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Abstract We present a fine grain quality control method for multimedia applications.
The method takes as input an application software composed of actions. The execu-
tion times of actions are unknown increasing functions of quality level parameters.
The method allows the construction of a Controller which computes adequate action
schedules and corresponding quality levels, so as to meet QoS requirements for a
given platform. These include requirements for safety (action deadlines are met) as
well optimality (maximization and smoothness of quality levels).

The Controller consists of a Quality Manager and a Scheduler. For each action,
the Controller uses a quality management policy for choosing a schedule and qual-
ity levels meeting the QoS requirements. The schedule is selected amongst a set of
optimal schedules computed by the Scheduler.

We extend and improve results of previous papers providing a solid theoretical
basis for designing and implementing the Controller.

We propose a symbolic quality management method using speed diagrams, a rep-
resentation of the controlled system’s dynamics. Instead of numerically computing a
quality level for each action, the Quality Manager changes action quality levels based
on the knowledge of constraints characterizing control relaxation regions. These are
sets of states in which quality management for a given number of computation steps
can be relaxed without degrading quality.

We study techniques for efficient computation of optimal schedules.
We present experimental results including the implementation of the method and

benchmarks for an MPEG4 video encoder. The benchmarks show drastic perfor-
mance improvement for controlled quality with respect to constant quality. They also
show that symbolic quality management allows significant reduction of the overhead
with respect to numeric quality management. Finally, using optimal schedules can
lead to considerable performance gains.
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1 Introduction

There exist two diverging approaches in systems engineering.

• Critical systems engineering based on worst-case analysis using conservative ap-
proximations of system dynamics and static resource reservation. This approach is
applied whenever a system’s correctness means no violation of critical conditions
such as missing a deadline or reaching a dangerous state.

• Best effort engineering based on average-case analysis and seeking efficient use of
resources without addressing critical behavior issues, e.g., optimization of speed,
jitter, memory, bandwidth, power. It is applied whenever some degradation or even
temporal denial of service is tolerated e.g., telecommunications.

The two approaches are currently disjoint. They correspond to different research
communities and different practices. They adopt different computing paradigms, use
specific execution platforms, middleware and networks. It is often advocated that
such a separation is inevitable, especially for embedded systems with uncertain ex-
ecution and external environments. Meeting critical properties and making optimal
use of available resources seem to be two antagonistic requirements. To ensure criti-
cal properties, worst-case estimates must be used and this may lead to inefficient use
of resources if they are statically pre-allocated. The existing gap between critical and
best effort approaches often leads to costly and unreliable solutions.

To bridge the gap between the two approaches, it is essential to develop design
techniques for adaptive systems meeting both critical and best effort properties. Such
techniques should allow control of the overall system behavior so as to meet critical
properties while making the best possible use of resources, taking into account both
average and worst-case behavior.

Adaptivity is a means for bridging the gap between the two approaches. For multi-
media embedded software, the fast evolution of market needs, user requirements and
platforms requires reliable adaptation of features at minimal costs. Currently, adapta-
tion of application software to target platforms and needs is too costly. To meet given
QoS requirements a significant amount of experimentation is needed on virtual or
real prototypes involving fine tuning of parameters of the components of the appli-
cation software. After tuning, the behavior of application software can be modified
only by changing user-defined input parameters. Thus, adaptability is coarse grain as
it can be achieved only by modifying global parameters. Furthermore, some delay
is necessary for adaptation due to limited controllability of the application software
over the underlying execution system.

In previous papers (Combaz et al. 2005a, 2005b), we have presented an adaptive
method for QoS management in multimedia applications. The method allows adapt-
ing the overall system behavior by adequately setting quality level parameters for its
actions. The objective is to meet QoS requirements including two types of properties:
(1) safety (no deadline missed); (2) optimality, meaning both maximal and smooth
quality during a cycle.
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Fig. 1 Prototype tool
implementation

The method takes as input an application software with timing information about
its actions (see Fig. 1). This includes deadlines and (platform-dependent) worst-case
and average execution times. It produces a controlled application software meeting
the QoS requirements for the target platform. The method is characterized by the
following:

• The application software cyclically performs input/output transformations of data
streams. It is described as a partially ordered set of actions (C-functions). Its ex-
ecution during a cycle can be controlled by choosing for actions adequate sched-
ules and quality level parameters. We assume that the execution times of actions
are unknown and are increasing with quality. Thus, quality maximization implies
maximal utilization of CPU time.

• We consider single-thread implementations of the application software on a plat-
form for which it is possible, by using timing analysis and profiling techniques,
to compute estimates of worst-case execution times and average execution times
of actions for different quality levels. Action execution is assumed to be atomic.
A compiler is used to generate the controlled software from the initial application
software, for given deadline requirements and execution times.

The controlled software can be considered as the composition of the initial appli-
cation software with a Controller (see Fig. 2).

• The controller monitors the progress of the computation in a cycle and chooses
the next action to run and its quality level. It consists of a Quality Manager and
a Scheduler. These are constructed from a functional model of the application
software, a dependency relation between its actions equipped with deadlines and
average/worst-case execution times for each action.

• During a cycle, the Controller chooses a schedule and the quality of the next ac-
tion to be executed guided by a quality management policy. This is a constraint
of the form tp ≥ t where t is actual time and tp is a function giving an estimate
of the actual time depending on the quality management policy. Safety means that
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Fig. 2 Controller architecture

no action deadline is missed during a cycle. It is implied by the condition tp ≥ t .
Maximization of the utilization of the available time budget is achieved when the
difference tp − t is minimal. It means that the available time for completing an
action is used as much as possible to obtain the best quality (without violating
safety). The Quality Manager is assisted by a Scheduler, which provides for dif-
ferent qualities, optimal schedules, that is, schedules maximizing tp . It chooses the
safe schedule corresponding to the maximal quality.

Our method significantly differs from existing ones. The main difference is fine
granularity of quality management, which allows combination of hard and soft real-
time techniques. Most existing techniques are applied at system or task level, focus on
optimality criteria and are adequate only for soft real-time. The integration of safety
criteria is useful in applications where quality should remain above some minimal
level (Isovic et al. 2003; Bril et al. 2001), e.g., home TVs, or where hard deadlines
must be respected. Buttazzo et al.’s elastic tasks model (Buttazzo et al. 1998), as
well as slack scheduling (Davis et al. 1993; Lehoczky and Thuel 1994) and gain time
techniques (Audsley et al. 1994) are based only on worst-case execution times and do
not deal with quality smoothness. A common and simple way to treat CPU overload
is to skip an instance of a task (Koren and Shasha 1996). Lu et al. (2002) propose a
feedback scheduling based on PID controllers, but deadline misses remain possible.
Steffens et al. (Wüst et al. 2004; Papalau et al. 2004) minimize deadline misses of an
MPEG decoder by applying a Markov decision process and reinforcement learning
techniques, combined with structural load analysis. Rajkumar et al. (Rajkumar et
al. 1997; Hansen et al. 2001) provide resource allocation algorithms that maximize
global QoS for concurrent and independent tasks. The proposed model (Q-RAM) is
event-driven and does not encompass uncertainty about resource consumption, that
is, actual resource utilization is determined by the resource allocation algorithms.

This paper improves and extends results presented in (Combaz et al. 2005a, 2005b)
in two directions. It proposes a symbolic quality management technique and studies
techniques for computing optimal schedules. Its main contributions regarding sym-
bolic quality management are the following:

• It defines and studies speed diagrams, a graphical representation of the controlled
software’s state space for which quality management policies admit a geometric
interpretation (see Fig. 7). A state is defined as a point in a two-dimensional space.
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One dimension represents the actual (real) time while the other dimension repre-
sents a virtual time used by the Quality Manager. The slope of a vector in this
space represents (relative) speed between virtual time and actual time. In speed
diagrams, vectors at 45 degrees slope represent state trajectories where actual and
virtual times are equal. Consequently, the locus of optimal states coincides with
the bisectrice of the first quadrant. States below the bisectrice, are those where ac-
tual time is larger than virtual time and thus the Quality Manager should enforce
acceleration of computation by choosing lower quality. In contrast, for states above
the bisectrice, optimal use of the available time budget implies the choice of higher
qualities.

• It introduces, for a given state of the controlled software and quality q , two kinds
of speeds: (1) ideal speed characterizes the estimated evolution if all the remaining
actions of the application software are run with quality level q; (2) optimal speed is
the vector characterizing optimal system evolution, that is, respecting the deadlines
and making the best possible use of the available time budget. We show that the
constraint applied by the quality management policy defined in (Combaz et al.
2005b) is satisfied for a given quality, if and only if the quality chosen (at a state)
is such that the ideal speed is the least ideal speed exceeding the optimal speed.

• It shows, based on this characterization in terms of speeds, that speed diagrams
allow symbolic quality management policies. For a given deadline, it is possible
to specify the set of the states for which the Quality Manager chooses a constant
quality q . These states form a region defined by a set of inequalities involving ac-
tual time, and average and worst-case execution times of actions. Knowledge of
these constant quality regions allows a more efficient implementation of the qual-
ity management policy. An even more efficient implementation can be achieved
by using a symbolic description of the regions of states from which it can be en-
sured that the Quality Manager will choose quality q for the next r actions. From
these regions, it is possible to relax control for r consecutive actions and thus, to
considerably reduce the overhead due to quality management.

The main contributions regarding computation of optimal schedules are the follow-
ing:

• We define two functions for selecting schedules that maximize tp . These func-
tions characterize respectively uncertainty (the difference between worst-case and
average execution times) and system’s fall-back ability (the difference between
worst-case execution time for the minimal quality and average execution time).

• We show that for systems with unknown execution times, EDF schedules are not
optimal, in general. We use the two functions to compute optimal EDF schedules.

The paper is organized as follows. In Sect. 2 we discuss the Quality Control prob-
lem and present a general approach for designing quality controllers. Section 3 dis-
cusses possible choices of quality management policies. We propose and compare
three policies, one for safety and two others for both safety and optimality. Amongst
these policies, the mixed management policy better fits the QoS requirements. For
this policy, we define speed diagrams and symbolic quality management techniques.
Section 4 discusses scheduler design issues for the mixed management policy. Sec-
tion 5 presents experimental results including the implementation of the method and
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benchmarks for a video MPEG4 encoder. The benchmarks show drastical perfor-
mance improvement for controlled quality with respect to constant quality. They also
show that symbolic quality management allows significant reduction of the overhead
with respect to numeric quality management. Finally, using optimized schedules can
lead to considerable performance gains.

2 Quality control problem and general approach

2.1 Quality control problem for known execution times

We provide preliminary results about the quality control problem for known execu-
tion times.

2.1.1 The problem

A precedence graph is used to describe functional behavior of an application soft-
ware. It models dependencies between its actions (C-functions), and from which all
the possible schedules can be extracted.

Definition 2.1 (Precedence graph) A precedence graph is a pair G = (A,≺) where
A is a set of actions and ≺⊆ A × A is a partial order on A.

