
Real-Time Syst (2010) 46: 251–300
DOI 10.1007/s11241-010-9101-x

A compiler framework for the reduction of worst-case
execution times

Heiko Falk · Paul Lokuciejewski

Published online: 22 July 2010
© Springer Science+Business Media, LLC 2010

Abstract The current practice to design software for real-time systems is tedious.
There is almost no tool support that assists the designer in automatically deriving safe
bounds of the worst-case execution time (WCET) of a system during code generation
and in systematically optimizing code to reduce WCET.

This article presents concepts and infrastructures for WCET-aware code gener-
ation and optimization techniques for WCET reduction. All together, they help to
obtain code explicitly optimized for its worst-case timing, to automate large parts
of the real-time software design flow, and to reduce costs of a real-time system by
allowing to use tailored hardware.

Keywords Real-time · WCET · Compiler · Code generation · Optimization

1 Introduction

Embedded systems often have to meet real-time constraints that make them real-
time systems. Today, software development for embedded systems relies on high-
level languages like C, and compilers. Modern compilers include a vast variety of
optimizations. However, they mostly aim at reducing average-case execution times
(ACETs). The effect of optimizations on worst-case execution times (WCETs) has not
been studied in-depth up to now. In addition, even modern compilers are often unable

The research leading to these results has received funding from the European Community’s
ArtistDesign Network of Excellence and from the European Community’s Seventh Framework
Programme FP7/2007-2013 under grant agreement No. 216008.

H. Falk (�) · P. Lokuciejewski
Computer Science 12, TU Dortmund University, 44221 Dortmund, Germany
e-mail: Heiko.Falk@tu-dortmund.de

P. Lokuciejewski
e-mail: Paul.Lokuciejewski@tu-dortmund.de

mailto:Heiko.Falk@tu-dortmund.de
mailto:Paul.Lokuciejewski@tu-dortmund.de


252 Real-Time Syst (2010) 46: 251–300

to quantify the effect of an optimization since they lack precise timing models (Lee
2005).

Currently, software design for real-time systems is tedious: they are often specified
graphically using tools like e.g., ASCET. These tools automatically generate C code
which is compiled in the next step. Since usual compilers have no integrated notion
of timing, applied optimizations may lead to large WCET degradations. Therefore, it
is common industrial practice to disable almost all optimizations during compilation.
The code produced by the compiler is then manually fed into a WCET analyzer that
computes timing information. Only after this very final step in the entire design flow,
it can be verified if timing constraints are met. If not, the graphical design is changed
in the hope that the resulting C and assembly codes have a lower WCET.

Up to now, no tools exist that assist the designer to purposively reduce WCETs
of C or assembly code, or to automate the above design flow. In addition, hardware
resources are heavily oversized due to the use of unoptimized code. Thus, it is desir-
able to have a WCET-aware compiler. Integrating WCET analysis into the compiler
itself has the following benefits: first, it extends the compiler by a WCET timing
model such that the compiler has a clear notion of a program’s worst-case behavior.
Second, this model is exploited by specialized compiler optimizations that reduce the
WCET. Thus, the designer no longer needs to use unoptimized code, cheaper hard-
ware platforms tailored towards the real software resource requirements can be used,
and the tedious work of manually reducing the WCET of auto-generated C code is
taken from the designer. Third, manual WCET analysis is no more required since this
is done transparently by the compiler, using its tight integration of a WCET analyzer.

This article presents concepts, infrastructures and optimizations for WCET-aware
code generation. All techniques discussed in this article are implemented and alto-
gether form the WCET-aware C Compiler WCC (WCET-aware Compilation 2010),
the first and currently only fully functional compiler which aims at fully automated
WCET reduction at both source code and assembly code level.

1.1 Motivation

Typically, an executable program exhibits a certain variability of execution times in-
fluenced by input data and interference from the environment. Among all possible
execution times of a program, the absolute maximum is the longest execution time a
program can ever take. This time is called worst-case execution time. Unfortunately,
it is in general very difficult or even impossible to determine the actual WCET of a
program since this would include to solve the halting problem. Instead of computing
the actual WCET, reliable upper bounds have to be determined by sound methods.

Two different approaches are used to estimate WCET bounds. The first approach
is measurement-based WCET analysis. Here, the program under analysis is executed
or simulated using some representative input values. A safety margin of e.g., 20% is
added to the measured execution times and the resulting value is considered as the
WCET. This approach is highly unsafe since no guarantee can be deduced that the
inputs used during measurement really lead to the program’s worst-case behavior.

If safe WCET guarantees for hard real-time systems are needed, static program
analyses are used. The overall workflow of the leading static WCET analyzer aiT



Real-Time Syst (2010) 46: 251–300 253

Fig. 1 Workflow of the static
WCET analyzer aiT

Fig. 2 Original example CFG

(AbsInt Angewandte Informatik GmbH 2010) is shown in Fig. 1. aiT applies sta-
tic analyses on its intermediate format for executable code (CRL2) to e.g., estimate
register values, loop iteration counts, and cache and pipeline states. The Path Analy-
sis stage computes a program’s global WCET. For each block on a path P from a
program’s entry point to its end point, its maximum execution time T is given after
Pipeline Analysis. Using the determined loop iteration counts, a block’s maximum
number of executions C is estimated. The WCET of P is the sum of the products
T ∗ C over all blocks of P . A program’s WCET is computed by finding the maxi-
mum path WCET for all feasible paths. This maximization problem is modeled and
solved using integer linear programming (ILP).

This path within a program’s control flow graph (CFG) which has the maximal
WCET is called the worst-case execution path (WCEP). Hence, the WCET of a pro-
gram is equal to the WCET of its WCEP. In the following, a path’s WCET will also
be called the path’s length. To reduce WCETs by a WCET-aware compiler, optimiza-
tions must exclusively focus on those parts of the program that lie on the WCEP.
Optimization of parts of the program aside the WCEP are ineffective, since they do
not shorten the WCEP and thus do not reduce the WCET. Therefore, optimization
strategies for WCET reduction must have detailed knowledge about the WCEP. Sta-
tic WCET analysis as shown above provides information about a program’s WCEP,
but solely knowing the WCEP is still insufficient for effective WCET reduction.

Consider the CFG of a function main in Fig. 2 that consists of five basic blocks.
Each of them has the indicated WCET given in processor cycles. As can be seen, the
longest path through this CFG is main, a, b, c. This WCEP, highlighted with solid
arrows in the figure, leads to an overall WCET of 205 cycles.



254 Real-Time Syst (2010) 46: 251–300

Fig. 3 CFG after optimization
of b

We assume that some WCET-aware optimization reduces the WCET of basic
block b, that lies on the WCEP, from 80 cycles down to 40 cycles (cf. Fig. 3). As
can be seen, the WCEP after optimization of b is main, d, c. Additionally, reducing
b’s WCET by 40 cycles does not reduce the overall WCET by 40 cycles. Instead, the
overall WCET now amounts to 195 cycles which corresponds to an overall saving of
only 10 cycles.

This example shows that the WCEP is unstable—it can switch from one path
within the CFG to a completely different one due to a decision taken by some op-
timization. Thus, a WCET-aware compiler is faced with the following challenges
which turn the development of WCET-aware optimizations into an even more de-
manding area of research compared to traditional compiler optimization:

– During the entire optimization process, WCET-aware optimizations must have de-
tailed knowledge of the current WCEP at any point in time.

– They must be aware of the fact that the WCEP may switch in the course of an
optimization and they thus have to recompute the WCEP whenever necessary.

– Additionally, optimization decisions should not only rely on local WCET data for a
single code block, since local WCET savings for a single block do not necessarily
translate into global WCET savings of the same order of magnitude.

This article is the first one to present a holistic approach and infrastructure for
WCET-aware code generation. The key contributions are that the proposed compiler

– is equipped with a precise WCET timing model during code optimization,
– applies static WCET analysis automatically in the background, without requiring

the compiler user to reason about assembly code structures that influence WCET
analysis. Instead, the user is urged to support WCET analysis at source code level,

– features various optimizations which are explicitly tailored towards WCET reduc-
tion and thus overcome the challenges listed above,

– applies WCET optimizations both at source code and at assembly code level. This
structure is advantageous since it helps to exploit the benefits of these different
abstraction levels individually. For example, optimizations that consider function
calls and function arguments are much more difficult to realize at assembly code
level. Likewise, it is difficult to apply memory allocation optimizations as proposed
in this article at the source code level since highly precise data on code sizes or
register interference is usually only available at assembly code level.



Real-Time Syst (2010) 46: 251–300 255

1.2 Related work

A very first approach to integrate WCET techniques into a compiler was presented in
Börjesson (1996). Flow facts used for WCET analysis were annotated manually via
source-level pragmas. A fully pragma based approach is not promising since manual
annotations are tedious and error-prone. Additionally, the compiler targets the Intel
8051 which is an inherently simple and predictable machine without pipeline and
caches etc.

While mapping high-level code to object code, compilers apply various optimiza-
tions so that the correlation between high-level flow facts and the optimized object
code becomes very vague. To keep track of the influence of compiler optimizations on
high-level flow facts, co-transformation of flow facts is proposed in Engblom (1997).
However, the co-transformer has never reached a fully working state, and several
standard compiler optimizations can not be modeled at all due to insufficient data
structures.

Kirner and Puschner (2001) present techniques to transform program path in-
formation which keep high-level flow facts consistent during GCC’s standard opti-
mizations. Their approach was thoroughly tested and led to precise WCET estimates.
However, compilation and WCET analysis are done in a decoupled way. The assem-
bly file generated by the compiler is passed to the WCET analyzer together with the
transformed flow facts. Additionally, the proposed compiler is only able to process a
subset of ANSI C, and the modeled target processor lacks pipelines and caches.

In Zhao et al. (2004, 2005), the integration of a proprietarily developed WCET
analyzer into a compiler is presented. The compiler operates on a low-level interme-
diate representation (IR). Control flow information is passed to the timing analyzer
which computes the WCET of paths, loops and functions and passes this data back
to the compiler. This approach has the following limitations. First, the WCET an-
alyzer works with very coarse granularity since it only computes WCETs of paths,
loops and functions. WCETs for basic blocks or single instructions are unavailable.
Thus, aggressive optimization of smaller units like single basic blocks is infeasible.
Second, WCET-related data which is not the WCET itself is unavailable, too. This
excludes e.g., execution frequencies of basic blocks, value ranges of registers, pre-
dicted cache behavior etc. Finally, WCET optimization at higher levels of abstraction
like e.g., source code level is infeasible since WCET-related data is not provided at
source code level.

1.3 Overall compiler infrastructure and article outline

The WCET-aware C Compiler WCC (WCET-aware Compilation 2010) described in
this article is a C compiler for the Infineon TriCore TC1796 and TC1797 processors
that are heavily used in the automotive industry. WCC’s overall structure is depicted
in Fig. 4. Those modules of the compiler connected with solid arrows resemble a
typical optimizing compiler:

Parser: The parser is fully compliant with ANSI C. It accepts several C source files
within a single compiler run and creates a high-level IR called ICD-C from them.



256 Real-Time Syst (2010) 46: 251–300

Fig. 4 WCC compiler
infrastructure

ICD-C: The ICD-C framework (Informatik Centrum Dortmund e. V. 2010b) is
a data structure that provides a machine-independent IR for C code. It features
machine-independent code analyses and optimizations. WCC uses ICD-C’s code
selector interface to couple the front-end with a tree-pattern matching based code
selector for the TriCore processors.

Code Selector: The code selector translates ICD-C to a representation of TriCore
assembly. WCC’s grammar for the TC1796 / TC1797 consists of ca. 24,000 lines of
C++ code which results in the generation of highly efficient machine code.

ICD-LLIR: ICD-LLIR (Informatik Centrum Dortmund e. V. 2010a) is a data struc-
ture providing a retargetable low-level IR for compiler back-ends. It includes various
assembly-level analyses and optimizations. WCC’s TriCore processor description
for ICD-LLIR consists of ca. 14,500 lines of C++ code which capture all aspects of
the complex TriCore architecture.

Code Generator: The code generator finally emits valid assembly code from the
class structures of the TriCore ICD-LLIR within WCC’s back-end.

The key components which turn WCC into a unique WCET-aware C compiler are
depicted with dashed arrows in Fig. 4. Sections 2–6 describe these modules in more
detail. They deal with WCC’s memory hierarchy specification, integration of the aiT
WCET analyzer, flow facts, loop analyzer and back-annotation.

Based on this infrastructure, WCET-aware source code level optimizations (proce-
dure cloning and positioning) are presented in Sects. 7–8, followed by WCET-aware
assembly code level optimizations (scratchpad and register allocation) in Sects. 9–11.
Section 12 summarizes this article and gives an outlook on future work.



Real-Time Syst (2010) 46: 251–300 257

2 Specification of memory hierarchies

The performance of many systems in use today is largely dominated by the memory
subsystem. Due to the large speed gap between slow memories and fast processors,
execution times of software widely depend on the characteristics of the memory hier-
archy on the one hand, and on the characteristics of memory accesses performed by
the software on the other hand. Obviously, the WCET estimates produced by a static
WCET analyzer as described in Sect. 1.1 also heavily depend on the memories.

In the compiler environment described in this article where the WCET analyzer is
tightly integrated into the code generation process, it is in the duty of the compiler to
provide the WCET analyzer with detailed information about the underlying memory
hierarchy in order to obtain safe and tight WCET estimates. For this reason, WCC
includes an infrastructure to specify memory hierarchies.

But WCC uses this memory hierarchy infrastructure not only for WCET analysis.
In addition, WCC features many optimizations that exploit memory hierarchies by
moving parts of a program’s code and data onto fast memories to reduce WCETs.
These optimizations also rely on precise knowledge of the memory subsystem which
is provided by the infrastructure described in this section. Section 2.1 presents related
work, and Sect. 2.2 describes WCC’s memory hierarchy infrastructure.

2.1 Related work

Previous work on architecture description languages (ADLs) primarily focused either
on efficiently building cycle-true instruction set simulators, or on code generation in
a synthesizable hardware description language (HDL). Lisa (Hoffmann et al. 2001)
originally aims at the automatic generation of application-specific hardware and of
corresponding simulators and low-level tools. It has also been extended towards au-
tomatic compiler generation. For this purpose, a semantic instruction set model was
added. Thus, Lisa system specifications need to provide cycle-true timing models as
well as semantical information about a processor’s instruction set.

ArchC (Azevedo et al. 2005) was designed to support processor architecture de-
scription. Recently, means to design memory hierarchies have been added. In anal-
ogy to Lisa, ArchC also covers structural and behavioral aspects of a system model.
In contrast to Lisa, ArchC builds upon SystemC in order to specify timing and con-
currency. Due to the strong relationship between ArchC and SystemC, it is relatively
straightforward to create an instruction set simulator or to generate synthesizable
HDL code from ArchC.

The Target Description Language TDL (Kästner 2003) focuses on retargetable
optimization of assembly code. It uses a structural description of a system’s resources
that includes memory and cache hierarchies. A behavioral instruction set description
is the second key part of TDL. Due to its vicinity to code optimization, TDL is the
approach coming closest to the memory hierarchy specification infrastructure of our
WCC compiler.

2.2 Memory hierarchy specification

The approaches for architecture or memory hierarchy specification described in
Sect. 2.1 base on powerful and retargetable ADLs. They feature sophisticated struc-



258 Real-Time Syst (2010) 46: 251–300

tural and behavioral information that includes detailed timing models. WCC’s mem-
ory hierarchy infrastructure differs from previous work in the following aspects:

– Due to the way how worst-case timing models are integrated into our compiler (cf.
Sect. 3), there is no need to equip WCC’s memory hierarchy specifications with
sophisticated timing models. For our purpose of supporting code optimizations,
only some key parameters like e.g., memory access latencies are sufficient.

– Since we do not focus on synthesizable HDL code generation, our infrastructure
does not need to provide precise, cycle-accurate timings, again. This turns WCC’s
memory hierarchy specification into a very lightweight infrastructure.

