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Abstract Estimating the Worst Case Execution Time (WCET) of a program on a given

processor is important for the schedulability analysis of real-time systems. WCET analy-

sis techniques typically model the timing effects of micro-architectural features in modern

processors (such as pipeline, cache, branch prediction) to obtain safe and tight estimates.

In this paper, we model out-of-order superscalar processor pipelines for WCET analysis.

The analysis is, in general, difficult even for a basic block (a sequence of instructions with

single-entry and single-exit points) if some of the instructions have variable latencies. This is

because the WCET of a basic block on out-of-order pipelines cannot be obtained by assum-

ing maximum latencies of the individual instructions. Our timing estimation technique for a

basic block proceeds by a fixed-point analysis of the time intervals at which the instructions

enter/leave a pipeline stage. To extend our estimation to whole programs, we use Integer Lin-

ear Programming (ILP) to combine the timing estimates for basic blocks. Timing effects of

instruction cache and branch prediction are also modeled within our pipeline analysis frame-

work. This forms a combined timing analysis framework that captures out-of-order pipeline,

cache, branch prediction as well as the mutual interaction among these micro-architectural

features. The accuracy of our analysis is demonstrated via tight estimates obtained for several

benchmarks.

Keywords Worst-case execution time (WCET) analysis . Out-of-order superscalar

processor . Instruction cache . Branch prediction
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1. Introduction

Statically analyzing the Worst Case Execution Time (WCET) of a program is impor-

tant for real-time software. Such timing analysis of software has been studied extensively

(Engblom, 2002; Li et al., 2005, 1999; Puschner and Koza, 1989; Shaw, 1989; Theiling

et al., 2000) due to its inherent importance in schedulability analysis. Usually it involves

(a) path analysis to find out the infeasible paths in the program’s control flow graph and (b)

micro-architectural modeling to capture the timing effects of architectural features. WCET

analysis techniques are conservative, i.e., they compute an upper bound of the program’s

actual worst case execution time. So, it is in general possible to ignore the effects of the

underlying hardware by introducing pessimism. However, ignoring the micro-architectural

features produces extremely loose timing bounds as modern processors employ advanced

performance enhancing features such as the pipeline, cache, branch prediction, etc. To obtain

a tight (yet safe) WCET estimate, we need to model the timing effects of micro-architectural

features.

In the last decade, researchers have studied the effects of pipeline, cache and their in-

teraction on program execution time. The assumptions used in most of these works are,

unfortunately, only applicable to in-order pipelines where instructions are executed in pro-

gram order. However, current high-performance processors employ out-of-order execution

engines to mask latencies due to pipeline stalls; these stalls may happen due to data de-

pendency, resource contentions, cache misses, branch mispredictions, etc. Even in the em-

bedded domain, some recent processors employ out-of-order pipeline; examples include

Motorola MPC 7410, PowerPC 755, PowerPC 440GP, AMD-K6 E and NEC VR5500

MIPS.

In this paper, we model the effects of out-of-order pipelines on the WCET of a program.

The main difficulty in modeling such processors is the timing anomaly problem (Lundqvist

and Stenström, 1999b). The implication of this problem is that the overall WCET of a pro-

gram can exceed the estimate obtained by maximizing latencies of individual instructions.

Consequently, all possible schedules of instructions with variable latencies need to be con-

sidered for estimating the WCET of even a single basic block. Recently, Heckmann et al.

(2003) have modeled PowerPC 755 (an out-of-order processor) for timing analysis. In order

to estimate the WCET of a basic block, they statically unfold the execution of the instruc-

tions using abstract pipeline states. Due to the presence of timing anomaly, if the latency of

an instruction I cannot be determined statically, then upon execution of I a pipeline state

will have several successor states corresponding to the various possible latencies of I . For

complex pipelines, this can result in state space explosion (Thesing, 2004).