(Semantics) The precedence graph G = (A,≺) defines a transition system
(S,A,−→) where S is a set of states and −→⊆ S × A × S is a labeled transition
relation defined by:

• a state si ⊆ A is a backwards closed set of actions, that is, for all a1 ∈ si , a2 ≺
a1 ⇒ a2 ∈ si

• for two states si and sj , we have si
an−→ sj if si = {a1, . . . , an−1} and sj =

{a1, . . . , an−1, an}.
A sequence of actions a1..an is a schedule of G if n = |A| and there exist states

s0, . . . , sn such that s0
a1−→ s1

a2−→ · · · an−→ sn. Notice that as n = |A| we have s0 = ∅
and sn = A. We denote by Σ(G) the set of the schedules of G. Given a state si−1 =
{a1, . . . , ai−1} of G, a sequence of actions ai..an is a schedule from state si−1 if there

exist states si , . . . , sn such that n = |A| and si−1
ai−→ si

ai+1−→ · · · an−→ sn. We denote by
Σ(G, si−1) the set of the schedules from state si−1. Notice that Σ(G, s0) = Σ(G).

Given a precedence graph G = (A,≺) and a subset of actions A′ ⊆ A, we define
G/A′, the restriction of G to A′ by G/A′ = (A′,≺ ∩(A′ × A′)).

Example 2.1 Consider the precedence graph G = (A,≺) with five actions A =
{Quant,IQuant,IntraP,IDCT,Coding}, shown in Fig. 3. This precedence
graph is a fragment of the model of the video encoder presented in Sect. 5. The rela-
tion ≺ is the transitive closure of the relation �= {(Quant,IQuant), (Quant,

IntraP), (IntraP,Coding), (IQuant,IDCT)} shown in Fig. 3. Since s =
{Quant,IntraP,Coding} is a backward closed set of actions, it is a state of
G and IQuant IDCT is the only schedule from this state. The sequence of actions
Quant IntraP Coding IQuant IDCT is a schedule of G.
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Fig. 3 Example of precedence
graph

A system is an application software running on a platform. It is modeled by the
application software and functions associating with each action its execution time and
its deadline.

Definition 2.2 (System) A system is a tuple SY = (G,Q,C,D) where:

• G is a precedence graph.
• Q = [qmin, qmax] is a finite interval of integers corresponding to quality levels.
• C : A × Q → R

+ (R+ denotes the set of non-negative reals) is a function giving
the execution time C(a, q) of action a for quality level q . We assume that, for all
a ∈ A, q �→ C(a, q) is a non-decreasing function.

• D : A → R
+ ∪ {+∞} is a function giving for any action a its deadline D(a).

(Semantics) The system SY defines a transition system (S × R
+,A × Q,−→)

such that:

• states are given by pairs (si , ti) where si is a state of G and ti ∈ R
+ is a value of

time; we take t0 = 0 for s0 = ∅;
• for two states (si , ti) and (sj , tj ), an action a and a quality level q , we have

(si , ti )
a,q−→ (sj , tj ) if si

a−→ sj in G and tj − ti = C(a, q).

Controllers are used to adequately restrict the behavior of a system to meet given
properties.

Definition 2.3 (Controller) A controller of a system SY = (G,Q,C,D) is a func-
tion Γ : S ×R

+ → A×Q giving for any state (si−1, ti−1), an action ai and its quality

level qi such that there exists (si , ti ) and (si−1, ti−1)
ai ,qi−→ (si , ti).

SY‖Γ denotes the controlled system obtained as the composition of the sys-

tem SY and the controller Γ . It has a single execution sequence {(si−1, ti−1)
ai ,qi−→

(si , ti)}1≤i≤|A| such that (ai, qi) = Γ (si−1, ti−1).

For a system SY = (G,Q,C,D), a quality assignment is a function θ : A → Q

giving for any action a its quality level q . A controller Γ of SY computes a schedule
a1..an and a quality assignment θ such that SY‖Γ has a single execution sequence:

{(si−1, ti−1)
ai ,θ(ai )−→ (si , ti)}1≤i≤|A|.

Definition 2.4 (Quality control problem with known execution times) Given a sys-
tem SY = (G,Q,C,D), find a controller Γ which computes a schedule a1..an and a
quality assignment θ , such that:
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Table 1 Execution time
function C and deadline
function D

Action a C(a, qmin) C(a, qmax) D(a)

Quant 10 20 +∞
IQuant 25 75 +∞
IDCT 25 75 D1

IntraP 5 25 +∞
Coding 5 25 D2

• (safety) the controller is safe, that is, action deadlines are met, meaning that for
any state (si , ti ) of SY‖Γ we have D(ai) ≥ ti

• (maximal utilization) the overall execution time is maximal, that is, for any safe
controller Γ ′, tn ≥ t ′n, where tn (resp. t ′n) is the completion time of the last action
in SY‖Γ (resp. SY‖Γ ′).

Example 2.2 Consider the system SY = (G,Q,C,D) given in Fig. 3. We take Q =
{qmin, qmax}, and an execution time function C and a deadline function D as given
in Table 1.

If D(IDCT) = D1 = 180 and D(Coding) = D2 = 240, a controller Γ comput-
ing the schedule Quant IntraP Coding IQuant IDCT and the quality assign-
ment θ = qmax is not safe, as C(Quant IntraP Coding IQuant IDCT, qmax) =
20 + 75 + 75 + 25 + 25 = 220 > D(IDCT) = D1 = 180.

A solution to the quality control problem for SY is a controller Γ computing
the schedule Quant IQuant IDCT IntraP Coding with constant quality as-
signment θ = qmax . Since the quality levels are maximal, the overall execution time
tn = 220 is maximal. Furthermore, the controller is safe:

C(Quant IQuant IDCT, qmax) = 170 ≤ D(IDCT) = D1 = 180, and

C(Quant IQuant IDCT IntraP Coding, qmax) = 220

≤ D(Coding) = D2 = 240.

As C : A × Q → R
+ is a known execution time function, the controller Γ can be

computed statically. We provide an algorithm for computing a schedule a1..an and a
quality assignment θ which is a solution to the quality control problem.

2.1.2 Controller design

Definition 2.5 (Policy function tp) Given a system SY = (G,Q,C,D), a schedule
a1..an and a quality assignment θ , the policy function tp is defined by:

tp(a1..an, θ) = min
1≤k≤n

D(ak) − C(a1..ak, θ),

where C(a1..ak, θ) denotes the overall execution time of the sequence of actions
a1..ak at quality level θ , that is:

C(a1..ak, θ) =
∑

1≤i≤k

C(ai, θ(ai)).
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Notice that tp(a1..an, θ) gives the margin of the schedule a1..an with respect to action
deadlines and for the quality assignment θ .

Proposition 2.1 Let SY = (G,Q,C,D) be a system and Γ be a controller of SY

computing a schedule a1..an and a quality assignment θ . The controller Γ is safe if
and only if tp(a1..an, θ) ≥ 0.

Proof We have:

tp(a1..an, θ) ≥ 0

⇔ min
1≤k≤n

D(ak) − C(a1..ak, θ) ≥ 0

⇔ ∀i ∈ {1, . . . , n} D(ai) ≥ C(a1..ak, θ)

⇔ ∀i ∈ {1, . . . , n} D(ak) ≥ tk. �

Example 2.3 For the two schedules of the system given in Example 2.2, Quant
IntraP Coding IQuant IDCT and Quant IQuant IDCT IntraP Coding,
we have:

tp(Quant IntraP Coding IQuant IDCT, qmax)

= min{D2 − C(Quant IntraP Coding, qmax),

D1 − C(Quant IntraP Coding IQuant IDCT, qmax)}
= min{240 − 70,180 − 220} = −40, and

tp(Quant IQuant IDCT IntraP Coding, qmax)

= min{D1 − C(Quant IQuant IDCT, qmax),

D2 − C(Quant IQuant IDCT IntraP Coding, qmax)}
= min{180 − 170,240 − 220} = 10.

We conclude that the schedule Quant IntraP Coding IQuant IDCT misses the
deadline D1 of the action IDCT for constant quality level qmax , whereas the schedule
Quant IQuant IDCT IntraP Coding for the same quality level qmax , meets all
the deadlines.

Definition 2.6 (Optimal scheduler Best_Sched) For a system SY = (G,Q,C,D) an
optimal scheduler is a function Best_Sched giving for any quality assignment θ a
schedule aθ

1 ..aθ
n = Best_Sched(θ) such that aθ

1 ..aθ
n maximizes tp(aθ

1 ..aθ
n, θ), that is:

tp(aθ
1 ..aθ

n, θ) = max{tp(a1..an, θ) | a1..an ∈ Σ(G)}.
Let θ be a schedule of G. Notice that, for any schedule a1..an, the overall execution

time C(a1..an, θ) is independent of a1..an. We denote by � the binary relation on
Θ such that θ � θ ′ ⇔ C(a1..an, θ) < C(a1..an, θ

′). The relation � is a strict total
order on classes of quality assignments {θ | C(a1..an, θ) = constant}.
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Proposition 2.2 For a given system SY = (G,Q,C,D) and associated optimal
scheduler Best_Sched, the following algorithm provides a solution to the quality con-
trol problem with known execution times (Definition 2.4).

for all θ ∈ Θ do aθ
1 ..aθ

n := Best_Sched(θ) od

θM = max� {θ : A → Q | tp(aθ
1 ..aθ

n, θ) ≥ 0}

return (a
θM

1 ..aθM
n , θM).

Proof Consider the schedule a
θM

1 ..a
θM
n and the quality assignment θM computed

by the algorithm given in the proposition. Assume that there exists a schedule
a1..an and a quality assignment θ such that tp(a1..an, θ) ≥ 0 and θM � θ . Since
aθ

1 ..aθ
n = Best_Sched(θ) maximizes tp , we have tp(aθ

1 ..aθ
n, θ) ≥ tp(a1..an, θ) ≥ 0,

that is, θM � θ or θM and θ are the same. (Contradiction). �

We show that EDF schedules are optimal. Their computation is based on a back-
ward propagation of critical deadlines in the precedence graph.

Definition 2.7 (EDF schedule) Given a system SY = (G,Q,C,D), we define the
global deadline function D∗ : A → R

+ as follows:

D∗(a) = min{D(a′) | a ≺ a′} ∪ {D(a)}.

A schedule a1..an of G is an EDF schedule if for all i ∈ {1, . . . , n − 1} we have
D∗(ai) ≤ D∗(ai+1). We denote by EDF(G,D) the set of the EDF schedules of G

with respect to the deadline function D.

Example 2.4 Consider the system SY = (G,Q,C,D) given in Examples 2.2
and 2.3. The global deadline function D∗ is such that D∗(Quant) = min{D1,D2},
D∗(IQuant) = D(IDCT) = D1 and D∗(IntraP) = D(Coding) = D2 (see
Fig. 4). For actions IDCT and Coding, the functions D∗ and D are the same.

If D1 < D2, the only EDF schedule is given by the sequence Quant IQuant
IDCT IntraP Coding. If D1 > D2, the only EDF schedule is given by the se-
quence Quant IntraP Coding IQuant IDCT.

