestal (2007) and Baruah and Vestal (2008). Such task model represents a
potentially very significant advance in the modeling of safety-critical real-time sys-
tems. We first formally proved the original Audsley’s algorithm is already optimal
in the class of fixed-task-priority algorithm for scheduling independent task systems
with constrained-deadlines, and as a consequence that the tie breaking rule used in
Vestal’s algorithm is not useful for assigning fixed-task-priority to multiple criticality
tasks.

Moreover, we performed two kind of sensitivity analysis: we first showed that
Vestal’s algorithm can be extended to compute the minimum processor speed so that
a multiple criticality task set is schedulable. For that purpose, Lehoczky’s critical
scaling factor is used as a tie breaker at each task priority level. Our experimental
study to compare Vestal’s algorithm and Audsley’s algorithm shown that the gain of
using Vestal’s algorithm is higher when the load of the task system is low.

We also show how to adapt the sensitivity analysis in the C-space originally de-
veloped by Bini et al. (2008) for the case of multiple criticality task systems. Such
an extension allows to analyze a subset of tasks. From a practical point of view, it is
particularly useful to analyze all tasks belonging to the specific critical level.

We complete our analysis by introducing release jitters in the multiple-criticality
task model. We shown that the previous works of Audsley (1993) can be easily
adapted to the multiple criticality model. For that purpose, we introduced the no-
tion of multiple criticality jitters (i.e., introduced delays are evaluating according to
criticality levels).

7.1 Future work

Lehoczky (1990) performed a sensitivity analysis for a single task and the whole
task system. Bini et al. (2008) extend this method to allow a task sensitivity analysis
according to a given direction. Future works may concern the sensitivity analysis of
a task system to draw the C-space without considering any particular direction.

Most of critical systems are in fact large scale dependable distributed computing
systems. Thus, introducing release jitters in the task model is a first step to extend
the presented works to the analysis of distributed systems. Furthermore, we must
extend the system model (i.e., computing platform and task model) to cope with
dependability issues.

References

ARINC: Avionics application software standard interface. ARINC Spec 653 (1997)
Audsley N (1991) Optimal priority assignment and feasibility of static priority tasks with arbitrary start

times. Technical report YCS 164, Dept. Computer Science, University of York, UK
Audsley N, Burns A, Richardson M, Tindell K, Wellings AJ (1993) Applying new scheduling theory to

static priority pre-emptive scheduling. Softw Eng J 8:284–292
Authority F (1992) Software considerations in airborne systems and equipment certification. RTCA Inc:

EUROCAE

330 Real-Time Syst (2010) 46: 305–331

Balbastre P, Ripoll I, Crespo A (2009) Period sensitivity analysis and d-p domain feasibility region in
dynamic priority systems. J Syst Softw 82:1098–1111

Baruah S, Li H, Stougie L (2010) Scheduling for certifiability in mixed criticality systems. In: The real-
time technology and applications symposium. Pre-publication

Baruah S, Vestal S (2008) Schedulability analysis of sporadic tasks with multiple criticality specifications.
In: ECRTS ’08: Proceedings of the 2008 Euromicro conference on real-time systems. IEEE Comput
Soc, Washington, pp 147–155

Bini E, Buttazzo G (2004) Schedulability analysis of periodic fixed priority systems. Comput IEEE Trans
53(11):1462–1473

Bini E, Buttazzo G (2009) The space of EDF deadlines: the exact region and a convex approximation.
Real-Time Syst 41:27–51

Bini E, Di Natale M, Buttazzo G (2008) Sensitivity analysis for fixed-priority real-time systems. Real-Time
Syst 39(1–3):5–30

Bougueroua L, George L, Midonnet S (2007) Dealing with execution-overruns to improve the temporal
robustness of real-time systems scheduled fp and edf. In: The second international conference on
systems (ICONS’07)

Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395
Katcher D, Arakawa H, Strosnider J (1993) Engineering and analysis of fixed priority scheduler. IEEE

Trans Softw Eng 19(9):920–934
Klein M, Ralaya T, Pollak B, Obebza R, Harbour M (1993) Guide to rate monotonic analysis for real-time

systems. Kluwer Academic, Norwell
Lehoczky J (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: Proceedings

of the 11th real-time systems symposium, pp 201–209
Lehoczky JP, Sha L, Ding Y The rate monotonic scheduling algorithm-exact characterization and average

case behavior. In: Real-time system symposium (1989)
Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.

J ACM 20(1):46–61
Punnekkat S, Davis R, Burns A (1997) Sensitivity analysis of real-time task sets. In: Advances in comput-

ing science, LNCS, vol 1345, Springer, Berlin, pp 72–82
Racu R, Hamann A, Ernst R (2008) Sensitivity analysis of complex embedded real-time systems. Real-

Time Syst 39:31–72
Sha L, Lehoczky JP, Rajkumar R (1986) Solutions for some practical problems in prioritized preemptive

scheduling. In: Proceedings IEEE real-time systems symposium. IEEE Comput Soc, Los Alamitos,
pp 181–191.

Vestal S (1994) Fixed-priority sensitivity analysis for linear compute time models. IEEE Trans Softw Eng
20(4):308–317

Vestal S (2007) Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In: RTSS ’07: proceedings of the 28th IEEE international real-time systems symposium.
IEEE Comput Soc, Washington, pp 239–243

François Dorin received the engineering degree from ENSMA (Na-
tional Engineering School for mechanics and Aerotechnics) located at
Poitiers and the M.Sc. degree from University of Poitiers, France in
2007. He currently works toward the Ph.D. degree in the Laboratory of
Applied Computer Science at the University of Poitiers and ENSMA,
France. His research interests include real-time scheduling, on-line al-
gorithms and combinatorial optimization.

Real-Time Syst (2010) 46: 305–331 331

Pascal Richard is a professor in Computer Science at the University
of Poitiers, France. He received the Ph.D. degree in Computer Science
from the University of Tours (France) in 1997. His research interests in-
clude realtime systems, scheduling theory, on-line algorithms and com-
binatorial optimization.

Michaël Richard is Assistant Professor at the National Engineering
School for mechanics and Aerotechnics (ENSMA) and University of
Poitiers since September 2003. Michaël Richard received his Ph.D. de-
gree in computer science in November 2002 form the University of
Poitiers, France. He teaches algorithm and programming, object ori-
ented Design and programming, Operating Systems, and Embedded
Systems. His main research interests are in real-time scheduling the-
ory, real-time distributed systems and embedded systems.

Joël Goossens is Associate Professor at the Université Libre de Brux-
elles, since October 2006. Joël Goossens received his M.Sc. degree in
computer science in 1992, his M.Sc. degree in network and manage-
ment in 1993 and his Ph.D. degree in computer science in 1999, all from
the Université Libre de Bruxelles, Belgium. He teaches algorithms and
programming, operating systems and real-time scheduling. His main re-
search interests are presently in real-time scheduling theory, real-time
operating systems and embedded systems.

	Schedulability and sensitivity analysis of multiple criticality tasks with fixed-priorities
	Abstract
	Introduction
	This research
	Organization

	Task model, schedulability and sensitivity analysis
	Task model
	Feasibility analysis
	Scheduling algorithms
	Sensitivity analysis

	Optimality of Audsley's algorithm
	Processor speed
	Maximization of the critical scaling factor
	Experimental results

	Sensitivity analysis on WCET
	Sensitivity analysis in the C-space
	Example

	Release jitters
	Traditional release jitter
	Multiple criticality jitter

	Conclusion and future work
	Future work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