– Previous approaches were retargetable in that sense that they generated tools or
HDL code for different target processor architectures. For this purpose, ADLs
are usually equipped with detailed semantical information about the meaning of
a processor’s instruction set. In contrast, WCC does not require such semantical
instruction set information since we only consider the memory hierarchy. Thus, re-
targetability of the memory hierarchy within WCC is achieved by simply updating
and reconfiguring a processor’s memories as described in the following.

Due to their focus on cycle-accurate timing, retargetability and HDL code gener-
ation, previous ADLs are very powerful but also very heavy tools. WCC’s memory
hierarchy infrastructure is designed to be lightweight and to only support optimiza-
tions which move parts of a program across different memories. This kind of mem-
ory allocation is usually performed by the linker during the final step of generating
an executable. Thus, the information usually available only while linking needs to be
provided already to the WCC compiler itself. This is because it is up to WCC in our
setup to decide on a program’s memory layout, and no longer up to the linker.

In a conventional environment where information on the memories is only avail-
able to the linker, the compiler is fully unaware of the available memories and thus
can not optimize the code for a given memory hierarchy. Making information about
a processor’s memories already available to the compiler has the advantage that all
tools involved in analysis and generation of machine code now have detailed knowl-
edge on the memory hierarchy. In our environment, the WCC compiler is fully aware
of the memories and can exploit them during optimization. Furthermore, WCC passes
this memory hierarchy information on to the WCET analyzer such that the computed
WCETs always reflect the actual memory layout as decided by the compiler. Finally,
WCC passes memory-related data on to the linker that produces executable code
which, again, reflects exactly the memory layout determined during compilation.

Making the compiler statically determine a program’s memory layout has the
drawback that dynamic code relocation, which is one of the key functions of mod-
ern linkers, is infeasible. However, this is not a serious limitation for embedded hard
real-time systems, since dynamic relocation is not used there. Instead, the machine
codes of different real-time tasks produced by a compiler are combined with the ker-
nel of a real-time operating system (RTOS) during compile time so that a fully static
executable that includes the RTOS and its tasks is finally produced. In such systems,
application code is never loaded dynamically so that relocation is not an issue.

WCC provides a simple text file interface to specify memory hierarchies. Such a
memory specification describes different regions of a processor’s physical memory
hierarchy. For each physical memory region, the following attributes can be defined:



Real-Time Syst (2010) 46: 251–300 259

Fig. 5 Example for memory
specification within WCC

– the region’s base address and absolute length,
– access attributes like e.g., read, write, executable, allocatable,
– memory access times, specified in processor cycles,
– assembly-level sections that are allowed to be mapped to a memory region.

For caches, various attributes like e.g., absolute sizes, line sizes or associativity
can be specified, too. Figure 5 shows a fragment of WCC’s memory hierarchy speci-
fication for the Infineon TriCore TC1796 processor.

Now that WCC is aware of the processor’s physical memories, program fragments
need to be moved to the present memories within the compiler’s back-end. The low-
level IR ICD-LLIR used by WCC maintains a set of assembly-level sections that
serve as containers for e.g., program code, uninitialized or pre-initialized data, con-
stants etc. sections directives in a memory specification (cf. Fig. 5) define a map-
ping to which physical memory region an assembly section can be moved.

Memory allocation of program fragments is done by simply assigning ICD-LLIR
objects to such sections. Currently, functions, basic blocks and data objects like e.g.,
global variables or arrays can be assigned to sections. Our infrastructure provides
a convenient API to do such memory assignments of code and data. Symbol tables
allow to retrieve physical memory addresses per function, basic block, or data object.

Finally, the memory allocation decisions taken by WCC must be respected by all
subsequent WCET analysis and linkage stages. On the one hand, Sect. 3 describes
how WCET analysis within WCC adheres to a program’s actual memory layout. On
the other hand, the binary executable generated by WCC must exactly match the
memory layout decided by WCC. Since the executables are produced outside WCC
by an external linker, WCC automatically generates a GNU ld compatible linker
script and invokes the linker using this linker script. This way, the binary executable
is fully equivalent to the memory layout determined by WCC’s optimizations.

3 Integration of static WCET analysis into the compiler

Accurate WCET timing models are available in static WCET analyzers (cf. Sect. 1.1).
To include such models in the WCC compiler, they should not be re-implemented
from scratch inside the compiler. Rather, timing experts should develop timing an-
alyzers, while compiler developers should generate efficient code using aggressive
optimizations. Hence, WCC and the WCET analyzer aiT are two separate tools that
are tightly coupled at the compiler back-end, enabling a seamless exchange of infor-
mation. After providing an overview of related work, the integration of aiT’s timing
model into WCC is presented. For more details, please refer to Falk et al. (2006).



260 Real-Time Syst (2010) 46: 251–300

3.1 Related work

Most of the present WCET-aware compilation frameworks do not provide a seam-
less integration of WCET analysis into a compiler. Kirner and Puschner (2001)
present transformations of program path information during compiler optimization.
However, compilation and WCET analysis are fully decoupled. The assembly out-
put of the compiler is passed to the WCET analyzer together with further manda-
tory information on the program’s control flow. Additionally, the proposed compiler
only processes a limited subset of ANSI C, and the modeled target processor lacks
pipelines and caches.

The interactive compilation system VISTA (Zhao et al. 2004) translates a C source
code into a low-level IR used for code optimizations. It includes a proprietary sta-
tic WCET analyzer that supports simple processors without caches like the StarCore
SC100. VISTA contains a loop analysis which is only able to detect simply structured
loops, hence most loop iteration counts must be provided manually. Unlike WCC, re-
cursive code can not be analyzed. The used WCET analyzer has a limited scalability,
enabling the analysis of only small program codes. In contrast to WCC, VISTA lacks
a high-level IR, therefore no WCET-aware source code optimizations can be devel-
oped.

Heptane (Colin and Puaut 2001) is a static WCET analyzer with multi-target sup-
port for simple processors like StrongARM 1110 or Hitachi H8/300. It expects a
C source code as input that is parsed into a high-level IR. Next, the code can be
translated into a low-level IR. Heptane solely supports WCET-driven assembly op-
timizations, e.g., predictable page allocations. The WCET can be computed either
at source code level via a tree-based approach using combination rules for source
code statements or via an ILP-based method that operates on a CFG extracted from
the task’s binary. Since Heptane does not support a detection of infeasible paths, the
derived upper bounds may be considerably overestimated, as compared to WCC’s
integrated timing analysis. Moreover, compiler optimizations are not supported and
must be disabled to avoid a mismatch between the syntax tree and the control flow
graph.

SWEET (Gustafsson et al. 2006) is a static WCET analyzer with a research focus
on flow analysis. It incorporates different techniques for the calculation of loop itera-
tion counts and the detection of infeasible paths. Due to the missing import of WCET
data into a compiler framework, the development of compiler optimizations that aims
at a WCET reduction is not possible. To avoid a mismatch between the high-level IR,
where the flow analyses are performed, and the object code used for the WCET analy-
sis, assembly level optimizations are not allowed. In addition, SWEET is coupled to
a research compiler which is only able to process a subset of ANSI C. The supported
pipeline analysis is limited to in-order pipelines and does not consider timing anom-
alies. SWEET’s target architectures are the ARM9 and NEC V850E processor.

An integration of a static WCET analyzer into a compiler framework called TU-
BOUND was presented in Prantl et al. (2008). It allows to apply source code op-
timizations since flow facts specified as pragmas in the ANSI C code are automati-
cally updated. This is achieved by extending supported optimizations by a mechanism
that keeps flow facts consistent. This approach resembles the handling of flow facts



Real-Time Syst (2010) 46: 251–300 261

in the WCC framework. However, in contrast to WCC’s 27 flow fact aware source
code optimizations, Prantl et al. (2008) reports about three supported optimizations.
Assembly optimizations are not available in TUBOUND due to a missing compiler
back-end support. Currently, TUBOUND supports the simple C167 processor, which
lacks caches and a pipeline.

3.2 Conversion from LLIR to CRL2

WCET analysis takes place at the assembly/binary level since processor-specific in-
formation and machine code is unavailable at higher abstraction levels. Thus, the
WCET analyzer aiT is coupled to the WCC compiler at the LLIR level (cf. Fig. 4).

CRL2 is aiT’s exchange format which stores the application under WCET analysis
and all of aiT’s analysis results. Since both LLIR and CRL2 are low-level IRs, a
mutual translation of their CFGs is straightforward. The CFGs of both IRs consist of
functions. Each function is a list of basic blocks connected via edges. Basic blocks
in turn are a sequence of instructions. In both IRs, an instruction consists of several
operations to express the implicit parallelism of e.g., VLIW machines. Due to the
analogy of both IRs, it is basically sufficient to traverse the LLIR CFG and to generate
corresponding CRL2 components to construct an equivalent CRL2 CFG.

The conversion of LLIR to CRL2 is complicated by the fact that CRL2 is gener-
ated from a binary executable, i.e., it relies on information produced by an assembler
and a linker. In contrast, LLIR is an assembly level IR that lacks this information.
This becomes apparent when converting LLIR to CRL2 operations. The latter re-
quires a unique opcode that denotes the machine code of the operation. However, this
opcode is in general unavailable at assembly level and must be computed by WCC,
taking operation characteristics like the involved operands, operation size or address-
ing modes into account. More details about the respective algorithm can be found in
Falk et al. (2006).

Another key difference between both IRs is that CRL2 relies on physical addresses
while LLIR uses symbolic names for addresses. To bridge this semantic gap, the IR
conversion exploits WCC’s memory hierarchy specification (cf. Sect. 2) which pro-
vides the required physical information at assembly level. Using WCC’s memory
hierarchy API, physical addresses for LLIR basic blocks and operations are com-
puted. In addition, branch targets of jump operations, which are represented by sym-
bolic block labels, are translated into physical addresses. Similarly, symbolic labels
involved in accesses to global variables via load/store operations are converted.

3.3 Transparent invocation of aiT

Using the conversion from LLIR to CRL2, WCC produces a CRL2 file that represents
the program for which WCET timing data is required. Fully transparent to the user,
WCC invokes aiT on this CRL2 file. The compiler takes control over the WCET
analyzer and performs its value, loop bound, cache, pipeline, and path analysis.

As a consequence, the WCET analyzer is completely encapsulated in WCC. The
compiler user is unaware of the fact that timing analysis is performed in the back-
ground. The user does not get in touch with the configuration of parameters manda-
tory to run a static WCET analysis. The burden of setting up a valid run-time envi-
ronment for aiT is taken away from the user and is completely managed by WCC.



262 Real-Time Syst (2010) 46: 251–300

Also, WCC can automatically compute data that increases the precision of the WCET
analysis, e.g., possible addresses of memory accesses, and pass them to aiT. Other-
wise, these specifications require a tedious and error-prone definition by the user.

3.4 Import of worst-case execution data

After aiT is invoked, the analyzer’s results are inserted into a final CRL2 file which
represents a program’s CFG enriched with all the WCET data computed by aiT. The
last step for the complete integration of aiT’s timing model into WCC consists of
traversing this final CRL2 file, extracting its WCET data and importing this data
into WCC’s back-end by attaching it to the ICD-LLIR. The following list gives an
overview about the WCET-related data made available within the WCC this way:

– WCET of the entire program, of each function, and each basic block,
– worst-case call frequency per function,
– worst-case execution frequency per basic block,
– worst-case execution frequency per CFG edge,
– execution feasibility of each CFG edge,
– safe approximation of register values,
– encountered I-cache misses per basic block.

Currently, WCC does not make use of context-sensitive information. All provided
compiler optimizations have a static view of the code where different calling contexts
are not distinguished. Hence, context-sensitive data computed by aiT is accumulated
over all calling contexts and imported into WCC as context-insensitive information.

4 Flow fact specification and transformation

A program’s execution time (on a given hardware) is strongly determined by its con-
trol flow, i.e., the execution order of instructions or basic blocks, as modeled by the
CFG. Usually, constructs like e.g., loops or (conditional) branches express control
flow. Static WCET analysis (Heckmann and Ferdinand 2004) is undecidable since
it is undecidable to compute how many times a general loop iterates. Since loop it-
eration counts are crucial for a precise WCET analysis, and since they can not be
computed for arbitrary loops in general, they need to be specified by the user of a
static WCET analyzer.

Besides loops known from high-level programming languages, any cycle in a pro-
gram’s CFG needs to be annotated manually by the user. These user-provided annota-
tions that specify the control flow are usually called flow facts. This section explains
the mechanisms for flow fact specification and transformation within WCC.

Static WCET analysis can be divided into the following three areas (Puschner and
Burns 2000):

1. Program execution paths should be defined at source code level, since a manual or
automatic creation of this data at low abstraction levels is tedious and error-prone.
WCC’s ways for flow fact specification is subject of Sect. 4.1.



Real-Time Syst (2010) 46: 251–300 263

2. The transformation of this information from the source code level to the machine
code level, where the actual static WCET analysis takes place, has to be auto-
mated. Section 4.2 describes WCC’s mechanisms for flow fact updates.

3. Computation of WCET estimates for a program has to be done at a low level of
abstraction close to the target architecture (cf. Sect. 1.1).

4.1 Specification of flow facts

Flow facts describe the set of possible execution paths of a program (Kirner 2003). To
make WCET analysis feasible, the available flow facts must limit the execution count
of every statement of a program. User-provided flow facts should be specified inside
the source code since this way, only the code base needs to be maintained, and not
the source codes plus some external flow fact files which are potentially forgotten.

In general, a static WCET analyzer requires the following kinds of flow facts to
perform safe and precise WCET analysis:

– Loop iteration counts
– Recursion depths
– Execution frequency of an instruction, relative to some other instruction

The WCC compiler fully supports source-level flow facts by means of ANSI C
pragmas. The WCC user can annotate C source codes using either Loop Bound (cf.
Sect. 4.1.2) or Flow Restriction (cf. Sect. 4.1.3) flow facts. A survey of work related
to the area of flow fact specification is provided in the following section.

4.1.1 Related work

Static WCET analyzers do timing analysis of executable code. Thus, machine code
level flow facts are required. WCET analyzers usually include loop analyzers, but
they determine loop iteration counts only for simple classes of loops. Hence, WCET
analyzers rely on user-provided flow facts. For WCET analysis, the user must pro-
vide the machine code to be analyzed and a specification file that contains (among
other annotations) flow facts. Using hexadecimal addresses in the specification file, a
flow fact is related to those pieces of code it actually describes. Obviously, flow fact
specification at machine code level is a very tedious and cumbersome issue.

In Engblom and Ermedahl (2000), scopes are defined as hierarchical groups of
basic blocks such that a scope can be reached at most once via its header node within
a program’s CFG. Flow facts in Engblom and Ermedahl (2000) are a triple (scope,
context, constraint) where scope refers to a scope for which a flow fact
is to be specified, context is a particular calling context of the scope, and con-
straint is an inequation over the execution frequencies of basic blocks. Since it
relies on basic blocks, this approach is feasible for low-level flow fact specification.
However, it does not assist a user in high-level program analysis, which is the key
motivation of WCC’s flow facts presented in this section.

An ANSI C extension to specify flow facts is proposed in Kirner (2000, 2001).
Using markers and scopes, the user of wcetC specifies loop iteration counts and in-
equations that relate the execution count of one code fragment to the execution count



264 Real-Time Syst (2010) 46: 251–300

of some other piece of code. The main drawback of wcetC is its incompatibility with
the ANSI C standard which prevents wcetC to be compiled with any available ANSI
C compiler.

All currently known approaches have in common that flow facts are meant to spec-
ify execution counts of CFG nodes. Internally, however, flow facts are always trans-
formed and are finally attached to CFG edges. During this conversion, a loss of either
precision or of expressiveness of the specified information can be expected. In addi-
tion, previous approaches are unable to transform and to keep flow facts consistent
during all the optimizations applied by an optimizing compiler (Engblom et al. 1999;
Kirner 2003).

In contrast to related work, WCC’s flow facts fully comply with the ANSI C stan-
dard, since ANSI C pragmas are used to specify flow facts. The user can annotate
execution frequencies of ANSI C statements (i.e., CFG nodes), and WCC internally
attaches this data to CFG nodes to avoid conversions that possibly degrade precision.