Our aim in this paper is to obtain a safe and tight WCET estimate for out-of-order su-
perscalar pipelines without enumerating all possible executions corresponding to variable

latency instructions. This is achieved via a fixed-point analysis of the time intervals (instead

of concrete time instances) at which the instructions of a basic block enter/leave different

pipeline stages. Note that this cleverly avoids state space explosion in pipeline analysis—

instead of calculating set of possible pipeline states (resulting from different instruction

schedules) in a basic block, we calculate the time intervals at which the events which change

pipeline state can occur. We then augment our solution for estimating the WCET of a ba-

sic block to arbitrary programs with complex control flows. This extension involves several

steps. First, we apply the timing estimation technique to each basic block. Next, we bound the

timing effects of instructions preceding or succeeding a basic block. Finally, Integer Linear

Programming (ILP) technique is employed on the control flow graph to estimate the WCET

of the entire program.
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We also extend our technique to include the effects of instruction cache and branch predic-

tion. This leads to a micro-architectural modeling framework that captures the timing effects

of out-of-order superscalar pipeline, instruction cache and branch prediction. These features

have interactions among themselves, e.g., pipelined execution is affected by instruction cache

and branch prediction behavior. Similarly, branch misprediction may positively or negatively

affect the timing behavior of instruction cache by either pre-fetching useful blocks or evict-

ing useful blocks due to wrong pre-fetching. We adopt our previously proposed ILP-based

framework to model branch prediction (Li et al., 2005). Combining this branch prediction

modeling with out-of-order pipeline model is again non-trivial due to the presence of timing

anomaly. However, we show that careful modifications of our estimation technique can safely

and accurately capture the timing effects of the interaction between pipeline and other ar-

chitectural features. For instruction cache behavior, we use a categorization based modeling

where instructions are statically (and conservatively) categorized as hit/unknown in different

control-flow contexts.

The rest of this paper is organized as follows. The next section surveys related work

on WCET analysis. Section 3 describes the timing anomaly problem which makes WCET

estimation of out-of-order execution difficult. In Section 4, we present our out-of-order

processor model and give a brief overview of our WCET estimation method. Section 5

presents the detailed modeling of out-of-order pipelines for WCET estimation. Section 6

extends the technique in Section 5 to take into account the timing effects of branch prediction

and instruction cache. Experimental results appear in Section 7. Finally Section 8 concludes

the paper.

2. Related work

Research on WCET analysis was initiated more than a decade ago. Early activities can be

traced back to Puschner and Koza (1989) and Shaw (1989). These works analyzed the program

source code but did not consider hardware features such as cache or pipeline. Currently, there

exist different approaches for combining program path analysis with micro-architectural

modeling. One of them is a two-phased approach; it uses abstract interpretation (Theiling

et al., 2000) to categorize the execution time of the instructions and then applies Integer

Linear Programming (ILP) to incorporate path constraints. The other one is an integrated

approach proposed in the context of modeling instruction caches (Li et al., 1999). It employs

an ILP formulation using path constraints derived from the control flow graph as well as

constraints on cache behavior.

We now summarize research on micro-architectural modeling for WCET analysis—in

particular pipeline modeling. Most of the past works on micro-architectural modeling have

focused on modeling instruction cache (Arnold et al., 1994; Li et al., 1999; Theiling et al.,

2000) and pipeline (Zhang et al., 1993; Lim et al., 1998; Lundqvist and Stenström, 1999b;

Schneider and Ferdinand, 1999; Engblom, 2002), either individually or combined (Healy

et al., 1999; Lim et al., 1995). Other important features, such as branch prediction, have

received attention in recent years (Colin and Puaut, 2000; Li et al., 2005).

Pipelining is the core technique universally employed in modern processors and has

been studied extensively for WCET analysis. Prior works in this area have successfully

modeled in-order pipelines. Lim et al. (1995) compute the WCET for RISC processors

with pipelines and caches through an extension of Shaw’s timing schema (Shaw, 1989).

