
Real-Time Syst (2010) 45: 26–71
DOI 10.1007/s11241-010-9092-7

Optimal online multiprocessor scheduling of sporadic
real-time tasks is impossible

Nathan Fisher · Joël Goossens · Sanjoy Baruah

Published online: 5 March 2010
© Springer Science+Business Media, LLC 2010

Abstract Optimal online scheduling algorithms are known for sporadic task sys-
tems scheduled upon a single processor. Additionally, optimal online scheduling al-
gorithms are also known for restricted subclasses of sporadic task systems upon an
identical multiprocessor platform. The research reported in this article addresses the
question of existence of optimal online multiprocessor scheduling algorithms for gen-
eral sporadic task systems. Our main result is a proof of the impossibility of optimal
online scheduling for sporadic task systems upon a system comprised of two or more
processors. The result is shown by finding a sporadic task system that is feasible on
a multiprocessor platform that cannot be correctly scheduled by any possible online,
deterministic scheduling algorithm. Since the sporadic task model is a subclass of
many more general real-time task models, the nonexistence of optimal scheduling
algorithms for the sporadic task systems implies nonexistence for any model which
generalizes the sporadic task model.

Keywords Real-time scheduling · Multiprocessor systems · Sporadic task model ·
Optimal scheduling algorithms

N. Fisher (�)
Wayne State University, Detroit, MI, USA
e-mail: fishern@cs.wayne.edu

J. Goossens
Université Libre de Bruxelles, Brussels, Belgium
e-mail: joel.goossens@ulb.ac.be

S. Baruah
The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
e-mail: baruah@cs.unc.edu

mailto:fishern@cs.wayne.edu
mailto:joel.goossens@ulb.ac.be
mailto:baruah@cs.unc.edu

Real-Time Syst (2010) 45: 26–71 27

1 Introduction

The sporadic task model (Mok 1983; Leung and Whitehead 1982) has received
tremendous research attention over the years for its usefulness in modeling recur-
ring processes for hard-real-time systems. A sporadic task τi = (ei, di,pi) is char-
acterized by a worst-case execution requirement ei , a (relative) deadline di , and a
minimum inter-arrival separation pi , which is, for historical reasons, also referred
to as the period of the task. Such a sporadic task generates a potentially infinite se-
quence of jobs, with successive job-arrivals separated by at least pi time units. Each
job has a worst-case execution requirement equal to ei and a deadline that occurs
di time units after its arrival time. A sporadic task system τ is a collection of such
sporadic tasks.

Two significant factors contribute to the popularity of the sporadic task model in
real-time system design. One factor is the generality of the sporadic task model. The
sporadic task model is an extension of an earlier task model known as the Liu and
Layland (LL) task model (Liu and Layland 1973). An LL task, τi , is only specified
by an worst-case execution requirement ei and a period pi . The relative deadline
is implicit in the period parameter (i.e., a job of an LL task has absolute deadline pi

time units after its arrival). The sporadic task model is, thus, a generalization of the LL
task model, and, in fact, LL tasks are a subclass of sporadic task systems sometimes
referred to as implicit-deadline sporadic task systems. Other subclasses of sporadic
task systems include constrained-deadline sporadic task systems where each task has
di ≤ pi and arbitrary-deadline sporadic task systems where no constraint is imposed
upon the relationship between a task’s deadline and period.

The development of effective and efficient scheduling algorithms and associated
analytical techniques for single processor systems is another factor in the sporadic
task model’s popularity. For instance, the earliest-deadline-first (EDF) scheduling al-
gorithm is known to be optimal for arbitrary collections of independent jobs sched-
uled upon uniprocessor platforms (Dertouzos 1974). This optimality result holds for
both sporadic task systems and LL task systems on uniprocessors. The notion of
optimality for real-time systems is explained in the following: a task system τ is
said to be feasible on a processing platform, if, for any legal job arrival sequence of
τ , there exists a schedule for τ on the processing platform in which each job suc-
cessfully completes execution by its deadline. For any task system τ that is feasible
on a given processing platform, an optimal scheduling algorithm is guaranteed to
generate a schedule for τ which meets all deadlines. In addition to the existence of
optimal scheduling algorithms for sporadic task systems, exact, pseudo-polynomial-
time techniques are known for determining whether a given sporadic task system
is feasible upon a preemptive single processor platform (Baruah et al. 1993). Such
techniques are known as feasibility analysis. A related analysis technique, known as
schedulability analysis, determines whether a given scheduling algorithm will cor-
rectly schedule a task system to meet all deadlines on a processing platform. Rela-
tively efficient, exact schedulability tests have been developed for various scheduling
algorithms on uniprocessor platforms.

The success of the sporadic task model for real-time system design on single
processor systems has motivated research on scheduling algorithms and feasibil-
ity/schedulability analysis for sporadic task systems upon multiprocessor platforms.

28 Real-Time Syst (2010) 45: 26–71

Unfortunately, most results from uniprocessor scheduling of sporadic task systems do
not trivially extend to the multiprocessor setting. For instance, it is known that EDF

is a suboptimal scheduling algorithm for even LL tasks on multiprocessor platforms
(Dhall and Liu 1978). However, optimal scheduling approaches for LL task systems
have been developed (Horn 1974; Baruah et al. 1996; Srinivasan and Anderson 2002).

Since LL tasks are a subclass of sporadic task systems, the non-optimality result
for EDF (Dhall and Liu 1978) extends trivially to sporadic task systems on multi-
processor platforms. The question that this article addresses is: does there exist an al-
gorithm which is guaranteed to successfully schedule any feasible sporadic task sys-
tem on a multiprocessor platform? In other words, does there exist optimal schedul-
ing algorithms for sporadic task model? For LL task systems, the answer to that
question is “yes,” due to the existence of optimal scheduling approaches (referred to
in the preceding paragraph). For arbitrary collections of independent jobs where job
arrival-times are not known a priori, Hong and Leung (1988) and Dertouzos and Mok
(1989), independently, showed that the answer is “no”; i.e., optimal online schedul-
ing of arbitrary collections of independent jobs is impossible. In terms of generality,
the sporadic task model lies between the LL task model (any LL task system is also
a sporadic task system) and the arbitrary collections of independent jobs setting (any
collection of jobs generated by a sporadic task system is also a legal collection of
independent jobs). As we will illustrate later in this article, the multiprocessor opti-
mality result for LL task systems and the non-optimality result do not directly apply
to the sporadic task systems. Thus, the above question cannot be answered by appli-
cation of prior results.

The main contribution of this article answers the above open question in the neg-
ative: optimal online multiprocessor scheduling of sporadic task systems is impos-
sible. We, in fact, show a slightly stronger result that optimal online multiprocessor
scheduling of constrained-deadline sporadic task systems is impossible. The impossi-
bility result for constrained-deadline sporadic task systems immediately implies that
optimal online scheduling of any task model that generalizes the constrained-deadline
sporadic task model is impossible, as well. Therefore, even a slight amount of gen-
eralization from the LL task model (the sporadic task model simply adds a relative
deadline parameter to the task specification) causes the existence of optimal schedul-
ing algorithms to disappear.

2 Model and notation

2.1 Real-time instances

Throughout this article, we will characterize a real-time job Ji by a three-tuple
(Ai,Ei,Di): an arrival time Ai , an execution requirement Ei , and a relative dead-
line Di . The interpretation of these parameters is that Ji arrives Ai time units after
system start-time (assumed to be zero) and must execute for Ei time units over the
time interval [Ai,Ai + Di). Ai is assumed to be a non-negative real number while
both Ei and Di are positive real numbers. The interval [Ai,Ai +Di) is referred to as
Ji ’s scheduling window. A job Ji is said to be current at time t if t ∈ [Ai,Ai + Di).
A current job is active at time t , if it has not completed execution by time t .

Real-Time Syst (2010) 45: 26–71 29

We denote a real-time instance I as a finite or infinite collection of jobs I =
{J1, J2, . . .}. F (I) denotes a real-time instance family with representative real-time
instance I . For each job J ′

i in real-time instance I ′ ∈ F (I), there is a job Ji in in-
stance I with the same release time and deadline; however, the execution of J ′

i cannot
exceed the execution time of Ji . More formally, I ′ ∈ F (I) if and only if

∀J ′
i ∈ I ′,∃Ji ∈ I :: (A′

i = Ai) ∧ (D′
i = Di) ∧ (E′

i ≤ Ei).

Informally, F (I) represents a set of related real-time instances with I being the most
“temporally constrained” of the set.

Example 1 Consider a real-time instance I = {(0,2,3), (5,4,5), (6,2,4)}. F (I) in-
cludes any instance I ′ = {(0, x,3), (5, y,5), (6, z,4)} such that 0 ≤ x ≤ 2, 0 ≤ y ≤ 4,
and 0 ≤ z ≤ 2.

2.2 Real-time task models

In some simpler real-time systems, it may be possible to completely specify the real-
time instance I prior to system run-time (i.e., the system designer has complete
knowledge of each Ji ∈ I). However, in systems with a large (or infinite) number
of real-time jobs or systems that exhibit dynamic behavior, explicitly specifying each
job, prior to system run-time, may be impossible or unreasonable. Fortunately, for
systems where jobs may repeatedly occur there is a more succinct representation of
the repeating jobs via specification in some recurrent task model. A task model is the
format and rules for specifying a task system. We may represent a set of repeating
or related jobs by a recurrent task τi specified according to the model M (e.g., the
sporadic task model). For every execution of the system, τi will generate a (possibly
infinite) collection of real-time jobs.

Several recurrent tasks can be composed together into a recurrent task system
τ = {τ1, τ2, . . . , τn}. The letter n will denote the number of tasks in a task system.
Every system execution of task system τ will result in the generation of a real-time
instance I . We will denote the set of real-time instances that τ can legally generate as
I M(τ). Based on the real-time instances that τ generates, we can classify τ as either
completely specified or partially-specified. If the arrival-time and deadline parame-
ters of each job Ji ∈ I can be determined prior to system run-time, τ is a completely-
specified task system. However, for many real-time systems, it is not possible to know
beforehand what real-time instance will be generated by the system during run-time.
Furthermore, completely-specified systems are incapable of handling changes in real-
time workloads. To overcome the fragile and inflexible nature of completely-specified
task systems, a designer may instead consider partially-specified tasks systems.1 The
specification for a partially-specified task system includes a set of constraints that
any generated real-time instance must satisfy; in general, such a system may legally
generate infinitely many different real-time instances, each of which satisfies the con-
straints placed upon their generation. The focus of this article is on partially-specified
task systems.

1A partially-specified task system is sometimes referred to as non-concrete (Jeffay et al. 1991).

30 Real-Time Syst (2010) 45: 26–71

Let M and M ′ be task models. We say that task model M ′ generalizes task
model M , if for every task system τ specified in model M there exists a task sys-
tem τ ′ specified in model M ′ such that

I ∈ I M(τ) ⇔ I ∈ I M′
(τ ′).

That is, for all task systems τ that can be specified in task model M , there is a task
system τ ′ specified in task model M ′ that can generate exactly the same real-time
instances as τ . In the remainder of this subsection, we describe the Liu and Layland
task model and sporadic task model in this more formal context.

Liu and Layland (LL) task model (implicit-deadline sporadic task model) As men-
tioned in the introduction, the behavior of a LL task τi can be characterized by a two-
tuple (ei,pi). As with the periodic task model, ei indicates the worst-case execution
time of any job generated by task τi . The pi parameter indicates the minimum inter-
arrival time between successive jobs of τi (note pi denoted the exact inter-arrival
time for periodic tasks). Let J LL

WCET(τi) be a collection of real-time instances such
that jobs of each real-time instance are generated by LL task τi satisfying the min-
imum inter-arrival constraint and requiring the worst-case possible execution time;
i.e., Iτi

is a member of J LL
WCET(τi) if and only if for all Jk ∈ Iτi

the following con-
straints are satisfied:

(Ek = ei) ∧ (Dk = pi) ∧ ((∃Jk+1 ∈ Iτi
\ {Jk} : Ak+1 ≥ Ak

) ⇒ (Ak+1 − Ak ≥ pi)
)
.

(1)
The set of real-time instances that a LL task system τ = {τ1, τ2, . . . , τn} can generate
(with worst-case possible execution time) is equal to

I LL
WCET(τ)

def=
{

n⋃

i=1

Iτi

∣∣∣
∣ (Iτ1 , Iτ2, . . . , Iτn) ∈

n∏

i=1

J LL
WCET(τi)

}

. (2)

Thus, the set of real-time instances generated by LL task system τ is

I LL(τ) =
⋃

Ij ∈I LL
WCET(τ)

F (Ij). (3)

Example 2 Consider the following LL task system: τ = {τ1 = (2,4), τ2 = (3,10)}.
Examples of sets of jobs in J LL

WCET(τ1) are {(0,2,4), (4,2,4), (8,2,4), . . .},
{(0,2,4), (5,2,4), (9,2,4)}, and {(0,2,4), (6,2,4), (10,2,4), . . .}; examples of
sets of jobs in J LL

WCET(τ2) are {(0,3,10), (10,3,10), (20,3,10), . . .}, {(1,3,10),

(15,3,10), (25,3,10), . . .}, and {(5,3,10), (15,3,10), (25,3,10), . . .}.

Sporadic task model The LL task model allows for flexibility in the job arrival
times for a task τi ; however, the model is still somewhat restrictive in forcing the
deadline of each job generated by τi to be equal to the minimum inter-arrival para-
meter pi . It is easy to imagine scenarios where the deadline of a job is not correlated
with the minimum inter-arrival: for example, in a car’s brake system the minimum

Real-Time Syst (2010) 45: 26–71 31

time between braking events may be considerably larger than the required braking-
reaction time (i.e., deadline for halting the car). The sporadic task model generalizes
the (implicit-deadline) LL task model by adding a relative deadline parameter di to
the specification for a task. Recall that a sporadic task τi is specified by the three-
tuple (ei, di,pi). Let J S

WCET(τi) be a collection of real-time instances that are jobs
generated by sporadic task τi satisfying the minimum inter-arrival constraint and re-
quiring the worst-case possible execution time; i.e., Iτi

is a member of J S
WCET(τi) if

and only if for all Jk ∈ Iτi
the following constraints are satisfied:

(Ek = ei) ∧ (Dk = di) ∧ ((∃Jk+1 ∈ Iτi
\ {Jk} : Ak+1 ≥ Ak

) ⇒ (Ak+1 − Ak ≥ pi)
)
.

(4)
(Note that the only difference from Eq. 1 for LL jobs is that the Dk parameter for
each job Jk is set to di .) The set of real-time instances that a sporadic task system
τ = {τ1, τ2, . . . , τn} can generate (with worst-case possible execution times) is

I S
WCET(τ)

def=
{

n⋃

i=1

Iτi

∣∣∣∣ (Iτ1 , Iτ2, . . . , Iτn) ∈
n∏

i=1

J S
WCET(τi)

}

. (5)

Thus, the set of real-time instances generated by sporadic task system τ is

I S(τ) =
⋃

Ij ∈I S
WCET(τ)

F (Ij). (6)

Observe that for any LL task system τ = {τ1 = (e1,p1), . . . , τn = (en,pn)} we can
represent the same task system in the sporadic model by the sporadic task system τ ′ =
{τ ′

1 = (e1,p1,p1), . . . , τn = (en,pn,pn)}. It is easy to see that I LL(τ) = I S(τ ′);
therefore, the sporadic task model generalizes the LL task model.

More general task models There are other known real-time task models more gen-
eral than the sporadic task model. For example, the generalized multiframe (GMF)
task model (Baruah et al. 1999) allows for a task to generate sequence of jobs with
heterogeneous separation, relative deadlines, and worst-case execution parameters.
Another general task model, known as the recurring real-time task model (Baruah
2003), allows for conditional generation of job sequences for a task. Both of these
models generalize the sporadic task model. Thus, the impossibility of optimal online
multiprocessor scheduling algorithms for sporadic task systems implies the impossi-
bility of optimal scheduling algorithms for these more general task models, as well.

2.3 Machine model

This article focuses on the real-time scheduling upon multiprocessor platforms. More
specifically, we will be concentrating on scheduling upon a class of multiproces-
sor platforms known as the identical multiprocessors. The identical multiprocessor
model assumes that each processor in the platform has identical processing capa-
bilities and speed. We denote the multiprocessor platform by � and assume � is
comprised of m identical processors π1, π2, . . ., πm ∈ �. Recall from the beginning

32 Real-Time Syst (2010) 45: 26–71

of this paper that each job corresponds to the execution of a sequential segment of
code by the processing platform. For each model introduced in the previous subsec-
tion, a real-time task has associated worst-case execution requirement parameter(s).
These execution requirements represent the worst-case cumulative amount of execu-
tion time that a job generated by the task requires to execute to completion on the
processing platform.