4.1.2 Loop bounds

Loop bounds specify limits of iteration counts of regular loops. Here, regular loops
are for-, while-do- and do-while-loops of ANSI C with the following properties:

– they have only one single entry node (single-entry loops), and
– they must have a well-defined termination condition.

For such loops, loop bound flow facts allow to specify the minimum and maxi-
mum iteration counts. In its current state of implementation, loop bounds have to be
unsigned integer values—symbolic constants are currently not supported:

LOOPBOUND |= loopbound min NUM max NUM

NUM |= Non-negative Integer

For example, the following snippet of C code specifies that the shown loop body
is executed exactly 100 times:

_Pragma( "loopbound min 100 max 100" )
for ( i = 1; i <= 100; i++ )
Array[ i ] = i * fact * KNOWN_VALUE;

In the future, loop bound flow facts could be extended by an equality operator
such that only one single value needs to be specified for exact loop iteration counts.
However, allowing to provide a minimum and maximum loop iteration count enables
to annotate data-dependent loops. If e.g., maxIter is some data-dependent function
parameter that ranges from 50 to 100, a data-dependent loop is annotated as follows:

_Pragma( "loopbound min 50 max 100" )
for ( i = 1; i <= maxIter; i++ )
Array[ i ] = i * fact * KNOWN_VALUE;

4.1.3 Flow restrictions

For irregular loops (e.g., multi-entry loops, loops without explicit termination con-
dition or loops that use goto-statements), loop bound annotations are inapplicable.



Real-Time Syst (2010) 46: 251–300 265

Instead, WCC provides flow restriction annotations which allow to relate the execu-
tion frequency of one C statement with that of other statements.

In order to use flow restrictions, some auxiliary annotations called markers are
required which attach an identifying string to some source code statement. WCC’s
markers are identical to labels known from ANSI C or assembly code:

MARKER |= marker NAME

NAME |= Identifier

For example, the following piece of code attaches the identifier outermarker
for further use to a source code statement:

_Pragma( "marker outermarker" )
Statement A;

Using the identifiers specified by markers, complex flow restriction annotations
can be defined according to the following EBNF syntax:

FLOWRESTRICTION |= flowrestriction SIDE COMPARATOR SIDE

COMPARATOR |= >= | <= | =

SIDE |= SIDE + SIDE | NUM * REFERENCE

REFERENCE |= NAME | Function Name

Flow restrictions allow to specify linear dependencies between arbitrary positions
in the C source code. E.g., the flow restriction below annotates a triangular loop:

_Pragma( "marker outermarker" )
Statement A;

for ( i = 0; i < 10; i++ )
for ( j = i; j < 10; j++ )

_Pragma( "marker innermarker" )
Statement B;

_Pragma( "flowrestriction 1*innermarker <= 55*outermarker" );

It states that the execution frequency of the code marked by innermarker is at
most 55 times larger than that of statement A marked by marker outermarker.

Similarly, recursion depths are specified via flow restrictions. For example, the C
code below shows how to annotate a recursion that computes Fibonacci within WCC:

int fib( int i ) int main()
{ {

if ( ( i == 0 ) || int In = fib( 7 );
( i == 1 ) ) _Pragma( "marker recursion");

return 1; _Pragma( "flowrestriction \
1*fib <= 41*recursion");

return fib( i - 1 ) +
fib( i - 2 ); return In;

} }

4.2 Flow fact transformation

Flow facts must be transformed by the WCC compiler whenever it changes the code’s
abstraction level or it applies control flow changes. This is supported by techniques
called flow fact translation (cf. Sect. 4.2.1) and flow fact update (cf. Sect. 4.2.2).



266 Real-Time Syst (2010) 46: 251–300

4.2.1 Flow fact translation

Due to the fact that source-level flow facts are highly desirable, there is a semantic
gap between the place where flow facts are specified (C code) and where they are
actually used for static WCET analysis (assembly code). WCC is inherently aware
of this semantic gap and closes it using flow fact translation. Whenever WCC lowers
the level of abstraction during compilation, a flow fact manager is responsible for
the translation of all flow facts from the previous higher abstraction level to the lower
level. More precisely, the flow fact managers are active during the following compiler
stages:

From ANSI C to ICD-C: The first flow fact manager extracts loop bound, marker
and flow restriction pragmas from the C source codes and attaches these flow facts
to objects of ICD-C. All required classes of the ICD-C IR are made flow fact-aware
and thus allow to hold user-specified flow facts.

From ICD-C to ICD-LLIR: Code selection translates the source-level IR ICD-
C into ICD-LLIR machine code. Another flow fact manager thus translates all
ICD-C flow facts to ICD-LLIR flow facts and attaches them to the corresponding
LLIR objects. During this stage, it is guaranteed that the ICD-LLIR flow facts are
semantically equivalent to the ICD-C flow facts.

From ICD-LLIR to CRL2: The third flow fact manager within WCC takes care of
translating all ICD-LLIR flow facts to equivalent CRL2 flow facts so that the static
WCET analyzer aiT is able to perform a precise WCET analysis.

4.2.2 Flow fact update

Flow fact translation by itself is insufficient to guarantee that the flow facts passed
to aiT are semantically equivalent to the specifications provided at source code level.
This is caused by the optimizations WCC applies at ICD-C and ICD-LLIR level.

Currently, WCC includes 42 different optimizations. 27 of them take place within
ICD-C, the other 15 ones in ICD-LLIR. Many optimizations restructure loops to in-
crease performance, but loop optimizations are particularly critical when flow facts
are present. This is because restructuring of a loop potentially yields changed iteration
counts which, in turn, have to be reflected by the attached flow facts. E.g., unrolling
the following loop by a factor of two invalidates attached flow facts completely:

_Pragma( "loopbound min 100 max 100" )
for ( i = 1; i <= 100; i++ )
Array[ i ] = i * fact * KNOWN_VALUE;

The following loop would result from unrolling:

_Pragma( "loopbound min 100 max 100" )
for ( i = 1; i <= 100; i += 2 ) {
Array[ i ] = i * fact * KNOWN_VALUE;
Array[ i + 1 ] = (i + 1) * fact * KNOWN_VALUE;

}

The flow fact states that the unrolled loop body is executed exactly 100 times
which is not true since it is executed only 50 times. As a result, heavily overestimated
WCET bounds can be expected from static timing analysis for this example.



Real-Time Syst (2010) 46: 251–300 267

Thus, all optimizations of WCC are made fully flow fact-aware using built-in flow
fact update techniques. They ensure that safe and precise flow facts are maintained for
each individual optimization. For the above example, the update mechanisms produce
the flow fact _Pragma( "loopbound min 50 max 50" ) after loop unrolling.
WCC’s update mechanisms support some fundamental operators on flow facts like
e.g.,

– creation, copying and deletion of loop bounds and flow restrictions,
– displacement of the min/max interval of a loop bound,
– replacement of a flow restriction by another equivalent flow restriction, and
– replacement of a flow restriction by an inequivalent flow restriction if no fully

equivalent replacement can be determined. This inequivalent flow fact is computed
conservatively, such that it leads to an overapproximation of execution frequencies,
but not to an unsafe underapproximation.

All basic operations of ICD-C and ICD-LLIR that create, delete or move state-
ments or basic blocks were extended to automatically update flow facts via the tech-
niques described above. WCC’s optimizations were finally made flow fact-aware by
using the aforementioned basic flow fact operators and by explicitly adjusting flow
facts whenever such basic operations are not sufficient.

5 Automated loop bound analysis

WCC’s goal is to fully automatically reduce WCETs, and WCET analysis requires
the existence of flow facts. Manual flow fact annotation (cf. Sect. 4) becomes tedious
and even infeasible even at the source code level if the program to be annotated is
long, or if it is automatically generated by some high-level specification tool. To
relieve the user from this burden and to establish an automated framework for WCET
reduction, a static loop analyzer that produces flow facts for ICD-C was integrated.

Our loop analyzer bases on abstract interpretation (Cousot and Cousot 1977), a
theory of a sound approximation of program semantics. It is applied at source code
level since this level of abstraction provides valuable information, such as data types,
which is lost when code is translated into a low-level IR. To accelerate loop analy-
sis, the analyzed code is preprocessed using program slicing (Horwitz et al. 1988),
a technique that excludes statements irrelevant for the loop analysis. Moreover, we
introduce a novel polyhedral loop evaluation that further decreases analysis times.
WCC’s loop analyzer has proven to be of superior quality—among all tools partic-
ipating in the WCET Tool Challenge 2008 (Holsti et al. 2008), it was the only one
which solved all flow facts related analysis problems.

First, we give a survey of related work in Sect. 5.1 and introduce abstract interpre-
tation in Sect. 5.2. Program slicing and our novel polyhedral evaluation are presented
in Sects. 5.3 and 5.4, resp., followed by results achieved on real-life benchmarks in
Sect. 5.5. A detailed description of the analysis can be found in Lokuciejewski et al.
(2009).

5.1 Related work

Static loop analysis is crucial for different fields of applications. Besides WCET
analysis, the knowledge of loop iteration counts can be used for aggressive loop



268 Real-Time Syst (2010) 46: 251–300

optimizations or to assist feedback-directed compiler optimizations. In Healy et al.
(1998), a pattern-based approach to determine loop iteration counts of assembly pro-
grams is presented. It exclusively analyses the parts of the assembly code that repre-
sent loops, while the remaining instructions are ignored. This way, loops relying on
function parameters can not be analyzed. To solve this problem, the authors provide
a mechanism that allows to specify value ranges for unknown variables, making their
analysis semi-automatic.

The approach developed in Healy et al. (1998) has been adapted to programs writ-
ten in the high-level language C by Kirner (2006). Again, loop analysis does not
automatically succeed for all types of loops. Mandatory information that can not be
extracted during the static analysis must be provided by the user in the form of source
code annotations.

In contrast to pattern-based analyses, Cullmann and Martin (2007) use an inter-
procedural data-flow based loop analysis at assembly level. This has the advantage
that the loop analysis does not strictly rely on pre-defined code patterns a particular
compiler generates, but on the semantics of the instruction set of a specific target
machine. As stated by the authors, the analysis works best for well-structured loops
and supports only a simple modification of the loop counter by exclusively allowing
additions of constant intervals.

A different approach for a fully automatic static loop analysis at source code level
was described in Ermedahl and Gustafsson (1997). The authors involve a data flow
analysis based on abstract interpretation. Representing values by intervals, a loss of
precision is introduced making the concrete program semantics decidable. Based on
this approximation, a determination of loop bounds is enabled. This work was used
in Gustafsson et al. (2006) to assist static WCET analysis. It was extended to deter-
mine bounds of nested loops as well as to detect infeasible paths, i.e., paths that are
not taken in particular execution contexts and which should thus be excluded from
WCET analysis to avoid WCET overestimation. To further improve and accelerate
this loop analysis, the authors combine different standard program analyses like pro-
gram slicing and invariant analysis (Ermedahl et al. 2007).

5.2 Abstract interpretation

Static loop analysis includes solving the halting problem and is thus undecidable.
For concrete program semantics, an automatic loop analysis that determines loop
iteration counts for all types of loops is not feasible. However, by introducing ab-
stract semantics, which is a superset of the concrete program semantics covering all
possible concrete cases, the loss of information makes the analysis computable. The
abstraction is accomplished by a technique called abstract interpretation.

The fundamental idea of abstract interpretation is to find a compromise between
analysis precision and analysis run time. A reduction of information is achieved by
mapping a possibly infinite set of program states, typically consisting of the value of
the program counter (program point) and a set of variables (or memory locations),
into a finite set of abstract states. A static analysis using abstract interpretation aims
at assigning sets of possible variable values (abstract states) to CFG edges.



Real-Time Syst (2010) 46: 251–300 269

The main drawback of abstract interpretation is its iterative behavior in loops
which might slow down the analysis such that it becomes impractical. In particu-
lar, such an explosion of analysis times can be observed during the analysis of loops
with high iteration counts where each loop iteration is interpreted individually.

WCC’s loop analyzer combines abstract interpretation with mechanisms to avoid
its iterative behavior. They rely on interprocedural program slicing and polyhedral
loop analysis that determine loop iteration counts and variable values by examining
the loop body exactly once. If these advanced techniques succeed in computing loop
bounds, classical abstract interpretation is omitted for this loop, leading to an accel-
erated analysis. Otherwise, classical abstract interpretation needs to be applied.

5.3 Interprocedural program slicing

Program slicing (Weiser 1979) is a static analysis that finds statements of a program
that are relevant for a particular computation, defined by the slicing criterion. A slic-
ing criterion is a pair 〈q,V 〉 where q is a program point and V is a subset of program
variables at q . The slice w.r.t. 〈q,V 〉 is a subset of the program with all statements
that might affect the variables in V , i.e., variables that might either be used or defined
at q .

WCC’s loop analysis uses loop exit conditions as slicing criterion. By taking all
relevant data and control dependencies into account, the resulting program slice con-
tains all statements that are relevant to determine loop iteration counts. Slicing is
supported by a context-sensitive pointer alias analysis. Contexts introduce a distinc-
tion between different calls to a given function, enabling a more precise analysis.

Slicing is run before the actual loop analysis for two reasons. First, it accelerates
loop analysis (Sandberg et al. 2006), since slicing the code in advance strips all su-
perfluous statements. Considering the relevant subset of the program, the fixed-point
iteration during abstract interpretation usually finds a solution in less time. Second,
the innovative polyhedral loop evaluation (cf. Sect. 5.4) requires simple loop bodies
to infer final abstract states without repetitive iterations. Bodies of original loops are
often too complex for this static evaluation but after slicing, the required prerequisites
are met.

5.4 Polyhedral loop evaluation

A polyhedron P is an N -dimensional geometrical object defined as a set of linear
inequations: P := {x ∈ Z

N | Ax = a,Bx ≥ b} for A,B ∈ Z
m×N and a, b ∈ Z

m and
m ∈ N. A polyhedron is called a polytope if ‖P ‖ < ∞. Polytopes are often employed
in compiler optimizations to represent loop nests and affine condition expressions.
Their formal definition enables efficient code transformations. Typical fields of ap-
plication are program execution parallelization or the optimization of nested loops
(Falk and Marwedel 2003).

WCC’s polyhedral loop evaluation is motivated by the observation that a large
number of loops consists of statements not affecting the calculation of loop iterations.
Typical examples are initialization procedures found in many embedded applications.
The main task of such procedures is to initialize arrays and other data structures.
Afterwards, this initialized data is used to compute output data, e.g., an output stream



270 Real-Time Syst (2010) 46: 251–300

of an image compression algorithm, but it is not influencing the execution frequency
of loops. Slicing recognizes those meaningless statements for loop analysis and does
not evaluate them further. This often results in loops with almost empty loop bodies.

Loops to be analyzed by the polyhedral evaluation must meet certain constraints
that specify the structure of the loop and the type of statements in the loop body.
The first class of requirements concerns the structure of loops including their con-
ditional statements, e.g., if -statements. These restrictions are imposed by the poly-
tope models and their violation would make a polytope evaluation infeasible. The
requirements concern loop exit conditions which must either depend on a constant or
a program variable which is not modified within the loop body. Moreover, it must be
ensured that all condition statements are affine expressions. It should be noted that
these constraints are often met by well-structured loops found in many applications,
thus they do not inhibit a successful application of WCC’s non-iterative loop evalua-
tion. The second class of constraints refers to the loop body statements. Assignment
expressions in a sliced loop body need to be transformable to the ANSI C assign-
ment operators =, + = or − = with variables or constants as right-hand-sides of the
assignments.

If the conditions are met, the loop iteration counts required for the evaluation of
statements are statically determined in the next step. Results from this phase allow
a fast static evaluation of statements in a single step without the need to analyze the
statements iteratively. The problem of finding the loop iteration counts is equivalent
to computing the number of integer points in a (parametric) polytope. To efficiently
count the integer points, Ehrhart polynomials (Verdoolaege et al. 2004) are used.

Considering all integer points of a polytope might yield an over-approximation.
The total number of integer points represents the number of loop iterations if the loop
counter is incremented by one, thus other modifications to the counter must be ade-
quately modeled. Also, additional exit edges that affect the control flow in the loop
body, e.g., in the case of break or continue statements, must be taken into account.
They are modeled as further polytopes and their intersection with the polytope rep-
resenting the loop nest yields the precise solution space. For some loops found in
real-life benchmarks having an empty loop body after program slicing, counting of
integer points is already sufficient to determine the loop iteration counts statically.