Their work has been extended in Lim et al. (1998) to model multiple-issue machines. The

main difference between these works and our work is that (Lim et al., 1998) models the
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timing effects of in-order superscalar pipelines. The basic ingredients of their modeling

have similarities with our modeling—they model dependencies, contentions and parallelism

(owing to superscalarity) among instructions. However, as they model in-order execution they

can construct an order in which the timing effect of each instruction on other instructions

can be determined. In our work, due to the modeling of out-of-order execution such an

ordering is not possible—given two instructions i, j in a basic block the execution of i may

delay instruction j in one instruction schedule, while in another schedule the execution of

instruction j may delay instruction i . So, instead of enumerating all possible instruction

schedules we initially estimate maximal delay (by other instructions) for each instruction,

and iteratively tighten these estimates until they reach a fixed point.

Healy et al. (1999) present an integrated modeling of instruction cache and pipeline

by first categorizing cache behavior of the instructions, and then using the cache informa-

tion to analyze the performance of the pipeline. Lundqvist and Stenström (1999a) com-

bine instruction-level simulation with path analysis by allowing symbolic execution of

instructions (whose operands are unknown). Schneider and Ferdinand (1999) have applied

abstract interpretation to model superscalar processors (Sun Sparc). This work models in-

order superscalar pipelines by collecting all possible concrete pipeline states at a program

point into an abstract pipeline state. This approach towards pipeline modeling has been later

extended to model out-of-order pipelines—an issue which we now discuss.

Lundqvist and Stenström (1999b) discuss the issue of timing anomaly for processors with

out-of-order execution engines. On such processors, a local worst case might not lead to the

global worst case. For example, a cache miss could result in a shorter overall execution time

than a cache hit. This observation makes micro-architectural modeling techniques mentioned

earlier inapplicable to out-of-order processors. Lundqvist and Stenström (1999b) present a

program modification approach to analyze WCET in the presence of out-of-order execution

engines. The idea is to insert “synchronization” instructions before and after each variable

latency instruction in the program to eliminate timing anomaly. However, synchronization

instructions flush the pipeline incurring significant overhead. Moreover, their method requires

software controlled caches, which may not be present in all processors. In his Ph.D. thesis,

Engblom (Engblom, 2002) has conducted a comprehensive study of various pipelines and

presented a framework for modeling those pipelines. He studies timing anomaly, but does not

explicitly propose any modeling technique for capturing the timing effects of out-of-order

pipelines. Indeed, the conditions to ensure safe WCET estimation of pipelined execution

developed in his work favor simpler in-order pipelines.

Recently WCET analysis has been employed for real-life modern processors. Langenbach

et al. (2002) present a work based on abstract interpretation to model Motorola ColdFire 5307

processor with in-order pipeline, cache and branch prediction. An extension of this approach

is employed by Heckmann et al. (2003) for modeling an out-of-order processor—PowerPC

755. Their modeling defines an abstract pipeline state as a set of concrete pipeline states and

pipeline states with identical timing behavior are grouped together. Thus, if the latency of

an instruction I cannot be statically determined, a pipeline state will have several successor

states resulting from the execution of I corresponding to the various possible latencies of

I (thereby causing state space explosion). This style of modeling is used in order to easily

integrate pipeline modeling with other micro-architectural features such as branch prediction

and cache.

Our motivation towards studying pipeline modeling has come from a different angle. The

problem of timing anomaly (Lundqvist and Stenström, 1999b) makes it difficult to perform

pipeline WCET analysis without an exhaustive enumeration of pipeline schedules. In this
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paper, we avoid any enumeration of these schedules altogether. Therefore, we propose a

pipeline modeling where the clock cycles at which an instruction I enters/leaves a pipeline

stage S is tightly estimated as an interval (without enumerating the different clock cycles in

which I enters/leaves S). We use this approach to model out-of-order superscalar pipelines

and then extend it to integrate the timing effects of instruction cache and branch prediction.

The approach for modeling out-of-order pipelines presented in this paper does not depend on

special processor features for controlling micro-architectural behaviors, neither does it need

to modify the program object code.