Some assumptions We will assume that each processor has unit-speed. We will as-
sume that jobs are preemptable at arbitrary times with no additional cost. Further-
more, we allow scheduling algorithms which migrate jobs between processor; that is,
a job may execute on different processors over its scheduling window; however, job-
level parallelism is not permitted (i.e., a job may not execute concurrently with itself
on two or more processors simultaneously). We will make the simplifying assump-
tion that migration does not incur any additional penalty or execution. Throughout
this article, we will also assume that tasks are independent of each other; that is, the
execution of a job of one task is not contingent upon the status of a job of another task
(e.g., blocking on shared resources is not permitted). Most of the above assumptions
are not limiting; in fact, the nonexistence of optimal online multiprocessor schedul-
ing algorithms for sporadic task systems under this simplified setting implies the
non-existence of optimal scheduling algorithms when the assumptions on preemp-
tion, migration, and task independence are removed.

2.4 Real-time scheduling algorithms

When executing a real-time application, the real-time scheduling algorithm must de-
termine which current jobs are executing on the processing platform at every time
instant. At an abstract level, the real-time scheduling algorithm determines the inter-
leaving of execution for jobs of any real-time instance I on the processing platform
�. The interleaving of execution of I on � is known as a schedule. The goal of a
real-time scheduling algorithm is to produce a schedule that ensures that every job
of I is allocated the processor (i.e., executes) for its execution requirement during its
scheduling window. In this subsection, we give some formal definitions for real-time
scheduling algorithm concepts.

We can formally define the schedule S for real-time instance I as a function of the
processor and time.

Definition 1 (Schedule function) Let SI (πk, t) be the job of I scheduled at time
t on processor πk ∈ �; SI (πk, t) is ⊥ if there is no task scheduled at time t (i.e.,
SI : � × R

+ �→ I ∪ {⊥}). Let SI,� be the set of all possible schedule functions over
real-time instance I and platform �.

It is sometimes useful to view the behavior of a single job of a real-time instance I

in schedule SI . The following definition allows us to characterize the schedule SI

with respect to task Ji .

Real-Time Syst (2010) 45: 26–71 33

Definition 2 (Job-schedule function) SI (πk, t, Ji) is an indicator function denoting
whether Ji is scheduled at time t on processor πk for schedule SI . In other words,

SI (πk, t, Ji)
def=

{
1, if SI (πk, t) = Ji,

0, otherwise.
(7)

A scheduling algorithm makes decisions about the order in which jobs of a real-
time instance should execute. For systems that are partially-specified, an online algo-
rithm is appropriate to handle dynamic job arrivals. For any time t , an online real-time
scheduling algorithm decides the set of jobs that will be executed on � at time t based
on prior decisions and the status of jobs released at or prior to t . An online scheduling
algorithm does not have specific information on the release of jobs after time t (i.e.,
future jobs arrival times are unknown). This article focuses on deterministic online,
real-time multiprocessor scheduling algorithms.

At an abstract level, a real-time scheduling algorithm2 A (either static or offline)
on platform � is a higher-order function3 from real-time instances to schedules over
�—i.e., A : I M(τ) → ⋃

I∈I SI,�. Let I≤t
def= {Ji ∈ I | Ai ≤ t}; that is, I≤t is the set

of jobs of I that arrive prior to or at time t . For an online scheduling algorithm A,
I≤t represents the set of jobs that A has knowledge of at time t (i.e., A knows the
arrival time, execution requirement, and deadline parameters of the jobs of I≤t , but
not other jobs of I). Up until time t , algorithm A has made scheduling decisions
without specific knowledge of jobs arriving after time t ; furthermore, jobs arriving
after t cannot have an effect on the schedule generated by A from time zero to t .
In other words, for an online scheduling algorithm future jobs cannot change past
scheduling decisions.

Definition 3 (Deterministic online scheduling algorithm) For any I ∈ I M(τ), let SA
I

be the schedule produced by algorithm A for real-time instance I and platform �.
An online real-time scheduling algorithm must satisfy the following constraint: for
all I, I ′ ∈ I M(τ) and for all t > 0,

(I≤t = I ′≤t) ⇒
(
∀t ′(0 ≤ t ′ ≤ t),∀πk ∈ � :: SA

I (πk, t
′) = SA

I ′ (πk, t
′)
)

. (8)

Beyond restricting our attention to deterministic, online scheduling algorithms and
algorithms that forbid job-level parallelism, we do not make any other restrictions on
the scheduling algorithm.

2.5 Feasible real-time task systems

The definition of “optimal scheduling algorithm” makes use of the notion of a task
system being feasible upon a processing platform: an optimal scheduling algorithm
can correctly schedule any feasible task system. Thus, we need to formalize what we

2We will abuse notation slightly and use A to refer to both the scheduling algorithm and the function.
3A higher-order function has a function space as either the domain or range.

34 Real-Time Syst (2010) 45: 26–71

mean by “feasible task system.” This subsection defines “feasible” and other related
concepts.

When evaluating a real-time system, it is sometimes useful to describe the amount
of “work” (execution) that a job does over a specified interval in a given schedule.
The next definition defines the amount of “processor time” that a job receives over a
given interval.

Definition 4 (Work function) W(SI ,πk, Ji, t1, t2) denotes the amount of processor
time on πk that Ji receives from schedule SI over the interval [t1, t2). In other words,4

W(SI ,πk, Ji, t1, t2)
def=

∫ t2

t1

SI (πk, t, Ji)dt. (9)

It is also useful to quantify the total processor time on πk that Ji receives from sched-
ule SI (over the interval [t1, t2), when job Jj is not executing on processor π�.

W(SI , 〈πk, Ji〉, 〈π�, Jj 〉, t1, t2) def=
∫ t2

t1

[
SI (πk, t, Ji)

(
1 − SI (π�, t, Jj)

)]
dt. (10)

Not all functions from � × R
+ to I , for a given real-time instance I , represent

valid executions of a real-time system that could generate the instance I . In particular,
we must ensure the following: a job can only execute during its scheduling window,
a job cannot execute concurrently with itself on two or more processors, and a job
must execute for Ei time units in its scheduling window to meet its deadline. Using
Definitions 1 through 4, we can now formally define a valid schedule SI with respect
to a real-time instance I :

Definition 5 (Valid schedule) SI ∈ SI,� is valid (with respect to jobs of some real-
time instance I and platform �) if and only if the following three conditions are
satisfied:

1. For any Ji ∈ I , if t < Ai or t > Ai + Di then SI (πk, t) �= Ji for all πk ∈ � (i.e.,
a job cannot execute while it is outside its scheduling window). For this article,
we will assume that two different jobs of the same task may execute concurrently
on different processors (i.e., intra-task parallelism is allowed, but intra-job paral-
lelism is forbidden).

2. If SI (πi, t) �= ⊥ and SI (πj , t) �= ⊥ then SI (πi, t) �= SI (πj , t) for all t ∈ R
+ and

πi �= πj ∈ � (i.e., a job may not execute concurrently with itself).
3. For all Ji ∈ I ,

∑
πk∈� W(SI ,πkJi,Ai,Ai + Di) = Ei (i.e., each job receives

processing time on � equal to its execution requirement between its release time
and deadline).

Recall that a recurrent task system can potentially generate infinitely different dis-
tinct real-time instances over different executions of the system. Informally, a re-
current task system τ is feasible on processing platform � if and only if for every

4Since SI (πk, t, Ji) is potentially discontinuous at an infinite number of points,
∫ t2
t1

SI (πk, t, Ji)dt de-

notes a Lebesgue integral (Kolmogorov and Fomin 1970) and not a Riemann integral.

Real-Time Syst (2010) 45: 26–71 35

possible real-time instance there exists a way to meet all deadlines. If there is a way
for a real-time instance I to meet all deadlines, we say that I is a feasible instance on
processing platform �.

Definition 6 (Feasible instance) A real-time instance I is feasible on platform � if
and only if there exists SI ∈ SI,� such that SI is valid.

We may extend the definition of feasible real-time instances to recurrent task sys-
tems.

Definition 7 (Feasible task system) Recurrent task system τ in task model M is fea-
sible on platform � if and only if for all I ∈ I M(τ), I is a feasible instance on �.

3 Inapplicability of prior optimality results for multiprocessor real-time
scheduling

The nonexistence of optimal online multiprocessor real-time scheduling algorithms
for arbitrary collection of jobs has been known since the late 1980s, via two
independently-obtained impossibility results by Hong and Leung (1988), and Der-
touzos and Mok (1989). However, as mentioned in the introduction, these results do
not imply the nonexistence of optimal multiprocessor scheduling algorithms for spo-
radic task systems. In this section, we will briefly review the Dertouzos and Mok
(1989) proof of impossibility for optimal scheduling of arbitrary collection of real-
time jobs and discuss why this result does not apply to sporadic task systems. We
will omit a discussion of the Hong and Leung result (Hong and Leung 1988), since a
nearly identical argument will show that their results also do not apply to the sporadic
task model setting. The following is a restatement of the main result from Dertouzos
and Mok (1989).

Theorem 1 (from Dertouzos and Mok 1989) For two or more processors, no online
scheduling algorithm can be optimal for arbitrary collections of real-time jobs with-
out complete a priori knowledge of the absolute deadlines, execution time, and arrival
time of each job.

Why does the above theorem not imply that sporadic task systems have no op-
timal multiprocessor scheduling algorithm? Intuitively, the reason is that for arbi-
trary real-time instances an optimal scheduling algorithm must be able to correctly
schedule any feasible real-time instances. While for sporadic task systems, an opti-
mal scheduling algorithm must correctly schedule only feasible real-time instances
that may be legally generated by a sporadic task system. To more clearly illustrate
this point let us consider the following lemma from (Dertouzos and Mok 1989) used
to prove Theorem 1.

Lemma 1 (from Dertouzos and Mok 1989) For two or more processors, no online
scheduling algorithm can be optimal for arbitrary collections of real-time jobs with-
out complete a priori knowledge of the arrival time of each job.

36 Real-Time Syst (2010) 45: 26–71

The above lemma is proven in (Dertouzos and Mok 1989) by finding a set of
feasible real-time instances that are identical up until a some time t that would cause
any deterministic online scheduling algorithm to miss a deadline after time t . Below
is the example set of feasible real-time instances used by Dertouzos and Mok (1989)
to prove Lemma 1.

Example 3 Define the following set of real-time instances.

I1
def= {J1 = (0,2,4), J2 = (0,1,1), J3 = (0,1,2)},

I2
def= {J4 = (1,1,1), J5 = (1,1,1)},

I3
def= {J6 = (2,2,2), J7 = (2,2,2)},

IA
def= I1 ∪ I2,

IB
def= I1 ∪ I3.

(11)

Consider how any online, deterministic scheduling algorithm A would execute real-
time instances IA or IB on platform � = {π1,π2} comprised of two identical unit-
speed processors. To simplify the presentation of the example, let us assume that
A only makes scheduling decisions at integer time instants (i.e., preemptions will
not occur at non-integer time instants); the lemma holds even when we remove this
simplifying assumption. If A does not know the arrival times of each job prior to
their arrival, at time zero algorithm A can only make a scheduling decision based
upon the knowledge of the set of jobs in I1 (for scheduling either IA or IB). Real-
time instances IA and IB appear to be identical to A for all times in the interval
[0,1). However, A must make a decision about what set of jobs will execute over
[0,1) on the two processors of � without knowledge of the jobs that may arrive at
time-instant one (i.e., at time zero, A does not know whether it is executing IA or IB).
Obviously, A must execute job J2 on some processor (w.l.o.g., assume π1) over the
interval [0,1) for J2 to meet its deadline at time-instant one. The non-obvious choice
is what should execute on π2 over [0,1)? There are three possible choices:

1. A executes J1 on π2 over [0,1).
2. A executes J3 on π2 over [0,1).
3. A executes no job on π2 over [0,1).

If A executes J1 over [0,1), real-time instance IA would miss a deadline at time-
instant two; observe in this scenario J3, J4, and J5 must execute exactly continuously
over [1,2) to meet their deadline, but there are only two available processors. For a
similar reason, IA would also miss a deadline at time-instant two, if A chose not to
execute a job on π2 over [0,1). If A instead executes J3 over [0,1), real-time instance
IB would miss a deadline at time-instant three, since J1, J6, and J7 require continuous
execution over [2,3). The reader should observe that IA and IB are both feasible on
two processors (i.e., a valid schedule may be found for both instances). However,
the above case analysis shows that for any choice made by A at time zero (without
knowledge of future job arrivals), there exist a feasible set of future job arrivals that
will cause A to miss a deadline. Thus, optimal online scheduling is impossible for

Real-Time Syst (2010) 45: 26–71 37

arbitrary collections of real-time jobs on two processors. This example may easily be
extended to an arbitrary number of processors.

For the above example to imply the non-existence of optimal online multiproces-
sor scheduling algorithms for sporadic task systems, we must show that IA and IB

correspond to legal real-time instances generated by a sporadic task system τ that
is feasible on two processors. One possible sporadic task system that could generate
both the real-time instances IA and IB is

τ
def= {τ1 = (2,4,∞), τ2 = τ3 = τ4 = (1,1,∞), τ5 = (1,2,∞),

τ6 = τ7 = (2,2,∞)}. (12)

The above task system allows each job of IA ∪ IB to be generated by a different
task. Real-time instances IA and IB satisfy the constraints of Eq. 4 for task system τ .
However, τ is not feasible on two processors since the real-time instance where each
task of τ generates a job at time-instant zero is also a legal real-time instance; such
an instance requires that at least five jobs execute continuously over [0,1)! Other
possible groupings of jobs to task also appear to result in a sporadic task system that
is infeasible on two processors. The difficulty in finding a feasible task system that
can generate both IA and IB , suggests that such a sporadic task system may not exist.
Thus, Lemma 1 and Theorem 1 do not directly imply anything about the existence
of an optimal online algorithm for sporadic task systems. A similar argument may
be used to argue about the inapplicability of the results of Hong and Leung (1988)
to sporadic task systems. We should also point out that the main result of Sect. 4
(Theorem 3) implies the impossibility of optimal scheduling for arbitrary collections
of real-time jobs without knowledge of future arrival times. Thus, our results can be
considered a strengthening of the impossibility results of both Dertouzos and Mok
(1989) and Hong and Leung (1988).

4 Impossibility of optimal online multiprocessor scheduling for sporadic and
more general task systems

We now present the main result of this article. Our method of proving that optimal
online algorithms do not exist for sporadic task systems is as follows:

1. Find a potentially feasible sporadic task system τ on some processing platform �.
2. Prove that the task system is feasible a multiprocessor platform �. This means

that for any real-time instance generated by τ on � there exists a schedule on �

that will meet all deadlines.
3. For the feasible task system τ , show there exists a set of real-time instances gen-

erated by τ that are identical up to a time t (denoted by I ′(τ)); however, at time
t they require any online scheduling algorithm A to make a decision regarding
which current jobs to schedule (i.e., there are more current jobs than processors
at time t). Show that regardless of the choice made by A at time t , there exists a
real-time instance in I ′(τ) that causes the choice made by A at time t to result in
a deadline miss.

38 Real-Time Syst (2010) 45: 26–71

Fig. 1 System τ example and its execution

In this brief section, we give the details of Steps 1 and 3. Step 3 especially gives
insight into why optimal online scheduling of sporadic task systems is impossible.
The proof of feasibility (Step 2), though very important to showing the nonexistence
of optimal scheduling algorithms, is extremely complex and not necessary to under-
standing the main result of this paper; therefore, we have decided to defer the details
of Step 2 until the next section (Sect. 5).

In accordance with Step 1 of the above approach, consider the following task
system, τ example, comprised of six tasks (recall that a sporadic task is specified by
three-tuple (ei, di,pi)) and described by Fig. 1a.

Theorem 2 τ example is feasible on two processors.

Proof Proved in Sect. 5. �

Lemma 2 No optimal online algorithm exists for the multiprocessor scheduling of
real-time, constrained-deadline sporadic task systems on two processors.

Proof The proof is by contradiction. Assume there exists an optimal online algo-
rithm, A, for scheduling constrained-deadline sporadic real-time tasks on two proces-
sors. Then, by Theorem 2, A must find a valid schedule for τ example where no dead-
line is missed; more formally, for all I ∈ I S(τ example), the schedule A(I) is valid
(Definition 5). Figure 1a shows task system τ example.