Using these loop iteration counts, execution frequencies of condition-dependent
basic blocks, which might obviously differ from the loop iteration counts, are com-
puted. The conditions are modeled by polytopes and an intersection with the loop
polytope allows to compute execution frequencies for both the then and else-part.

The last step is the static evaluation of statements within the loop based on the
loop iteration counts and basic block execution frequencies from the previous step.
The goal is to evaluate modifications of variables within the loop like b+=a without
a repetitive abstract interpretation. These final variable values are used to determine
iteration counts for loops that are analyzed afterwards.

WCC’s loop analysis can be used in two different ways. It can either be used as
a stand-alone tool that produces loop information in a human-readable form, or as
a module integrated into WCC. In the latter case, the loop analyzer automatically
generates flow facts and passes them to the flow fact manager relieving the user from
manually annotating flow facts. Figure 4 (cf. p. 256) depicts the analyzer’s integration



Real-Time Syst (2010) 46: 251–300 271

into WCC. It operates on the ICD-C IR and starts with slicing that marks statements
relevant for loop bound computations. After that, loop analysis using the modified
abstract interpretation and polytope models is done. At this point, the loop bound
information for the program under analysis can be generated.

5.5 Results

To show the efficacy of our static loop analyzer, a total of 96 benchmarks was ex-
tensively analyzed and evaluated. The benchmarks come from the test suites MRTC,
DSPstone, MiBench, MediaBench, UTDSP, and our own set of real-life benchmarks.
The different types of the suites were chosen to point out that our loop analysis can
successfully handle applications of different domains. All measurements were per-
formed on a single core of an Intel Xeon CPU with 2.40 GHz and 8 GB RAM. For
the sake of clarity, we provide a comprehensive overview of the results and discuss
more interesting cases in more detail in the following.

5.5.1 Determination of loop iteration counts

Table 1 presents the evaluation of the loop analysis precision. The table shows for
each benchmark suite the number of benchmarks, the number of contained loops, the
percentage of loops that were successfully analyzed (column Analyzable) and the per-
centage of loops for which our loop analysis produces exact non-over-approximated
results (column Exact). All percentages of Table 1 relate to column Loops.

The 96 benchmarks contain 707 loops in total. On average, 99% of those loops
could be successfully analyzed. This means that for those loops, loop analysis pro-
duced safe results in terms of loop iteration counts which are never under-approxi-
mated, but might be over-approximated. The small fraction of 1% loops that could
not be analyzed is mainly due to technical restrictions of our alias analysis.

The last column of Table 1 shows the percentage of loops for which exact iteration
counts were computed. On average, our analysis produced exact results for 96% of the
loops. The remaining 4%, including the non-analyzable 1% of loops of the previous
column, could not be exactly analyzed, i.e., the loop iteration counts were afflicted
with an over-approximation. The main reason for the imprecision comes from the
analysis of pointers which can not always be precisely evaluated in a static analysis.
However, most of the over-approximations introduced only a marginal error ranging
between 8% and 51% w.r.t. the exact results. Thus, the results are still acceptable.

Slicing was successfully applied to all benchmarks. The number of statements
irrelevant for loop analysis ranges from 2% to 88%, showing that computations in

Table 1 Precision of loop analysis

Benchmark suite # Benchmarks # Loops Analyzable Exact

MRTC 32 152 100% 99%
DSPStone 37 152 98% 93%
MediaBench/MiBench 6 162 99% 98%
UTDSP 14 88 100% 88%
Misc. 7 153 100% 100%
Total/Average 96 707 99% 96%



272 Real-Time Syst (2010) 46: 251–300

Table 2 Run times of loop analysis

Benchmark Benchmark suite Basic Slicing Polytope

matmul MRTC 8.4 s 2.4 s(28%) 0.8 s (1%)

hamming Misc. 0.4 s 0.3 s (80%) 0.2 s (62%)

g721 DSPstone 80.2 s 70.5 s (88%) 71.3 s (89%)

fft DSPstone 920.7 s 119.7 s (13%) 110.5 s (12%)

matrix1 DSPstone 0.8 s 0.09 s (12%) 0.03 s (4%)

mult_10_10 UTDSP 4.6 s 3.6 s (78%) 3.7 s (80%)

many programs do not affect loop iteration counts. 21% of the loops were analyzable
via the innovative polytope-based loop evaluation, which shows that the prerequisites
of this polyhedral evaluation are not too restrictive and are often met in real-life code.

5.5.2 Analysis time

Besides the precision of the analysis, the second crucial issue for static program
analyses is their complexity expressed in terms of analysis time. In general, the analy-
sis times highly depend on the program structure and the loop iteration counts. If our
polyhedral loop evaluation can not be applied, the analysis based on abstract interpre-
tation must consider each loop iteration separately. On average, smaller benchmarks
require a few seconds for the analysis, while the analysis time for larger benchmarks
such as MiBench’s GSM encoder takes on average less than 4 minutes.

The impact of the different techniques on the analysis run time of some example
benchmarks is shown in Table 2. Column Basic represents the absolute run time of
the basic loop analysis based on abstract interpretation. The fourth column (Slicing)
depicts the analysis run time after program slicing, while the last column (Polytope)
indicates the measured run times after the application of the polytope-based fast loop
evaluation (including slicing). In addition, values in parentheses found in the fourth
and fifth column represent the relative run times w.r.t. the third column.

Table 2 shows that slicing significantly decreases analysis times. For matmul, a
reduction of 72% was achieved. matmul also benefits from the polytope approach. It
contains some loops that can be statically evaluated using the polyhedral model that
leads to a further reduction in time of 27%. For other benchmarks like mult_10_10,
slicing reduces the analysis time by 22%. For mult_10_10 the test whether the
polytope approach can be applied was negative, thus slightly increasing the analy-
sis time by 2% and forcing the analysis to switch back to the basic (iterative) loop
evaluation.

Considering all 96 evaluated benchmarks, 38 benchmarks benefit from program
slicing leading to a decreased analysis time. For 13 of these benchmarks, the analysis
time could be further improved by switching from the iterative approach based on
abstract interpretation to the polytope-based non-iterative approach.

6 Back-annotation of WCET data

WCC’s infrastructure described so far allows the effective WCET reduction by opti-
mizations applied at ICD-LLIR level where WCET estimates are imported from aiT



Real-Time Syst (2010) 46: 251–300 273

and made accessible to the compiler. Still, high-level WCET-aware optimizations that
take place at the source code level are not yet supported due to the lack of WCET tim-
ing information at the level of the ICD-C IR. However, high-level optimizations that
focus on function call and loop transformations exhibit a large potential for WCET
reduction. Thus, a WCET model for ICD-C is highly desired. To transform WCET
timing data from assembly to the source code level, a bridge between both abstraction
levels of the code is required, which is realized by WCC’s back-annotation.

6.1 Mapping of low-level to high-level structures

To raise the abstraction level of the WCET timing model from assembly to source
code level, a connection between ICD-LLIR and ICD-C must be established. Map-
ping between coarse-grained objects, e.g., compilation units (source code files) and
functions, is trivial. Each ICD-C compilation unit has a unique file name and its trans-
lation into machine code results in one ICD-LLIR compilation unit. This relationship
is exploited and mapping between compilation units of the two IRs is done with the
file name as a key. Mapping between functions of both abstraction levels is achieved
using the unique function names as key. Care needs to be taken only for functions
that have static storage in the sense of ANSI C. Since several static functions with
the same name may exist, both function and file name is used as mapping key.

Mapping of basic blocks from ICD-LLIR to ICD-C is more complicated since a
1:1 mapping does not always exist. By definition, a basic block is a code fragment
with a single entry and exit point where jumps can only occur at the block’s end.
Function calls, which implicitly modify the control flow, can be handled in two dif-
ferent ways. They can either represent a basic block boundary, i.e., a new basic block
begins after a function call, or they are considered as regular statements/instructions
that do not explicitly modify the control flow. The former definition is used within
ICD-LLIR, while the latter is used by ICD-C. Due to the varying definitions and
assembly-level optimizations that modify the basic block structure, the relationship
of basic blocks represents an n:m mapping in general. The following relationships
between assembly- and source-code basic blocks (ICD-LLIR:ICD-C) may occur:

1:1 Relation: Sequential code with no control flow modifica-
tion as shown on the right is represented in both IRs as a single
basic block, thus a mapping is again obvious. For all ICD-LLIR
basic blocks for which such a bijective 1:1 relation holds, a map-
ping to ICD-C basic blocks can be achieved using the block label
as key.

n:1 Relation: A source code fragment with a function call
as depicted right is represented by a single ICD-C basic block.
It corresponds to two ICD-LLIR basic blocks due to the call of
foo. Similar n:1 situations occur in the presence of the logi-
cal AND (&&), OR (||), and conditional (?) operators of ANSI
C since they implicitly modify the control flow. They are typ-
ically used in complex conditions with multiple comparisons
which are covered by a single ICD-C block. In contrast, each comparison is rep-
resented in ICD-LLIR by an individual basic block. Thus, mapping of ICD-LLIR
basic blocks to ICD-C blocks becomes surjective for n:1 relations. Using ba-
sic block labels, several ICD-LLIR blocks are mapped to a single ICD-C block.



274 Real-Time Syst (2010) 46: 251–300

1:m Relation: For the code shown right, two ICD-C blocks
represent the loop body and the exit condition. This loop is
modeled by only one ICD-LLIR block since the computations
of the loop body, the test of the exit condition and the con-
ditional jump back to the loop header is a sequence of code
without any control flow modifications in between.

WCET data of ICD-LLIR blocks with a 1:m relation must not be attached to all m
ICD-C blocks. Otherwise, the m-fold storage of equal WCET data in ICD-C would
falsify the ICD-C timing model and lead to a global WCET of a program that is larger
than that computed by aiT. Thus, WCET data is attached to only one of the m ICD-C
blocks, called the reference block. The remaining m − 1 ICD-C blocks simply point
to that reference block to enable forwarding of requests of back-annotation data.

Since WCC’s code selector is the interface between the source- and assembly-level
IRs, it also determines the relationships between ICD-C and ICD-LLIR blocks and
the corresponding mappings. We extended all WCC optimizations applied after code
selection to automatically update all mappings when modifying ICD-LLIR blocks.
The integration of the back-annotation is depicted in Fig. 4 (cf. p. 256).

6.2 Transformed data during back-annotation

After establishing the connection between assembly- and source-level basic blocks
using the mappings presented above, WCET timing data attached to ICD-LLIR basic
blocks can be back-annotated to ICD-C. In addition, information from the compiler
back-end is imported. The following data is transformed during back-annotation:

– WCET for the entire program, functions, and basic blocks
– Information whether an ICD-C block lies on the WCEP
– Worst-case execution frequency per CFG edge
– Execution feasibility of blocks and CFG edges
– Number of I-cache misses per basic block encountered during WCET analysis
– Code size and amount of spill code per assembly-level basic block

After back-annotation, detailed WCET timing data is present in ICD-C. To show
the effectiveness of this mechanism, this data is used by WCC’s WCET-aware, high-
level optimizations Procedure Cloning and Procedure Positioning in the following.

7 WCET-aware procedure cloning

Procedure cloning is a standard optimization of functions that are often called with
constants as arguments. If the caller invokes a callee with constant arguments, the
callee can be cloned, the constant parameters are removed from the parameter list and
are instead imported into the clone. This is beneficial for two reasons. First, it may en-
able further optimizations like e.g., constant propagation or folding in the clone. Sec-
ond, calling overhead is reduced since the constant parameters are no longer passed
between caller and callee. WCC applies cloning at source code level, early in the op-
timization process, to enable potential for a large number of following optimizations.
In addition, changing function calls and parameters is easier at this abstraction level.



Real-Time Syst (2010) 46: 251–300 275

In contrast to previous work, the impact of procedure cloning on the WCET of
embedded real-time applications was studied for the first time using WCC (Loku-
ciejewski et al. 2007, 2008).

7.1 Impact of procedure cloning on WCET estimation

Typical embedded real-time source codes often contain loops l whose iteration counts
depend on a parameter p of the function f that surrounds this loop. In addition, such
a function f can be called from various places, with different values for p. This code
structure has a negative impact on the WCET computed by a timing analyzer.

This is due to the flow fact annotation of such loops l. Since f is called from many
places with possibly different arguments p, the effective iteration counts of l can vary
seriously, depending on the context with which parameters f is called. Many WCET
analyzers apply context-sensitive analyses that take context information of each call
into account. If a data-dependent loop can be statically analyzed, information on con-
stant parameter values is used to compute precise WCET data for each individual
context of l. However, real-life loops are often too complex to be analyzed at assem-
bly level. Thus, this loop analysis only succeeds for a limited class of loops.

For this reason, most real-life loops require flow fact specification either manually
by the user or by WCC’s loop analyzer. The flow facts for such data-dependent loops
must cover all possible contexts in which the loop may be executed in order to result
in safe WCET estimates. Hence, the upper bound of such flow facts must represent
the global maximum of iterations executed by such a loop over all contexts in which
f is called, equivalently the same holds for the lower bound. Since such flow facts
for data-dependent loops do not consider possible different execution contexts of a
function f , the flow facts are safe but lead to a highly overestimated WCET.

WCC applies WCET-aware cloning if a caller invokes a callee f that has data-
dependent loops l, and if the iterations of l depend on a parameter p of f that is
constant. Cloning creates a specialized version f ′ of f that has constant loop bounds
w.r.t. p. The data-dependence of l is broken by cloning so that highly precise flow
facts for f ′ result. Hence, cloning is a way to express different calling contexts at
the source code level that eliminates the need to maintain context-sensitive data (cf.
Sect. 3.4). It thus enables high-precision WCET analysis of such clones. Consider the
following code before cloning and its annotated flow facts (cf. Sect. 4):

int f( int *x, int n, int p ) { int main() {

_Pragma( "loopbound min 2 max 2000" ) ... f( y, 2000, 5 ); ...

for ( i = 0; i < n; ++i ) { ... f( z, 2, 5 );

x[i] = p * x[i]; return f( a, 2, 5 );

if ( i == 10 ) { ... } }

}

return x[n];

}

f contains a loop that depends on the function parameter n. Within main, f is
called three times, once with n= 2,000 and twice with n= 2. To obtain safe WCET
estimates, f’s loop must be annotated with a minimum of 2 and a maximum of 2,000



276 Real-Time Syst (2010) 46: 251–300

iterations. A WCET analyzer has to compute safe results, thus 2,000 iterations are
assumed in the worst case for each execution of this loop. For each call of f with
n equal 2, a significant overestimation is introduced leading to imprecise WCET
estimates.

The application of our WCET-aware procedure cloning transforms this code snip-
pet into a code that is better accessible for high-precision WCET analyses:

int f( int *x, int n, int p ) { int f_2_5( int *x ) {

_Pragma( "loopbound min 2000 \ _Pragma( "loopbound min 2 \
max 2000" ) max 2" )

for ( i = 0; i < n; ++i ) { for ( i = 0; i < 2; ++i ) {

x[i] = p * x[i]; x[i] = 5 * x[i];

if ( i == 10 ) { ... } if ( i == 10 ) { ... }

} }

return x[n]; return x[2];

} }

int main() {

... f( y, 2000, 5 ); ...

... f_2_5( z );

return f_2_5( a );

}

Cloning yields more precise loop bound annotations for the original function f.
In addition, a specialized version f_2_5 of f for the values 2 and 5 of parameters n
and p is created. The loop in f_2_5 is no longer data-dependent. Hence, precise flow
facts now state that the loop iterates exactly twice. This way, WCC’s cloning helps
to produce high-quality flow facts for static WCET analysis, which considerably im-
proves the tightness of WCET estimates. This optimization is WCET-aware since it is
only applied to those functions that enable a more precise WCET analysis of loops in
order to keep code size increases resulting from cloning small. Moreover, functions
are sorted in advance by their WCETs to clone those functions first that promise the
largest WCET reduction. The required data is provided by WCC’s back-annotation.