Fig. 4 Deadline functions D and D∗
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Proposition 2.3 The systems SY = (G,Q,C,D) and SY ∗ = (G,Q,C,D∗) have the
same policy function

tp(a1..an, θ) = min
1≤k≤n

D(ak) − C(a1..ak, θ) = min
1≤k≤n

D∗(ak) − C(a1..ak, θ).

Proof Without loss of generality, we assume that C > 0. Assume that
min1≤k≤nD

∗(ak) − C(a1..ak, θ) �= min1≤k≤nD(ak) − C(a1..ak, θ). As D∗ ≤ D, we
obtain min1≤k≤nD

∗(ak) − C(a1..ak, θ) < min1≤k≤nD(ak) − C(a1..ak, θ).
Let i be an index such that D∗(ai)−C(a1..ai , θ) = min1≤k≤nD

∗(ak)−C(a1..ak,

θ). Then, we have D∗(ai) − C(a1..ai , θ) < D(ai) − C(a1..ai , θ), that is, D∗(ai) <

D(ai). By definition of D∗, we conclude that there exists j > i such that D∗(ai) =
D∗(aj ). Then, we obtain D∗(aj )−C(a1..aj , θ) < D∗(ai)−C(a1..ai , θ) (Contradic-
tion). �

The following Proposition 2.4 allows the computation of a function Best_Sched
that returns an EDF schedule a1..an = Best_Sched(θ). Notice that this function
Best_Sched is constant and its computation can be done in polynomial time. We need
the following lemma in order to demonstrate the proposition.

Lemma 2.1 Let a1..an be a schedule such that there exists two consecutive and in-
dependent actions ai et ai+1 (ai ⊀ ai+1 and ai+1 ⊀ ai ) such that D(ai) ≥ D(ai+1).
For any quality assignment θ we have:

tp(a1..ai−1ai+1aiai+2..an, θ) ≥ tp(a1..an, θ).

Proof Let I1, I2 and I3 be subsets of indexes such that I1 = {1, . . . , i − 1}, I2 =
{i, i + 1} and I3 = {i + 2, . . . , n}. We have:

tp(a1..an, θ) = min{D(ak) − C(a1..ak, θ) | k ∈ I1 ∪ I2 ∪ I3} and

tp(a1..ai−1ai+1aiai+2..an, θ)

= min{D(ak) − C(a1..ak, θ) | k ∈ I1} ∪ {D(ai+1) − C(a1..ai−1ai+1, θ)}
∪ {D(ai) − C(a1..ai−1ai+1ai, θ)}
∪ {D(ak) − C(a1..ai−1ai+1aiai+2..ak, θ) | k ∈ I3}.

As C(a1..ai−1ai+1aiai+2..ak, θ) = C(a1..ak, θ) for any k ∈ I3, we have {D(ak)−
C(a1..ai−1ai+1aiai+2..ak, θ) | k ∈ I3} = {D(ak) − C(a1..ak, θ) | k ∈ I3}. Thus, the
lemma holds if:

D(ai+1) − C(a1..ai−1ai+1, θ) ≥ min{D(ak) − C(a1..ak, θ) | k ∈ I2} and (1)

D(ai) − C(a1..ai−1ai+1ai, θ) ≥ min{D(ak) − C(a1..ak, θ) | k ∈ I2}. (2)

As C(a1..ai−1ai+1, θ) ≤ C(a1..ai+1, θ) we have D(ai+1)−C(a1..ai−1ai+1, θ) ≥
D(ai+1) − C(a1..ai+1, θ). This demonstrates (1). Since D(ai) ≥ D(ai+1) and
C(a1..ai−1ai+1ai, θ) = C(a1..ai+1, θ) we have D(ai) − C(a1..ai−1ai+1ai, θ) ≥
D(ai+1) − C(a1..ai+1, θ). This demonstrates (2). �
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Proposition 2.4 Let SY = (G,Q,C,D) be a system and a1..an be an EDF schedule
of G. For any quality assignment θ we have:

tp(a1..an, θ) = max{tp(a′
1..a

′
n, θ) | a′

1..a
′
n ∈ Σ(G)}.

Proof We apply Lemma 2.1 as follows. Let a1..an be an EDF schedule and a′
1..a

′
n

be an arbitrary schedule. We can obtain a1..an from a′
1..a

′
n by successively swapping

two consecutive independent actions with inverted deadlines D∗. �

Example 2.5 Consider the system SY = (G,Q,C,D) given in Examples 2.2,
2.3 and 2.4, and a deadline function D such that D(IDCT) = D1 = 180 and
D(Coding) = D2 = 240. The only EDF schedule is Quant IQuant IDCT
IntraP Coding and we have tp(Quant IQuant IDCT IntraP Coding,

qmax) = 10 (see Example 2.3), which is maximal for the quality level qmax . A proof
is given as follows.

Consider an arbitrary schedule a1..a5 of G, and let i ∈ {1, . . . ,5} be the in-
dex such that ai = IDCT. Due to the precedence constraints of G, Quant and
IQuant must be executed before executing IDCT. Consequently, C(a1..ai , qmax) ≥
C(Quant, qmax) + C(IQuant, qmax) + C(IDCT, qmax) = 170. This demonstrates
that tp(a1..a5, qmax) ≤ D(ai) − C(a1..ai, qmax) ≤ 180 − 170 = 10.

2.2 Quality control problem under uncertainty

2.2.1 The problem

Execution times for actions may considerably vary over time as they depend on
data contents. Furthermore, non predictability of the underlying platform is an ad-
ditional factor of uncertainty. We consider the quality control problem for unknown
but bounded execution times.

Definition 2.8 A parameterized system is a tuple PSY(C) = (G,Q,Cwc,D,C)

where:

• G is a precedence graph.
• Q = [qmin, qmax] is a finite interval of integers corresponding to quality levels.
• Cwc : A × Q → R

+ is a function giving for an action a and quality level q

its worst-case execution time Cwc(a, q). We assume that, for all a ∈ A, q �→
Cwc(a, q) is a non-decreasing function.

• D : A → R
+ ∪ {+∞} is a function giving for an action a, its deadline D(a).

• The parameter C : A × Q → R
+ is a function giving for action a and quality level

q its actual execution time C(a, q). We assume that, for all a ∈ A, q �→ C(a, q) is
a non-decreasing function such that C ≤ Cwc.

(Semantics) The parameterized system PSY(C) defines a family of transition sys-
tems (S × R

+,A × Q,−→) depending on the parameter C:

• states are given by pairs (si , ti) where si is a state of G and ti ∈ R
+ is a value of

time; we take t0 = 0 for s0 = ∅;
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• for two states (si , ti) and (sj , tj ), an action a and a quality level q , we have

(si , ti )
a,q−→ (sj , tj ), if si

a−→ sj in G and tj − ti = C(a, q).

The definition of a controller for a parameterized system is similar to the one given
for known execution times (Definition 2.3)

Definition 2.9 Given a parameterized system PSY(C), a controller is a function
Γ : S × R

+ → A × Q giving, for a state (si−1, ti−1) of PSY(C), an action ai and its

quality level qi such that there exists (si , ti ) and (si−1, ti−1)
ai ,qi−→ (si , ti).

PSY(C)‖Γ denotes a controlled system obtained as the composition of the pa-
rameterized system PSY(C) and the controller Γ . For a given actual execution

time function C, PSY(C)‖Γ has a single execution sequence {(si−1, ti−1)
ai ,qi−→

(si , ti)}1≤i≤|A| such that (ai, qi) = Γ (si−1, ti−1).

The quality control problem for a given parameterized system PSY(C) =
(G,Q,Cwc,D,C) consists in finding a controller Γ such that the controlled system
respects the deadlines while keeping quality maximal and smooth. It is formalized as
follows.

Definition 2.10 (Quality control problem under uncertainty) Given a parameterized
system PSY(C) find a controller Γ such that for any actual time function C ≤ Cwc:

• (Safety) Γ is safe (deadlines are met), that is, for all state (si , ti ) of PS(C)‖Γ we
have D(ai) ≥ ti .

• (Optimality) The overall execution time is maximal, that is, for any safe controller
Γ ′, tn ≥ t ′n, where tn (resp. t ′n) is the completion time of the last action in PS(C)‖Γ
(resp. PS(C)‖Γ ′).

An additional optimality requirement is smoothness for the quality chosen by the
controller. Informally, smoothness means low deviation of the quality levels with
respect to the average quality. We do not formalize this property which is essential
for most multimedia applications (Schuster et al. 1999; Westerink et al. 1999).

2.2.2 Controller design

Due to uncertainty on execution times, the computation of adequate schedules and
their associated quality assignments is made online. We adapt the algorithm proposed
in Sect. 2.1.2 (Proposition 2.2). To cope with state explosion problem, the algorithm
considers at each state constant quality assignments for the remaining actions.

The proposed algorithm is parameterized by a policy X characterized by a func-
tion CX giving for a sequence of actions a1..an and a quality level q an estimate
CX(a1..an, q) of the execution time of a1..an for the quality level q . The algorithm
uses appropriate approximations tXp of tp , and Best_SchedX of Best_Sched, defined
from the X-execution time function CX as follows.
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Fig. 5 Controller architecture

Definition 2.11 (X-policy function tXp ) Let PSY(C) = (G,Q,Cwc,D,C) be a pa-
rameterized system and CX be a function giving for a sequence of actions ai ..an and
a quality level q , an estimate CX(ai ..an, q) of the execution time of ai..an at the qual-
ity level q . Given a state si−1 of G, a schedule ai ..an from si−1, and a quality level q ,
we define the X-policy function tXp associated to the X-execution time function CX

as follows:

tXp (ai ..an, si−1, q) = min
i≤k≤n

D(ak) − CX(ai ..ak, q).

Definition 2.12 (Optimal scheduler Best_SchedX) For a parameterized system
PSY(C) = (G,Q,Cwc,D,C) and a X-policy function tXp , an optimal scheduler
Best_SchedX is a function giving, for any state si−1 of G and for any quality level q ,
a schedule a

q
i ..a

q
n = Best_SchedX(si−1, q) from si−1 such that a

q
i ..a

q
n maximizes the

X-policy function tXp , that is:

tXp (a
q
i ..a

q
n , si−1, q) = max{tXp (ai ..an, si−1, q) | ai..an ∈ Σ(G, si−1)}.

Figure 5 shows interaction between the Controller Γ , and the parameterized sys-
tem PSY(C) representing an application software running on a platform. The Con-
troller monitors the current state (si−1, ti−1) of PSY(C) and computes the next ac-
tion ai and its corresponding quality level qi , as specified by the following algorithm
which generalizes the one given in Proposition 2.2.

Γ (si−1, ti−1) {
for all q ∈ Q do a

q
i ..a

q
n := Best_SchedX(si−1, q) od

qi = max{q | tXp (a
q
i ..a

q
n , si−1, q) ≥ ti−1}

return Γ (si−1, ti−1) := (a
qi

i , qi).
}

The Controller is composed of an optimal scheduler Best_SchedX , and of a the
Quality Manager, such that for a given state (si−1, ti−1):
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• The Scheduler computes for each quality level q ∈ Q, a schedule from state si−1,
a

q
i ..a

q
n = Best_SchedX(si−1, q).