Let each task of τ example release a job at time zero. Figure 1b shows the slots
at which A must execute τ1, τ2, τ3, and τ4 (i.e., any other order would result in a
deadline miss). Let Izero(τ

example) be the set of all real-time instances generated by
τ example where each task generates a job at time instant zero and all jobs execute
for their respective task’s worst-case execution requirement; all real-time instances in
Izero(τ

example) must include the following six jobs (recall a real-time job is specified
by (Ai,Ei,Di)): (0,2,2), (0,1,1), (0,1,2), (0,2,4), (0,2,6), and (0,4,8). Note,
that by the minimum separation parameter (period) of each task, the earliest the
second job of any task may be generated is at time five. So, for all I and I ′ in
Izero(τ

example), I≤5 and I ′≤5 are identical.

For any I ∈ Izero(τ
example), there exist two possible choices that A must make

regarding the execution of τ5.

Real-Time Syst (2010) 45: 26–71 39

Fig. 2 Two execution scenarios for τ example

1. A schedules τ5 for x (0 < x ≤ 2) units of time in the interval (2,4].
2. A does not schedule τ5 in the interval (2,4].

Since A is an online scheduling algorithm, by Definition 3, any I, I ′ ∈
Izero(τ

example) where I≤5 = I ′≤5 implies that the schedule generated by A for both I

and I ′ is identical up to t = 5. Thus, algorithm A will make the same choice (either
choice 1 or 2, above) for all instances in Izero(τ

example). We will show that for ei-
ther choice made by algorithm A there exists an Imiss ∈ Izero(τ

example) that forces a
deadline miss. Let us consider both cases.

1. A schedules τ5 for x (0 < x ≤ 2) units of time in the interval (2,4]: Consider
any real-time instance I in Izero(τ

example) where, in addition to the six jobs that
all real-time instances in Izero(τ

example) must contain, I includes a job generated
by τ1, τ2, and τ3 at t = 6; that is, I must include the jobs: (6,2,2), (6,1,1),

and (6,1,2). It is obvious that the two processors are fully utilized by τ1, τ2,
and τ3 over the interval (6,8]; therefore, τ6 may not execute over the interval
(6,8] (otherwise, either τ1, τ2, or τ3 will miss a deadline). This implies that τ6

must execute in the interval (2,6] given real-time instance I . However, I chose
to execute τ5 in (2,4] for x time units, and τ4 requires a processor to execute job
(0,2,4) continuously. Thus, given the choice by A and real-time instance I , there
only exists 4 − x units of time in which τ6 may execute in the interval (2,4]; τ6

will miss a deadline at t = 8. Figure 2a shows this scenario.
2. A does not schedule τ5 in the interval (2,4]: Consider any real-time instance I ′

in Izero(τ
example) where, in addition to the six jobs that all real-time instances in

Izero(τ
example) must contain, I ′ includes a job generated by τ1 and τ2 at t = 5; that

is, I ′ must include the jobs (5,2,2) and (5,1,1). It is clear that the two processors
are fully utilized by τ1 and τ2 over interval (5,6]. However, since A chose not to
execute τ5 in the interval (2,4], τ5 must continuously execute in the interval (4,8]
to meet its deadline. In this scenario, three jobs must continuously execute in the
interval (5,6]. Therefore, either τ1, τ2, or τ5 will miss a deadline in the interval
(5,6]. Figure 2b illustrates this scenario.

Since for any of the choices made by A over the interval (2,4], there exists a real-
time instance I ∈ Izero(τ

example) that causes A to miss a deadline, this contradicts our
assumption that there exists an optimal algorithm A. Therefore, no optimal algorithm
for scheduling sporadic real-time tasks upon a two-processor platform can exist. �

40 Real-Time Syst (2010) 45: 26–71

We may easily generalize the above lemma to an arbitrary number of processors
(m > 1).

Theorem 3 No optimal online algorithm exists for the multiprocessor scheduling of
real-time, constrained-deadline sporadic task systems on two or more processors.

Proof For any � comprised of m > 1 identical unit-speed processors, consider the
task system τ ′ def= τ example ∪ {τ ′

1, τ
′
2, . . . , τ

′
m−2} where τ ′

i = (1,1,1) for all 0 < i ≤
m − 2. It is easy to see that τ ′ is feasible on �, as we can dedicate a processor
to each of the tasks in {τ ′

1, τ
′
2, . . . , τ

′
m−2} and by Theorem 2 τ example is feasible on

the remaining two processors. The argument of Lemma 2 holds in the case where
each of {τ ′

1, τ
′
2, . . . , τ

′
m−2} generate jobs at time zero and successive jobs as soon as

legally allowable. Therefore, the jobs generated by τ example cannot use the additional
processors, and the argument of the lemma is identical. �

The above negative result immediately extends to any task model that generalizes
the sporadic task model. The reason is that for any model M that generalizes the
sporadic model, there exists a τ ′M specified in model M such that I ∈ I M(τ ′M) if
and only if I ∈ I S(τ ′). Therefore, the argument of Lemma 2 is unchanged for this
more general task system (e.g., arbitrary-deadline sporadic task systems or GMF task
systems).

Corollary 1 No optimal online algorithm exists on two or more processors for the
multiprocessor scheduling of real-time task systems in models that generalize the
sporadic task model.

5 Feasibility of sporadic task system τ example on two processors

Section 4 introduced task system τ example (given by Fig. 1a) that is used to prove that
optimal online multiprocessor scheduling of arbitrary and constrained task systems is
impossible. In this section, we give a formal proof of Theorem 2; that is, task system
τ example is feasible on two processors.

In Sect. 5.1, we informally outline our proof. In Sect. 5.2, we introduce additional
formal notation involved in τ example’s feasibility proof. In Sect. 5.3, we give the entire
feasibility proof.

5.1 Outline

The goal of Theorem 2 is to show that task system τ example is feasible on two proces-
sors. However, we are unaware of any existing, non-trivial, exact feasibility test for
constrained-deadline task systems on a multiprocessor platform that could precisely
determine whether τ example is feasible on two processors or not. For instance, the task
system does not satisfy the sufficient feasibility condition (Fisher and Baruah 2009).
The sufficient conditions for feasibility of sporadic task systems of Baker and Cirinei

Real-Time Syst (2010) 45: 26–71 41

(2006) only apply to single processors. Finally, the exact “brute-force” multiproces-
sor schedulability algorithm of Baker and Cirinei (2007) does not trivially extend to
multiprocessor feasibility. Furthermore, even if one could extend the brute-force re-
sult to multiprocessor feasibility, our approach does not assume integer arrival times
and execution (as would be required by the current brute-force approach). Thus, since
we may not validate the feasibility of τ example with previously-known techniques, we
must tailor an argument specially for task system τ example. Specifically, we must show
that for every legal real-time instance I generated by task system τ example, there exists
a valid schedule in which no deadlines are missed (i.e., τ example satisfies the definition
of feasible task system according to Definition 7).

The approach that we take for proving Theorem 2 is to show, for any I ∈
I S

WCET(τ example), that a valid schedule may be constructed for I on two proces-
sors.5 It turns out that it is very easy to find a schedule on two processors for the
set of tasks τ example \ {τ6}; so, we construct this schedule, denoted SI , for the jobs of
τ example \ {τ6} in real-time instance I . If the jobs of τ6 in instance I can execute com-
pletely during the processor idle times for SI (i.e., when jobs of τ example \ {τ6} are
not executing in SI), then we have shown that a valid schedule exists for instance I .
However, it is possible that there does not exist sufficient idle processor time to ex-
ecute every job of τ6 in SI . Therefore, we may need to modify schedule SI further.
Our approach considers up to two additional modified schedules, S′

I and S′′
I —defined

separately for ease of presentation and clarity. Our final step is to show that if τ6 could
not complete in either SI or S′

I , all jobs of τ6 must complete in S′′
I . The following

steps informally explain our proof of showing that a valid schedule exists on two
processors for any I ∈ I S

WCET(τ example). Figure 3 gives a diagram of the steps of the
proof.

Step 0 Partition τ example \ {τ6}: Consider a partition of τ example \ {τ6} into two sets:

τA def= {τ1, τ4}, (13)

and

τB def= {τ2, τ3, τ5}. (14)

Step 1 Construct schedule SI to show that τ example \ {τ6} is feasible on two proces-
sor: Using known uniprocessor scheduling algorithms, we show that τA may
be correctly scheduled on processor π1 and τB may be scheduled on proces-
sor π2.

Step 2 Construct a modified schedule S′
I : If the jobs of τ6 cannot completely exe-

cute by their deadlines on processor π2 (the less “loaded” of the two proces-
sors in SI) during the idle time instants in schedule SI , we will construct a
new schedule S′

I . For any real-time instance I , S′
I is a global schedule (i.e.,

5Please note that we only consider real-time instances in I ∈ I S
WCET(τ example); the feasibility of any

instance I ′ ∈ I S(τ example) follows from the fact that there exists an I ∈ I S
WCET(τ example) such that

I ′ ∈ F (I). So, we only need to consider a valid schedule S′′
I

and it suffices to use the same schedule for I ′
(except the jobs of I ′ will potentially execute for less than the jobs of I).

42 Real-Time Syst (2010) 45: 26–71

Fig. 3 Logical steps in proof of Theorem 2

non-partitioned) constructed by moving as much work as possible to the first
processor π1 (with respect to idle times in SI schedule for processor π1).

Step 3 Derive properties of schedule S′
I if τ6 cannot complete execution: We will

derive several properties in the event that τ6 cannot complete during the idle
instants in schedule S′

I . These properties will be useful in defining a second
modified schedule S′′

I in which τ6 can complete execution.
Step 4 Construct a second modified schedule S′′

I that leaves sufficient room for τ6

to be completely assigned to the second processor: Again, if τ6 cannot com-
pletely execute during the idle times instants on processor π2 in schedule S′

I ,
we construct a second modified schedule S′′

I . The properties of the previous
step will be used to show that a schedule S′′

I can always be constructed that
leaves the second processor idle for four units between the release and dead-
line of a any job of τ6. Obviously, τ6 can be completely assigned to these idle
times. Therefore, τ example is feasible on two unit-capacity processors (Theo-
rem 2).

In the next section, we discuss some additional notation needed for our proof. In
Sect. 5.3, we formally carry-out the steps outlined in this subsection.

5.2 Notation

In this section, we present general notation for describing the scheduling and behav-
ior of a sporadic task system τ . The remainder of this section heavily relies on the
notation presented in Sects. 2.4 and 2.5. The notation defined for the remainder of
this section will assume that τ is a constrained-deadline system (i.e., for all τi ∈ τ ,

Real-Time Syst (2010) 45: 26–71 43

di ≤ pi). For each I ∈ I S
WCET(τ), let I (τi) ⊆ I denote the jobs generated by τi in

instance I .
The next two functions give the “nearest” job release-time and deadline with re-

spect to a given time t and real-time instance I (τi).

Definition 8 (Job-release function) If τi is current at time t in real-time instance I

then ri(I, t) is the release time of the most recently released job of τi (with respect to
time t). Otherwise, ri(I, t) = ∞ if τi is not in a scheduling window at time t . More
formally,

ri(I, t)
def=

{
Ak, if ∃Jk ∈ I (τi) such that Ak ≤ t ≤ Ak + Dk,

∞, otherwise.
(15)

Definition 9 (Job-deadline function) If τi is current at time t for real-time instance
I then di(I, t) is the absolute deadline of the most recently released job of τi (with
respect to time t). Otherwise, di(I, t) = −∞ if τi is not in a scheduling window at
time t .

di(I, t)
def=

{
Ak + Dk, if ∃Jk ∈ I (τi) such that Ak ≤ t ≤ Ak + Dk,

−∞, otherwise.
(16)

The following function is useful for identifying the current job (if any) of task τi

at time t .

Definition 10 (Current-job function) If τi is current at time t for real-time instance I ,
ϕi(I, t) is the current job at time t . Otherwise, ϕi(I, t) = ⊥, if τi is not in a scheduling
window at time t .

ϕi(I, t)
def=

{
Jk, if ∃Jk ∈ I (τi) such that Ak ≤ t ≤ Ak + Dk,

⊥, otherwise.
(17)

Similar to Definition 2 which defined a schedule function with respect to jobs of a
real-time instance, we can define the schedule S as a function with respect to task τi .

Definition 11 (Task-schedule function) SI (π�, t, τi) is an indicator function denoting
whether task τi is scheduled at time t on processor π� for schedule SI . In other words,

SI (π�, t, τi)
def=

{
1, if ∃Jk ∈ I (τi) :: SI (π�, t, Ji) = 1,

0, otherwise.
(18)

The next definition defines the work that task τi receives on π� over a given inter-
val. The job work function (Definition 4) is used.

Definition 12 (Task-work function) Wi(SI ,π�, t1, t2) denotes the amount of proces-
sor time that τi receives from schedule SI on processor π� over the interval [t1, t2)

44 Real-Time Syst (2010) 45: 26–71

for real-time instance I . In other words,

Wi(SI ,π�, t1, t2)
def=

∑

Jk∈I (τi)

W(SI ,π�, Ji, t1, t2). (19)

Definition 13 (Idle-work function) W⊥(SI ,π�, t1, t2) denotes the total amount of
processor time that schedule SI idles processor π� over the interval [t1, t2) for real-
time instance I . In other words,

W⊥(SI ,π�, t1, t2)
def= W(SI ,π�,⊥, t1, t2). (20)

5.3 Proof

In this section, we prove Theorem 2 by following the steps outlined in Sect. 5.1. Obvi-
ously, Step 0 has already been given in the proof outline of Sect. 5.1; thus, we begin
with Step 1. Section 5.3.1 gives the construction for schedule SI for Step 1. Sec-
tion 5.3.2 describes the construction of schedule S′

I for Step 2. Section 5.3.3 proves
several important properties about S′

I , if τ6 cannot be scheduled during the idle times
(Step 3). Finally, Sect. 5.3.4 defines schedule S′′

I which can be shown to accommo-
date all jobs of task τ6 on processor π2 (Step 4).

5.3.1 Step 1: Construction of schedule SI

The first step of the outline (Sect. 5.1) of the proof requires us to show that the par-
tition τA and τB of τ example \ {τ6} is feasible on two processors and give a valid
schedule for real-time instance I ∈ I S

WCET(τ). We can easily obtain feasibility of this
task system by partitioning τ example \ {τ6} into two sets and scheduling each subset
on its own processor using a uniprocessor scheduling algorithm called the deadline-
monotonic (DM) scheduling algorithm. For each processor, DM executes at any time
instant the active job of the task with the smallest relative deadline parameter (among
the set of all tasks assigned to that processor with active jobs). For simplicity of
analysis, we will use DM on each processor.

Audsley et al. (1991) developed a test to determine whether each task in a
constrained-deadline task system can be scheduled by DM on a single processor to
always meet all deadlines. Let THi

be the set of tasks with priority greater than or
equal to task τi under the DM priority assignment. The following theorem restates
their result.

Theorem 4 (From Audsley et al. 1991) In a constrained-deadline, sporadic task
system, task τi always meets all deadlines using DM on a preemptive uniprocessor if
and only if ∃t ∈ (0, di] such that

⎛

⎝CBF(τi, t)
def=

∑

τj ∈THi

RBF(τj , t) + ei

⎞

⎠ ≤ t. (21)

Using this result, we obtain the following lemma which states that τ example \ {τ6}
is feasible on the given two-processor platform:

Real-Time Syst (2010) 45: 26–71 45

Lemma 3 τ example \ {τ6} is feasible on a multiprocessor platform composed of two
unit-capacity processors.

Proof For partition τA and τB of τ example \{τ6} (Eqs. 13 and 14), assign τA to π1 and
τB to π2. It is easy to verify by Theorem 4 that τA and τB are feasible with respect
to their assigned processors. First, we will show that τA is feasible on processor π1.
τ1 always meets all deadlines (according to Theorem 4) on π1 with respect to task
system τA because CBF(τ1,2) = 2 ≤ 2. Similarly, τ4 always meets all deadlines on
π1 because CBF(τ4,4) = 2 + 2 = 4 ≤ 4. Since both of these tasks always meet all
deadlines using DM on π1 over all real-time instance IA ∈ I S

WCET(τA), τA is feasible
on π1 according to Definition 7.

Next, we will show that τB is feasible on processor π2. τ2 always meets all dead-
lines on π2 because CBF(τ2,1) = 1 ≤ 1. τ3 always meets all deadlines on π2 due
to CBF(τ3,2) = 1 + 1 = 2 ≤ 2. Finally, τ5 always meets all deadlines on π because
CBF(τ5,4) = 1 + 1 + 2 = 4 ≤ 4. Since all three of these tasks always meet all dead-
lines using DM on π2 over all real-time instances IB ∈ I S

WCET(τB), τB is feasible
on π2 according to Definition 7. Combining the two uniprocessor schedules from
DM, we get a valid multiprocessor schedule for τ example \ {τ6}, and the lemma fol-
lows. �

Let SI be the schedule constructed by DM on each processor for task system
τ example \ {τ6} with partitions τA and τB . From the previous argument, SI is valid
for I (with τ6’s jobs excluded).