7.2 Results

Figure 6 shows the impact of procedure cloning on the WCET estimates of three
complex real-life benchmarks. The 100% base line denotes the WCET estimates of
the original code optimized using constant folding, constant propagation and dead

Fig. 6 Relative WCETs after procedure cloning



Real-Time Syst (2010) 46: 251–300 277

code elimination. These optimizations are applied to simplify the code structure and
to remove dead code which can be detected even without cloning. The dark bars
represent the WCET when the code is additionally optimized by standard cloning,
while the light bars show results for WCET-aware procedure cloning.

As can be seen, standard and WCET-aware cloning reduce WCET estimates com-
parably. Maximal reductions were observed for mpeg2 that contains two functions
that were cloned. The first one realizes a full-search motion detection. In this func-
tion, another procedure is called that computes the distance between frame blocks.
After cloning, the code contains a dedicated version of the Fullsearch algorithm for
each block size. The loop bounds in the nested functions can again be defined more
precisely. For standard and WCET-aware cloning, WCET estimates are reduced by
63.6% and 62.7%, resp. For other benchmarks, similar improvements were achieved.

On average, standard cloning outperforms WCET-aware cloning merely by 1.3%.
This is due to the fact that it clones more functions compared to WCET-aware cloning
since also functions that do not allow a more detailed specification of flow facts are
transformed. These clones can be further optimized by other standard optimizations.

However, this extensive cloning significantly increases code sizes. epic exhibits
the maximal code size increases by 693.7% after standard cloning. Since WCET-
aware cloning only transforms functions that promise a WCET reduction, it increases
code size by only 357.9%. This still high increase is due to a very uncommon struc-
ture of epic—it contains 32 functions that were cloned many times. Unlike this
extreme case, the code size of gsm remained almost unchanged, while WCET-aware
cloning increased the code size of mpeg2 by 127.0%. It can be seen that cloning rep-
resents a trade-off between WCET reduction and code expansion. To cope with the
risk of an undesirable code size increase, the new optimization provides a parameter
to control the maximally permitted code expansion during the transformation.

8 WCET-aware procedure positioning

Procedure Positioning aims to improve I-cache behavior by reducing the number of
cache conflict misses. Caches reduce the average memory access time by exploiting
spatial and temporal locality. The former refers to the reference of contiguous mem-
ory locations. The latter means that particular memory locations are accessed within
a short period of time. Due to an inappropriate layout of a piece of code in memory,
temporal locality may, however, degrade cache performance, if memory locations be-
ing accessed temporally close to each other are mapped to the same cache lines. This
leads to an eviction of cache contents and repetitive cache refills. Procedure posi-
tioning uses call frequencies to reorder functions and reduce cache thrashing. This
section gives an overview of our approach for WCET-aware procedure positioning
(Lokuciejewski et al. 2008).

8.1 Related work

I-caches mainly profit from a code reorganization at procedure and basic block level.
Tomiyama and Yasuura (1997) propose two code placement methods for basic blocks



278 Real-Time Syst (2010) 46: 251–300

to reduce the cache miss rate using ILP. Hwu and Chang (1989) propose a compiler
with an integrated instruction placement algorithm that reduces page faults. In Lebeck
and Wood (1994), a cache profiling system identifies hot spots by providing cache
performance information at source code level. After an automatic classification into
compulsory, capacity and conflict misses, the profiler suggests appropriate standard
program transformations to improve cache performance. The work of Mendlson et al.
(1994) does not use profiling data but static information and additionally, in contrast
to the previously cited works, requires the exact knowledge of the cache architecture.
Their idea is to prevent different segments of code executed in a loop to be mapped
into the same cache area by code replication.

Static cache analysis is essential for a WCET analyzer for cache-based processors.
Its goal is to classify each memory access as a cache hit or miss. Ferdinand uses must
and may analysis based on abstract interpretation (Ferdinand et al. 2001). The former
determines if a memory access is always a cache hit while the latter computes if the
access may be a hit. This approach is also used in aiT, the WCET analyzer integrated
into WCC.

8.2 WCET-centric call graph-based positioning

Procedure Positioning uses a call graph whose set of nodes represents program proce-
dures. Edges denote calling relationships between procedures and are weighted with
call frequencies which, for ACET optimization, are gained using profiling.

In contrast to the standard, profiling-based optimizations, we extract input data
for the call graph from a WCET analyzer. This fundamental difference makes our
approach more reliable. Profiling data is critical since it reflects the program exe-
cution for a particular set of input data, i.e., profiling the program under test with
varying inputs may yield different results. For more complex programs that consist
of numerous input-dependent execution paths, it is almost infeasible to find represen-
tative input values. This may lead to a call graph that is annotated with profiling data
that does not represent some particular program executions. The optimized code will
possibly not improve cache behavior and may even suffer performance degradation.

Our approach does not rely on representative input data. Edge weights are com-
puted by a WCET analyzer and are invariant for all program executions. They are
used for the construction of our WCET-centric call graph. Those edges with the heav-
iest weight potentially combine the most promising functions for optimization. These
functions are reordered and are placed next to each other in the ICD-C IR. In the next
step, the code selector processes the IR function-wise, i.e., each source code function
is translated into an equivalent assembly function while preserving the order of the
functions. This function order in the ICD-LLIR yields the desired memory layout.

8.3 Greedy WCET-aware positioning approach

It is well-known that the impact of a memory layout modification on caches is hardly
predictable. Therefore, a greedy approach that evaluates the impact of a particular
procedure rearrangement on the WCET seems promising. In case a WCET reduction
was achieved, this novel memory layout is considered as a new starting point for



Real-Time Syst (2010) 46: 251–300 279

the next optimization cycle, and the next most promising function for positioning
is considered. Hence, the approach successively reduces the WCET and guarantees
that no degradation of the WCET is accepted. The greedy approach is an iterative
algorithm that processes a single edge of the WCET-centric call graph during each
iteration cycle. Each cycle performs a WCET analysis to update the WCET timing
data to be used during the next iteration and to keep track of possible WCEP changes.

8.4 Heuristic WCET-aware positioning approach

Due to the possibly large number of time-consuming WCET analyses of the greedy
approach, a fast heuristic was developed that just uses the data of the WCET-centric
call graph for the initial input program. In contrast to the greedy approach, the heuris-
tic performs exactly one WCET analysis to construct the initial call graph.

The speed advantages come at the cost of efficacy. First, the reordering of pro-
cedures is based exclusively on the initial call graph and is performed without re-
evaluating its impact on the WCET. Hence, also undesired WCET increases are ac-
cepted. Second, WCEP switches are not considered. Since the call graph is not up-
dated, the heuristic approach operates on an outdated WCET-centric call graph if the
WCEP changes. The applied positionings would then possibly not affect the WCET.

8.5 Results

Figure 7 shows the results for greedy and heuristic procedure positioning. 100% cor-
respond to the WCET estimates of the original code of different real-life benchmarks
from the MRTC and MediaBench suites compiled with optimization level -O3. It can
be seen that a WCET reduction was achieved for most benchmarks. The greedy algo-
rithm achieved an average WCET reduction by 10%, while the heuristic reduced the
WCET by 4% on average.

The results strongly depend on the initial order of the benchmarks’ procedures.
If the original memory layout already yields a good cache performance, positioning
might lead to smaller improvements than for benchmarks that lead to more cache
conflict misses. Moreover, tiny benchmarks whose text section is small enough to fit
entirely into the cache (e.g., expint) do not profit from this optimization since no
conflict misses can occur. However, applications that completely fit into the (usually)
small I-cache of a resource-restricted embedded system are very uncommon.

For all benchmarks, greedy positioning achieved better results since it does not
allow a degradation of the WCET. This might result in a local optimum missing the

Fig. 7 Relative WCETs after greedy and heuristic procedure positioning



280 Real-Time Syst (2010) 46: 251–300

Fig. 8 Relative WCETs after positioning and cloning

global minimum as could be potentially achieved by the heuristic approach. However,
for the considered benchmarks, this case did not arise. The heuristic approach might
worsen the WCET as experienced for gsm enc. Hence, it is worthwhile to invest
time for the optimization to achieve best results, as done by our greedy approach.

In addition, we combined WCET-aware procedure cloning (cf. Sect. 7) with pro-
cedure positioning. The results of Fig. 6 show WCETs when cloning is done for
a system with disabled caches. Any newly created function clone was placed behind
the last function in the code with no regard to cache effects. Figure 8 shows results for
a combination of procedure cloning and WCET-aware procedure positioning particu-
larly for cache-based systems. 100% correspond to the WCETs of the benchmarks in
their unoptimized versions. Combined procedure cloning and procedure positioning
achieves WCET reductions of up to 64%. These results allow two conclusions.

First, procedure cloning and positioning are best suited in a cache-based system.
Although inserting clones increases code size, the benefits of the improved WCETs
exceed the drawbacks that may emerge from more cache conflict misses due to the
increased working set. Second, combined cloning and positioning achieves better
results for most benchmarks. Both techniques in concert aim at compensating conflict
misses due to the function clones. Obviously, the achieved benefits are smaller than
those of Fig. 7 since positioning was only applied to the clones instead of all functions
in the program. However, the complexity of positioning is negligible so that it should
be applied to all functions in combination with cloning, for even better results.

Unlike the WCET, procedure positioning does not influence the code size since
the applied re-allocations of functions do not require any additional code.

9 WCET-aware scratchpad allocation of program code

Caches are problematic for hard real-time systems. Due to their hardware control,
it is difficult to predict memory access latencies for many popular cache architec-
tures, and statically analyzed WCET estimates may be heavily overestimated. Even
techniques like e.g., procedure positioning (cf. Sect. 8) do not eliminate this inherent
problem. Thus, designers of safety-critical real-time systems often disable caches,
which leads to a low average-case performance since each memory access is served
by the slow main memory. Scratchpad memories (SPMs) have both a good average-
and worst-case performance. This section presents a WCET-aware static SPM alloca-
tion of program code, where the scratchpad contents is pre-computed at compile time



Real-Time Syst (2010) 46: 251–300 281

and remains unchanged during run time. Due to the use of ILP, our SPM allocations
are optimal and result in a minimal WCET for architectures without I-caches.

9.1 Related work

Compiler-guided SPM allocation to reduce ACET or energy dissipation has been
studied intensely in the past. Due to the vast amount of related literature, we only
refer to Wehmeyer and Marwedel (2006) and Verma and Marwedel (2007) where
various ILP-based approaches for SPM allocation are presented. This section thus
lists only contributions related to worst-case execution times.

In Wehmeyer and Marwedel (2005), the impact of SPMs on WCET prediction is
studied. Based on an ILP for energy minimizing SPM allocation, the effect of this
energy reduction strategy on WCET is evaluated. Even though significant WCET
reductions were reported, that work is not a true WCET-aware optimization and does
not consider WCEPs at all.

Software controlled caches that allow to lock loaded cache lines so that they are
not evicted, behave like SPMs. In Campoy et al. (2005), a genetic algorithm for static
I-cache locking is used. However, this approach does not necessarily yield optimal
results. An explicit search for the CFG’s WCEP is performed in Falk et al. (2007)
and the I-cache is locked along the found WCEP. This approach repeatedly examines
the CFG and is thus expensive to perform. In contrast, Puaut (2006) applies multiple
optimization steps along the current WCEP without recomputing the WCEP. After a
couple of optimization steps, the partially optimized CFG is analyzed, the WCEP is
updated and optimization resumes.

In Suhendra et al. (2005), a fully ILP-based solution for static SPM allocation of
data that reduces WCET is presented. It serves as basis for WCC’s SPM allocations.
However, it does not allocate code onto SPMs and suffers from several limitations
that prevent it from optimizing real-life programs. This literature study shows that no
unified ILP-based SPM allocation for program code currently exists which is able to
reduce WCET.

9.2 Structure of the ILP for program code scratchpad allocation

Section 9.2.1 presents the ILP model of a function’s control flow. Section 9.2.2 ex-
tends the ILP to allocate consecutive blocks. A program’s global control flow, capac-
ity constraints and objective function are subject of Sects. 9.2.3 to 9.2.5, resp.

9.2.1 ILP constraints modeling the control flow of a function

In the following, that part of our ILP for SPM allocation of program code is presented
that moves individual basic blocks in their entirety onto the SPM. This is done under
simultaneous consideration of possibly switching WCEPs by formulating ILP con-
straints that inherently model the longest path which starts at a certain basic block.

The following equations represent ILP variables using lowercase letters whereas
constants use uppercase letters. The ILP uses one binary decision variable xi per
basic block bi of a program (cf. (1)). xi states if bi is allocated to main memory



282 Real-Time Syst (2010) 46: 251–300

(memmain) or to the SPM (memspm). A block bi of a function F causes some costs ci

(cf. (2)), i.e., bi ’s WCET depending on whether bi is allocated to main memory or to
the SPM.

xi =
{

1 if basic block bi is assigned to memspm

0 if basic block bi is assigned to memmain
(1)

ci = Ci
main ∗ (1 − xi) + Ci

spm ∗ xi (2)

wL
exit = cL

exit (3)

∀bi ∈ V \ {bL
exit} : ∀(bi, bsucc) ∈ E : wi ≥ wsucc + ci (4)

cL = wL
entry ∗ CL

max (5)

For reducible CFGs, an innermost loop L of F has exactly one back-edge that
turns it into a cyclic graph. Not considering this back-edge turns L’s CFG into an
acyclic graph. This acyclic graph without L’s back-edge is denoted as GL = (V ,E)

in the following. Each node of GL represents a single basic block. Without loss of
generality, there is exactly one unique exit basic block bL

exit of loop L in GL and one
unique entry node bL

entry. The WCET wL
exit of bL

exit is set to the costs of bL
exit (cf. (3)).

The WCET of a path from a node bi (different from bL
exit) to bL

exit must be greater or
equal than the WCET of any successor of bi in GL, plus bi ’s costs (cf. (4)).

Variable wL
entry thus represents the WCET of all paths of the innermost loop L if

L is executed exactly once. To model several executions of L, all CFG nodes v ∈ V

of GL are merged to a new super-node vL. The costs of vL are equal to L’s WCET if
executed once, multiplied by L’s maximal loop iteration count CL

max (cf. (5)).
Replacing a loop L by its super-node vL in a function’s CFG may turn another

loop L′ of function F that immediately surrounds L into an innermost loop with
acyclic CFG G′

L. Hence, (3)–(5) can be formulated analogously for L′. This way, the
innermost loops of F are successively collapsed in the CFG so that ILP constraints
that model F ’s control flow are created from the innermost to the outermost loops.

A program’s WCEP can switch during optimization only at a basic block bi that
has more than one successor because only there, forks in the control flow are possible.
Since (4) is created for each successor of bi , variable wi always reflects the WCET
of any path starting from bi—irrespective of which of the successors actually lies on
the current WCEP. This way, (4) realizes the implicit consideration of (switching)
WCEPs in the ILP. The structure of the ILP constraints of (2)–(5) was originally pro-
posed by Suhendra et al. (2005). However, these basic constraints of Suhendra et al.
need to be refined substantially to obtain a functional SPM allocation for program
code. The following sections describe our extensions to the original ILP formulation.

9.2.2 ILP constraints allocating consecutive basic blocks

The variables xi allow to place a block bi in the SPM independent of the allocation of
any other block bj . This independence is particularly problematic for typical proces-
sors. If a block bi is allocated to main memory and an immediate successor bj of
bi is placed on the SPM, jumps must ensure that bi still reaches bj . Due to the lim-
ited offset that can be encoded as target of jump operations, and due to the usually



Real-Time Syst (2010) 46: 251–300 283

Fig. 9 Typical jump scenarios

too large distance between the address spaces of SPM and main memory, a single
jump operation is often insufficient to jump from bi to bj . Instead, the jump target
address must be computed and stored in an address register so that a register-indirect
jump can be used. Thus, branching from bi to bj may require several machine oper-
ations which constitute a severe jumping overhead. This overhead is avoided if both
bi and bj are placed in the same memory. Thus, the ILP should consider this jump-
ing overhead and allocate consecutive blocks to the same memory to reduce jumping
overhead.