• The Quality Manager computes the maximal quality level qi meeting the X-quality
management policy, that is:

qi = max{q | tXp (a
q
i ..a

q
n , si−1, q) ≥ ti−1}.

The function tXp : A × S × Q → R
+ characterizes the X-quality management pol-

icy of the Quality Manager. It gives for a state of the application software si−1

and a quality level q , the estimated elapsed time tXp (a
q
i ..a

q
n , si−1, q) at state si−1

if the rest of the actions a
q
i ..a

q
n is executed with constant quality q . If the in-

equality tXp (a
q
i ..a

q
n , si−1, q) ≥ ti−1 is satisfied, then it is possible to complete exe-

cution without missing the deadlines specified by D. The chosen quality level qi

at state (si−1, ti−1) is maximal amongst the quality levels q meeting the inequality
tXp (a

q
i ..a

q
n , si−1, q) ≥ ti−1. The maximization of the quality level is done for the op-

timality criterion, that is, maximizing the time budget utilization.
Section 3 deals with the definition of policy functions tXp ensuring safety and op-

timality of the chosen quality levels. Finding an optimal scheduler Best_SchedX is a
non trivial problem discussed in Sect. 4. We propose heuristics for the online compu-
tation of the schedules. The interest of the proposed policy function tXp and optimal

scheduler Best_SchedX is shown through both theoretical and experimental results in
the rest of the paper.

3 Quality manager design

3.1 Quality management policies

This section deals with the definition of an adequate X-policy function tXp that en-
sures safety and optimality. Safety means that no deadline is violated. Optimality
means maximization of the time budget utilization and smoothness of the quality
levels chosen by the Quality Manager.

Let PSY(C) = (G,Q,Cwc,D,C) be a parameterized system. As schedules are
computed and provided to the Quality Manager by the Scheduler, we consider, with-
out loss of generality, quality management policies for a fixed schedule a1..an. Let
a1..an be the planed schedule for PSY(C). For simplified notation, we will write
tXp (si−1, q) instead of tXp (ai ..an, si−1, q).

3.1.1 Safe quality management policy

Definition 3.1 We introduce the safe policy function t
sf
p corresponding to the safe

execution time function Csf : A+ × Q → R
+ defined by:

Csf (ai ..ak, q) = Cwc(ai, q) + Cwc(ai+1..ak, qmin),
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where Cwc(ai+1..ak, qmin) denotes the total execution time of the sequence ai+1..ak ,
that is,

Cwc(ai+1..ak, qmin) =
∑

i+1≤j≤k

Cwc(aj , qmin).

As the quality level may be changed by the Quality Manager after the execution
of the first action ai , we take the quality level q for the first action, and qmin for the
remaining actions. Thus, t

sf
p (si−1, q) ≥ ti−1 guarantees that the first action ai meets

its deadline when executed with quality q , and the rest of the actions of the schedule
meet their deadline when executed with quality qmin, for the worst-case assumption.

Proposition 3.1 (Safety) Given a parameterized system PSY(C) = (G,Q,Cwc,

D,C) such that deadlines are met for the minimal quality level and the worst-case
execution times, that is,

∀k ∈ {1, . . . , n} D(ak) ≥ Cwc(a1..ak, qmin).

Then, the controller Γ applying quality management policy t
sf
p ≥ t is safe.

The above proposition also holds when t
sf
p is replaced by any policy function tXp

such that t
sf
p ≥ tXp .

Lemma 3.1 For any controller Γ satisfying the assumptions of Proposition 3.1,
we have qmin ∈ {q | t

sf
p (si−1, q) ≥ ti−1} at any reachable state (si−1, ti−1) of

PSY(C)‖Γ .

Proof The proof is made by induction of i ∈ {0, . . . , n− 1}. Let P(i) be the assertion
qmin ∈ {q | t sfp (si , q) ≥ ti}.
• P(0) : We have:

t
sf
p (s0, qmin) = min

1≤k≤n
D(ak) − Cwc(a1..ak, qmin). (3)

As we have for all k ∈ {1, . . . , n}, D(ak) ≥ Cwc(a1..ak, qmin), we conclude from (3)
that t

sf
p (s0, qmin) ≥ 0 = t0, that is, P(0).

• P(i) ⇒ P(i + 1) : Assume P(i), that is, t
sf
p (si , qmin) ≥ ti . Consider (a, q) =

(ai+1, qi+1) = Γ (si, ti ). As Γ apply the quality management policy t
sf
p ≥ t and

t
sf
p (si , qmin) ≥ ti , we have t sf (si , q) ≥ ti . We have:

min
i+1≤k≤n

D(ak) − Csf (ai+1..ak, q) ≥ ti

⇒ min
i+2≤k≤n

D(ak) − Cwc(ai+1, q) − Cwc(ai+2..ak, qmin) ≥ ti

⇒ min
i+2≤k≤n

D(ak) − Cwc(ai+2..ak, qmin) ≥ ti + Cwc(a, q).
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Fig. 6 Comparison between different policies

As q is the chosen quality level for the action a, we have ti + Cwc(a, q) ≥ ti+1.
We obtain mini+2≤k≤nD(ak)−Cwc(ai+2..ak, qmin) ≥ ti+1, that is, t sfp (si+1, qmin) ≥
ti+1. This demonstrates P(i + 1). �

Proof of Proposition 3.1 By the Lemma 3.1, we have qmin ∈ {q | t sfp (si−1, q) ≥ ti−1}
at any state of PSY(C)‖Γ , that is, {q | t

sf
p (si−1, q) ≥ ti−1} is a non-empty set. Let

(a, q) be (a, q) = (ai, qi) = Γ (si−1, ti−1). Then we have t
sf
p (si−1, q) ≥ ti−1 and the

action a meets its deadline:

t
sf
p (si−1, q) = min

i≤k≤n
D(ak) − Csf (ai ..ak, q) ≥ ti−1

⇒ D(ai) − Cwc(a, q) ≥ ti−1

⇒ D(ai) ≥ ti−1 + Cwc(a, q) ≥ ti .

This demonstrates that any action a meets its deadline. �

The safe quality management policy ensures that all action deadlines are met.
Nonetheless, by considering the minimal quality for the last actions using the safe
quality management policy can lead to variation of the quality levels before a critical
deadline (see Example 3.1 and Fig. 6).

We propose two other quality management policies leading to smoother quality
levels. Their influence is shown through an example and confirmed by experimental
results in Sect. 5.3.

3.1.2 Simple quality management policy

The following example illustrates non smoothness of the quality levels by using the
safe quality management policy.
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Example 3.1 Consider a PSY(C) with this three actions {Quant,IQuant,IDCT},
Q = {1, . . . ,4}, and a single deadline D = 9 (for all i, D(ai) = 9). Assume that
PSY(C) has a schedule Quant IQuant IDCT such that the actual and the worst-
case execution times are given in the table of Fig. 6, where a ∈ {Quant,IQuant,

IDCT}. The computed quality assignment for the schedule by using the safe policy
t
sf
p ≥ t is not smooth (Fig. 6).

We can improve smoothness by combining worst-case and average behavior. Sim-
ple quality management policy defined bellow can be used to improve the smooth-
ness of the computed quality assignment. It uses average execution time function
Cav : A×Q → R

+. These execution times can be estimated by static analysis and/or
profiling techniques. We denote by tav

p the corresponding policy function.

Definition 3.2 Given a parameterized system PSY(C) = (G,Q,Cwc,D,C) and an
average execution time function Cav : A × Q → R

+, the simple policy function t
sp
p

corresponds to the simple execution time function Csp : A+ × Q → R
+ defined by:

Csp = max{Csf ,Cav}.

Proposition 3.2 The simple policy function t
sp
p satisfies t

sp
p = min{t sfp , tav

p }.

Proof of Proposition 3.1 For all i ∈ {0, . . . , n − 1} and q ∈ Q, we have:

t
sp
p (si−1, q) = min

i≤k≤n
D(ak) − Csp(ai ..ak, q)

= min
i≤k≤n

D(ak) − max{Cav(ai ..ak, q),Csf (ai ..ak, q)}

= min
i≤k≤n

min{D(ak) − Cav(ai ..ak, q),D(ak) − Csf (ai ..ak, q)}

= min
{

min
i≤k≤n

(D(ak) − Cav(ak, q)),
(

min
i≤k≤n

D(ak) − Csf (ai ..ak, q)
)}

t
sp
p (si−1, q) = min{tav

p (si−1, q), t
sf
p (si−1, q)}. �

Notice that using t
sp
p also leads to feasible schedules. For the previous example,

the schedule computed by using t
sp
p ≥ t is smoother than the one computed by using

t
sf
p ≥ t (see Fig. 6).

3.1.3 Mixed quality management policy

The simple quality management policy may also lead to non smoothness of the qual-
ity before a critical deadline. Even if actual time follows exactly average time (i.e.
C = Cav), the quality may need to be decreased along a sequence of actions where
Csf > Cav (see Example 3.1 and Fig. 6). We propose the mixed quality management
policy which is robust with respect to this phenomena. The mixed execution function
Cmx combines the use of two execution functions Csf and Cav . The second is used
to enhance smoothness of quality levels.
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Definition 3.3 We introduce δmax as the maximum difference between the worst-
case and the average behavior, that is,

δmax(ai ..ak, q) = max
i≤j≤k

δ(aj ..ak, q),

where δ(aj ..ak, q) = Csf (aj ..ak, q) − Cav(aj ..ak, q).

Notice that, for a sequence of actions ai..ak and a quality level q , δmax(ai ..ak, q) is a
kind of safety margin we need to keep with respect to the average behavior in order
to meet the deadlines. It is due to uncertainty on execution times.

Definition 3.4 The mixed policy function tmx
p corresponds to the mixed execution

time function Cmx : A+ × Q → R
+ defined by:

Cmx = Cav + δmax.

The mixed execution time jointly takes into account average and worst-case behavior.
For the example given in Fig. 6, the schedule computed by using the mixed quality
management policy tmx

p ≥ t is the smoothest one (θ is constant). In the rest of the pa-
per, we consider a Quality Manager applying the mixed quality management policy,
that is, CX = Cmx .

3.2 Speed diagrams and their use for quality management

Speed diagrams are a graphical representation of system’s states, in which quality
management policies have a geometric interpretation in terms of relative speed be-
tween a notion of virtual time and actual time. They allow a better understanding of
the impact of worst-case execution times on achieving optimality. They also allow a
symbolic approach for the definition and implementation of the Quality Manager. We
show that a quality management policy can be expressed by a partition of the state
space into regions specified by constraints involving deadlines and worst-case and
average execution times.

3.2.1 Definition

Speed diagrams represent in a two-dimensional space the evolution of a parameter-
ized system PSY(C) = (G,Q,Cwc,D,C) and its Quality Manager applying the
mixed quality management policy defined in Sect. 3.1.3 (Fig. 7). One dimension rep-
resents virtual time computed from average execution times and their deadlines, while
the other represents actual time.