5.3.2 Step 2: construction of schedule S′
I

If the jobs generated by τ6 in real-time instance I cannot complete by their deadlines
in the idle times of SI , we must proceed to Step 2 of our proof outline: construct
a schedule S′

I that is globally (non-partitioned) feasible. The goal of this step is to
move as much computation off processor π2 as possible. To accomplish this goal,
for every idle instant on processor π1 in schedule SI , we move a task in its schedul-
ing window on π2 to π1 (if such a task exists). The construction “builds” schedule
S′

I for processor π1, first. After S′
I (π1, t) is constructed, then S′

I is constructed for
π2. Note that such a schedule could not be constructed online (i.e., it is an off-line
constructed schedule), since S′

I (π2, t) may require that S′
I (π1, t

′) be known for some
t ′ > t (i.e., S′

I (π2, t) requires knowledge of future events). Constructing an offline
schedule is not a contradiction of Theorem 3 as feasibility requires us only to con-
struct (by any means) a valid schedule for any real-time instance that may be gener-
ated by τ example.

In schedule S′
I (π1, t), tasks of set τA (tasks τ1 and τ4) execute at exactly the same

times as they did in schedule SI (π1, t) (i.e., the uniprocessor rate-monotonic schedule
for τA and τB). However, the tasks of set τB move as much execution as possible
(without disturbing tasks of τA) from processor π2 to processor π1. Consider an
arbitrary time t . S′

I (π1, t) is constructed using the following rules:

1. If at time t processor π1 is busy executing a job from tasks of τA in schedule SI ,
then S′

I (π1, t) equals SI (π1, t).

46 Real-Time Syst (2010) 45: 26–71

2. If processor π1 is idle at time t in schedule SI , then:
(a) If task τ5 is in its scheduling window (i.e., r5(I, t) < ∞) and it has not already

executed for more than e5 time units in S′
I on processor π1, then S′

I at time t

is set to the current job of τ5—i.e. S′
I (π1, t) = ϕ5(I, t);

(b) else, if task τ2 is in its scheduling window (i.e., r2(I, t) < ∞) and it has not
already executed for more than e2 time units in S′ on processor π1, then S′

I at
time t is set to the current job of τ2—i.e. S′

I (π1, t) = ϕ2(I, t);
(c) else, if task τ3 is in its scheduling window (i.e., r3(I, t) < ∞) and it has not

already executed for more than e3 time units in S′ on processor π1, then S′
I at

time t is set to the current job of τ3—i.e. S′
I (π1, t) = ϕ3(I, t);

(d) else, leave processor π1 idle.

Note the above order that we move jobs of tasks (i.e., in order of τ5, τ2, and τ3) is
significant.

The execution of jobs of tasks in τB that could not be moved to processor π1 is
executed on processor π2 (with the added constraint that a task does not execute in
parallel with itself). For arbitrary time t , S′

I (π2, t) is constructed using the following
rule: if, at time instant t , a job Jk of task τi ∈ τB is executing on processor π2 in
schedule SI (i.e., SI (π2, t, Jk) = 1), then Jk will also execute on processor π2 at time
instant t in schedule S′

I only if the following two conditions are true,

1. Jk is not executing on processor π1 at time t in schedule S′
I (i.e., S′

I (π2, t, Jk) =
0), and

2. the total time that job Jk has executed on processor π1 between its arrival and its
absolute deadline and on processor π2 between its arrival and time t in schedule
S′

I is strictly less than ei .

Figure 4 presents a visual example comparing schedules SI and S′
I . The following

construction is the inductive formal definition of the modified schedule for all I ∈
I S

WCET(τ example \{τ6}) and t ≥ 0. Please note that S′
I (π1, t) is inductively constructed

first for all t ≥ 0. S′
I (π2, t) is constructed after S′

I for processor π1. Also, note that
S′

I is not work-conserving in the sense that a processor may be idle at time t , even if

Fig. 4 Construction of schedule S′
I

. Note that the execution of τ5 in the interval [1,2) is moved from the
second processor to [4,5) on the first processor

Real-Time Syst (2010) 45: 26–71 47

there are active jobs with remaining execution.

S′
I (π1, t)

def=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SI (π1, t), if SI (π1, t) �= ⊥,

ϕ5(I, t), else if r5(I, t) < ∞ and W5(S
′
I , π1, r5(I, t), t) < e5,

ϕ2(I, t), else if r2(I, t) < ∞ and W2(S
′
I , π1, r2(I, t), t) < e2,

ϕ3(I, t), else if r3(I, t) < ∞ and W3(S
′
I , π1, r3(I, t), t) < e3,

⊥, otherwise,

S′
I (π2, t)

def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ2(I, t), if (SI (π2, t, τ2) = 1) and (S′
I (π1, t, τ2) = 0) and

(W2(S
′
I , π1, r2(I, t), d2(I, t))

+ W2(S
′
I , π2, r2(I, t), t) < e2),

ϕ3(I, t), else if (SI (π2, t, τ3) = 1) and (S′
I (π1, t, τ3) = 0) and

(W3(S
′
I , π1, r3(I, t), d3(I, t))

+ W3(S
′
I , π2, r3(I, t), t) < e3),

ϕ5(I, t), else if (SI (π2, t, τ5) = 1) and (S′
I (π1, t, τ5) = 0) and

(W5(S
′
I , π1, r5(I, t), d5(I, t))

+ W5(S
′
I , π2, r5(I, t), t) < e5),

⊥, otherwise.

(22)

Lemma 4 S′
I is valid on � for any I with respect to jobs of τ example \ {τ6}.

Proof Schedule S′
I is obviously valid for the jobs generated by τ example \ {τ6} in

instance I . Each job, by definition of S′
I above only executes within its scheduling

window, does not execute concurrently with itself on both processors, and executes
exactly for its execution requirement. �

5.3.3 Step 3: properties of schedule S′
I

If S′
I does not have sufficient idle time to schedule τ6 entirely on processor π2, then

there must exist a job J6 ∈ I that does not meet its deadline, with respect to the idle
time in schedule S′

I . In this section, we prove several lemmas which characterize
the properties of schedule S′

I with respect to the J6’s scheduling window. The main
observation from these properties is that the jobs of I are constrained in how their
scheduling windows intersect, if J6 cannot be scheduled in S′

I . We will exploit these
intersection constraints on job in the next section (Step 4) when we define sched-
ule S′′

I .
Let A6 be the arrival of J6. Since the relative deadline of τ6 is d6 = 8, the schedul-

ing window of J6 is [A6,A6 + 8). We will start by making an observation on the
maximum possible amount that jobs of τ example \ {τ6} could execute in any schedule
over an interval of length six, eight, and ten. These observations will be useful to rea-
son about the amount of work that could occur over the scheduling windows of jobs
of τ5 and τ6.

Observation 1 Table 1 presents upper-bounds on Wi(S,π1, t, t + L) + Wi(S,π2,

t, t + L) for intervals of length L ∈ {6,8,10} for any valid schedule S, task τi ∈

48 Real-Time Syst (2010) 45: 26–71

Table 1 Upper bounds on the
execution of tasks over intervals
[t, t + L) for various values of L

Task ≥ Wi(S,π1, t, t + L) + Wi(S,π2, t, t + L)

L = 6 L = 8 L = 10

τ1 3 4 4

τ2 2 2 2

τ3 2 2 2

τ4 2 2 2

τ5 2 2 2

τ example \ {τ6} and time-instant t . The upper bounds for L = 8 and L = 10 may easily
be observed by noting that for any L-length interval (8 ≤ L ≤ 10): τ1’s schedul-
ing windows may intersect with an L-length interval for at most 4 time units; τ2’s
scheduling windows may intersect with an L-length interval for at most 2 time units;
τ3 has at most two jobs with scheduling windows that intersect with an interval
[t, t + L); and τ4 and τ5 can have at most one job with scheduling window inter-
secting [t, t + L). Similarly, for L = 6, at most two jobs of τ1, τ2, and τ3 and a
single job of τ4 and τ5 may over lap with the interval [t, t + 6); however, the max-
imum intersection between the scheduling windows of τ1’s jobs and [t, t + 6) is
three, due to the fact that p1 equals five. We also point out that upper bounds on
Wi(S,π1, t, t + L) + Wi(S,π2, t, t + L) are monotonically non-decreasing with L.

The first property we show for S′
I is in regard to the execution of jobs of τ5 over

the J6’s scheduling window of [A6,A6 + 8). If there was not sufficient idle time in
S′

I to completely schedule J6, a job of τ5 must have its scheduling window intersect
with [A6,A6 + 8). Furthermore, a job of τ5 must execute for a non-zero amount of
time on processor π2 over [A6,A6 + 8). The following lemma formally shows this
property.

Lemma 5 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then there exists a single job J5 ∈ I of τ5 with scheduling window
[A5,A5 + 6) where

[A5,A5 + 6) ∩ [A6,A6 + 8) �= ∅. (23)

Furthermore, let α equal the execution of J5 on processor π2 over [A5,A5 + 6) (i.e.,
α

def= W5(S
′
I , π2,A5,A5 + 6)). It must be that

α > 0 (24)

and that J5 executes for some non-zero amount of time ≤ α on π2 over [A6,A6 + 8)

(i.e., 0 < W5(S
′
I , π2,A6,A6 + 8) ≤ α).

Proof First note, that since the period of τ5, p5, equals 100, at most one job of τ5
could possibly have its scheduling window intersect with the interval [A6,A6 + 8).
We will now show (by contradiction) that exactly one job of τ5 intersects J6’s
scheduling window and executes during this interval on processor π2. Assume the

Real-Time Syst (2010) 45: 26–71 49

lemma is false: a job of τ5 does not execute on processor π2 over J6’s scheduling
window in valid schedule S′

I . Then, exactly one of the following three cases is true:

Case 1 there does not exist a job J5 ∈ I with [A5,A5 + 6) ∩ [A6,A6 + 8) �= ∅.
Case 2 there exists a job J5 ∈ I of τ5 with [A5,A5 + 6) ∩ [A6,A6 + 8) �= ∅, but J5

does not execute on processor π2 over the interval [A5,A5 + 6) (i.e., α = 0);
or,

Case 3 there exists a job J5 ∈ I of τ5 with [A5,A5 + 6) ∩ [A6,A6 + 8) �= ∅ and J5
executes on processor π2 for α > 0 over the interval [A5,A5 + 6), but does
not execute over [A6,A6 + 8);

By construction of S′
I , the only other tasks of τ example \ {τ6}, other than τ5, that

are executed on π2 in S′
I are τ2 or τ3. Since J6’s execution requirement, E6, is 4, the

execution of τ2 and τ3 on processor π2 in schedule S′
I over the interval [A6,A6 + 8)

must exceed four for J6 to be unable to execute completely on π2. However, by
Observation 1, the most that τ2 and τ3 could execute over [A6,A6 + 8) is four. Thus,
τ5 must have executed on π2 over [A6,A6 + 8) in S′

I for some non-zero amount of
time in order for J6 not to complete which contradicts the assumption of Cases 1, 2,
and 3; the lemma follows. �

The next lemma gives an upper bound on the amount of time that J5 can execute
on processor π2 in schedule S′

I .

Lemma 6 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then

α ≤ 1. (25)

Proof If there is insufficient time in S′
I to execute J6, Lemma 5 states that a unique

job J5 of task τ5 must exist with a scheduling window [A5,A5 + 6) that intersects
[A6,A6 + 8). Observation 1 implies that an upper bound on the execution of jobs of
τA in S′

I over the interval [A5,A5 + 6) is at most five. Thus, the total amount of time
that processor π1 is idle over [A5,A5 + 6) in the original schedule SI is at least one.
By construction of S′

I , J5 will execute for at least one time unit on processor π1. This
implies Eq. 25. �

The next two lemmas (Lemmas 7 and 8) exactly characterize the jobs of τ3 and τ2
that must execute over J6’s scheduling window.

Lemma 7 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then there exists exactly two jobs of τ3, J 1
3 , J 2

3 ∈ I (where A1
3 + 6 ≤ A2

3),
such that

(
[A1

3,A
1
3 + 2) ∩ [A6,A6 + 8) �= ∅

)
∧

(
[A2

3,A
2
3 + 2) ∩ [A6,A6 + 8) �= ∅

)
. (26)

Furthermore, both J 1
3 and J 2

3 execute for strictly more than 2 −α time units on π2 in
S′

I over [A6,A6 + 8) (i.e., W3(S
′
I , π2,A6,A6 + 8) > 2 − α).

50 Real-Time Syst (2010) 45: 26–71

Proof Since J6 cannot complete during the idle times in S′
I , the execution on proces-

sor π2 over the J6’s scheduling window [A6,A6 + 8) must exceed four time units;
otherwise, J6 could complete entirely on processor π2. By definition of S′

I , only jobs
of τ2, τ3, and τ5 execute on processor π2. Observation 1 implies that τ2 can execute
for at most two time units over [A6,A6 +8). By Lemma 5 and Lemma 6, J5 executes
for amount of time at most α ≤ 1 time units over J6’s scheduling window on proces-
sor π2. Thus, τ3 must execute for strictly more than 2−α time unit over [A6,A6 +8)

on π2 in S′
I . Since the execution requirement e3 is one, there must be at least two jobs

of τ3 that execute during [A6,A6 + 8). The period and relative deadline parameter of
τ3 (p3 = 6 and d3 = 2) imply that at most two jobs of τ3 can execute in [A6,A6 + 8).
Let J 1

3 and J 2
3 be the jobs of τ3 that execute in [A6,A6 + 8) where A2

3 − A1
3 ≥ 6 (by

the period parameter). The fact that J 1
3 and J 2

3 ’s scheduling windows overlap with
J6’s scheduling window implies Eq. 26. �

Lemma 8 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then there exists exactly two jobs of τ2, J 1
2 , J 2

2 ∈ I (where A1
2 + 5 ≤ A2

2),
such that

(
[A1

2,A
1
2 + 1) ∩ [A6,A6 + 8) �= ∅

)
∧

(
[A2

2,A
2
2 + 1) ∩ [A6,A6 + 8) �= ∅

)
. (27)

Furthermore, both J 1
2 and J 2

2 execute for strictly more than 2 −α time units on π2 in
S′

I over [A6,A6 + 8) (i.e., W2(S
′
I , π2,A6,A6 + 8) > 2 − α).

Proof Since J6 cannot complete during the idle times in S′
I , the execution on proces-

sor π2 over the J6’s scheduling window [A6,A6 + 8) must exceed four time units;
otherwise, J6 could complete entirely on processor π2. By definition of S′

I , only jobs
of τ2, τ3, and τ5 execute on processor π2. Observation 1 implies that τ3 can execute
for at most two time units over [A6,A6 +8). By Lemma 5 and Lemma 6, J5 executes
for amount of time at most α ≤ 1 time units over J6’s scheduling window on proces-
sor π2. Thus, τ2 must execute for strictly more than 2−α time unit over [A6,A6 +8)

on π2 in S′
I . Since the execution requirement e2 is one, there must be at least two jobs

of τ2 that execute during [A6,A6 + 8). The period and relative deadline parameter of
τ1 (p1 = 5 and d1 = 1) imply that at most two jobs of τ1 can execute in [A6,A6 + 8).
Let J 1

2 and J 2
2 be the jobs of τ2 that execute in [A6,A6 + 8) where A2

2 − A1
2 ≥ 5 (by

the period parameter). The fact that J 1
2 and J 2

2 ’s scheduling windows overlap with
J6’s scheduling window implies Eq. 27. �

The following corollary of Lemmas 6 and 8, showing that both J 1
2 and J 2

2 must
execute on π2 over [A6,A6 + 8), will be useful in later proofs.

Corollary 2 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then both J 1
2 and J 2

2 execute for non-zero amounts of time on processor
π2 in the interval [A6,A6 + 8).

Proof Lemma 8 states that J 1
2 and J 2

2 together must execute for strictly greater than
2−α time on processor π2 over the interval [A6,A6 +8). Lemma 6 shows that α ≤ 1;

Real-Time Syst (2010) 45: 26–71 51

thus, the execution of both jobs over interval [A6,A6 + 8) must exceed one. Since
e2 = 1, both J 1

2 and J 2
2 must execute for non-zero amounts of time in [A6,A6 +8). �

The previous two lemmas and corollary gave a lower bound on the execution of
jobs of either τ2 or τ3 over the interval [A6,A6 + 8) on processor π2. In the next
lemma, we derive a lower bound on the combined execution of τ2 and τ3 over this
same interval and processor.