Processors usually support different jump scenarios (cf. Fig. 9). An implicit jump
transfers control from bi to bj without a jump operation in bi . An unconditional jump
always jumps from bi to bj . Finally, a conditional jump branches from bi to either bj

unconditionally or to bk implicitly.
The variables xi , xj and xk for the basic blocks bi , bj and bk , resp., provide the

information whether jumping overhead needs to be considered within the ILP or not.
If a jump from bi to bj is implicit and bi and bj are placed in different memories,

a penalty should be added since this jump across different memories leads to a large
jumping overhead. In contrast, no penalty is added if both bi and bj lie in the same
memory, because both blocks are allocated adjacently so that no jump is required.
The jump penalty for implicit jumps from bi to bj is thus defined in (6). The operator
⊗ denotes the Boolean XOR of two binary variables. XOR can be modeled in an ILP,
but we omit these constraints for the sake of brevity. Phigh is a constant that penalizes
jumps across different memories due to their large jumping overhead.

jpi
impl = (xi ⊗ xj ) ∗ Phigh (6)

jpi
uncond = (xi ⊗ xj ) ∗ Phigh

+ (xi ⊗ xj ) ∗
(

1 −
∏

bk∈Fig. 9b)

(xi ⊗ xk)

)
∗ Plow (7)

jpi
cond = (xi ⊗ xk) ∗ Phigh + (xi ⊗ xj ) ∗ Phigh

+ (xi ⊗ xj ) ∗
(

1 −
∏

bk∈Fig. 9c)

(xi ⊗ xk)

)
∗ Plow (8)

jpi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

jpi
impl if jump of bi is implicit

jpi
uncond if jump of bi is unconditional

jpi
cond if jump of bi is conditional

0 else

(9)



284 Real-Time Syst (2010) 46: 251–300

wL
exit = cL

exit + jpL
exit (10)

∀bi ∈ V \ {bL
exit} : ∀(bi, bsucc) ∈ E : wi ≥ wsucc + ci + jpi (11)

An unconditional jump from bi to bj bypasses some other blocks bk (cf. Fig. 9b)
that must also be considered, since they state if a jump from bi to bj is needed at all.
If bi and bj are placed in different memories, Phigh is applied again. If they are placed
in the same memory mem, and if no other block bk that originally laid between bi and
bj is allocated to mem, bi and bj are adjacent in mem. Thus, no jump from bi to bj

is needed at all and no penalty is applied. If any bk is placed between bi and bj in
mem, an unconditional jump from bi to bj is needed that is penalized by Plow which
is lower than Phigh. The penalty for unconditional jumps is thus given in (7).

Since a conditional jump combines implicit and unconditional jumps (cf. Fig. 9c),
its penalty is the combination of (6) and (7) (cf. (8)). Depending on bi ’s jump sce-
nario, the overall jump penalty jpi is defined in (9). jpi is added to the basic control
flow constraints (cf. (3) and (4)) as defined in (10) and (11).

9.2.3 ILP constraints modeling the global control flow

Up to this point, the ILP of (1)–(11) only models the control flow of a single func-
tion F . Without loss of generality, each function F has one dedicated entry block
bF

entry. For bF
entry, the ILP variable wF

entry denotes the WCET of any path that starts

at bF
entry, assuming that F is called exactly once. However, a block bi of a function

F ′ may call a function F . Here, F ’s WCET (i.e., variable wF
entry) has to be added

to bi ’s WCET. Also, a function call penalty is added to bi ’s WCET since branching
overhead in analogy to Sect. 9.2.2 occurs if bi and bF

entry reside in different memories.
As a result, the overall function call penalty cpi for a block bi is defined in (12). cpi

is finally added to the control flow constraint of (11) as shown in (13).

cpi =

⎧⎪⎨
⎪⎩

wF
entry + (xi ⊗ xF

entry) ∗ Phigh if bi calls F

+ (xi ⊗ xF
entry) ∗ Plow

0 else

(12)

∀bi ∈ V \ {bL
exit} : ∀(bi, bsucc) ∈ E : wi ≥ wsucc + ci + jpi + cpi (13)

si =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(xi ∧ xj ) ∗ Simpl if jump of bi is implicit
(xi ∧ xj ) ∗ Suncond if jump of bi is unconditional
(xi ∧ xk) ∗ Simpl if jump of bi is conditional

+ (xi ∧ xj ) ∗ Suncond

(xi ∧ xF
entry) ∗ Scall if bi calls F

0 else

(14)

∑
bi

(Si ∗ xi + si) ≤ Sspm (15)

wmain
entry � min. (16)

Equation (13) is the constraint which is finally generated for our ILP per block bi

and per successor bsucc of bi . Equation (13) assumes non-recursive functions. Due



Real-Time Syst (2010) 46: 251–300 285

to the practical irrelevance of recursion for embedded real-time software (Engblom
1999), this assumption holds even if support of recursion could be added to the ILP.

9.2.4 Scratchpad capacity constraint

For a valid SPM allocation, the size of all blocks put on the SPM must not exceed
the SPM’s size. Previous work on ILP-based SPM allocation universally assumed a
fixed block size so that it can be used as constant factor in the ILP. However, this is an
over-simplification. Section 9.2.2 discussed that different jump operations are needed,
depending on the jump scenario of a block bi that jumps to bj : no jump is needed if bi

and bj are adjacently placed in the same memory. A conventional jump is needed if
bi and bj are placed in the same memory, but not adjacently. Finally, complex address
computations and register-indirect jumps realize jumps across different memories.

Obviously, these jump scenarios influence a block bi ’s size so that it depends on
the ILP’s decision variables in practice. To cope with such variable block sizes, we
fall back to the jump scenarios (cf. Fig. 9). In the ILP, we only consider bi ’s size if bi

is put on the SPM since we assume a main memory large enough to hold the entire
program. For a block bi placed in the SPM, a new variable si denotes bi ’s growth in
size in bytes if bi ’s successors bj are kept in main memory. Depending on bi ’s jump
scenario, or if bi contains a function call, si is computed as shown in (14).

For each jump scenario, dedicated constants Simpl, Suncond and Scall are used that
represent bi ’s growth in bytes for the different jump scenarios. Using si , the SPM
capacity constraint which ensures the validity of an SPM allocation is defined as
shown in (15). In (15), Si denotes bi ’s byte size in its original form without any
cross-memory jumps. Sspm represents the available SPM size in bytes.

9.2.5 Objective function

The ILP aims to minimize a program’s WCET by assigning basic blocks to the SPM.
Due to (12) and (13), variable wF

entry models the WCET of function F which includes
the WCETs of all functions called by F , plus some abstract jump penalties. Since
function main is the unique entry point of an entire program, variable wmain

entry denotes
the WCET of a program including all penalties. As a consequence, the value of this
decision variable needs to be minimized by the ILP as shown in (16).

This objective function seems surprising since WCET analysis usually relies on
a maximizing ILP due to the Implicit Path Enumeration Technique (IPET) (Li and
Malik 1995). It is a very general technique that models execution paths not as or-
dered sequences of basic blocks, but instead using the blocks’ successor/predecessor
relations and their respective execution counts. Due to this generality that arbitrary
paths in the CFG can be taken, IPET searches the maximal flow through a CFG using
a maximizing ILP.

In contrast, the ILP presented in this section assumes that loops are reducible and
have the single-entry/single-exit property. Thus, we do not need to consider arbitrary
CFG paths. Instead, this assumption allows to simply model paths that start at a cer-
tain node bi and end at an exit node bL

exit (cf. (4)). Since (4) uses the greater-equal
operator to specify a safe upper bound of block bi ’s WCET, our ILP can safely mini-
mize its objective function, in contrast to traditional WCET analysis.



286 Real-Time Syst (2010) 46: 251–300

9.3 Implementation issues

Since the ILP for SPM allocation of program code relies on information about the
size and jump scenario of each block, it is evident that this optimization is realized at
assembly code level within WCC. WCC’s infrastructure (cf. Sects. 2–5) is employed
to turn the ILP of Sect. 9.2 into a fully functional optimization. In particular, it serves
to extract all constants used by the ILP from the assembly code.

Equation (2) depends on constants Ci
main and Ci

spm that represent a block bi ’s

WCET if it is put either in main memory or in the SPM, resp. Ci
main is obtained within

WCC by placing the whole program in main memory and performing a WCET analy-
sis as described in Sect. 3. Afterwards, the whole program is virtually assigned to the
SPM using WCC’s memory hierarchy infrastructure (cf. Sect. 2). Another WCET
analysis of this program yields the values Ci

spm. These two required WCET analyses
are performed within WCC prior to solving the ILP for SPM allocation. Thus, WCET
analyses and SPM allocation are decoupled from each other so that the seemingly an-
tagonistic objective functions of their ILPs do not interfere with each other.

Equation (5) relies on a loop’s maximal iteration count CL
max. In our compiler,

CL
max can stem from user-specified flow facts or from our loop analyzer (cf. Sect. 5).

Irrespective of its origin, flow fact mechanisms (cf. Sect. 4) keep CL
max up to date

during WCC’s optimizations so that always correct values are used by our ILP.
The jump penalties Phigh and Plow (cf. Sect. 9.2.2) do not rely on our compiler

infrastructure. WCET analyses of code for the different jump scenarios revealed that
the values 16 and 8 are appropriate for the considered TriCore architecture.

Equation (14) uses constants Simpl, Suncond and Scall that model the size of the
additional code required to jump from bi to bj if bi is allocated to the SPM but bj

is not. Due to the TriCore-specific jumping code and the different jump scenarios
of (14), Simpl and Suncond equal to 10 bytes and Scall is equal to 12 bytes.

The size Si (cf. (15)) of a basic block without consideration of a jump operation at
the end of bi can be computed easily by enumerating all instructions of bi and accu-
mulating their sizes. The totally available scratchpad size Sspm, however, is extracted
again from WCC’s memory hierarchy infrastructure (cf. Sect. 2).

After solving the ILP, the decision variables xi specify where to place each
block bi . Using WCC’s memory hierarchy API, the program code is finally trans-
formed such that it adheres to the allocation decisions taken by the ILP. In addition,
WCC emits a linker script to generate an executable that reflects the ILP’s SPM allo-
cation.

9.4 Evaluation

This section evaluates the ILP for WCET-aware SPM allocation of code. For bench-
marking, WCC’s optimization level -O2 with 35 different optimizations was activated
so that our SPM allocation was applied to already highly optimized code. The TriCore
TC1796 includes a 48 kB large program code SPM. From these 48 kB, 1 kB is re-
served for system code so that 47 kB remain. A program SPM access takes one cycle
and an access to the uncached main memory (i.e., program Flash) takes 6 cycles.

We applied our ILP to 73 different real-life benchmarks. The simplest ones contain
4 basic blocks, the most complex one 585. Code sizes range from 52 bytes up to



Real-Time Syst (2010) 46: 251–300 287

18 kB with an average of 2.8 kB per benchmark. Since these code sizes are much
smaller than the totally available SPM size, we artificially limit the available SPM
space for benchmarking. For each benchmark, SPM sizes of 10%, 20%, . . . , 100%
of the benchmark’s code size were used. Our results show the WCET estimates of all
benchmarks produced by the WCET analyzer aiT that result from our WCET-aware
SPM allocator as a percentage of the WCET when not using the program SPM at all.

Figure 10 shows the impact of our SPM allocation on the WCET estimates of
two representative benchmarks. g721_encode (size: 3,204 bytes) exhibits a steady
WCET decrease with increasing SPM size. Already for tiny SPMs of only 10% of
the program’s size, the WCET after our optimization amounts to 71% of the original
WCET, i.e., WCET was reduced by 29%. If the benchmark entirely fits into the SPM,
the resulting WCET is 52.2% of the original WCET which leads to savings of 47.8%.
cover (size: 2,670 bytes) exhibits stepwise WCET reductions. At 40%, 70% and

100% of SPM size, our ILP moves exactly those loops with the highest savings onto
the SPM. Thus, WCET savings of 10.2%, 34.9% and 44.3% were achieved, resp.

On average over all 73 benchmarks, steadily decreasing WCETs were observed
for increasing SPM sizes (cf. Fig. 11). Already for tiny SPMs, WCETs decrease to
92.6% of the WCET without any SPM which corresponds to a WCET reduction of

Fig. 10 Relative WCETs after WCET-aware SPM allocation of code for representative benchmarks

Fig. 11 Average WCETs after
WCET-aware SPM allocation of
code



288 Real-Time Syst (2010) 46: 251–300

7.4%. For SPMs large enough to hold entire benchmarks, average WCETs of only
60% of the original WCET were obtained which leads to overall savings of 40%.

A basic block’s size depends on its memory allocation so that the ILP potentially
changes the benchmarks’ code sizes (cf. Sect. 9.2.4). It turned out that these changes
are negligible. We observed a maximal code size increase by 128 bytes for our bench-
marks. On average over all 73 benchmarks, code sizes increased by 0.02%.

The complexity of our ILP-based SPM allocator is negligible, too. For all 73
benchmarks, the ILP solver cplex only takes one or two CPU seconds on an Intel
Xeon machine that runs at 2.4 GHz. Compared to this, the two WCET analyses re-
quired to generate the constants Ci

spm and Ci
main (cf. Sect. 9.3) are more expensive,

but they also terminate within a few CPU minutes for our largest benchmarks.

10 WCET-aware scratchpad allocation of program data

In analogy to Sect. 9, this section presents an ILP for SPM allocation of program
data. Here, program data denotes global data or local data with static storage. The
ILP described in the following also relies on the techniques proposed by Suhendra
et al. (2005) and is thus very similar to that of Sect. 9. Therefore, we just provide
a very compact description of this ILP without a further detailed survey of related
work.

Instead, we just briefly highlight that on the one hand, Suhendra’s work suffers
from several limitations that prevent it from being applied to real-life programs. E.g.,
a way to automatically determine which data is accessed by each basic block is miss-
ing, which is mandatory to formulate an ILP for SPM allocation of data.

On the other hand, Deverge and Puaut (2007) present a hybrid approach for dy-
namic SPM allocation of data that combines an ILP with an iterative heuristic. First,
the current WCEP is computed, and an ILP tailored for this particular WCEP deter-
mines which data to place on the SPM. Next, the WCEP is updated and some more
SPM contents is computed using ILP. In contrast, the following section presents a
fully ILP-based SPM allocation. As was done in Sect. 9, we assume a processor
without D-cache.

10.1 Structure of the ILP for program data scratchpad allocation

A binary variable yi per data object di of a program specifies if a data object is put in
main memory or in SPM (cf. (17)). For SPM allocation of data, a block bj ’s WCET
depends on the placement of all data objects accessed by bj . Each block bj causes
some costs cj . cj reflects bj ’s WCET depending on whether the data objects accessed
by bj are put in main memory or in the SPM (cf. (18)). Here, Cj denotes bj ’s WCET
if all data objects accessed by bj are placed in main memory. Gi,j is a constant that
denotes the WCET reduction of bj if data object di is put on the SPM.

As was done in Sect. 9.2.1, the WCET of a loop’s exit node bL
exit is set to the costs

of bL
exit (cf. (19)) and the WCET of a path from bj to bL

exit must be greater or equal
than the WCET of any successor of bj , plus bj ’s costs (cf. (20)). For an entire loop
L with entry node bL

entry, variable wL
entry denotes the WCET of all paths in L if L is



Real-Time Syst (2010) 46: 251–300 289

executed exactly once. Again, the innermost loop L is collapsed, a new super-node
vL is created and vL’s costs are defined as shown in (21). Equation (20) is formulated
for each successor of bj so that variable wj reflects the WCET of any path that starts
at bj . Thus, (20) realizes the implicit consideration of (switching) WCEPs in the ILP.

yi =
{

1 if data object di is assigned to memspm

0 if data object di is assigned to memmain
(17)

cj = Cj −
∑

di∈data objects

Gi,j ∗ yi (18)

wL
exit = cL

exit (19)

∀bj ∈ V \ {bL
exit} : ∀(bj , bsucc) ∈ E : wj ≥ wsucc + cj (20)

cL = wL
entry ∗ CL

max (21)

cpj =
{

wF
entry if bj calls F

0 else
(22)

∀bj ∈ V \ {bL
exit} : ∀(bj , bsucc) ∈ E : wj ≥ wsucc + cj + cpj (23)∑

di∈data objects

(Si ∗ yi) ≤ Sspm (24)

wmain
entry � min. (25)

For a function F with entry node bF
entry, wF

entry denotes the WCET of any path

that starts at bF
entry, if that F is called exactly once. If a block bj calls a function F ,

a call penalty cpj per block bj is introduced (cf. (22)). cpj is added to the control
flow constraint of (20), and the resulting equation (23) is the constraint that is finally
generated for our ILP per block bj and per successor bsucc of bj .