Finally, we note that our core method for estimating the timing effects of out-of-order

pipelines is inspired by a performance analysis technique for real-time distributed systems

(Yen and Wolf, 1998) which analyzes a system consisting of several periodic tasks represented

by task graphs. Each task consists of a partially ordered set of processes. A process P
is scheduled to execute on a processor E if (1) all of P’s predecessors have completed

execution, and (2) no higher priority process in running on E . The algorithm estimates the

worst case completion time of all the tasks. Even though (Yen and Wolf, 1998) appears

very different from our problem of out-of-order pipeline analysis, the two problems are

conceptually similar since both problems need to analyze the timing behavior of processes

with dependencies and resource contentions. However, there are some significant differences

as well. The most important difference (in terms of constructing the estimation algorithm) is

that in Yen and Wolf (1998) a higher priority process hp may delay a lower priority process

lp by preemption; but lp cannot delay hp. However, in our problem, it is possible for a lower

priority instruction (appearing later in program order) li to delay the execution of a higher

priority instruction hi . As there is no preemption, if li is executing when hi becomes ready,

then li is allowed to complete the execution and it delays the execution of hi . Such differences

make the computation of the response time of a node v—the time when all of v’s predecessors

have completed execution to the time v completes execution—different in our problem of

out-of-order pipeline analysis. In Yen and Wolf (1998) one can use the well-known result

of Lehoczky et al. (1989) to calculate response time, whereas this is not possible in our

problem.

3. Timing anomaly

Modern processors employ out-of-order execution where the instructions can be scheduled

for execution in an order different from the original program order. In such a processor, an

instruction can execute if its operands are ready and the corresponding functional unit is

available, irrespective of whether earlier instructions have started execution or not. Out-of-

order execution improves processor’s performance significantly as it replaces pipeline stalls

(due to dependences and/or resource contentions) with useful computations.

Out-of-order execution has a serious impact on WCET analysis due to a phenomenon

called timing anomaly (Lundqvist and Stenström, 1999b). Let us consider an instruction I
with two possible latencies lmin and lmax such that lmax > lmin. The variation of latency could

occur due to different reasons: cache hit/miss for a load instruction, variable number of cycles

taken by an arithmetic instruction like multiplication etc. Let us assume that the execution

time of a sequence of instructions containing I is gmax (gmin) if I incurs a latency of lmax

(lmin). The latencies of the other instructions in the sequence are fixed. A timing anomaly

happens if either (gmax − gmin) < 0 or (gmax − gmin) > (lmax − lmin).
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Fig. 1 Timing anomaly due to variable-latency instructions

Figure 1 illustrates timing anomaly with an example. Instruction B depends on A, in-

struction C depends on B, and instruction E depends on D. Instructions A and E use MULTU
functional unit (1 ∼ 4 cycles latency) and the other instructions use the single cycle ALU.

We illustrate two possible execution scenarios. In the first scenario illustrated in

Figure 1(c), A executes for three cycles: cycles 0 − 2. Since A starts executing in cycle

0, it should have been ready for execution by cycle 0. Therefore, at the beginning of cycle 3,

instructions B, C, D have all been fetched and decoded, that is, they are ready for execution.

Furthermore, all of them are contending for the ALU. Instructions B and C execute on cycles

3 and 4, respectively. Even though D is ready for execution in cycle 3 itself, it can only be

scheduled for execution in cycle 5 after B and C (which appear earlier in program order).

The overall execution time in this case is 10 cycles. In the second scenario as illustrated in

Figure 1(d), A executes for four cycles. Now D is the only ready instruction in cycle 3 (B and

C are still waiting for their operands). Instruction D executes in cycle 3 allowing E to start

execution in cycle 4. The overall execution time in this case is only 8 cycles. Thus, a longer
latency of instruction A results in a shorter overall execution time.

In the presence of timing anomaly, techniques which generally take the local worst case

for WCET estimation no longer guarantee safe bounds. For example, it is not safe to assume

that the worst case timing behavior of a sequence of instructions results from cache misses for

all the instructions or the longest latency for variable-latency arithmetic instructions will lead

to the overall WCET of a program. This prompts the need to consider all possible schedules

of instructions. For a piece of code with N instructions and each of which has K possible

latencies, a naive approach, which examines each possible schedule individually, will have

to consider K N schedules. In the next section, we explain the basic idea behind our approach

that allows us to avoid such expensive enumeration.