Lemma 9 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then τ2 and τ3 execute on processor π2 over the interval [A6,A6 + 8) for
strictly more than 4 − α time units in S′

I . I.e.,

W2(S
′
I , π2,A6,A6 + 8) + W3(S

′
I , π2,A6,A6 + 8) > 4 − α. (28)

Proof Since J6 cannot complete during the idle times in S′
I , the execution on proces-

sor π2 by jobs of τB over J6’s scheduling window [A6,A6 + 8) must exceed
four units. Lemma 5 showed that the most J5 could execute on processor π2 over
[A6,A6 + 8) is α. Thus, jobs of τ2 and τ3 must execute for strictly more than 4 − α

time units on processor π2 over [A6,A6 + 8). �

We now focus on jobs of tasks in τA whose scheduling windows overlap with J5’s
scheduling window. The above lemmas (Lemmas 5, 7, and 8) showed that jobs of
τB must have prevented J6 from completing execution entirely on processor π2. We
follow this reasoning and show that a jobs of τA must have prevented τ5’s job, J5
from completing its execution entirely on processor π1. The next two properties of
S′

I show that exactly one job of τ4 executes in the scheduling window [A5,A5 + 6)

(Lemma 10) and exactly two jobs of τ1 execute in [A5,A5 + 6) (Lemma 11).

Lemma 10 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then there exists a single job J4 ∈ I of τ4 such that

[A4,A4 + 4) ∩ [A5,A5 + 6) �= ∅. (29)

Furthermore, J4 executes for at least 1+α units of time on π1 in S′
I over [A5,A5 +6)

(i.e., W5(S
′
I , π1,A5,A5 + 6) > 0).

Proof By Lemma 5, J5 executes on processor π2 for some α > 0 amount of time
in schedule S′

I . By construction, S′
I executes J5 at any time instant t ∈ [A5,A5 + 6)

where processor π1 was idle in the original schedule SI (i.e., neither τ1 or τ4 were
executing at time t). Since J5 could only execute 2 − α (≤ 1) units on processor
π1 over its scheduling window, this implies that the total amount jobs of τ1 and τ4
execute over [A5,A5 + 6) is exactly 4 + α. By Observation 1, the most that jobs of
τ1 could execute in this scheduling window is three time units; thus, there must exist
at least one job J4 ∈ I such that [A4,A4 + 4) ∩ [A5,A5 + 6) �= ∅ where J4 executes
for at least 1 + α units on processor π1 over [A5,A5 + 6) in schedule S′

I . Since τ4’s
period, p4, equals 100, J4 is unique. �

52 Real-Time Syst (2010) 45: 26–71

Lemma 11 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then there exists exactly two jobs of τ1, J 1
1 , J 2

1 ∈ I (where A1
1 + 5 ≤ A2

1),
such that

(
[A1

1,A
1
1 + 2) ∩ [A5,A5 + 6) �= ∅

)
∧

(
[A2

1,A
2
1 + 2) ∩ [A5,A5 + 6) �= ∅

)
. (30)

Furthermore, the total execution of J 1
1 and J 2

1 must be at least 2 + α units of time on
π1 in S′

I over [A5,A5 + 6) (i.e., W1(S
′
I , π1,A5,A5 + 6) > 2 + α).

Proof Again, by Lemma 5, J5 executes on π2 for α time in S′
I . By identical reasoning

as the proof for Lemma 10, τ1 and τ4 must execute for exactly 4 + α units over
the interval [A5,A5 + 6). By Observation 1, the most that τ4 could execute in J5’s
scheduling window is two time units. Thus, jobs of τ1 must execute for at least 2 + α

time units over J5’s scheduling window. Since the execution requirement of a single
job of τ1 is two time units, this implies there must exist at least two jobs J 1

1 , J 2
1 ∈ I of

τ1 such that ([A1
1,A

1
1 +2)∩[A5,A5 +6) �= ∅) and ([A2

1,A
2
1 +2)∩[A5,A5 +6) �= ∅)

that execute in S′
I over [A5,A5 + 6) on processor π1 for more than two units of time.

Assume that the arrival of J 1
1 precedes J 2

1 . The minimum inter-arrival time of τ1

(p1 = 5) implies that A1
1 +5 ≤ A2

1 and that no more than two jobs of τ1 could execute
in [A5,A5 + 6). �

We now focus our attention on the execution of jobs of τA ∪{τ5} that could prevent
execution of τ2 and τ3 from being moved from processor π2 to π1. The next lemma
(Lemma 12) shows that the scheduling window [A5,A5 + 6) is a continuously busy
interval on processor π1 with respect to schedule S′

I and tasks τA ∪ {τ5}. A contin-
uously busy interval for a processor with respect to a given collection of tasks and
schedule is an interval [t1, t2) where a job of the given task collection is executing in
the schedule on the processor for all time t ∈ [t1, t2). We also show that the scheduling
windows for jobs J 1

1 and J 2
1 , and job J4 are continuously busy (Lemmas 13 and 14,

respectively).

Lemma 12 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then the interval [A5,A5 +6) is a continuously busy interval on processor
π1 in schedule S′

I for jobs of tasks τA ∪ {τ5}. More formally,

∑

τj ∈τA∪{τ5}
Wj(S

′
I , π1,A5,A5 + 6) = 6. (31)

Proof Again, by Lemma 5, J5 executes on π2 for α > 0 time in S′
I . Since SI moves

as much execution of J5 from π2 to π1, this implies for all time t ∈ [A5,A5 + 6) at
which π1 is not executing J5, it must be executing jobs of τA. �

Lemma 13 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then the intervals [A1
1,A

1
1 + 2) and [A2

1,A
2
1 + 2) are a continuously busy

intervals on processor π1 in schedule S′
I for jobs of tasks τA ∪ {τ5}. More formally,

Real-Time Syst (2010) 45: 26–71 53

for k ∈ {1,2},
∑

τj ∈τA∪{τ5}
Wj(S

′
I , π1,A

k
1,A

k
1 + 2) = 2. (32)

Proof Any job of τ1 in I must execute continuously from its arrival to deadline be-
cause e1 = d1 = 2. Thus, since τ1 is scheduled on processor π1 in S′

I and since S′
I

is valid, J 1
1 executes continuously on π1 over [A1

1,A
1
1 + 2) and J 2

1 executes continu-
ously on π1 over [A2

1,A
2
1 + 2). �

Lemma 14 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then the interval [A4,A4 +4) is a continuously busy interval on processor
π1 in schedule S′

I for jobs of tasks τA ∪ {τ5}. More formally,

∑

τj ∈τA∪{τ5}
Wj(S

′
I , π1,A4,A4 + 4) = 4. (33)

Proof Lemma 11 implies that both J 1
1 ’s and J 2

1 ’s scheduling window intersects with
the interval [A5,A5 + 6). Since J 1

1 ’s arrival precedes J 2
1 ’s arrival, the lemma also

implies that [A1
1 + 2,A2

1) ⊂ [A5,A5 + 6); in words, the time interval between the
deadline of J 1

1 to the arrival of J 2
1 is a proper subset of the J5’s scheduling window.

The interval [A1
1 + 2,A2

1) is between the scheduling window of two consecutive jobs
of τ1; therefore, no job of τ1 can execute in S′

I during the interval [A1
1 + 2,A2

1). Due
to the period and relative deadline parameter of τ1, the length of this interval must be
at least three time units (i.e., A2

1 − A1
1 − 2 ≥ 3). By Lemma 12 and [A1

1 + 2,A2
1) ⊂

[A5,A5 + 6), the interval [A1
1 + 2,A2

1) is continuously busy executing jobs of τ4 and
τ5 on processor π1 in schedule S′

I . Lemma 5 implies that J5 can execute on processor
π1 for at most 2 − α time in schedule S′

I . Thus, J4 must execute for at least 1 + α

time units on processor π1 over the interval [A1
1 + 2,A2

1) in schedule S′
I ; i.e.,

W4(S
′
I , π1,A

1
1 + 2,A2

1) ≥ 1 + α. (34)

Lemma 10 implies that [A4,A4 + 4) ∩ [A5,A5 + 6) �= ∅. The above equation
(Eq. 34) and the validity of schedule S′

I implies that [A4,A4 +4)∩[A1
1 +2,A2

1) �= ∅.
From these statements, we can reason about the work of τA ∪ {τ5} over J4’s schedul-
ing window. There are two separate main cases we consider: 1) if J4’s scheduling
window is completely contained within J5’s scheduling window; 2) J4’s scheduling
window is not completely contained in J5’s scheduling window. We will show that
each of the cases imply Eq. 33. The case analysis is below.

1. [A4,A4 + 4) ⊆ [A5,A5 + 6): Lemma 12 states that π1 is continuously busy exe-
cuting jobs of τA ∪ {τ5} over [A5,A5 + 6). Thus, Eq. 33 follows trivially.

2. [A4,A4 + 4) � [A5,A5 + 6): Given this case, there are two possibilities. Either
the job of τ4 is released before A5 or it is released after A5. More formally, the
subcases are:

54 Real-Time Syst (2010) 45: 26–71

(a) A4 < A5 < A4 + 4: In this case, Eq. 34 and [A4,A4 + 4) ∩ [A1
1 + 2,A2

1) �= ∅
imply that J4’s deadline must be at least 1 + α after A5 (i.e., A4 + 4 ≥ A5 +
1+α). Since [A1

1,A
1
1 +2)∩[A5,A5 +6) �= ∅ (Lemma 11), it must also be that

[A4,A4 + 4)∩ [A1
1,A

1
1 + 2) �= ∅. Otherwise, if [A4,A4 + 4)∩ [A1

1,A
1
1 + 2) =

∅, then J 1
1 must arrive after J4’s deadline, in order to still overlap with J5’s

scheduling window. In this case, the earliest J4’s deadline may occur is 1 + α

units after A5; hence, A1
1 ≥ A5 + 1 + α. However, this inequality and the

minimum separation between J 1
1 and J 2

1 imply A2
1 ≥ A1

1 + 5 ≥ A5 + 6 +
α. This further implies [A2

1,A
2
1 + 2) ∩ [A5,A5 + 6) = ∅ which contradicts

Lemma 11. So given that [A4,A4 + 4) ∩ [A1
1,A

1
1 + 2) �= ∅ is true, we may

consider three additional subcases regarding the execution of J4 in relation to
J 1

1 ’s absolute deadline.
(i) J4 executes entirely after A1

1 + 2 (i.e., J4 executes only in the interval
[A1

1 + 2,A4 + 4)): Because the execution requirement of J4 is two and
[A4,A4 + 4) ∩ [A1

1 + 2,A2
1) �= ∅, it must be that A4 ∈ [A1

1,A
1
1 + 2);

otherwise, the length of the interval [A1
1,A4 +4) would leave insufficient

time for J4 to execute. Since A4 < A5 in this case, A1
1 ≤ A4 < A5. Thus,

the interval [A4,A4 + 4) is a subset of [A1
1,A5 + 6). By Lemma 13, π1

is continuously busy executing J 1
1 during [A1

1,A
1
1 + 2). By Lemma 12,

π1 is continuously busy executing jobs of τA ∪ {τ5} during [A5,A5 + 6).
It must be that π1 is also continuously busy executing jobs of τA ∪ {τ5}
over the interval [A4,A4 + 4) in schedule S′

I , because it is a subset of the
union of these two continuously busy intervals. This implies Eq. 33.

(ii) J4 executes both before A1
1 and after A1

1 + 2: Observe that job J 1
1 exe-

cutes continuously over [A1
1,A

1
1 + 2). Since J4 executes both before and

after A1
1 and S′

I is valid, it follows that [A1
1,A

1
1 + 2) ⊂ [A4,A4 + 4).

Thus, J4 must continuously execute on processor π1 over the intervals
[A4,A

1
1) and [A1

1 + 2,A4 + 4) in schedule S′
I to complete by its dead-

line. Since processor π1 is continuously busy executing either J4 or J 1
1

over the intervals [A4,A
1
1), [A1

1,A
1
1 + 2) and [A1

1 + 2,A4 + 4), it is con-
tinuously busy over the interval [A4,A4 + 4) in schedule S′

I executing
jobs of τA ∩ {τ5}. This implies Eq. 33.

(iii) J4 executes entirely before A1
1: Eq. 34 implies that this case is impossible.

(b) A5 + 2 < A4 < A5 + 6: Symmetric to Case a. �

We now concentrate on identifying the longest continuously busy interval on
processor π1 for tasks τA ∪ {τ5} that contains the interval [A5,A5 + 6). By identify-
ing this interval, we may more easily reason about the amount of execution of jobs
of τ2 or τ3 on processor π1 in schedule S′

I . We begin by defining tstart which we will
show is the start of the longest continuously busy interval containing [A5,A5 + 6).

tstart
def= min{A1

1,A4,A5}. (35)

The next lemma shows that the interval [tstart, tstart + 8 − α) is continuously busy
on π1 for tasks τA ∪ {τ5}; Lemma 16 will show that [tstart, tstart + 8 − α) is, in fact,

Real-Time Syst (2010) 45: 26–71 55

the maximum continuously busy interval that contains [A5,A5 + 6) because the time
instants immediately before tstart or immediately after tstart + 8 − α cannot execute
jobs of τA ∪ {τ5}.

Lemma 15 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then the interval [tstart, tstart + 8 − α) ⊃ [A5,A5 + 6) is a continuously
busy interval on processor π1 with respect to schedule S′

I and tasks τA ∪ {τ5}. More
formally,

∑

τj ∈τA∪{τ5}
Wj(S

′
I , π1, tstart, tstart + 8 − α) = 8 − α. (36)

Furthermore, jobs J 1
1 , J 2

1 , J4, and J5 are the only jobs to execute on processor π1
over [tstart, tstart + 8 − α) in schedule S′

I .

Proof Lemmas 10 and 11 imply that the scheduling windows of jobs J4, J 1
1 , and

J 2
1 intersect with the scheduling window of job J5. Lemmas 12, 13, and 14 imply

that the scheduling windows of jobs J5, J 1
1 , J 2

1 , and J4 are continuously busy in-
tervals on processor π1 in schedule S′

I for tasks τA ∪ {τ5}. Thus, the union of the
scheduling windows of J5, J 1

1 , J 2
1 , and J4 is also a continuously busy interval on π1

for τA ∪ {τ5}; i.e., [A5,A5 + 6) ∪ [A1
1,A

1
1 + 2) ∪ [A2

1,A
2
1 + 2) ∪ [A4,A4 + 4) =

[min{A5,A
1
1,A4},max{A5 + 6,A2

1 + 2,A4 + 4}) is a continuously busy interval
on π1.

We will now show that [min{A5,A
1
1,A4},max{A5 + 6,A2

1 + 2,A4 + 4}) equals
the interval [tstart, tstart + 8 −α). Obviously, by definition of Eq. 35, min{A5,A

1
1,A4}

equals tstart; so, we must show that max{A5 +6,A2
1 +2,A4 +4} equals tstart +8−α.

Lemma 12 shows that processor π1 over the interval [A5,A5 + 6) in S′
I executes

only jobs J 1
1 , J 2

1 , J4, and J5. The busy interval [min{A5,A
1
1,A4},max{A5 + 6,A2

1 +
2,A4 + 4}) must include these jobs, whose total execution on processor π1 in sched-
ule S′

I equals 2+2+2+2−α = 8−α. Because the execution of these jobs must com-
plete in the busy interval, max{A5 +6,A2

1 +2,A4 +4} must be at least tstart +8−α. If
max{A5 +6,A2

1 +2,A4 +4} exceeds tstart +8−α, then some job τA∪{τ5} (other than
J 1

1 , J 2
1 , J4 or J5) must have a scheduling window that overlaps [tstart, tstart + 8 − α);

otherwise, the interval [min{A5,A
1
1,A4},max{A5 + 6,A2

1 + 2,A4 + 4}) is not con-
tinuously busy for tasks τA ∪ {τ5}. However, Observation 1 implies that such a job
cannot exist. Therefore, max{A5 + 6,A2

1 + 2,A4 + 4} equals tstart + 8 − α, implying
Eq. 36. �

Since the busy interval [tstart, tstart +8−α) includes the entire execution from jobs
J 1

1 , J 2
1 , J4, and 2 − α units of execution from J5, there is an idle period (with respect

to tasks τA ∪{τ5}) before and after [tstart, tstart +8−α). The following lemma exactly
characterizes these idle periods.

Lemma 16 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then no job of τA ∪ {τ5} executes on processor π1 in either the interval

56 Real-Time Syst (2010) 45: 26–71

[tstart − 2 − α, tstart) or [tstart + 8 − α, tstart + 10). More formally,
∑

τj ∈τA∪{τ5}
Wj(S

′
I , π1, tstart − 2 − α, tstart) = 0, (37)

and
∑

τj ∈τA∪{τ5}
Wj(S

′
I , π1, tstart + 8 − α, tstart + 10) = 0. (38)

Proof We begin with Eq. 37: we show that S′
I does not execute any jobs of τA ∪ {τ5}

on processor π1 during the interval [tstart − 2, tstart). Equation 38 can be shown by a
symmetric argument. Observe that

W1(S
′
I , π1,A

1
1 − 3,A1

1) = 0 (39)

because the period of τ1, p1 equals five and the relative deadline, d1, equals two.
Recall from the proof of Lemma 14 that the interval [A1

1 + 2,A2
1) is a subset of

[A5,A5 + 6) and that A2
1 − A1

1 − 2 ≥ 3. So, the interval [A1
1 + 2,A2

1) is continuously
busy on processor π1 executing either J4 or J5:

∑

τj ∈{τ4,τ5}
Wj(S

′
I , π1,A

1
1 + 2,A1

2) ≥ 3.