The following definitions provide a formalization of speed diagrams, as well as
results about the interpretation of the mixed quality management policy in terms of
speed vectors.
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Fig. 7 Speed diagram

System state representation Let (si , ti) be a state of a parameterized system
PSY(C) = (G,Q,Cwc,D,C) and D(ak) the deadline of an action in the remain-
ing sequence of actions ai+1, . . . , ak, . . . , an. The virtual time variable yi(q) is used
to estimate the time distance from the deadline D(ak) after the execution of the action
ai if the sequence of the actions a1, . . . , ak is run with uniform quality q . It is defined
by:

yi(q) = Cav(a1..ai , q)

Cav(a1..ak, q)
· D(ak).

Intuitively, yi(q) is the percentage of the consumed time at state si with respect to the
available time budget D(ak). Notice that normalization with respect to the deadline
implies that yk(q) = D(ak) (see Fig. 7).

As a result of the normalization, points on the diagonal (45 degree slope) corre-
spond to optimal behavior. Points (ti , yi(q)) below the diagonal correspond to states
where the actual computation is late with respect to virtual time. Conversely, for
points above the diagonal, the computation goes faster than estimated.

Ideal and optimal speeds Let (si , ti) and (sj , tj ) be two states of PSY(C) =
(G,Q,Cwc,D,C) such that j > i. Consider their corresponding positions (ti , yi(q))

and (tj , yj (q)) in the speed diagram for a quality level q and a deadline D(ak), k ≥ j .
The speed vi,j (q) between (ti , yi(q)) and (tj , yj (q)) is given by the ratio

vi,j (q) = yj (q) − yi(q)

tj − ti
.

We introduce two notions of speed to explain the mixed quality management policy.
• The ideal speed vidl(q) is the speed for constant quality level q when the actual
time is equal to the average time. As C = Cav and qi+1 = · · · = qj = q , we have
tj − ti = C(ai+1..aj , q) = Cav(ai+1..aj , q) = Cav(a1..aj , q)−Cav(a1..ai , q). Then,
the ideal speed vidl(q) between (ti , yi(q)) and (tj , yj (q)) is equal to

vidl(q) = yj (q) − yi(q)

tj − ti
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= D(ak)

Cav(a1..ak, q)
· Cav(a1..aj , q) − Cav(a1..ai, q)

Cav(a1..aj , q) − Cav(a1..ai, q)

= D(ak)

Cav(a1..ak, q)
.

Notice that the ideal speed vidl(q) is independent of the choice of i and j , and only
depends on the target deadline D(ak) and the quality level q . This means that for
constant quality assignments the trajectory of the system in the diagram is linear in
the ideal case C = Cav .

• The optimal speed vopt (q) is the speed between the current position (ti , yi(q)) and
the position (D(ak) − δmax(ai+1..ak, q),D(ak)). It can easily be shown that vopt (q)

is equal to

D(ak)

Cav(a1..ak, q)
· Cav(ai+1..ak, q)

D(ak) − δmax(ai+1..ak, q) − ti
.

By targeting point (D(ak)− δmax(ai+1..ak, q),D(ak)) instead of (D(ak),D(ak)) the
quality manager respects a safety margin δmax(ai+1..ak, q) which is sufficient to en-
sure termination before the deadline D(ak). The value δmax(ai+1..ak, q) is a safety
margin characterizing the tradeoff between feasibility and optimality for the mixed
quality management policy.

Proposition 3.3 Given a parameterized system PSY(C) = (G,Q,Cwc,D,C), a
state (si , ti) of PSY(C), a quality level q and a target deadline D(ak), k > i, we
have:

vidl(q) ≥ vopt (q) ⇐⇒ D(ak) − Cmx(ai+1..ak, q) ≥ ti .

Proof

vidl(q) ≥ vopt (q)

⇐⇒ D(ak)

Cav(a1..ak, q)
≥ D(ak)

Cav(a1..ak, q)
· Cav(ai+1..ak, q)

D(ak) − δmax(ai+1..ak, q) − ti

⇐⇒ 1 ≥ Cav(ai+1..ak, q)

D(ak) − δmax(ai+1..ak, q) − ti

⇐⇒ D(ak) − δmax(ai+1..ak, q) − ti ≥ Cav(ai+1..ak, q)

⇐⇒ D(ak) − Cmx(ai+1..ak, q) ≥ ti . �

The above proposition allows a geometric interpretation of the mixed quality man-
agement policy in terms of relative speeds between average execution time and actual
time. The Quality Manager makes a conservative approximation of the optimal speed
vopt by choosing the ideal speed exceeding vopt with maximal quality. Intuitively,
the chosen speed corresponds to an optimal behavior for constant quality assignment
(uniform speed) and maximal time budget utilization, in which a safety margin is
integrated in order to meet the deadline.



22 Real-Time Syst (2008) 40: 1–43

3.2.2 Quality regions

Our quality management technique assumes that the Quality Manager is called before
executing each action of the application software. Since the Quality Manager and the
application are composed together, there is an overhead for computing the Quality
Manager. An important issue is reducing this overhead. In this section, we explain
how to safely relax the granularity of control, that is, reducing the number of Quality
Manager calls, whereas choosing the same quality levels.

Consider a parameterized system PSY(C) = (G,Q,Cwc,D,C) and a Quality
Manager applying the mixed quality management policy. For a better understanding
of the choices of the Quality Manager, we study quality regions, sets of system states
where the chosen quality level is constant.

Definition 3.5 Given a parameterized system PSY(C) = (G,Q,Cwc,D,C) and a
Controller Γ , a quality region Rq for the quality level q is a subset of states (si , ti)

of PSY(C) defined by:

Rq = {
(si , ti) | Γ (si, ti) = (ai+1, q)

}
.

Let (si , ti) be a state of a parameterized system PSY(C) = (G,Q,Cwc,D,C),
and (ti , yi(q)) the corresponding position in the speed diagrams for a deadline D(ak),
k ≥ i. It can be shown that tmx

p is a non-increasing function of q . This implies that

• for q < qmax = maxQ, Γ (si, ti) = (ai+1, q) iff tmx
p (si , q) ≥ ti and ti > tmx

p (si,

q + 1).
• for q = qmax , Γ (si, ti) = (ai+1, q) iff tmx

p (si , q) ≥ ti . This leads to the following
proposition.

Proposition 3.4 For a given quality level q and a state (si , qi), (si , ti) ∈ Rq if and
only if

ti ∈ ]
tmx
p (si , q + 1), tmx

p (si, q)
]

for q < qmax

ti ∈ ]−∞, tmx
p (si, q)

]
for q = qmax.

This proposition allows computing quality regions Rq . A region is defined by
the set of the yi(q) for all i and the corresponding interval bounds characterizing its
borders (see Fig. 8).

3.2.3 Control relaxation regions

We propose a control relaxation method allowing to reduce the number of Quality
Manager calls. We define control relaxation regions, sets of system states in which
the Quality Manager can be relaxed without degrading the quality of control.

Let (si , ti) be a state of a parameterized system PSY(C) = (G,Q,Cwc,D,C).
Assume that the Quality Manager Γ chooses the quality level q at state (si , ti), that
is, (si , ti ) ∈ Rq . We consider a conservative control relaxation: the Quality Manager
can be relaxed for r ≥ 1 steps if we ensure that the quality level chosen for all the
next r actions ai+1, ai+2, . . . , ai+r is q .
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Fig. 8 Quality region for a
quality level q

Fig. 9 Control relaxation: the
principle

Definition 3.6 Given a parameterized system PSY(C) = (G,Q,Cwc,D,C) and a
Quality Manager Γ , a control relaxation region Rr

q for the quality level q and an
integer r ≥ 1 is defined by:

{
R1

q = Rq,

(si , ti) ∈Rr
q ⇔ (si , ti) ∈ Rq ∧ (si+1, ti+1) ∈Rr−1

q .

We consider the states (sj , tj ), j ∈ {i, i + 1, . . . , i + r − 1} of PSY(C) =
(G,Q,Cwc,D,C)‖Γ , and find conditions for these states to be in Rq (see Fig. 9).
For instance, Fig. 9 shows a case where this property is not satisfied and the Quality
Manager cannot be relaxed from state (si , ti) for r steps.

Due to uncertainty, actual execution times can range from 0 to Cwc. So we can
only give upper and lower bounds for tj :

ti + Cwc(ai+1..aj , q) ≥ tj ≥ ti . (4)

By Proposition 3.4 and (4), (sj , tj ) ∈ Rq if the following equations are satisfied for
all j ∈ {i, i + 1, . . . , i + r − 1},

tmx
p (sj , q) − Cwc(ai+1..aj , q) ≥ ti , (5)
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Fig. 10 Control relaxation
region

ti > tmx
p (sj , q + 1). (6)

then, we can relax the Quality Manager for r steps. As tmx
p (sj , q + 1) is increasing

with j , (6) is satisfied for all j if and only if ti > tmx
p (si+r−1, q + 1). This leads to

the following proposition.

Proposition 3.5 For a given quality level q , an integer r ≥ 1 and a state (si , qi),
(si , ti) ∈ Rr

q if and only if

ti ∈ ]
tmx
p (si+r−1, q + 1), tmx,r

p (si , q)
]

for q < qmax

ti ∈ ]−∞, tmx,r
p (si , q)

]
for q = qmax,

where t
mx,r
p (si , q) = mini≤j≤i+r−1 tmx

p (sj , q) − Cwc(ai+1..aj , q).

4 Scheduler design for mixed quality management policy

This section provides results for computing the Scheduler of a Controller based on
the mixed quality management policy tmx

p ≥ t . The problem is to find an optimal
scheduler Best_Schedmx , that is, which maximizes the policy function tmx

p . Given a
parameterized system PSY(C) = (G,Q,Cwc,D,C), a state si−1 of G and a quality
level q , we seek for a schedule a

q
i ..a

q
n = Best_Schedmx(si−1, q) of the remaining

actions that satisfies:

tmx
p (a

q
i ..a

q
n , si−1, q) = max{tmx

p (ai ..an, si−1, q) | ai ..an ∈ Σ(G, si−1)}.

Without loss of generality, we study the problem for the initial state s0 = ∅ and
for a given quality level q . To simplify notation we will write tmx

p (a1..an, q) for
tmx
p (a1..an, s0, q).
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4.1 Computing Best_Schedmx for a single deadline

We first consider the case where the function D is constant (single deadline). Let
a1..an be a schedule, we have:

tmx
p (a1..an, q) = max

1≤k≤n
D(ak) − Cav(a1..ak, q) − δmax(a1..ak, q).

Since the average execution time Cav(a1..an, q) is the constant
∑

a∈A Cav(a, q),
tmx
p (a1..an, q) is maximal if and only if δmax(a1..an, q) is minimal. Then, the

problem is to find a schedule a1..an such that for all schedule a′
1..a

′
n we have

δmax(a1..an, q) ≤ δmax(a′
1..a

′
n, q).

Definition 4.1 We define the functions η : A × Q → R
+ and β : A × Q → R as

follows:

η(a, q) = Cwc(a, q) − Cav(a, q),

β(a, q) = Cwc(a, qmin) − Cav(a, q).