In contrast to Sect. 9.2.4, allocating data objects does not change the objects’ size.
Thus, the data objects’ sizes are true constants in our ILP that can easily be computed
by WCC. Hence, the SPM capacity constraint is defined as shown in (24). Si denotes
the byte size of object di , and Sspm is the available data SPM size in bytes.

In analogy to Sect. 9.2.5, the above ILP optimally reduces WCETs by minimizing
variable wmain

entry that denotes the entire program’s WCET (cf. (25)).

10.2 Implementation issues

As for the SPM allocation of code, the ILP for SPM allocation of data is realized
at assembly code level. Equation (18) uses the constants Cj and Gi,j . Cj represents
the WCET of block bj and is obtained within WCC by allocating all data objects to
main memory and performing a WCET analysis as described in Sect. 3. Gi,j models
the gain achieved for block bj if a data object di is moved from main memory to the
SPM. To obtain Gi,j , it must be known how often bj accesses di . This information is
generally difficult to compute and requires massive support by WCC’s infrastructure.



290 Real-Time Syst (2010) 46: 251–300

Since modern processors usually are load-store machines, address registers keep
addresses, and dedicated load/store operations use them to access memory. To obtain
the required data access information per block bj , one needs to know the address reg-
isters’ contents for each load/store in bj . The WCET analyzer aiT already provides
such an address register analysis (cf. Sects. 1.1 and 3.4). Hence, the WCET analysis
used to obtain the constants Cj also provides register analysis results. If aiT deter-
mines that a certain load/store accesses an address range that belongs to exactly one
data object, we have highly precise data access information for that load/store.

Unfortunately, aiT can not always compute address register values this precisely.
To obtain more precise information, WCC includes a pointer alias analysis. Since
aiT works on assembly code level, we complement its low-level analysis by an alias
analysis at the ICD-C source code level. WCC’s alias analysis has the following fea-
tures:

– interprocedural analysis that considers data flow between functions,
– context-sensitive function argument/return value analysis using summaries (Nys-

trom et al. 2004),
– inclusion-based analysis for high precision (Andersen 1994),
– field-sensitive analysis that provides data on element accesses of composed types.

Using this alias analysis, the ICD-C IR contains information about the location a
pointer variable points to for each pointer dereferencing expression. This information
is preserved during code selection so that points-to data is available in WCC’s back-
end. Additionally, the code selector creates points-to data for array and struct accesses
using the regular C operators . and []. This points-to information complements
aiT’s analysis and is used to determine which data object is accessed by a load/store.
Accumulating the points-to information over all operations of a block bj yields how
many times a data object di is accessed by bj . Multiplying this value by the speed
difference between main memory and SPM finally yields the needed constants Gi,j .

All other constants required by the ILP for SPM allocation of program data (i.e.,
CL

max, Si and Sspm) are determined by the WCC compiler in analogy to Sect. 9.3.

10.3 Evaluation

The Infineon TriCore TC1796 features a data SPM of 56 kB accessible in one cycle
and 64 kB of data main memory with 6 cycles access latency. It does not feature a
D-cache per se. From the available data SPM, 12 kB are reserved for the stack and
4 kB are used for the TriCore’s Context Save Area so that a total of 40 kB remains
for free use by our SPM allocation. Our ILP was applied to only those benchmarks
that contain global data or local data with static storage. During benchmarking, SPM
sizes between 8 bytes and 40 kB were used (cf. Fig. 12). Our results show the WCET
estimates of all benchmarks that result from our WCET-aware SPM allocator as a
percentage of the WCET when not using the data SPM at all.

Figure 12 shows the impact of our WCET-aware data SPM allocation on the
WCET estimates of two representative benchmarks. petrinet is a Petri net simula-
tion that uses 6 global variables of only 72 bytes size in total. Some of these variables
are accessed very frequently, and our ILP clearly identifies how often each variable



Real-Time Syst (2010) 46: 251–300 291

Fig. 12 Relative WCETs after
WCET-aware SPM allocation of
data for representative
benchmarks

is accessed by which basic block and moves the most beneficial variables onto the
data SPM. Hence, already a tiny data SPM of 8 bytes leads to WCETs after our op-
timization of only 82.5% of the original WCET, i.e., WCET was reduced by 17.5%.
A 32 bytes large SPM leads to a relative WCET of 71.4% which corresponds to a
total WCET reduction of 28.6%. If the entire global data of petrinet fits into the
SPM, a WCET of 69.7% was achieved which translates to an overall reduction by
30.3%.
fsm (electric window lifter control) exhibits a more steady WCET reduction. fsm

uses 98 global variables to save the automaton’s state. All these variables are at most
4 bytes large, some of them are accessed frequently, some only rarely. For an 8 bytes
SPM, a relative WCET of 93.5% was observed that leads to a WCET reduction of
6.5%. Increased SPM sizes translate to reduced WCETs as shown in Fig. 12. The best
results were obtained for SPMs of size 256 bytes or larger. Here, our optimization
achieves relative WCETs of 78.6% which corresponds to improvements of 21.4%.

On average over all benchmarks, WCETs decreased steadily for increasing data
SPM sizes (cf. Fig. 13). Already for small SPMs, average WCETs decrease to 97.4%
of the WCET without any SPM which corresponds to a WCET reduction of 2.6%.
For the real TriCore architecture with its 40 kB SPM, average WCETs of only 79.8%
of the original WCET were obtained which leads to overall savings of 20.2%.

For the considered TriCore architecture, no additional assembly instructions have
to be generated by this optimization. Instead, only the memory locations of the vari-
ables assigned to the SPM need to be adjusted. Thus, our SPM allocation of data does
not modify code size at all. In analogy to Sect. 9, the complexity of the ILP for data



292 Real-Time Syst (2010) 46: 251–300

Fig. 13 Average WCETs after
WCET-aware SPM allocation of
data

SPM allocation is negligible in practice. Solving times of at most two CPU seconds
were observed on an Intel Xeon machine that runs at 2.4 GHz.

11 WCET-aware register allocation

Register allocation is considered to be the most important compiler optimization. Its
goal is to use a processor’s registers most efficiently to reduce slow main memory
accesses. Due to the increasing speed gap between processors and memories, register
accesses are orders of magnitudes faster than memory accesses. However, memory
accesses can not be totally avoided, since the amount of temporary variables (aka.
virtual registers VREGs) at a certain place in a program can exceed the number of
available physical processor registers (PHREGs). In such a situation, spill code is
inserted during register allocation that swaps out a register to memory and back.

Current register allocators usually decide heuristically where to insert spill code.
Due to a lack of precise models, compilers are unaware of the impact of spill code on
a program’s execution time. Especially for real-time systems, badly placed spill code
can have a dramatic impact on a program’s WCET. The following sections present a
WCET-aware graph coloring register allocator. Its main contributions are its explicit
use of WCET data during optimization and the automatic update of WCET data in
the course of the optimization to cope with the inherent instability of the WCEP.

Since WCC is the very first compiler to include a technique for WCET-aware reg-
ister allocation, no related work currently exists. All previously published approaches
for register allocation only focus either on ACET or on code size. Nowadays, graph
coloring is the standard register allocation technique. Due to its outstanding impor-
tance, it is discussed in more detail in the following section.

11.1 Traditional graph coloring

Traditional graph coloring based register allocation (GC) was originally published
in Chaitin et al. (1981). An interference graph G = (V ,E) contains a node for each
VREG of a function and for each of the C available PHREGs. An undirected edge e =
{v,w} is added to E whenever nodes v and w interfere, i.e., if they either represent



Real-Time Syst (2010) 46: 251–300 293

VREGs which are simultaneously alive and thus should not share the same PHREG,
or if a VREG v must not be allocated to PHREG w for architectural reasons.

GC assigns one of C colors that denote the PHREGs to each node v ∈ V such that
no two adjacent nodes have the same color. According to Chaitin et al. (1981), this is
done as follows:

Build: Construct the interference graph G = (V ,E).
Simplify: Iteratively remove each v ∈ V from G that has a degree < C, push v onto

stack S. This step removes all nodes from G which are always colorable due to the
small amount of adjacent nodes.

Spill: After simplify, each node v has degree ≥ C. Select one node v ∈ V , mark v as
potential spill, remove v from G, push v onto S. If V �= ∅, continue with simplify.

Select: Iteratively pop nodes v from S, re-insert them into G. If v is not a potential
spill, assign a free color c to v. If v is a potential spill, there may be a free color c.
If this is the case, assign c to v. Else, don’t color v and mark v as actual spill.

Start over: If there are actual spills v ∈ V , insert a load operation before each use of
v and a store operation after each definition of v and continue with build.

By inserting spill operations before uses and after definitions of an actual spill v,
v’s lifetime is split into smaller intervals in the hope that these smaller intervals will
only interfere with lifetimes of fewer VREGs in the next iteration of the above algo-
rithm. This register allocator has proven to have high quality and has a complexity of
O(n logn), where n is the number of a program’s instructions.

A crucial issue of this allocator is which node v to choose as potential spill during
the spill stage. Related literature proposes several heuristics for this purpose:

– Select nodes according to the order in which VREGs occur in the compiler’s IR.
– Select the node v with highest degree, since spilling this node reduces the degree

of many other nodes in G so that it is more likely to maximize the number of nodes
with degree < C after spilling v.

– Select a node v depending on the degree of v, on the number of operations o that
use or define v, on the register pressure around o and on the loop nesting level of
each such operation o.

The above list shows that no formal timing model is used during spilling. Due to a
lack of such models, heuristics try to estimate the impact of spilling on code quality.
Not surprisingly, one heuristic is better in some cases, and another heuristic is better
in other cases. Due to the missing link between the heuristic’s estimates and actual
timing data, a register allocator may be guided into a wrong direction.

11.2 WCET-aware graph coloring

Due to the spill heuristics discussed in Sect. 11.1, current register allocators have no
direct control over where spill code is generated, since only simplified measures are
used. This can have severe effects on a program’s WCET, because traditional spill
heuristics may now lead to spill code generation along the WCEP.

A WCET-aware register allocator needs to know the worst-case execution frequen-
cies per CFG node. Unfortunately, static WCET analysis can not be applied to obtain



294 Real-Time Syst (2010) 46: 251–300

this data for a program P . This is because P is not executable since it uses VREGs
instead of PHREGs. Hence, there are cyclic dependencies between register allocation
and WCET analysis—in addition to the requirements discussed in Sect. 1.1—which
must be broken in order to obtain a WCET-aware register allocator.

Conventional register allocators try to keep as many VREGs in PHREGs as pos-
sible and move a VREG to memory only if really necessary. The traditional way
of thinking thus assumes optimistically that all VREGs fit into the physical regis-
ter file and that only exceptionally, a VREG is moved to memory. Graph coloring
(cf. Sect. 11.1) also follows this strategy: it first removes all colorable nodes from
the interference graph, and only after that, a decision on one single potential spill is
taken.

However, this strategy is infeasible for WCET-aware register allocation. The inter-
mediate code produced during all the steps and iterations of traditional graph coloring
is not executable and thus, no WCEP can be determined. For WCET-aware graph col-
oring, we propose the opposite way of thinking: we assume pessimistically that all
VREGs are kept in memory. Our register allocator thus moves VREGs from memory
to PHREGs. This has the advantage that the IR generated in the course of register
allocation is always executable so that WCEPs can be determined.

The WCET-aware graph coloring algorithm is shown in Fig. 14. In a loop, it han-
dles one basic block per iteration (lines 2 to 13). For a program P ’s IR that is input
to register allocation, the algorithm maintains a copy P ′ which is fully spilled, i.e.,
where all VREGs of P are marked as actual spills and load/store operations are in-
serted for spilling (lines 3 and 4). This fully spilled IR is statically analyzed by the
WCC compiler to obtain the current WCEP, which is feasible since P ′ does not con-
tain any VREGs (line 5).

Among all blocks on the current WCEP, the block b′ with highest spill code exe-
cution in the worst case is chosen. Worst-case spill code execution is the product of
the number of inserted spill operations per block and the block’s worst-case execution
frequency as computed by the WCET analyzer (line 8). For b′ within the fully spilled
IR P ′, its counterpart b in the IR P still which contains VREGs is searched (line 9).

Fig. 14 Algorithm for
WCET-aware graph coloring



Real-Time Syst (2010) 46: 251–300 295

Block b is the most critical one along the current WCEP. Hence, all VREGs of
b should be kept in PHREGs. However, if register pressure is too high, spilling of
some of b’s VREGs should lead to only minimal spill code execution in b in the
worst case. Therefore, all VREGs v of b are sorted by their number of occurrences
in b (line 11). Since spill code generation always inserts a load before (store after)
each use (definition) of v, v’s occurrences in b correlate with the amount of spill code
needed in b to spill v. This sorting is a precedence which VREGs are better candidates
for spilling and which ones are not. It is passed to a standard graph coloring allocator
(line 12) that actually maps these VREGs to PHREGs. After that, b′ is put in a black-
list to prevent it from being selected again by line 8 during a later iteration. For
the sake of simplicity, this black-listing is omitted in Fig. 14. After basic block b is
processed, the allocation loop iterates and updates the current WCEP again (line 5).

If the current WCEP does not contain any more VREGs, the allocation loop is left
(lines 6 and 7). However, the IR P might still contain VREGs after leaving the loop.
This happens e.g., for basic blocks in the CFG which have never been on the WCEP—
such blocks have never been considered during the allocation loop. However, they
still need to be allocated. To obtain a fully allocated IR, all remaining VREGs in P

are passed to a final run of the traditional graph coloring register allocator (line 14).
For this final run, the applied spill heuristic does not matter. This is because even

in the worst case where all remaining VREGs would be spilled, the blocks that still
contain VREGs in line 14 will never ever lie on the WCEP and thus never influence
P ’s global WCET. If they lay on the WCEP, they would have been captured by the
allocation loop—in contradiction to the loop’s exit condition. Hence, it is sufficient to
pass an arbitrary precedence list of VREGs to the standard graph coloring allocator.
For the sake of simplicity, we just use the order in which VREGs occur in P here.

11.3 Evaluation

Since register allocation needs information about the liveness and interference of
VREGs and about a processor’s physical registers, it can only be applied at assembly
code level. The TriCore’s register file has 16 data and 16 address registers. However,
not all of them can be used freely by a register allocator. Several registers are used
e.g., to realize function calling conventions or serve as stack or return address pointer
so that we use a total of 14 data and 10 address registers. Benchmarking used WCC’s
optimization level -O3 such that register allocation is always applied to already highly
optimized code. In all experiments, spilling uses the TriCore’s highly efficient SPM
memory with 1 cycle access latency.

We used 46 different benchmarks from various domains to evaluate our WCET-
aware register allocator: some are small filter and sorting routines, others are large
and complex audio/video codecs. Their basic block counts range from 7 to 808. All
benchmarks have in common that register pressure is high so that spill code must be
generated. Figure 15 shows the WCETs of all benchmarks after WCET-aware register
allocation as a percentage of the WCETs that result from traditional graph coloring
(cf. Sect. 11.1) which selects the node with highest degree as spill heuristic.

WCET-aware register allocation reduces the WCETs of all benchmarks consid-
erably. For qurt, the WCET after WCET-aware register allocation is 93.1% of the



296 Real-Time Syst (2010) 46: 251–300

Fig. 15 Relative WCETs after WCET-aware register allocation

original WCET, i.e., WCET was reduced by 6.9%. For all other benchmarks, even
higher gains were observed. spectral exhibits the largest WCET reductions: the
WCET after our register allocation is only 24.1% of the original WCET which leads
to savings of 75.9%. On average over all 46 benchmarks, a WCET of 68.8% of the
original WCET was achieved so that WCETs were reduced by 31.2% on average.