Since at least three units of J4 and J5 must execute in the interval [A1
1 + 2,A1

2)

and the total execution of J4 and J5 on π1 is 4 − α, this leaves at most 1 − α units
left to execute either before A1

1 and/or after A1
2 + 2. This implies

tstart ≥ A1
1 − 1 + α. (40)

Equations 39 and 40 imply that the latest another job of τ1 (that precedes J 1
1)

could execute prior to tstart is tstart − 2 − α. Since τ5 and τ4 have periods equal to
100, and they release jobs contained within [tstart, tstart + 8 − α), they are not current
in the interval [tstart − 2 − α, tstart). Therefore,

∑

τj ∈τA∪{τ5}
Wj(S

′
I , π1, tstart − 2 − α, tstart) = 0.

�

Processor π1 can also be shown to be busy during the scheduling windows for jobs
of τB . Lemma 17 shows that there is no idle time on π1 in S′

I over the scheduling
window for any job of τB that executes a non-zero amount of time on π2. Lemma 18
will show for any interval on π1 that is continuously busy for jobs of τ2 and τ3, no
job of these two tasks can execute on processor π2 in the same interval.

Lemma 17 For any t ≥ 0 where S′
I (π2, t) �= ⊥, let Jk = S′

I (π2, t) where Jk =
(Ak,Ek,Dk) ∈ I . For all t ′ ∈ [Ak,Ak + Dk),

S′
I (π1, t

′) �= ⊥. (41)

Real-Time Syst (2010) 45: 26–71 57

Proof Note that Jk ∈ I must have been generated by a task of τB in order to be
executed on π2 in S′

I . By construction of S′
I , as much of the execution of Jk has been

moved from π2 to π1 (with respect to the idle times on processor π1 in schedule SI).
Since Jk executed on π2 for a non-zero amount of time there is no further unused idle
time in [Ak,Ak + Dk); thus, S′

I (π1, t
′) �= ⊥ for all t ′ ∈ [Ak,Ak + Dk) which implies

the lemma. �

Lemma 18 For any interval [t1, t2) where 0 ≤ t1 < t2 where processor π1 is contin-
uously busy in S′

I with respect to jobs of τ2 and τ3, then no job of τ2 or τ3 is executed
on processor π2 in S′

I over [t1, t2). More formally,

∑

τj ∈{τ2,τ3}
Wj(S

′
I , π2, t1, t2) = 0. (42)

Proof Assume that [t1, t2) is a continuously busy interval on processor π1 for τ2

and τ3. Thus, for each t ∈ [t1, t2), either S′
I (π1, t, τ2) = 1 or S′

I (π1, t, τ3) = 1. We
will show in either case that S′

I (π2, t) = ⊥. If S′
I (π1, t, τ2) = 1, then SI (π2, t, τ2) =

1 in the original schedule, since e1 = d1 = 1. Because S′
I is a valid schedule

S′
I (π2, t, τ2) = 0. Further S′

I (π2, t, τ3) = 0 due to the fact that S′
I schedules jobs of

τB on processor π2 only at times that they were scheduled on processor π2 in the
original schedule SI . Thus, S′

I (π1, t, τ2) = 1 implies that S′
I (π2, t) = ⊥.

If S′
I (π1, t, τ3) = 1, then S′

I (π2, t, τ3) = 0 due to the validity of S′
I . Since we move

as much execution of τ2 from π2 to π1 before moving τ3’s execution, a job of task
τ3 cannot be executing on processor π1 at the same time that τ2 is executing on
processor π2; otherwise, since τ2 is only scheduled at points during which π1 is idle
in the original schedule SI , we could have moved more execution of τ2 to processor
π1. Thus, we have shown that S′

I (π2, t, τ2) = 0 for this case, implying S′
I (π2, t) = ⊥

and the lemma. �

For the final lemma of Step 3 (Lemma 22), we derive constraints on the arrival
times of J5 and J6. In fact, if J6 cannot complete in schedule S′

I , then J5’s scheduling
window cannot be contained within J6’s scheduling window. Furthermore, we show
that either J5 arrives at least two time units before the arrival of J6, or that J5 has a
deadline at least two units after J6’s deadline. Before we can prove Lemma 22, we
require three technical lemmas: Lemmas 19 and 20 are concerned with the execution
of jobs J 1

3 and J 2
3 in relation to the intervals [tstart, tstart + 8 − α) and [A6,A6 + 8);

Lemma 21 describes the relative overlap of the intervals [tstart, tstart + 8 − α) and
[A6,A6 + 8).

Lemma 19 Given that S′
I does not have sufficient idle time over [A6,A6 + 8) to

completely execute J6. If jobs J 1
3 and J 2

3 both have their scheduling window intersect
with [tstart, tstart + 8 − α) and 0 < tstart − A1

3 < α, then

[tstart + 8 − α,A1
3 + 8) ⊂ [A2

3,A
2
3 + 2). (43)

58 Real-Time Syst (2010) 45: 26–71

Proof Observe that since tstart − A1
3 < α, the inequality

tstart + 8 − α < A1
3 + 8 (44)

must hold. Since J 2
3 ’s scheduling window intersects with [tstart, tstart + 8 − α), the

following inequality must be true:

A2
3 < tstart + 8 − α. (45)

The period parameter of τ3 (p3 = 6) implies A1
3 + 6 ≤ A2

3. This inequality along with
tstart − α < A1

3 implies

tstart + 6 − α < A2
3 ⇒ tstart + 8 − α < A2

3 + 2. (46)

Furthermore, A1
3 + 6 ≤ A2

3 implies

A1
3 + 8 ≤ A2

3 + 2. (47)

Inequalities 44, 45, 46, and 47 taken together imply Eq. 43 of the lemma. �

Lemma 20 Given that S′
I does not have sufficient idle time over [A6,A6 + 8) to

completely execute J6. If jobs J 1
3 and J 2

3 both have their scheduling window intersect
with [tstart, tstart + 8 − α), then there exists t ′ ≥ 0 such that

[t ′, t ′ + 10) ⊃ [A6,A6 + 8), (48)

and

W2(S
′
I , π1, t

′, t ′ + 10) + W3(S
′
I , π1, t

′, t ′ + 10) ≥ α. (49)

Proof Because both J 1
3 and J 2

3 have scheduling windows that overlap with [tstart,

tstart + 8 − α), the interval between the scheduling windows of J 1
3 and J 2

3 must
be completely contained in [tstart, tstart + 8 − α) (i.e., [A1

3 + 2,A2
3) ⊂ [tstart, tstart +

8 − α)). The period and relative deadline parameter of τ3 (p3 = 6 and d3 = 2) imply
that A2

3 − (A1
3 +2) ≥ 4. Therefore, total intersection between the [tstart, tstart +8−α)

and the scheduling windows of J 1
3 and J 2

3 is at most 4 − α. Since the aggregate
length of the scheduling windows for J 1

3 and J 2
3 is four, the total remaining portion

of J 1
3 and J 2

3 ’s scheduling windows that do not overlap with [tstart, tstart +8−α) is at
least α. This remaining portion of the scheduling windows of J 1

3 and J 2
3 must overlap

with either [tstart − 2 − α, tstart) or [tstart + 8 − α, tstart + 10) which, by Lemma 16,
does not contain the execution of jobs of τA ∪ {τ5}.

According to Lemma 7, J 1
3 and J 2

3 execute on π2 over [A6,A6 + 8) for at least
2 − α time units. Since the execution requirement of each job of τ3 is one (i.e., e3 =
1), both J 1

3 and J 2
3 must each execute on π2 over [A6,A6 + 8) for at least 1 − α

time units. Thus, the scheduling window of both J 1
3 and J 2

3 must each overlap with
[A6,A6 + 8) for at least 1 − α time units. Therefore, the earliest that J 1

3 could arrive
is at time A6 − 1 −α (otherwise, J 1

3 would overlap with [A6,A6 + 8) less than 1 −α

Real-Time Syst (2010) 45: 26–71 59

time units). Similarly, the latest that J 2
3 could have its deadline is A6 + 9 + α. More

formally,

A1
3 ≥ A6 − 1 − α, (50)

and

A2
3 + 2 ≤ A6 + 9 + α. (51)

We now consider three cases based on how J 1
3 and J 2

3 intersect with [tstart, tstart +
8−α). In each case, we will prove that there exists a t ≥ 0 that satisfies the conditions
of Eqs. 48 and 49. The three cases are:

Case I J 1
3 ’s scheduling window is completely contained within [tstart, tstart +

8 − α);
Case II J 2

3 ’s scheduling window is completely contained within [tstart, tstart +
8 − α); or

Case III Neither J 1
3 ’s nor J 2

3 ’s scheduling window is completely contained within
[tstart, tstart + 8 − α).

(Observe that the argument of the first paragraph of the proof implies that both J 1
3 and

J 2
3 cannot have their scheduling windows completely contained within [tstart, tstart +

8 − α).)
Analysis for Case I. Both [A1

3,A
1
3 + 2) and [A1

3 + 2,A2
3) are proper subsets of

[tstart, tstart + 8 − α). Thus, by the argument of the first paragraph, at least α of
J 2

3 ’s scheduling window must intersect with [tstart + 8 − α, tstart + 10). More pre-
cisely, [tstart + 8 − α, tstart + 8) ⊂ [A2

3,A
2
3 + 2). By Lemma 16, jobs of τA ∪ {τ5}

do not execute during [tstart + 8 − α, tstart + 8). Lemma 7 implies that J 2
3 must ex-

ecute on processor π2 for some non-zero amount of time in schedule S′
I . Accord-

ing to Lemma 17 and the fact that τA ∪ {τ5} cannot execute during this interval,
[tstart + 8 − α, tstart + 8) must be continuously busy on processor π1 with respect to
jobs of τ2 and τ3. By Eq. 50 (i.e., A1

3 ≥ A6 − 1 − α) and the period parameter of τ3

(i.e., p3 = 6), A2
3 ≥ A6 + 5 − α must be true; since α ≤ 1 (by Lemma 6),

A6 ≤ A2
3. (52)

Equation 51 states that A2
3 + 2 ≤ A6 + 9 + α; since α ≤ 1, it must be that

A2
3 + 2 ≤ A6 + 10. (53)

Equations 52 and 53 together imply [A6,A6 + 10) ⊃ [A2
3,A

2
3 + 2). Furthermore, we

have shown that [A2
3,A

2
3 + 2) ⊃ [tstart + 8 − α, tstart + 8); thus, [A6,A6 + 10) ⊃

[tstart + 8 − α, tstart + 8). Since [tstart + 8 − α, tstart + 8) is continuously busy on π1
for α time units executing jobs of τ2 and τ3 and [A6,A6 + 8) ⊂ [A6,A6 + 10), the
interval [A6,A6 + 10) satisfies both Eqs. 48 and 49 of the lemma.
Analysis for Case II. This case is exactly symmetric to Case II.
Analysis for Case III. Consider the interval [A1

3,A
1
3 + 8). We first show that

[A1
3,A

1
3 + 8) contains at least α units of execution for jobs of τ2 and τ3 on processor

π1. Since J 1
3 intersects [tstart, tstart + 8 − α) and d3 = 2, it must be that tstart − 2 <

60 Real-Time Syst (2010) 45: 26–71

A1
3 < tstart, which implies that tstart − A1

3 < 2. Thus, the interval [A1
3, tstart) is con-

tained within [tstart − 2 − α, tstart) which by Lemma 16 cannot contain the execu-
tion of jobs of τA ∪ {τ5} on processor π1. According to Lemma 7, J 1

3 must exe-
cute on processor π2 for some non-zero amount of time which implies that there
must exist a time t ∈ [A1

3,A
1
3 + 2) such that S′

I (π2, t) = J 1
3 (�= ⊥). Note the preced-

ing statement satisfies the supposition of Lemma 17; so, for all t ′ ∈ [A1
3,A

1
3 + 2),

S′
I (π1, t

′) �= ⊥. By Lemma 17 and the fact that jobs of τA ∪ {τ5} do not exe-
cute on processor π over [A1

3, tstart), processor π1 must be continuously busy over
the interval [A1

3, tstart) executing only jobs of τ2 and τ3. If the interval length of
[A1

3, tstart) is greater or equal to α, then we have shown that [A1
3,A

1
3 + 8) contains

at least α units of execution of τ2 and τ3 on processor π1. If the interval length of
[A1

3, tstart) is less than α, then [A1
3,A

1
3 + 8) ⊃ [tstart, tstart + 8 − α). Additionally,

Lemma 19 implies that interval [tstart + 8 − α,A1
3 + 8) must be contained within

[A2
3,A

2
3 + 2). J 2

3 must execute on processor π2 for some non-zero time by Lemma 7.
Lemma 17 implies then that π1 is continuously busy over [A2

3,A
2
3 + 2). However,

[tstart + 8 − α,A1
3 + 8) ⊂ [tstart + 8 − α,A2

3 + 2) cannot contain the execution of jobs
of τA ∪{τ5} (by Lemma 16). Thus, the interval [tstart +8−α,A1

3 +8) is continuously
busy executing only jobs of τ2 and τ3 on processor π1 in schedule S′

I . Therefore,
[A1

3,A
1
3 + 8) contains intervals (namely [A1

3, tstart) and/or [tstart + 8 − α,A1
3 + 8)) of

total length α that are continuously busy executing jobs of τ2 and τ3 on processor π1.
Continuing our analysis of Case III, we will now show that the interval

[min(A1
3,A6),min(A1

3,A6) + 10) is a superset for both intervals [A6,A6 + 8) and
[A1

3,A
1
3 + 8), and thus satisfies Eqs. 48 and 49 of the lemma. There are two subcases

to consider:

Subcase III.A A1
3 ≤ A6; or

Subcase III.B A1
3 > A6.

For Subcase III.A, [min(A1
3,A6),min(A1

3,A6) + 10) is equivalent to the interval
[A1

3,A
1
3 + 10). Equation 50 states that A1

3 ≥ A6 − 1 −α. This implies that A1
3 + 10 ≥

A6 + 9 − α. Since α > 0 (Lemma 5), [A6,A6 + 8) ⊂ [A1
3,A

1
3 + 10). Furthermore,

[A1
3,A

1
3 + 8) is obviously a subset of [A1

3,A
1
3 + 10).

For Subcase III.B, [min(A1
3,A6),min(A1

3,A6) + 10) is equivalent to the interval
[A6,A6 + 10). Equation 51 states that A2

3 + 2 ≤ A6 + 9 + α ⇒ A2
3 ≤ A6 + 7 + α.

Due to the period parameter for τ3 (i.e., p3 = 6), A1
3 ≤ A6 + 1 + α. Adding

eight to both sides of the inequality implies, A1
3 + 8 ≤ A6 + 9 + α. Since α ≤ 1

(Lemma 6), [A1
3,A

1
3 + 8) ⊂ [A6,A6 + 10). Furthermore, [A6,A6 + 8) is obvi-

ously a subset of [A6,A6 + 10). In both the subcases, we have shown that both
[A1

3,A
1
3 +8) and [A6,A6 +8) are subsets of [min(A1

3,A6),min(A1
3,A6)+10). Thus,

[min(A1
3,A6),min(A1

3,A6) + 10) satisfies the conditions of Eqs. 48 and 49 of the
lemma. �

Lemma 21 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then

(A6 − 2 > tstart) ∨ (tstart > A6 + 2 + α) . (54)

Real-Time Syst (2010) 45: 26–71 61

Proof We will prove the lemma by contradiction; that is, we will show that if

A6 − 2 ≤ tstart ≤ A6 + 2 + α (55)

is true, then we reach a logical contradiction.
By Lemma 16, the intervals [tstart − 2 − α, tstart) and [tstart + 8 − α, tstart + 10)

do not contain the execution of jobs of task τA ∪ {τ5} on processor π1 in schedule
S′

I . Equation 55 states that tstart ≤ A6 + 2 + α. This implies that A6 ≥ tstart − 2 − α.
Therefore, [A6, tstart) is a subset of [tstart −2−α, tstart) and hence no jobs of τA ∪{τ5}
may execute in [A6, tstart). (Please note that [A6, tstart) may be empty if tstart ≤ A6.)
Similarly, since tstart ≥ A6 − 2, then tstart + 10 ≥ A6 + 8; this implies that interval
[tstart +8−α,A6 +8) also does not contain the execution of jobs of τA ∪{τ5}. (Again,
[tstart + 8 −α,A6 + 8) may be empty if tstart + 8 −α ≥ A6 + 8.) Thus, the only times
during which processor π1 executes jobs of τA ∪ {τ5} over [A6,A6 + 8) in schedule
S′

I is over the subinterval [tstart, tstart + 8 − α) ∩ [A6,A6 + 8).
Lemma 7 implies that two jobs of τ3, namely J 1

3 , J 2
3 ∈ I , must execute on proces-

sor π2 in schedule S′
I over the interval [A6,A6 + 8) for strictly more than 2 − α time

units. We now consider three possible subcases regarding the intersection between
the interval [tstart, tstart + 8 − α) and the scheduling windows of J 1

3 and J 2
3 .