4. Overview of our modeling

In this section, we discuss the out-of-order processor model considered by our WCET esti-

mation method. This is followed by a brief overview of our pipeline modeling.

Springer



Real-Time Syst (2006) 34:195–227 201

Fig. 2 An out-of-order superscalar processor model

4.1. Our processor model

Figure 2 shows an example of out-of-order superscalar processor pipeline, which will be used

for illustrating our estimation technique in this paper. This processor is a simplified version

of the SimpleScalar sim-outorder simulator processor model (Burger and Austin, 1997),

which in turn is based on Sohi (1990). The pipeline consist of five stages as shown in Fig. 2.

1. Instruction Fetch (IF). This stage fetches instructions from the memory in program order
into the instruction fetch buffer I-buffer. Let us assume a 4-entry I-buffer with at most 2

instructions fetched per cycle (degree of superscalarity = 2) for discussion in this paper.

The quantity IBuffer size defines the size of the I-buffer.

2. Decode & Dispatch (ID). This stage decodes instructions in the fetch buffer and dispatches

them into the re-order buffer (ROB) in program order. The ROB, an 8-entry buffer in our

discussion, forms the core of the pipeline. It functions as a combination of reservation sta-

tions and re-order buffer, which are implemented as separated components in some com-

mercial processors. Instructions are stored in this buffer from the time they are dispatched

to the time they are committed (see CM stage). We assume that at most two instructions can

be decoded and dispatched per cycle. The variable ROB size defines the size of the ROB.

3. Execute (EX). An instruction in the ROB is issued to its corresponding functional unit

(FU) for execution when all its operands are ready and the functional unit is available.

For load instructions, this stage only calculates the effective memory addresses, and the

actual result will be read from the data cache in the next stage (the WB stage). If more

than one instruction corresponding to a functional unit is ready for execution, the earliest

instruction (in program order) is issued for execution. Functional units may or may not be

pipelined. Again we assume that at most two instructions can be issued from the ROB to

the functional units. The EX stage exhibits true out-of-order behavior as an instruction can

start execution irrespective of whether earlier instructions have started execution or not.

4. Write Back (WB). In this stage, load instructions will get the operands from the data cache

by using addresses calculated in the EX stage. We assume a perfect data cache. Results

are written back to the ROB in this stage. For branch instructions, mispredictions will

be resolved here as well. Note that in some real-life superscalar processors, only lim-

ited number of instructions can write back to the ROB per cycle. We assume unlimited
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write-back bandwidth for our processor model. However, the technique proposed in this

paper can model limited write-back width (similar to our modeling of limited issue

width).

5. Commit (CM). This is the last pipeline stage where the oldest instructions that have com-

pleted previous stages write their output to the register file and free their ROB entries.

Note that instructions commit in program order. That is, even if an instruction has com-

pleted its previous stages, it still has to wait for the earlier instructions to commit. In our

experiments, we assume that the processor can commit at most two instructions per cycle.

In summary, in this paper we use a two-issue superscalar processor consisting of an in-

order front-end (IF and ID stages), an out-of-order execution core (EX and WB stages), and

an in-order back-end (CM stage).

4.2. Our pipeline modeling

Given the control flow graph of a program, our WCET analysis method first derives a WCET

estimate for each basic block. The basic block estimates are combined using Integer Linear

Programming (ILP) to produce the program’s WCET estimate (Li et al., 1999). Such an

integration of micro-architectural modeling with program path analysis has been employed

in existing works (Theiling et al., 2000). Formally, let B be the set of basic blocks of a

program. Then, the program’s WCET is given by the following objective function

maximize
∑
B∈B

NB ∗ cB

where NB is an ILP variable denoting the execution count of basic block B and cB is a

constant denoting the WCET estimate of basic block B. The linear constraints on NB are

developed from the flow equations based on the control flow graph. Thus for basic block B,∑
B ′→B

EB ′→B = NB =
∑

B→B ′′
EB→B ′′

where EB ′→B (EB→B ′′ ) is an ILP variable denoting the number of times control flows through

the control flow graph edge B ′ → B (B → B ′′). Additional linear constraints are also pro-

vided to capture loop-bounds and any known infeasible path information.