For an action a and a quality level q , η(a, q) is the difference between the worst-
case and the average execution time. The value η can be considered as the uncertainty
for the execution time of the action a for quality q . The value β(a, q) is the difference
between the worst-case execution time for the action a at the minimal quality level
qmin, and the average execution time for the actions at the quality level q . It is related
to the “fall-back” capability of a for quality q: for small values of β , in particular
negative values, the controller can speed up the application by selecting the minimal
quality level, even if we consider the worst-case assumption (i.e. C = Cwc). Then,
we write δ as follows:

δ(a1..an, q) = η(a1, q) + β(a2..an, q)

where β(a2..an, q) = β(a2, q) + · · · + β(an, q).

Proposition 4.1 (Minimizing δmax ) Given a schedule a1..an and a quality level
q , consider two consecutive and independent actions ai and ai+1 (ai ⊀ ai+1 and
ai+1 ⊀ ai ). Let a′

1..a
′
n be the schedule in which ai and ai+1 are swapped, that is,

a′
1..a

′
n = a1..ai−1ai+1aiai+2..an. Then, we have δmax(a′

1..a
′
n, q) ≤ δmax(a1..an, q) in

the following situations:

R1: η(ai, q) ≤ η(ai+1, q) and β(ai, q) ≤ 0
R2: β(ai, q) ≤ 0 and β(ai+1, q) ≥ 0.
R3: (η − β)(ai, q) ≥ (η − β)(ai+1, q), β(ai, q) ≥ 0, and β(ai+1, q) ≥ 0.

Proof By definition we have δmax(a1..an, q) = max1≤j≤n δ(aj ..an, q) and
δmax(a′

1..a
′
n, q) = max1≤j≤n δ(a′

j ..a
′
n, q). We compare values δ(aj ..an, q) and

δ(a′
j ..a

′
n, q). Let I1 = {i, i + 1} and I2 = {1, . . . , i − 1, i + 2, . . . , n}.
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• For all j ∈ I2, we have:

δ(aj ..an, q) = η(aj , q) + β(aj+1..an, q)

= η(aj , q) +
n∑

k=j+1

β(ak, q).

Since {aj+1, . . . , an} = {a′
j+1, . . . , a

′
n}, and aj = a′

j we obtain δ(aj ..an, q) =
δ(a′

j ..a
′
n, q).

• For j ∈ I1, we have:

δ(ai ..an, q) = η(ai, q) + β(ai+1, q) + β(ai+2..an, q), (7)

δ(ai+1..an, q) = η(ai+1, q) + β(ai+2..an, q). (8)

Since {ai+2, . . . , an} = {a′
i+2, . . . , a

′
n)},we have:

δ(a′
i ..a

′
n, q) = η(ai+1, q) + β(ai, q) + β(ai+2..an, q), (9)

δ(a′
i+1..a

′
n, q) = η(ai, q) + β(ai+2..an, q). (10)

Since δmax(a1..an, q) = maxj∈I1∪I2 δ(aj ..an, q) and δmax(a′
1..a

′
n, q) =

maxj∈I1∪I2 δ(a′
j ..a

′
n, q), it is sufficient to show that maxj∈I1 δ(a′

j ..a
′
n, q) ≤

maxj∈I1 δ(aj ..an, q) in order to ensure that δmax(a′
1..a

′
n, q) ≤ δmax(a1..an, q). The

following results come from the definitions:

from (8) and (9), β(ai, q) ≤ 0 ⇒ δ(a′
i ..a

′
n, q) ≤ δ(ai+1..an, q), (11)

from (7) and (10), β(ai+1, q) ≥ 0 ⇒ δ(a′
i+1..a

′
n, q) ≤ δ(ai ..an, q), (12)

from (8) and (10), η(ai, q) ≤ η(ai+1, q) ⇒ δ(a′
i+1..a

′
n, q) ≤ δ(ai+1..an, q)

(13)

R1: Suppose that ai and ai+1 are such that β(ai, q) ≤ 0 and η(ai, q) ≤ η(ai+1, q).
Since β(ai, q) ≤ 0, we have δ(a′

i ..a
′
n, q) ≤ δ(ai+1..an, q) (implication (11)) and thus

δ(a′
i ..a

′
n, q) ≤ maxj∈I1 δ(aj ..an, q).

Since η(ai, q) ≤ η(ai+1, q), we have δ(a′
i+1..a

′
n, q) ≤ δ(ai+1..an, q) (implica-

tion (13)) and thus δ(a′
i+1..a

′
n, q) ≤ maxj∈I1 δ(aj ..an, q). We can conclude that

δmax(a′
1..a

′
n, q) ≤ δmax(a1..an, q).

R2: Since β(ai, q) ≤ 0, we have δ(a′
i ..an, q) ≤ δ(ai+1..an, q) ≤ maxj∈I1 δ(aj ..an,

q) (implication (11)). Since β(ai+1, q) ≥ 0, we have δ(a′
i+1..an, q) ≤ δ(ai ..an, q) ≤

maxj∈I1 δ(aj ..an, q) (implication (12)). We obtain maxj∈I1 δ(a′
j ..an, q) ≤

maxj∈I1 δ(aj ..an, q). Thus we conclude that, in this case, we have δmax(a′
1..a

′
n, q) ≤

δmax(a1..an, q).
R3: Suppose that ai and ai+1 are such that β(ai, q) ≥ 0, β(ai+1, q) ≥ 0 and

(η − β)(ai, q) ≥ (η − β)(ai+1, q). Since β(ai+1, q) ≥ 0, we have δ(a′
i+1..an, q) ≤
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Fig. 11 Minimization of δmax

δ(ai ..an, q) ≤ maxj∈I1 δ(aj ..an, q) (implication (12)). Since (η − β)(ai, q) ≥ (η −
β)(ai+1, q) we have:

δ(a′
i ..an, q) − δ(ai ..an, q) = η(ai+1, q) + β(ai, q) − (η(ai, q) + β(ai+1, q))

= (η − β)(ai+1, q) − (η − β)(ai, q),

δ(a′
i ..an, q) − δ(ai ..an, q) ≤ 0.

Thus, we obtain δ(a′
i ..an, q) ≤ δ(ai ..an, q) ≤ maxj∈I1 δ(aj ..an, q). We obtain also

maxj∈I1 δ(a′
j ..an, q) ≤ maxj∈I1 δ(aj ..an, q). We can conclude that, in this case, we

have δmax(a′
1..a

′
n, q) ≤ δmax(a1..an, q). �

As we consider a constant deadline function D, the conditions R1, R2, R3 define
rules for getting, from a schedule a1..an, a schedule a′

1..a
′
n such that tmx

p (a′
1..a

′
n, q) ≥

tmx
p (a1..an, q). The following proposition allows the computation of an optimal

schedule a1..an for a given quality level q when there is no precedence constraint,
that is, G = (A,∅). This schedule is obtained from a partition of the actions accord-
ing to the value of the function β:

• actions for which β > 0 are scheduled first and by (η − β) increasing
• actions for which β ≤ 0 are scheduled at the end of the schedule and by η decreas-

ing. This is summarized in Fig. 11.

Proposition 4.2 (No precedence constraint) Let PSY(C) = (G,Q,Cwc,D,C) be a
parameterized system such that G = (A,∅). If there exists a schedule a1..an and an
index i such that:

1. For all j ∈ {1, . . . , i} we have β(aj , q) > 0, and for all j ∈ {i + 1, . . . , n} we have
β(aj , q) ≤ 0.

2. For all j1, j2 ∈ {1, . . . , i}, j1 < j2 ⇒ (η − β)(aj1 , q) ≤ (η − β)(aj2 , q).
3. For all j1, j2 ∈ {i + 1, . . . , n}, j1 < j2 ⇒ η(aj1, q) ≥ η(aj2, q).

Then the schedule a1..an minimizes δmax , that is, for all schedule a′
1..a

′
n we have

δmax(a1..an, q) ≤ δmax(a′
1..a

′
n, q).

Proof Let a′
1..a

′
n a schedule. Since there is no precedence constraint, we can obtain

a1..an from a′
1..a

′
n by using the rules R1, R2, R3 of Proposition 4.1. Starting from

a′
1..a

′
n, applying the rule R2, we first obtain the partition β > 0 and β ≤ 0. Then

we apply successively the rule R1 to obtain η decreasing for actions with β ≤ 0 and
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the rule R3 to obtain η − β increasing for actions with β > 0. Since the value δmax

decreases when applying the rules R1, R2, R3, we conclude that δmax(a1..an, q) ≤
δmax(a′

1..a
′
n, q). �

The following propositions allow the computation of an optimal schedule a1..an

for a given quality level q when the function β : A×Q → R has a constant sign over
the set of actions A.

Proposition 4.3 (Scheduling when β ≤ 0) Let PSY(C) = (G,Q,Cwc,D,C) be
a parameterized system, and q be a quality level such that for each action a ∈ A,
β(a, q) ≤ 0. We define the function η∗ as follows:

η∗(a, q) = max
a′=a∨a≺a′ η(a′, q).

Let a1..an be a schedule such that for all indexes i and j , we have i < j ⇒
η∗(ai, q) ≥ η∗(aj , q). Then the schedule a1..an minimizes δmax , that is, for all sched-
ule a′

1..a
′
n of A we have δmax(a1..an, q) ≤ δmax(a′

1..a
′
n, q).

The proof of the proposition is based on the following lemma.

Lemma 4.1 Let PSY(C) = (G,Q,Cwc,D,C) be a parameterized system, and q be
a quality level such that for each action a ∈ A, β(a, q) ≤ 0. For each schedule a1..an

of G, we have:

δmax∗(a1..an, q) = δmax(a1..an, q),

where δmax∗ is computed as δmax by replacing η with η∗, that is:

δmax∗(a1..an, q) = max
1≤i≤n

δ∗(ai ..an, q) = max
1≤i≤n

η∗(ai, q) + β(ai+1..an, q).

Proof First, we show that δmax(a1..an, q) ≥ δmax∗(a1..an, q). Since δmax∗(a1..an,

q) = max1≤j≤n δ∗(aj ..an, q), there exists i ∈ {1, . . . , n } such that δmax∗(a1..an, q) =
δ∗(ai ..an, q). By definition, we have δ∗(ai ..an, q) = η∗(ai, q) + β(ai+1..an, q) and
η∗(a, q) = maxa′=a∨a≺a′ η(a′, q). That is, there exists j ≥ i such that η∗(ai, q) =
η(aj , q). Thus:

δmax∗(a1..an, q) = δ∗(ai ..an, q)

= η∗(ai, q) + β(ai+1..an, q)

= η(aj , q) + β(ai+1..an, q)

= η(aj , q) + β(ai+1..aj , q) + β(aj+1..an, q)

≤ η(aj , q) + β(aj+1..an, q) since β ≤ 0

≤ δ(aj ..an, q)

≤ δmax(a1..an, q).
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We show that δmax∗(a1..an, q) ≥ δmax(a1..an, q). According to the definition
of η∗, we have for each action a and each quality level q , η∗(a, q) ≥ η(a, q).
Thereby, for all i ∈ {1, . . . , n}, we have δ∗(ai ..an, q) ≥ δ(ai ..an, q). This implies that
δmax∗(a1..an, q) ≥ δmax(a1..an, q). �

Proof of Proposition 4.3 By applying the rule R1 of the Proposition 4.1 to the func-
tions δmax∗ and η∗, we show that the schedule a1..an in which actions are scheduled
by η∗ decreasing minimizes δmax∗. Since δmax = δmax∗ (Lemma 4.1), we conclude
that a1..an minimizes δmax . �

Proposition 4.4 (Scheduling when β ≥ 0) Let PSY(C) = (G,Q,Cwc,D,C) be
a parameterized system, let q a quality level such that for each action a ∈ A,
β(a, q) ≥ 0. We define the function (η − β)∗ as follows :

(η − β)∗(a, q) = max
a′=a∨a′≺a

(η − β)(a′, q).