Case I Both the scheduling windows of J 1
3 and J 2

3 intersect with [tstart, tstart +
8 − α);

Case II only one of either J 1
3 or J 2

3 has a scheduling window that intersects with
[tstart, tstart + 8 − α); or

Case III neither J 1
3 nor J 2

3 intersect with [tstart, tstart + 8 − α).

For Case I, Lemma 20 implies that there exists an interval [t ′, t ′ + 10) such that
W2(S

′
I , π1, t

′, t ′ + 10) + W3(S
′
I , π1, t

′, t ′ + 10) ≥ α and [t ′, t ′ + 10) ⊃ [A6,A6 + 8).
Observation 1 states that the most that jobs of τ2 and τ3 can execute in S′

I over
[t ′, t ′ +10) is four units. Since τ2 and τ3 execute for at least α time units on processor
π1 over [t ′, t ′ +10), τ2 and τ3 can execute for at most 4−α time units on processor π2

over the same interval. Because [A6,A6 + 8) ⊂ [t ′, t ′ + 10), the preceding statement
implies that τ2 and τ3 execute for at most 4 − α time units on π2 over [A6,A6 + 8)

in S′
I . However, this directly contradicts Lemma 9.

For Case II, without loss of generality, assume that J 1
3 is the job that does not

intersect with [tstart, tstart + 8 −α). Since J 1
3 does not intersect with [tstart, tstart + 8 −

α), the interval [A6,A6 + 8) ∩ [A1
3,A

1
3 + 2) does not contain the execution of jobs of

τA ∪{τ5} on processor π1 in schedule S′
I (according to the argument at the beginning

of Case I about the execution of jobs of τA ∪ {τ5} over [A6,A6 + 8)). Lemma 7
implies that J 1

3 executes on π2 over [A6,A6 + 8). Lemma 17 thus, implies that π1 is
continuously busy over [A1

3,A
1
3 + 2). However, we have just argued that τA ∪{τ5} do

not execute on π1 over [A6,A6 + 8) ∩ [A1
3,A

1
3 + 2). Thus, π1 is continuously busy

over [A6,A6 +8)∩[A1
3,A

1
3 +2) for τ2 and τ3. Lemma 18 implies that π2 is idle over

the interval [A6,A6 +8)∩[A1
3,A

1
3 +2) for tasks τ2 and τ3. However, this contradicts

the earlier statement that J 1
3 must have executed on π2 over [A6,A6 + 8). Thus, this

case is not possible, since we have reached a contradiction to Lemma 7.

62 Real-Time Syst (2010) 45: 26–71

The proof of Case III is identical to Case II, except neither J 1
3 nor J 2

3 will execute
on processor π2 over the interval [A6,A6 + 8), which contradicts Lemma 7. Thus, in
each subcase, we derived a contradiction. Thus, Eq. 55 is impossible and Eq. 54 must
be true. �

Lemma 22 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then

(A5 < A6 − 2) ∨ (A6 + 4 < A5) (56)

Proof We prove the lemma by contradiction; that is, we will assume that there is not
sufficient idle time for J6 in S′

I and

A6 − 2 ≤ A5 ≤ A6 + 4. (57)

However, we will show that Eq. 57 leads to a contradiction.
Our argument is based on a case analysis of the possible relative values of A6

and tstart (under the constraint of Eq. 57). First, observe that Lemma 15 states that
[A5,A5 + 6) ⊂ [tstart, tstart + 8 − α); thus, the following two inequalities are true:

tstart ≤ A5, (58)

and

A5 + 6 ≤ tstart + 8 − α. (59)

Our case analysis contains three major cases (with several subcases). We will show
in each case a contradiction arises. The three major cases are:

Case I A6 − 2 ≤ tstart ≤ A6 + 2 + α;
Case II tstart < A6 − 2; or
Case III A6 + 2 + α < tstart.

Below is the proof of contradiction for each major case.
Analysis for Case I: This case directly contradicts Lemma 21.
Analysis for Case II: By assumption of Case II and Eq. 59,

A5 − 2 + α ≤ tstart < A6 − 2 ⇒ A6 − 4 + α ≤ tstart < A6 − 2. (60)

The last implication follows from the assumption of Eq. 57.
Let y

def= A6 − 2 − tstart. We may rewrite the expression tstart + 8 − α as A6 + 6 −
α − y and the interval [tstart, tstart + 8 − α) as [tstart,A6 + 6 − α − y). From Case II
and Eq. 60, we may obtain the following bounds on y:

0 < y ≤ 2 − α. (61)

Since [A6,A6 + 6 − α − y) ⊂ [tstart, tstart + 8 − α), Lemma 15 implies that
[A6,A6 + 6 − α − y) is a continuously busy interval for tasks τA ∪ {τ5} on
processor π1. Note that A6 + 6 − α − y ≥ A6 + 4 from Eq. 61; so, the interval
[A6,A6 + 6 − α − y) is non-empty. Since A6 + 6 − α − y equals tstart + 8 − α,

Real-Time Syst (2010) 45: 26–71 63

Lemma 16 implies that no job of τA ∪ {τ5} executes in [A6 + 6 −α − y,A6 + 8 − y).
By y > 0 (Eq. 61), the interval [A6 + 8 − y,A6 + 8) is also a non-zero length
interval. We have, thus, partitioned the interval [A6,A6 + 8) into three disjoint,
non-zero-length intervals: [A6,A6 + 6 − α − y), which is continuously busy for
τA ∪ {τ5}; [A6 + 6 − α − y,A6 + 8 − y) which is continuously idle for τA ∪ {τ5};
and [A6 + 8 − y,A6 + 8).

The only jobs that execute on processor π2 over [A6,A6 + 8) are J 1
2 , J 2

2 , J 1
3 , J 2

3
and J5, by Lemmas 8, 7, and 5. Since [A6,A6 + 6 − α − y) equals [tstart, tstart + 8 −
α) ∩ [A6,A6 + 8) and [A5,A5 + 6) ⊆ [tstart, tstart + 8 − α), Lemma 5 implies that J5
must execute for some amount of time ≤ α in the interval [A6,A6 + 6 − α − y). We
consider the following subcase analysis based on the relative placement of the two
jobs of τ2 and τ3. The subcases are:

Subcase II.A τ2 has the scheduling windows of both J 1
2 and J 2

2 intersect with
[A6,A6 + 6 − α − y);

Subcase II.B τ2 has at most one job that intersects with [A6,A6 + 6 − α − y);
Sub-Subcase II.B1 τ3 has the scheduling windows of both J 1

3 and J 2
3

intersect with [A6,A6 + 6 − α − y);
Sub-Subcase II.B2 both τ2 and τ3 have at most one job that intersects

with [A6,A6 + 6 − α − y).

We will argue, simultaneously, that both Subcase II.A and Sub-Subcase II.B1
are impossible, as the proofs are nearly identical. That is, assume that there ex-
ists τi ∈ {τ2, τ3} that has exactly two jobs, J 1

i and J 2
i (superscript indicates order

of arrival), that intersect with the interval [A6,A6 + 6 − α − y); thus, the inter-
val between the scheduling windows of J 1

i and J 2
i must be completely contained

in [A6,A6 + 6 − α − y) (i.e., [A1
i + di,A

2
i) ⊂ [A6,A6 + 6 − α − y)). The period

and relative deadline parameter of τi imply that A2
i − (A1

i + di) ≥ 4. Therefore, the
total intersection between the scheduling windows of J 1

i and J 2
i and the interval

[A6,A6 + 6 −α − y) is strictly less than 2 −α. Thus, the most that τi can execute on
processor π2 over the interval [A6,A6 + 6 −α − y) is strictly less than 2 −α. τi can-
not execute on processor π2 over [A6 + 6 − α − y,A6 + 8 − y), since if J 2

i overlaps
with [A6 + 6 −α −y,A6 + 8 −y) then Lemma 17 implies π1 would be continuously
busy executing τ2 or τ3 over [A2

i ,A
2
i + di) ∩ [A6 + 6 − α − y,A6 + 8 − y). If π1

is continuously busy for τ2 and τ3 over this interval, then Lemma 18 implies that no
jobs of τ2 or τ3 execute on π2 over such an interval. Furthermore, observe that since
J 2

i overlaps with [A6,A6 + 6 − α − y), then A2
i < A6 + 6 − α − y ⇒ A2

i + di <

A6 + 6 + di − α − y < A6 + 8 − y. The last inequality follows since both d2 = 1 and
d3 = 2 are at most two and α is positive. Hence, since J 2

i ’s deadline occurs prior to
A6 + 8 − y and at most two jobs of τi can execute over [A6,A6 + 8), τi does not exe-
cute during [A6 +8−y,A6 +8). Thus, for both Subcase II.A and Sub-Subcase II.B1,
the most that τi can execute on processor π2 in S′

I over [A6,A6 + 8) is strictly less
than 2 − α which contradicts Lemma 8 (for i = 2) or Lemma 7 (for i = 3).

For Sub-Subcase II.B2, we have at most one job of each τ2 and τ3 that intersects
with [A6,A6 +6−α −y). Notice, in this case, that J 2

2 ’s scheduling window does not
intersect with [A6,A6 + 6 − α − y). If J 2

2 intersects [A6,A6 + 6 − α − y), then J 1
2 ’s

scheduling window must also intersect [A6,A6 + 6 − α − y) because by Lemma 8

64 Real-Time Syst (2010) 45: 26–71

J 1
2 intersects with [A6,A6 + 8); however, this contradicts the assumption of Sub-

Subcase II.B2. Similarly, it may be shown by identical reasoning that J 2
3 ’s scheduling

window does not intersect with [A6,A6 + 6 − α − y). By Lemma 17 and 18, neither
J 2

2 nor J 2
3 can execute on π2 in schedule S′

I during the interval [A6 +6−α−y,A6 +
8−y). Thus, in this subcase, the only times during which J 2

2 or J 2
3 may execute on π2

over [A6,A6 + 8) is during the subinterval [A6 + 8 − y,A6 + 8). However the length
of the interval is at most 2 − α by Eq. 61. So, J 2

2 and J 2
3 contribute at most 2 − α

execution on π2 over [A6,A6 + 8). J 1
2 and J 1

3 contribute at most one unit on π2 over
[A6,A6 + 8). Finally, J5 contributes at most α units on π2 over this interval. Thus,∑

τi∈τ example−{τ6} Wi(S
′
I , π2,A6,A6 +8) ≤ 4. In this case, J6 could have completed its

execution entirely on processor π2. Thus, in each subcase, we derived a contradiction
to our assumption of insufficient idle time for J6.
Analysis for Case III: By assumption of Case III and Eq. 58,

A6 + 2 + α < tstart ≤ A5 ⇒ A6 + 2 + α < tstart ≤ A6 + 4. (62)

The last implication follows from the assumption of Eq. 57.
Now let y′ def= tstart −A6 −α. We may rewrite the expression tstart as A6 +2+α+y′

and the interval [tstart, tstart +8−α) as [A6 +2+α +y′, tstart +8−α). From Case III
and Eq. 62, we may obtain the following bounds on y′:

0 < y′ ≤ 2 − α. (63)

Following the same reasoning at the beginning of Case II, we may partition the
interval [A6,A6 + 8) into disjoint subintervals [A6,A6 + y′), [A6 + y′,A6 + 2 +α +
y′) (which is continuously idle for τA ∪ {τ5}), and [A6 + 2 + α + y′,A6 + 8) (which
is continuously busy for τA ∪ {τ5}). The remainder of the analysis for this case is
exactly symmetric to Case II.

In each major case, we achieve a contradiction to our assumption that J6 could not
execute completely in S′

I . Thus, Eq. 57 must be false. The lemma follows. �

5.3.4 Step 4: construction of schedule S′′
I

By the previous section, we know that if τ6 cannot complete in schedule S′
I , then

there exists a job of τ6 where there is insufficient time on both π1 and π2 to complete
the job during the idle instants. As in the last section, let J6 be any such job of τ6 that
cannot complete in its scheduling window with respect to the idle instants of S′

I . We
now define a modified schedule S′′

I in which more of τ5’s execution on processor π2 is
moved out of the interval [A6,A6 +8). Lemma 5 implies that a job J5 of τ5 exists that
has a scheduling window that intersects with [A6,A6 + 8). Lemma 22 implies that
J5’s scheduling window is not completely contained in [A6,A6 + 8). The following
are informal “rules” which we apply inductively at every time instant t from [0,∞).
A formal definition of S′′

I appears immediately after the informal description.

Rule 0 The schedule for processor π1 is not changed from S′
I to S′′

I (i.e., for all t ,
S′′

I (π1, t) = S′
I (π1, t)).

Rule 1 The current job of τ5 has its execution moved to time t on processor π2 if:

Real-Time Syst (2010) 45: 26–71 65

(a) there is a current job of τ5 at time t ;
(b) there is no current job of τ6 at time t ;
(c) the current job of τ5 is not scheduled on processor π1 at time t ;
(d) no job was scheduled at time t on processor π2 in S′

I ; and
(e) the total execution of the current job of τ5 over its entire scheduling win-

dow on processor π1 plus the total execution of the current job of τ5 on
processor π2 up until time t , is less than τ5’s execution requirement.

The purpose of this rule is to add new execution of J5 to times when
[A5,A5 + 6) does not overlap with [A6,A6 + 8) (when processor π2 is idle
at time t and J5 is eligible to continue executing).

Rule 2 Processor π2 is idled at time t if:
(a) there is a current job of τ5 at time t ;
(b) there is no current job of τ6 at time t ;
(c) a job of τ5 executed at time t on processor π2 in schedule S′

I ; and
(d) the total execution of the current job of τ5 over its entire scheduling win-

dow on processor π1 plus the total execution of the current job of τ5 on
processor π2 up until time t , already equals τ5’s execution requirement.

The purpose of this rule is to continue to idle processor π2 at times t when
[A5,A5 + 6) does not overlap with [A6,A6 + 8) and J5 has sufficient execu-
tion on processor π1 over [A5,A5 + 6) and execution on processor π2 over
[A5, t) to successfully complete.

Rule 3 This rule is used to move execution out of the intersection of the schedul-
ing windows of jobs of τ5 and τ6. (Note the execution is added to the non-
intersecting portion of the windows by Rule 1.) For this rule, we need to
determine how much execution has already been moved, as well as deter-
mine the amount of execution of τ5 that could be moved forward in time.
The specification of the third rule for S′′

I (π2, t) is that processor π2 is idled
at time t if:
(a) there is a current job of τ5 at time t ;
(b) there is a current job of τ6 at time t ;
(c) a job of τ5 executed at time t on processor π2 in schedule S′

I ; and
(d) the total aggregation of the following expressions exceeds or equals τ5’s

execution requirement:
(i) total execution of the current job of τ5 over its entire scheduling

window on processor π1 in schedule S′′
I ;

(ii) the total execution of the current job of τ5 on processor π2 preceding
τ6’s scheduling window (if any) in schedule S′′

I ;
(iii) the total execution of current job of τ5, from the arrival of τ6’s job

until time t , plus the total execution of τ5 in schedule S′
I occurring

after τ6’s scheduling window;
(iv) the total idle time on π2, when the current job of τ5 is not executing

on π1, over the portion of τ5’s scheduling window that succeeds τ6’s
scheduling window in schedule S′

I (i.e., potential times to move τ5’s
execution).

Rule 4 Finally, if none above rules’ conditions are satisfied, then the schedule at
time t remains the same as in S′

I .

66 Real-Time Syst (2010) 45: 26–71

Fig. 5 The above image shows the two possible scenarios of moving J5’s execution from
the interval [A6,A6 + 8). In the left scenario, J5’s execution on processor π2 in the interval
[A6,A6 + 8) ∪ [A5,A5 + 6) is moved to the left in an available time instant on processor π2 in the
interval [A5,A5 + 6) \ [A6,A6 + 8) that precedes J6’s scheduling window. The movement of execution
to left is achieved by application of Rule 1 followed by Rule 3. The right scenario shows the movement of
execution to the right when J5’s deadline is after J6’s. Movement to the right is achieved by application
of Rule 3 followed by Rule 1

The schedule S′′
I is formally (and inductively) defined as follows.