For all 46 benchmarks, we observed an average increase of the benchmarks’ text
section of 29.8%, with a maximal increase of 298% for dijkstra. However, this is
the only benchmark with such extreme increases. dijkstra is a very small code so
that the insertion of only few additional spill instructions leads to excessive percental
code size increases. These increases stem from the fact that our WCET-aware register
allocator generates more spill code if this helps to keep the WCEP free of spill code.

Even though our register allocator performs a WCET analysis for the allocation
of each basic block along the WCEP which leads to a total of 1,979 WCET analy-
ses during allocation of all 46 benchmarks, the run times of our algorithm are still
moderate. Register allocation of all benchmarks took a total of 12:15 CPU-hours on
an Intel Xeon at 2.4 GHz. Of course, this is much longer than the overall 7:40 CPU
minutes used by graph coloring, but it is still acceptable if high code quality for hard
real-time systems is required.

12 Conclusions and future work

This article presents the WCET-aware C Compiler WCC that aims at code opti-
mization to reduce WCETs. WCET-aware optimization needs a complex compiler
infrastructure. The exploitation of memory hierarchies for WCET reduction requires
detailed information about memories inside the compiler. Obviously, a tight integra-
tion of a WCET analyzer into the compiler is mandatory for WCET-aware optimiza-
tion. Since WCET analysis relies on flow facts, WCC provides sophisticated mecha-
nisms for source-level flow fact annotation. Besides user-provided flow facts, WCC
includes an innovative loop analyzer that derives flow facts automatically. A back-
annotation module is finally used to perform WCET-aware optimization at source
code level.

On top of this infrastructure, the WCET-aware optimizations procedure cloning
and positioning, scratchpad memory allocation and register allocation are integrated
into WCC. Each of them reduces the WCETs of typical benchmarks between 3% and



Real-Time Syst (2010) 46: 251–300 297

Fig. 16 WCETs after sequence
of WCET-aware optimizations

48% on average. To clearly show the performance of the entire WCC framework,
we applied WCET-aware register allocation, scratchpad allocation of both code and
data, and procedure positioning to the matmult benchmark. Since this benchmark
does not exhibit any potential for procedure cloning, this optimization is excluded
here.

Figure 16 shows the absolute WCETs achieved by this combination of our novel
techniques. All our WCET-aware optimizations are applied on top of WCC’s opti-
mization level -O2. The X-axis of Fig. 16 shows the different optimization sequences
applied to matmult; they are labeled from 1) to 5) in the figure.

As can be seen, register allocation reduces the WCETs achieved by optimization
level -O2 by 284,000 cycles which corresponds to a reduction by 37.7%. The sub-
sequent activation of our SPM allocation of program code yields a further reduction
by 120,000 cycles. Compared to the previous bar 2), this translates to a reduction
by 24.5%. Additionally enabling the SPM allocation of data reduces the WCET by
another 135,000 cycles which—again compared to the previous bar 3)—corresponds
to a percental decrease by 36.4%. Procedure positioning finally reduces the absolute
WCETs by 8,000 extra cycles. Comparing this absolute reduction with the previous
bar 4) of Fig. 16 shows that procedure positioning reduces WCETs by 3.4%.

This example shows that the savings individually achieved by our optimizations
add up if applied in combination. In total, the optimizations described in this article
are able to reduce the WCET of the matmult example from 775,720 cycles down
to 227,794 cycles which corresponds to an overall reduction by more than 70%.

In the future, more WCET-aware optimizations will be integrated into WCC. This
particularly includes function inlining, loop unswitching, dynamic SPM allocations
and ILP-based register allocation. Besides pure WCET-aware optimizations, we will
consider multi-objective optimizations to achieve trade-offs between real-time con-
straints and other optimization criteria like e.g., energy dissipation.

Acknowledgements The authors would like to thank AbsInt Angewandte Informatik GmbH for their
support related to WCET analysis using the aiT framework.



298 Real-Time Syst (2010) 46: 251–300

References

AbsInt Angewandte Informatik GmbH (2010) aiT: worst-case execution time analyzers. http://www.
absint.com/ait

Andersen LO (1994) Program analysis and specialization for the C programming language. PhD thesis,
University of Copenhagen, Copenhagen

Azevedo R, Rigo S, Bartholomeu M et al (2005) The ArchC architecture description language and tools.
Int J Parallel Program 33(5):453–484

Börjesson H (1996) Incorporating worst case execution time in a commercial C-compiler. Master’s thesis,
Uppsala University, Department of Computer Systems, Uppsala, Sweden

Campoy AM, Puaut I, Ivars AP et al (2005) Cache contents selection for statically-locked instruction
caches: an algorithm comparison. In: Proceedings of ECRTS, Palma de Mallorca, Spain

Chaitin GJ, Auslander MA et al (1981) Register allocation via coloring. Comput Lang 6
Colin A, Puaut I (2001) A modular and retargetable framework for tree-based WCET analysis. In: Pro-

ceedings of ECRTS, Delft, Netherlands
Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs

by construction or approximation of fixpoints. In: Proceedings of POPL, Los Angeles, USA
Cullmann C, Martin F (2007) Data-flow based detection of loop bounds. In: Proceedings of WCET, Pisa,

Italy
Deverge J-F, Puaut I (2007) WCET-directed dynamic scratchpad memory allocation of data. In: Proceed-

ings of ECRTS, Pisa, Italy
Engblom J (1997) Worst-case execution time analysis for optimized code. Master’s thesis, Uppsala Uni-

versity, Department of Computer Systems, Uppsala, Sweden
Engblom J (1999) Static properties of commercial embedded real-time programs, and their implication for

worst-case execution time analysis. In: Proceedings of RTAS, Vancouver, Canada
Engblom J, Ermedahl A (2000) Modeling complex flows for worst-case execution time analysis. In: Pro-

ceedings of RTSS, Orlando, USA
Engblom J, Ermedahl A, Sjödin M et al (1999) Towards industry strength worst-case execution time analy-

sis. In: Proceedings of SNART, Linköping, Sweden
Ermedahl A, Gustafsson J (1997) Deriving annotations for tight calculation of execution time. In: Proceed-

ings of Euro-Par, Passau, Germany
Ermedahl A, Sandberg C, Gustafsson J et al (2007) Loop bound analysis based on a combination of

program slicing, abstract interpretation, and invariant analysis. In: Proceedings of WCET, Pisa, Italy
Falk H, Marwedel P (2003) Control flow driven splitting of loop nests at the source code level. In: Pro-

ceedings of DATE, Munich, Germany
Falk H, Lokuciejewski P, Theiling H (2006) Design of a WCET-aware C compiler. In: Proceedings of

ESTIMedia, Seoul, Korea
Falk H, Plazar S, Theiling H (2007) Compile time decided instruction cache locking using worst-case

execution paths. In: Proceedings of CODES+ISSS, Salzburg, Austria
Ferdinand C, Heckmann R, Langenbach M et al (2001) Reliable and precise WCET determination for a

real-life processor. In: Proceedings of EMSOFT, Tahoe City, USA
Gustafsson J, Ermedahl A, Sandberg C et al (2006) Automatic derivation of loop bounds and infeasible

paths for WCET analysis using abstract execution. In: Proceedings of RTSS, Rio de Janeiro, Brazil
Healy C, Sjödin M, Rustagi V et al (1998) Bounding loop iterations for timing analysis. In: Proceedings

of RTAS, Denver, USA
Heckmann R, Ferdinand C (2004) Worst-case execution time prediction by static program analysis. In:

Proceedings of IPDPS, Santa Fe, USA
Hoffmann A, Kogel T, Nohl A et al (2001) A novel methodology for the design of application specific

integrated processors (ASIP) using a machine description language. IEEE TCAD 20(11)
Holsti N, Gustafsson J, Bernat G et al (2008) WCET tool challenge 2008: report. In: Proceedings of

WCET, Prague, Czech Republic
Horwitz S, Reps T, Binkley D (1988) Interprocedural slicing using dependence graphs. In: Proceedings of

PLDI, Atlanta, USA
Hwu W-mW, Chang PP (1989) Achieving high instruction cache performance with an optimizing compiler.

In: Proceedings of ISCA, Jerusalem, Israel

http://www.absint.com/ait
http://www.absint.com/ait


Real-Time Syst (2010) 46: 251–300 299

Informatik Centrum Dortmund e. V. (2010a) ICD-LLIR low-level intermediate representation. http://www.
icd.de/es/icd-llir

Informatik Centrum Dortmund e. V. (2010b) ICD-C compiler framework. http://www.icd.de/es/icd-c
Kästner D (2003) TDL: a hardware description language for retargetable postpass optimizations and analy-

ses. In: Proceedings of GPCE, Erfurt, Germany
Kirner R (2000) Integration of static runtime analysis and program compilation. Master’s thesis, Techni-

sche Universität Wien, Vienna, Austria
Kirner R (2001) The programming language wcetC. Technical report, Technische Universität Wien, Vi-

enna, Austria
Kirner R (2003) Extending optimising compilation to support worst-case execution time analysis. PhD

thesis, Technische Universität Wien, Vienna, Austria
Kirner M (2006) Automatic loop bound analysis of programs written in C. Master’s thesis, Technische

Universität Wien, Vienna, Austria
Kirner R, Puschner P (2001) Transformation of path information for WCET analysis during compilation.

In: Proceedings of ECRTS, Delft, Netherlands
Lebeck AR, Wood DA (1994) Cache profiling and the SPEC benchmarks: a case study. IEEE Comput

27(10)
Lee EA (2005) Absolutely positive on time: what would it take? IEEE Comput
Li Y-TS, Malik S (1995) Performance analysis of embedded software using implicit path enumeration. In:

Proceedings of DAC, San Francisco, USA
Lokuciejewski P, Falk H, Schwarzer M, Marwedel P, Theiling H (2007) Influence of procedure cloning on

WCET prediction. In: Proceedings of CODES+ISSS, Salzburg, Austria
Lokuciejewski P, Falk H, Marwedel P (2008) WCET-driven cache-based procedure positioning optimiza-

tions. In: Proceedings of ECRTS, Prague, Czech Republic
Lokuciejewski P, Cordes D, Falk H et al (2009) A fast and precise static loop analysis based on abstract

interpretation, program slicing and polytope models. In: Proceedings of CGO, Seattle, USA
Mendlson A, Pinter SS, Shtokhamer R (1994) Compile time instruction cache optimizations. ACM

SIGARCH Comput Arch News 22(1)
Nystrom EM, Kim H-S, Hwu W-mW (2004) Bottom-up and top-down context-sensitive summary-based

pointer analysis. In: Proceedings of SAS, Verona, Italy
Prantl A, Schordan M, Knoop J (2008) TuBound—a conceptually new tool for worst-case execution time

analysis. In: Proceedings of WCET, Prague, Czech Republic
Puaut I (2006) WCET-centric software-controlled instruction caches for hard real-time systems. In: Pro-

ceedings of ECRTS, Dresden, Germany
Puschner P, Burns A (2000) A review of worst-case execution-time analysis. Real-Time Syst 18(2/3)
Sandberg C, Ermedahl A, Gustafsson J et al (2006) Faster WCET flow analysis by program slicing. ACM

SIGPLAN Not 41(7)
Suhendra V, Mitra T, Roychoudhury A et al (2005) WCET centric data allocation to scratchpad memory.

In: Proceedings of RTSS, Miami, USA
Tomiyama H, Yasuura H (1997) Code placement techniques for cache miss rate reduction. ACM TODAES

2(4)
Verdoolaege S, Seghir R, Beyls K et al (2004) Analytical computation of Ehrhart polynomials: enabling

more compiler analyses and optimizations. In: Proceedings of CASES, Washington, USA
Verma M, Marwedel P (2007) Advanced memory optimization techniques for low-power embedded

processors. Springer, Berlin
WCET-aware Compilation (2010) http://ls12-www.cs.tu-dortmund.de/research/activities/wcc
Wehmeyer L, Marwedel P (2005) Influence of memory hierarchies on predictability for time constrained

embedded software. In: Proceedings of DATE, Munich, Germany
Wehmeyer L, Marwedel P (2006) Fast, efficient and predictable memory accesses—optimization algo-

rithms for memory architecture aware compilation. Springer, Berlin
Weiser MD (1979) Program slices: formal, psychological, and practical investigations of an automatic

program abstraction method. PhD thesis, University of Michigan, Ann Arbor, USA
Zhao W, Kulkarni P, Whalley D et al (2004) Tuning the WCET of embedded applications. In: Proceedings

of RTAS, Toronto, Canada
Zhao W, Kreahling W, Whalley D et al (2005) Improving WCET by optimizing worst-case paths. In:

Proceedings of RTAS, San Francisco, California

http://www.icd.de/es/icd-llir
http://www.icd.de/es/icd-llir
http://www.icd.de/es/icd-c
http://ls12-www.cs.tu-dortmund.de/research/activities/wcc


300 Real-Time Syst (2010) 46: 251–300

Heiko Falk received his Ph.D. in Computer Science from the Univer-
sity of Dortmund (Germany) in 2004. From 2004 on until today, he
works as assistant professor in the embedded systems group at the TU
Dortmund.
His Ph.D. focused on high-level source code optimizations. Typical em-
bedded multimedia applications only use a small fraction of their exe-
cution time to compute audio or video data. Most of the execution time
is used to evaluate complex control flow. Motivated by this observation,
Dr. Falk developed novel techniques for control flow optimization at the
source code level.
In the last years, the focus of his work is on code generation and opti-
mization for performance and predictability of safety-critical real-time
systems. The WCC compiler initially established by him and developed
by the research team led by Dr. Falk is the currently only known com-
piler which is able to systematically reduce the worst-case execution

time (WCET) of programs by tightly integrating static timing analyses into the code generation and opti-
mization stage.

Paul Lokuciejewski received the diploma degree in Applied Computer
Science from the University of Dortmund, Germany, in 2005.
Afterwards, he has been working with Prof. Peter Marwedel as a mem-
ber of the embedded systems group at Dortmund. In 2010, he received
the Ph.D. degree in Computer Science from TU Dortmund. His research
focus is on worst-case execution time aware compilation techniques
for real-time systems. As key researcher in Dortmund’s WCC compiler
team, Dr. Lokuciejewski developed several novel WCET-aware opti-
mizations operating at both the source code and assembly level of the
program code.


	A compiler framework for the reduction of worst-case execution times
	Abstract
	Introduction
	Motivation
	Related work
	Overall compiler infrastructure and article outline

	Specification of memory hierarchies
	Related work
	Memory hierarchy specification

	Integration of static WCET analysis into the compiler
	Related work
	Conversion from LLIR to CRL2
	Transparent invocation of aiT
	Import of worst-case execution data

	Flow fact specification and transformation
	Specification of flow facts
	Related work
	Loop bounds
	Flow restrictions

	Flow fact transformation
	Flow fact translation
	Flow fact update


	Automated loop bound analysis
	Related work
	Abstract interpretation
	Interprocedural program slicing
	Polyhedral loop evaluation
	Results
	Determination of loop iteration counts
	Analysis time


	Back-annotation of WCET data
	Mapping of low-level to high-level structures
	Transformed data during back-annotation

	WCET-aware procedure cloning
	Impact of procedure cloning on WCET estimation
	Results

	WCET-aware procedure positioning
	Related work
	WCET-centric call graph-based positioning
	Greedy WCET-aware positioning approach
	Heuristic WCET-aware positioning approach
	Results

	WCET-aware scratchpad allocation of program code
	Related work
	Structure of the ILP for program code scratchpad allocation
	ILP constraints modeling the control flow of a function
	ILP constraints allocating consecutive basic blocks
	ILP constraints modeling the global control flow
	Scratchpad capacity constraint
	Objective function

	Implementation issues
	Evaluation

	WCET-aware scratchpad allocation of program data
	Structure of the ILP for program data scratchpad allocation
	Implementation issues
	Evaluation

	WCET-aware register allocation
	Traditional graph coloring
	WCET-aware graph coloring
	Evaluation

	Conclusions and future work
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