Let schedule a1..an be a schedule such that for all indexes i and j , we have i < j ⇒
(η − β)∗(ai, q) ≤ (η − β)∗(aj , q). Then the schedule a1..an minimizes δmax , that is,
for all schedule a′

1..a
′
n of A we have δmax(a1..an, q) ≤ δmax(a′

1..a
′
n, q).

The proof of the proposition is based on the following lemma.

Lemma 4.2 Let PSY(C) = (G,Q,Cwc,D,C) be a parameterized system, let q a
quality level such that for each action a ∈ A, β(a, q) ≥ 0. For each schedule of G, we
have:

δmax∗(a1..an, q) = δmax(a1..an, q),

where δmax∗ is computed as δmax by replacing η by (η − β)∗ + β , that is:

δmax∗(a1..an, q) = max
1≤i≤n

δ∗(ai ..an, q)

= max
1≤i≤n

((η − β)∗ + β)(ai) + β(ai+1..an, q).

Proof First we show that δmax(a1..an, q) ≥ δmax∗(a1..an, q). Since δmax∗(a1..an,

q) = max1≤j≤n δ∗(aj ..an, q), there exists i ∈ {1, . . . , n} such that δmax∗(a1..an, q) =
δ∗(ai ..an, q). We have :

δ∗(ai ..an, q) = ((η − β)∗ + β)(ai, q) + β(ai+1..an, q).

As (η − β)∗(a, q) = maxa′=a∨a′≺a(η − β)(a′, q), there exists j ≤ i such that (η −
β)(aj , q) = (η − β)∗(ai, q). Thus,

δmax∗(a1..an, q) = δ∗(ai ..an, q)

= ((η − β)∗ + β)(ai, q) + β(ai+1..an, q)

= (η − β)(aj , q) + β(ai, q) + β(ai+1..an, q)
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≤ (η − β)(aj , q) + β(aj+1..ai−1, q) + β(ai, q)

+ β(ai+1..an, q) since β ≥ 0

≤ (η − β)(aj , q) + β(aj+1..an, q)

≤ δ(aj ..an, q)

≤ δmax(a1..an, q).

We conclude that δmax(a1..an, q) ≥ δmax∗(a1..an, q).
Then we show that δmax∗(a1..an, q) ≥ δmax(a1..an, q). The result comes directly

from the definitions. We have:

(η − β)∗(ai, q) ≥ (η − β)(ai, q)

⇒ (η − β)∗(ai, q) + β(ai, q) + β(ai+1..an, q)

≥ (η − β)(ai, q) + β(ai, q) + β(ai+1..an, q)

⇒ δ∗(ai ..an, q) ≥ δ(ai ..an, q)

⇒ δmax∗(a1..an, q) ≥ δmax(a1..an, q). �

Proof of Proposition 4.4 By applying the rule R3 of the Proposition 4.1 at the func-
tions δmax∗ and (η −β)∗, we show that a schedule a1..an in which actions are sched-
uled by (η − β)∗ decreasing minimizes δmax∗. Since δmax∗ = δmax (Lemma 4.2), we
conclude that a1..an minimizes δmax . �

4.2 Computing Best_Sched for the general case

Computing an optimal schedule for the mixed quality management policy is a non-
trivial problem when the deadline function D is not constant. As EDF schedules are
optimal for the quality control problem with known execution times, an idea is to
restrict the exploration to the EDF schedules. The proposed heuristic is based on
results of the previous section.

Definition 4.2 Let PSY(C) = (G,Q,Cwc,D,C) be a parameterized system. We
say that a schedule a1..an of G is EDF-optimal with respect to the quality level q if
a1..an is an EDF schedule and:

tmx
p (a1..an, q) = max{tmx

p (a′
1..a

′
n, q) | a′

1..a
′
n ∈ EDF(G,D)}.

The following proposition allows the computation of EDF-optimal schedules. This
is achieved by a local minimization of δmax .

Proposition 4.5 Let a1..an be an EDF schedule of G = (A,≺) and q be a quality
level. The global deadline function D∗ defined in Sect. 2.1.2 (Definition 2.7) induces
a partition A1 . . .AL of A such that D∗(A1) < · · · < D∗(AL). We have:

• a1..an = α1..αL where for all l ∈ {1, . . . ,L}, αl is the sequence of actions of Al .
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• If δmax(αl, q) is minimal, then αl is an EDF-optimal schedule of G/Al with respect
to the quality level q .

• If for all l ∈ {1, . . . ,L}, αl is EDF-optimal with respect to the quality level q , then
a1..an is EDF-optimal with respect to the quality level q .

Lemma 4.3 Let a1..an be a schedule of G such that a1..an = α1..αL, where for all
l ∈ {1, . . . ,L} αl is a sequence of actions. Then:

δmax(a1..an, q) = δmax(α1..αL, q) = max
1≤l≤L

δmax(αl, q) +
∑

l<i≤L

β(αi, q).

Proof We write b(l) for the index of the first action of αl , that is, αl = ab(l)..ab(l+1)−1,
and b(L + 1) = n + 1.

δmax(α1..αL, q)

= max
1≤i≤n

η(ai, q) + β(ai+1..an, q)

= max
1≤l≤L

(
max

b(l)≤i≤b(l+1)−1

(
η(ai, q) + β(ai+1..an, q)

))

= max
1≤l≤L

(
max

b(l)≤i≤b(l+1)−1

(
η(ai, q) + β(ai+1..ab(l+1)−1, q) + β(ab(l+1)..an, q)

))
.

As β(ab(l+1)..an, q) does not depend of i, we have:

δmax(α1..αL, q)

= max
1≤l≤L

(
max

b(l)≤i≤b(l+1)−1

(
η(ai, q) + β(ai+1..ab(l+1)−1, q)

) + β(ab(l+1)..an, q)
)

= max
1≤l≤L

δmax(αl, q) + β(ab(l+1)..an, q)

= max
1≤l≤L

δmax(αl, q) + β(αl+1, q) + . . . + β(αL,q). �

Proof of Proposition 4.5

• The first point of the proposition is left as an exercise to the reader.
• As D is constant over the subset of actions Al , we can apply results of Sect. 4.1,

that is, a schedule αl of G/Al is optimal (i.e. maximizes tmx
p (αl, q)) if and only if

it minimizes δmax(αl, q). As any schedule of G/Al is an EDF schedule since D

is constant over Al , we can conclude that if δmax(αl, q) is minimal, then αl is an
EDF-optimal schedule of G/Al .

• Let D1, . . . ,DL be the value of D over the subset of actions A1, . . . ,AL. For any
EDF schedule a1..an = α1..αL of G, we have:

tmx
p (a1..an, q) = max

1≤i≤n
D(ai) − Cav(a1..ai , q) − δmax(a1..ai, q)

= max
1≤l≤L

Dl − (
Cav(α1) + · · · + Cav(αl, q)

) − δmax(α1..αl, q).



32 Real-Time Syst (2008) 40: 1–43

As αl is a schedule of Al , the value (Cav(α1) + · · · + Cav(αl, q)) does not depend of
the EDF schedule a1..an. By Lemma 4.3, we have:

δmax(α1..αl, q) = max
1≤i≤l

δmax(αi, q) + β(αi+1..αL, q).

As β(αi+1..αL, q) does not depend of the EDF schedule a1..an, we can conclude
that if for all i ∈ {1, . . . ,L}, δmax(αi, q) is minimal, then tmx

p (a1..an, q) is maximal
amongst the EDF schedule, that is, a1..an is an EDF-optimal schedule. �

5 Experimental results

This section provides experimental results which confirm the interest of theory de-
veloped in previous sections. We present the experimental framework as well as a
description of the target application (an MPEG4 video encoder) and platform. We
compare the application running with a controller generated by our method, to the
same application running with constant quality, which corresponds to the standard
industrial practice. Then, we show how optimizations of the controller (quality man-
agements policies, symbolic approach, scheduling policy) impact the application.

5.1 Experimental framework

We designed controllers for an MPEG4 encoder written in C (more than 15000 loc).
The encoder treats frames cyclically. Each frame is split into N macroblocks of 256
pixels. The precedence graph corresponding to the treatment of a frame is given in
Fig. 12. It is composed of the first action – Grab_Picture – followed by N iter-
ations of the same precedence graph. We have a precedence constraint between two
consecutive iterations of the same node of this precedence graph. For instance, the ith

iteration of DCT must be scheduled before its i + 1th iteration. However, all iterations
of Motion_Estimate can be scheduled before the first iteration of DCT.

The video encoder architecture is shown in Fig. 13. The considered application
corresponds to a videophone application. It captures a sequence of frames with a
camera, transmits the sequence, and then displays the frames on a screen. From a
captured frame, the video encoder produces a corresponding bitstream. The latter is
transmitted to a video decoder which decodes the bitstream and displays decoded
frame on a screen. This architecture uses input and output buffers of the same size K ,
to cope with changes of load and avoid as much as possible frame skips. These may
happen when the input buffer is full.

We developed a prototype tool (Fig. 14) that allows the generation of controlled
application software. The inputs of the tool are a parameterized system PSY(C) =
(G,Q,Cwc,D,C) and an average execution time function Cav , that is,

• the precedence graph G = (A,≺) modeling actions (C functions) and data depen-
dencies between the actions, and the corresponding set of quality level parame-
ters Q,

• average execution times Cav and worst-case execution times Cwc,
• action deadlines D.
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Fig. 12 Precedence graph of
the video encoder

Fig. 13 Video encoder architecture

From these inputs the tool computes:

• C code corresponding to an optimized EDF schedule,
• tables containing pre-computed values used by the numeric implementations, and

Speed Diagrams used by the symbolic implementation.

A compiler is used to link the following items and generate the controlled appli-
cation software from:

• the schedule, the tables and Speed Diagrams generated by the tool,
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Fig. 14 Prototype tool for the
generation of the controlled
application software

• the application code for the actions of the schedule,
• a generic Controller mainly consisting of a Quality Manager.

For the experimental results, the target platform is an STm8010 board from STMi-
croelectronics. It includes three ST231 processors running at 400 MHz, and it is used
in set-top box products. As our approach targets mono-processor platforms, we use
only one of the three ST231. A register that counts the number of processor cycles
elapsed provides a real-time clock with minimal access overhead.