S′′
I (π1, t)

def= S′
I (π1, t)

S′′
I (π2, t)

def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ5(I, t), if (r5(I, t) < ∞) and (r6(t) = ∞) and (S′
I (π2, t) = ⊥)

and (S′
I (π1, t, τ5) = 0) and

(W5(S
′
I , π1, r5(I, t), r5(I, t) + 6)

+ W5(S
′′
I , π2, r5(I, t), t) < 2),

⊥, if (r5(I, t) < ∞) and (r6(t) = ∞)

and (S′
I (π2, t, τ5) = 1) and

(W5(S
′
I , π1, r5(I, t), r5(I, t) + 6)

+ W5(S
′′
I , π2, r5(I, t), t) = 2),

⊥, if (r5(I, t) < ∞) and (r6(I, t) < ∞)

and (S′
I (π2, t, τ5) = 1) and

(W5(S
′
I , π1, r5(I, t), r5(I, t) + 6)

+ W5(S
′′
I , π2, r5(I, t),max{r5(I, t), r6(I, t)})

+ W5(S
′′
I , π2,max{r5(I, t), r6(I, t)}, t)

+ W5(S
′
I , π2,min{d5(I, t), d6(I, t)}, d5(I, t))

+ W(S′
I , 〈π2,⊥〉, 〈π1, ϕ5(I, t)〉,

min{d5(I, t), d6(I, t)}, d5(I, t)) ≥ 2),

S′
I (π2, t), otherwise.

(64)
Figure 5 shows two possible scenarios in which execution of J5 on processor π1

is moved from its original scheduled time instants in S′
I . It is straightforward to see

that S′′
I remains valid.

Lemma 23 Schedule S′′
I is valid.

Proof It is easy to see that S′′
I is valid, as we are only moving execution of τ5 during

τ5’s scheduling window. Furthermore, we ensure that τ5 does not execute concur-

Real-Time Syst (2010) 45: 26–71 67

rently with itself and that the total execution over τ5’s scheduling window does not
exceed τ5’s execution requirement (e5 = 2). �

Before showing that schedule S′′
I can accommodate J6’s execution, we prove a

lemma regarding the conditions that must hold when a job of τ5 executes on processor
π2 in schedule S′′

I .

Lemma 24 Let t > 0 be a time such that r5(I, t) < ∞ and r6(I, t) = ∞ (i.e., at
time t there is a current scheduling window for τ5, but not τ6). The current job of τ5,
ϕ5(I, t), executes on processor π2 at time t in schedule S′′

I (i.e., S′′
I (π2, t) = ϕ5(I, t)),

if and only if, the following three conditions hold:

Condition 1: ϕ5(I, t) has not completed execution (i.e., J5 has executed for strictly
less than two time units on π1 over [r5(I, t), r5(I, t) + 6) and
π2 over [r5(I, t), t)). Formally, W5(S

′
I , π1, r5(I, t), r5(I, t) + 6) +

W5(S
′′
I , π2, r5(I, t), t) < 2;

Condition 2: π1 is not executing ϕ5(I, t) at time t in schedule S′
I ; and

Condition 3: π2 is not executing a job of task τ2 or τ3 at time t in schedule S′
I .

Proof The “if” direction is trivial; if each of the three conditions hold, observe that
Rule 1’s conditions are satisfied and ϕ5(I, t) is scheduled at time t on processor π2 in
schedule S′′

I . We will prove the “only if” direction by contradiction. That is, assume
that S′′

I (π2, t) = ϕ5(I, t), but one of the three conditions is not true. Notice that if
either Condition 1 or 2 is not true, the validity of schedule S′′

I (Lemma 23) will be vi-
olated. Specifically, if ϕ5(I, t) is scheduled at time t on processor π2, but has already
executed two units on π1 over [r5(I, t), r5(I, t)+ 5) and on π2 over [r5(I, t), t), then
it will execute for more than the execution requirement in S′′

I . If ϕ5(I, t) is scheduled
at time t on processor π2, but is already executing at time t on processor π1, then
we will be executing concurrently with itself. Finally, if Condition 3 is not true, then
either τ2 or τ3 was already executing at time t in schedule S′

I . Observe that the defi-
nition of schedule S′′

I never moves execution of τ2 or τ3. So, we cannot concurrently
execute a job of either τ2 or τ3 with ϕ5(I, t) on the same processor. Thus, in each
case, we have shown that if any of the conditions is violated a contradiction arises.
Therefore, if ϕ5(I, t) is scheduled at time t on processor π2 in schedule S′′

I , then the
above three conditions must hold. �

We now show, for any job J6 ∈ I of task τ6 that cannot complete in schedule
S′

I , J6 is guaranteed to complete execution in S′′
I . More formally, we show, in the

following lemma, that there is sufficient space to execute J6 entirely on processor π2

in schedule S′′
I over J6’s scheduling window.

Lemma 25 If S′
I does not have sufficient idle time over [A6,A6 + 8) to completely

execute J6, then
∑

τi∈τ example\{τ6}
Wi(S

′′
I , π2,A6,A6 + 8) ≤ 4. (65)

68 Real-Time Syst (2010) 45: 26–71

Proof By Lemma 5, there exists a job J5 ∈ I of task τ5 with scheduling window such
that [A5,A5 + 6) ∩ [A6,A6 + 8) �= ∅. From Lemma 22, exactly one of the following
two expressions is true:

Case I A5 < A6 − 2; or
Case II A6 + 4 < A5.

Analysis for Case I: The inequality of Case I implies that J5 arrives strictly earlier
than two time units prior J6’s arrival. Since J5 and J6 intersect, then A6 ≤ A5 + 6.
Therefore, [A6 −2,A6) ⊂ [A5,A5 +6). There are two subcases to consider regarding
the execution of J5 over [A5,A6).

Subcase I.A J5 completes α units of its execution on processor π2 in [A5,A6); or
Subcase I.B J5 does not complete α units of execution on processor π2 in [A5,A6).

For Subcase I.A, J5 will not execute in the interval [A6,A6 + 8); Lemma 5 states
that J5 executes for only α time on processor π2 in [A5,A5 + 6). Since S′′

I does not
move execution of τ2 or τ3, exactly two jobs of both τ2 and τ3 execute in [A6,A6 +8)

by Lemmas 8 and 7. The total execution requirement of these four jobs is at most four
which implies Eq. 65.

For Subcase I.B, note that Lemma 5 states that J5 executes for 2 − α on processor
π1. So, if J5 does not complete α units of execution on processor π2 in [A5,A6)

for schedule S′′
I , then Condition 1 is never false for any t ∈ [A5,A6). Therefore, by

Lemma 24, whenever J5 is not executing on processor π2 over [A5,A6), then either
Condition 2 or 3 of Lemma 24 is false. By Lemma 5, J5 executes on processor π2 for
α time units in S′

I over [A5,A5 + 6). Since S′′
I does not move additional execution

of J5 to π1 from π2, J5 continues to execute for α time units in [A5,A5 + 6) for
S′′

I . Thus, J5 executes the remaining portion on processor π1 for exactly 2 − α time
units. Hence, the most that J5 could execute for in schedule S′′

I on processor π1

over [A5,A6) (and by extension subinterval [A6 − 2,A6)) is 2 − α. So, Condition 2
could be false for at most 2 − α times in the interval [A6 − 2,A6). The remaining α

time in the interval [A6 − 2,A6) must have either J5 executing on processor π2 or
Condition 3 being false (i.e., either τ2 or τ3 are executing).

By Observation 1, the most τ2 can execute over [A6 − 2,A6 + 8) (in any valid
schedule) is two; similarly, the most τ3 can execute over [A6 − 2,A6 + 8) is two.
Lemma 5 and its period parameter (p5 = 100) implies the most that τ5 could execute
in [A6 −2,A6 +8) is α. Thus, the total execution of all jobs of τB over [A6 −2,A6 +
8) is 4 + α. By the preceding paragraph, at least α units of this execution on π2 must
occur over [A6 −2,A6), leaving at most four units to execute over [A6,A6 +8). Thus,
Eq. 65 is true for this subcase. We have shown that Eq. 65 is true for all subcases of
Case I
Analysis for Case II: Symmetric to Case I. �

Theorem 2 immediately follows from the Steps outlined in Fig. 3 and Lemma 25.
That is, for any I ∈ I S

WCET(τ example), we can construct a valid schedule on two
processors. Thus, by Definition 7, τ example is feasible on two processors.

Real-Time Syst (2010) 45: 26–71 69

6 Conclusions

In this article, we have seen that there exists a sporadic task system that is feasible
upon a multiprocessor platform for which there does not exist an online multiproces-
sor algorithm that can successfully schedule every real-time instance generated by
this task system. The existence of such a feasible task system implies that optimal
online scheduling of sporadic and more general task systems is impossible for mul-
tiprocessor platforms. This article identified the feasible task system and proved that
no online scheduling algorithm can successfully schedule all feasible instances.

The consequence of this negative result is far-reaching in that algorithms that are
optimal for LL task systems no longer retain their optimality for small generaliza-
tions of the task model. Without optimality, it is not immediately clear what should
be the theoretical basis for evaluating the effectiveness of a real-time multiprocessor
scheduling algorithm for sporadic and more general task systems. The use of analyt-
ical techniques such as resource-augmentation (Phillips et al. 1997) for identifying
near-optimal online scheduling algorithms provide a potential metric for comparison
of multiprocessor scheduling algorithms for general task systems. For example, it has
been shown (Phillips et al. 1997) if any algorithm (clairvoyant or not) can schedule a
real-time instance I on an m identical processor platform, then EDF can successfully
schedule the same instance upon a platform where each processor has been “sped-up”
by a factor of 2− 1

m
. Similar resource augmentation results exist for other algorithms,

such as DM, with larger resource augmentation factors (Baruah and Fisher 2007).
Other areas of computer science have addressed similar negative results by relax-

ing the definition or requirements of the computational construct that has been shown
to be impossible. For example, consider the impossibility for obtaining consensus in
a distributed system in the presence of faults (Fischer et al. 1985). Researchers in
distributed algorithms addressed the need for consensus-like constructs in distributed
applications by providing protocols that can solve redefined versions of consensus
(e.g., virtual synchrony Birman and Joseph 1987). Future work in multiprocessor
scheduling of sporadic task systems might successfully find algorithms that are “op-
timal” for some more relaxed notion of optimality or a slightly strengthened notion
of an online scheduling algorithm.

Acknowledgements We are grateful to the journal reviewers for their constructive and insightful com-
ments that greatly improved the quality of our paper. This work is sponsored in part by a Wayne State
University Faculty Research Award; AT&T, IBM, and Sun Corps.; NSF grants CNS 0834270 and CNS
0834132; ARO grant W911NF-09-1-0535; and AFOSR grant FA9550-09-1-0549.

References

Audsley NC, Burns A, Richardson MF, Wellings AJ (1991) Hard real-time scheduling: the deadline
monotonic approach. In: Proceedings 8th IEEE workshop on real-time operating systems and soft-
ware, Atlanta, May 1991, pp 127–132

Baker T, Cirinei M (2006) A necessary and sometimes sufficient condition for the feasibility of sets of
sporadic hard-deadline tasks. In: Proceedings of the IEEE real-time systems symposium, Rio de
Janeiro, December 2006. IEEE Computer Society, Los Alamitos, pp 178–187

Baker T, Cirinei M (2007) Brute-force determination of multiprocessor schedulability for sets of sporadic
hard-deadline tasks. In: Proceedings of the 10th international conference on principles of distributed
systems, Guadeloupe, December 2007, pp 62–75

70 Real-Time Syst (2010) 45: 26–71

Baruah S (2003) Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time Syst
24(1):99–128

Baruah S, Fisher N (2007) Global deadline-monotonic scheduling of arbitrary-deadline sporadic task
systems. In: Proceedings of the 11th international conference on principles of distributed systems,
Guadeloupe, French West Indies, December 2007. Springer, Berlin

Baruah S, Howell R, Rosier L (1993) Feasibility problems for recurring tasks on one processor. Theor
Comput Sci 118(1):3–20

Baruah S, Cohen N, Plaxton G, Varvel D (1996) Proportionate progress: a notion of fairness in resource
allocation. Algorithmica 15(6):600–625

Baruah S, Chen D, Gorinsky S, Mok A (1999) Generalized multiframe tasks. Real-Time Syst 17(1):5–22
Birman K, Joseph T (1987) Exploiting virtual synchrony in distributed systems. SIGOPS Oper Syst Rev

21(5):123–138
Dertouzos M (1974) Control robotics: the procedural control of physical processors. In: Proceedings of

the IFIP congress, pp 807–813
Dertouzos M, Mok AK (1989) Multiprocessor scheduling in a hard real-time environment. IEEE Trans

Softw Eng 15(12):1497–1506
Dhall SK, Liu CL (1978) On a real-time scheduling problem. Oper Res 26:127–140
Fischer MJ, Lynch NA, Paterson MS (1985) Impossibility of distributed consensus with one faulty process.

J ACM 32(2):374–382
Fisher N, Baruah S (2009) The feasibility of general task systems with precedence constraints on multi-

processor platforms. Real-Time Syst 41(1):1–26
Hong K, Leung J (1988) On-line scheduling of real-time tasks. In: Proceedings of the real-time systems

symposium, Huntsville, AL, December 1988. IEEE, New York, pp 244–250
Horn W (1974) Some simple scheduling algorithms. Nav Res Logist Q 21:177–185
Jeffay K, Stanat D, Martel C (1991) On non-preemptive scheduling of periodic and sporadic tasks. In:

Proceedings of the 12th real-time systems symposium, San Antonio, TX, December 1991. IEEE
Computer Society, Los Alamitos, pp 129–139

Kolmogorov AN, Fomin SV (1970) Introductory real analysis. Dover, New York
Leung J, Whitehead J (1982) On the complexity of fixed-priority scheduling of periodic, real-time tasks.

Perform Eval 2:237–250
Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard real-time environment.

J ACM 20(1):46–61
Mok AK (1983) Fundamental design problems of distributed systems for the hard-real-time environment.

PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology. Available as
Technical Report No. MIT/LCS/TR-297

Phillips CA, Stein C, Torng E, Wein J (1997) Optimal time-critical scheduling via resource augmentation.
In: Proceedings of the twenty-ninth annual ACM symposium on theory of computing, El Paso, TX,
4–6 May 1997, pp 140–149

Srinivasan A, Anderson J (2002) Optimal rate-based scheduling on multiprocessors. In: Proceedings of the
34th ACM symposium on the theory of computing, May 2002, pp 189–198

Nathan Fisher is an Assistant Professor in the Department of Com-
puter Science at Wayne State University. He received his Ph.D. from
the University of North Carolina at Chapel Hill in 2007, his M.S. de-
gree from Columbia University in 2002, and his B.S. degree from the
University of Minnesota in 1999, all in computer science. His research
interests are in real-time and embedded computer systems, parallel and
distributed algorithms, resource allocation, algorithmic mechanism de-
sign, and approximation algorithms.

Real-Time Syst (2010) 45: 26–71 71

Joël Goossens is Associate Professor at the Université Libre de Brux-
elles, since October 2006.
Joël Goossens received his M.Sc. degree in computer science in 1992,
his M.Sc. degree in network and management in 1993 and his Ph.D.
degree in computer science in 1999, all from the Université Libre de
Bruxelles, Belgium. He teaches algorithms and programming, data-
base, operating systems and real-time scheduling.
His main research interests are presently in real-time scheduling theory
and parallel systems.

Sanjoy Baruah is a professor in the Department of Computer Science
at the University of North Carolina at Chapel Hill. He received his
Ph.D. from the University of Texas at Austin in 1993. His research and
teaching interests are in scheduling theory, real-time and safety-critical
system design, and resource-allocation and sharing in distributed com-
puting environments.

	Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible
	Abstract
	Introduction
	Model and notation
	Real-time instances
	Real-time task models
	Liu and Layland (LL) task model (implicit-deadline sporadic task model)
	Sporadic task model
	More general task models

	Machine model
	Some assumptions

	Real-time scheduling algorithms
	Feasible real-time task systems

	Inapplicability of prior optimality results for multiprocessor real-time scheduling
	Impossibility of optimal online multiprocessor scheduling for sporadic and more general task systems
	Feasibility of sporadic task system tauexample on two processors
	Outline
	Notation
	Proof
	Step 1: Construction of schedule SI
	Step 2: construction of schedule SI'
	Step 3: properties of schedule SI'
	Step 4: construction of schedule SI"

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