For the considered example, the execution times of the actions Motion_Esti-
mate, DCT, Quant and Coding depend on the quality level as specified in Table 2.
The execution times of all the other actions are constant, and are given in same Ta-
ble 2. We also consider a constant deadline function D corresponding to the time
budget allowed for encoding a frame.

The only action which has significant fluctuation of execution time with quality
level is Motion_Estimate. To reduce the number of Controller calls, we only
control quality level parameter before the execution of this action, that is, one time
per macroblock. Thus the number of Controller calls per frame is equal to N .

We evaluated four implementations:
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Table 2 Average and worst-case execution times

Action Average Worst case

Grab_Picture 11000 20000

Grab_Macro_Block 9000 20000

IntraP 8000 20000

IQuant 10000 15000

IDCT 8000 15000

Reconstruct 11000 20000

Motion_Estimate

Quality Average Worst case

0 3000 10000

1 12000 40000

2 20000 50000

3 30000 100000

4 40000 120000

5 50000 150000

6 70000 200000

7 90000 300000

Action Average q > 0 Worst case q > 0 Average q = 0 Worst case q = 0

DCT 11000 15000 150 400

Quant 12000 20000 1500 4000

Coding 10000 25000 1500 3000

Constant quality. In this implementation, quality level parameters are constant and
defined statically before the execution of the application. This corresponds to the
standard industrial practice.

Controlled quality for numeric quality manager. This is a straightforward imple-
mentation of the mixed quality management policy given in Sect. 3.1.3. We con-
sider a non-optimized version and an optimized version using pre-computed values
in order to speed up online computation of quality levels.

Controlled quality for quality manager using quality regions. We used the prototype
tool for pre-computing quality regions Rq defined in Sect. 3.2.2. These are used by
the Quality Manager to compute online action quality levels.

Controlled quality for quality manager using control relaxation regions. We used the
prototype tool for pre-computing control relaxation regions Rr

q defined in Sect. 3.2.3
for r ∈ ρ = {1,3,6,9,16,32}. These regions are used by the Quality Manager to
relax the granularity of control.

5.2 Controlled quality vs constant quality

The first experiment consists on a comparison between the standard industrial prac-
tice, which is based on constant quality assignment, and the controlled quality
method. We measure PSNR (Peak Signal to Noise Ratio) between the input frames
and output frames. We also plot the utilization of the time budget which is the ratio
between the time for encoding a frame and D, as a function of the number of treated
frames. PSNR characterizes single frame quality and is used to measure the effect
on video quality of the encoding process. We compare the performances of the con-
trolled encoder using mixed quality management policy generated by our prototype
and the same encoder for constant quality level.
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Fig. 15 Time budget utilization

We consider a test case of 50 frames, consisting of 3 sequences produced by a
camera every D = 100 ms (i.e. constant framerate of 10 frame/s).

The buffers of size K allow a maximal latency of D ·K . The time budget allocated
to the encoder for the treatment of a frame depends on the buffer occupancy, and is
on average D. As our method guarantees safety, we can take K = 1 for the controlled
encoder without deadline miss.

Time budget utilization is shown in Fig. 15, for controlled quality by using mixed
quality management policy and for constant quality with q = 4, K = 1, and with
q = 5, K = 2. Notice the presence of two kinds of jumps:

• three jumps corresponding to changes of video sequences (encoding of I-frames)
occurring at frames number 0, 15, and 35 for controlled and constant quality (points
A, B, and C in Fig. 15);

• bursts of jumps corresponding to frame skips due to buffer overflow occurring for
constant quality only.

PSNR for the same test case is given in Fig. 16. Notice again the two types of
jumps due to changes of video sequences and frame skips. When a frame is skipped,
the immediately previous frame is displayed by the decoder, and the comparison to
the input frame gives a low PSNR value (e.g. lower than 25). PSNR is higher for
controlled quality than for constant quality q = 4, except for regions where frames
are skipped. For these regions, the bits corresponding to skipped frames are used
to achieve better quality. Although the PSNR is higher in these regions for constant
quality, the video quality is affected as the frame rate is divided by two. Using buffers
of size K = 2 allows activation of constant quality q = 5, but frame skips remain.

Experimental results show that for constant quality levels load fluctuation can lead
to poor video quality in absence of sufficiently large buffers. Poor video quality means



Real-Time Syst (2008) 40: 1–43 37

Fig. 16 PSNR between input and output

low PSNR or frame skips (or both). For controlled quality, there are no frame skips.
Thus, overloads result in low PSNR. Furthermore, using buffers may not completely
eliminate frame skips. It implies additional cost and increased latency. The compar-
ison between constant and controlled quality shows that for controlled quality we
get better video quality even for buffer size 2. Controlled quality completely avoids
frame skips; overloads lead to smooth reduction of PSNR.

5.3 The impact of quality management policy

This part shows the importance of the choice of the quality management policy. We
have compared safe, simple and mixed quality management policies. We provide
results for a static schedule. We build the speed diagram (see Sect. 3.2) for a particular
input frame. As results obtained with a controller using the safe quality management
policy are similar to the ones obtained using simple quality management policy, we
only plot results for simple and mixed policies (see Fig. 17).

For simple quality management policy speed discontinuities are observed at points
A and B. The speed of the system from point A to point B corresponds to a choice of
minimal quality. This drastically reduces the video quality. On the contrary, for mixed
policy we get almost uniformly constant speed which leads to significantly improved
video quality.

5.4 Performance of symbolic quality managers

These experiments provide results the symbolic approach developed Sect. 3.2. We
have compared the performances of numeric and symbolic implementations of
the Quality Manager for an input sequence of 29 frames of 320 × 144 pixels
(N = 180 macroblocks).
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Fig. 17 Speed diagram for simple and mixed quality management policies

Overhead in memory allocation for numeric implementations is almost zero. For
the symbolic implementations, we have the following overhead in memory alloca-
tion.

Quality manager using quality regions. By Proposition 3.4, quality regions are char-
acterized by the set of the values tmx

p (si, q) for all quality levels q and for all states
si . Thus, as i ranges from 0 to N − 1 this set is specified by N × |Q| = 1,440 inte-
gers. For the video encoder application, we have measured an overhead in memory
allocation of 20 KB.

Quality manager using control relaxation regions. By Definition 3.5, control relax-
ation regions are characterized by the set of the values tmx

p (si+r−1, q + 1) and
t
mx,r
p (si , q) for all the quality levels q , indices i ∈ {1, . . . ,N − 1} and relaxation

steps r ∈ ρ, that is, a set of 2N × |Q||ρ| = 17,280 integers. We observed an over-
head in memory allocation of 350 KB.

Execution time overhead due to quality management is on average 8.5% for the
numeric implementation, 4% for optimized numeric implementation, 1.2% for the
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Fig. 18 Execution time overhead due to quality management

symbolic implementation using quality regions (no control relaxation) and less than
1% for the implementation using control relaxation regions (see Fig. 18). In a previ-
ous paper (Combaz et al. 2007), we obtained more significant reduction of execution
time overhead by using control relaxation for the same application running on an
iPod video.

Thus, symbolic quality management allows significant overhead reduction with
respect to numeric quality management. Consequently, symbolic Quality Managers
choose higher quality levels than the numeric Quality Manager (see Fig. 19). This
leads to a significant improvement of the overall video quality.

Figure 20 compares for a sequence of 180 actions encoding a frame, overheads in
execution time with and without control relaxation. The control relaxation technique
developed in Sect. 3.2.3 is used to reduce controller execution time overhead. Given
a state of the system, the controller can be relaxed for r steps if we can ensure that the
quality level chosen by the controller remains the same for the next r actions. Notice
that the number of relaxation steps r is dynamically adapted during the execution of
the application: r = 9 for a0, then r = 6 for a9, r = 3 for a15 to a120, and the r = 1
for the remaining actions.

5.5 Using optimized schedules

The last experiments are based on results of Sect. 4. We have compared the con-
trolled application running with a non-optimized function Best_Schedmx (high values
of δmax ), and the same controlled application running with a function Best_Schedmx

obtained by applying the three optimization rules R1, R2, R3 given in Proposition 4.1.
Figure 21 shows that the utilization of time budget is close to 100% when

Best_Schedmx is optimized, whereas approximately 15% are lost on average when
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Fig. 19 Average quality level

Fig. 20 Overhead in execution time

Best_Schedmx is non-optimized. This corresponds to the difference of the values δmax

encountered during the execution, between the optimized and the non-optimized case.
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Fig. 21 Optimization of Best_Schedmx

6 Conclusion

The presented method uses fine grain control to meet safety and best effort require-
ments. It overcomes limitations of hard real-time approaches where strict respect of
deadlines implies poor time budget utilization. This is possible through fine grain
control, which allows adaptation to load changes during a cycle instead of using a
priori known global execution time estimates.

The method is founded on a solid theoretical basis. The controller computes fea-
sible schedules under reasonable assumptions about the controlled system—the ex-
istence of statically computable feasible schedules for minimal quality. The behavior
of the controller is characterized by its quality management policy and the associated
Best_Sched function. Experimental results show that the mixed quality management
policy significantly improves quality smoothness with respect to the two other poli-
cies.

Speed diagrams provide a general and abstract framework for studying the dy-
namics of the controlled software, determined as the interplay between the execution
of the application software and the Quality Manager. The geometric interpretation of
system’s evolution allows performance analysis and a deeper understanding of con-
trol management policies in terms of relations between ideal and optimal speeds. The
results show that even in the ideal case where actual execution times agree with aver-
age execution times, meeting safety requirements inherently limits the achievement
of optimality. The actual execution time may not fill the entire available time bud-
get. The amount of the available time which is lost must be lower than a constant,
which depends on the difference between average and worst-case behavior as well as
granularity of control.

The symbolic quality management method improves and extends our previous
results (Combaz et al. 2005a, 2005b).



42 Real-Time Syst (2008) 40: 1–43

• The use of constant quality and control relaxation regions which can be pre-
computed from their symbolic representation, allows a more efficient implemen-
tation of Quality Managers. Safe control relaxation proves to be a very interesting
idea as it allows keeping Quality Manager’s intervention minimal and thus reduce
the corresponding execution time overhead.

• The implementation technique can be fully automated for platforms providing ac-
cess to accurate real-time clocks at low overhead. Experimental results confirm the
interest of symbolic quality management because of its low overhead.

An important finding is that under uncertainty, all EDF schedules are not equiva-
lent with respect to the considered quality management policies. The rules provided
for computing the schedules which maximize the corresponding schedule functions,
define strategies for performance improvement.

Experimental results confirm the interest of the method and its low overhead.
Quality control allows considerable performance gains with respect to constant qual-
ity. Symbolic quality management techniques allow a further improvement with re-
spect numeric techniques.

We currently work in several directions to improve the method and the support-
ing tools: using linear constraints to approximate control relaxation regions, study of
properties of control relaxation regions for classes of programs e.g., iterations, and
modular use of speed diagrams.
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