How do we find the WCET estimate for a basic block B? This is done by first considering

the basic block’s execution in isolation, that is, starting with an empty pipeline. We find

the WCET estimate without enumerating instruction schedules as follows. We observe that

the worst-case timing behavior of B occurs from maximum resource contention among

instructions in B, that is, each instruction being delayed by maximum number of other

instructions. We produce very coarse estimates for the time intervals at which instructions

in B can start/finish execution by initially assuming that any instruction in B can delay

the other instructions via resource contentions, except for the contentions ruled out by data

dependencies. The estimates allow us to rule out certain contentions—if the earliest time at

which instruction I is ready for execution occurs after the latest time at which J finishes,

clearly I cannot delay J . This allows us to further refine the estimates, thereby ruling out

more contentions. The process continues until a fixed point is reached.

Given the execution time estimate of B starting with an empty pipeline, we now have to

find the constant cB , basic block B’s WCET estimate. We observe that the number of instruc-

tions before and after B which can directly affect the timing of B via dependence/contention
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is bounded by architectural parameters. Accordingly, we extend our timing estimation tech-

nique to operate on a basic block with prologue and epilogue (instructions before and af-

ter B which directly affect the timing of B). Time intervals for execution of instructions in

prologue/epilogue are estimated conservatively by assuming maximum possible contentions.

We also consider (a) dependencies/contentions between instructions in prologue/epilogue and

instructions in B, and (b) possible time overlap between instructions in B and prologue of B.

In this way, we find the timing estimate of basic block B for all possible choices of prologues

and epilogues. The maximum of these estimates is cB , the estimated WCET of B.

In the preceding, we have only given an overview of our modeling technique that captures

the timing effects of out-of-order pipelines. The technical details of this modeling is presented

in the next section. In Section 6, we extend our modeling to integrate the effects of branch

prediction and instruction cache.

5. Pipeline modeling

Our analysis technique is presented in two steps. First, we estimate the execution time of a

basic block in isolation by assuming an empty pipeline at the beginning. Next, we extend

the technique to take into account the possible initial pipeline states and the instructions

before/after the basic block.

5.1. Estimation for a basic block without context

Our effort in this section is to develop an algorithm for estimating the WCET of a basic

block executing on the out-of-order processor pipeline presented in Section 4.1. The main

advantage of our approach is that explicit enumeration of possible instruction schedules

is avoided; thus the estimation is both time and space efficient. The technical details are

presented in the following order. First, we formulate the problem as an execution graph

capturing data dependencies, resource contentions and degree of superscalarity—the major

factors dictating instruction executions. Next, based on the execution graph, we develop an

algorithm which starts with very coarse yet safe estimates, and iteratively refines the estimates

until a fixed point is reached.

Definition 1 (Execution Graph & Dependence Relation). The execution graph for a basic

block B under a pipeline model is defined as

G B = (VB, DRB)

where VB represents all possible combinations of instruction identifiers and pipeline stages

for basic block B, and DRB ⊆ VB × VB represents dependence relations among the nodes.

For two nodes u, v ∈ VB , we say that (u, v) ∈ DRB iff v can start execution only after u has

completed execution; this is indicated by a solid directed edge from u to v in the execution

graph. Clearly, (u, v) ∈ DRB ⇒ (v, u) 
∈ DRB .

Let CodeB = I1 . . . In represent the sequence of instructions in a basic block B. Then each

node v ∈ VB is represented by a tuple: an instruction identifier and a pipeline stage denoted

as stage(instruction id). For example, the node v = I F(Ii ) represents the fetch stage of the

instruction Ii . If basic block B contains n instructions, then |VB | = n × P where P is the

number of stages in the pipeline.
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Each node in the execution graph is associated with the latency of the corresponding

pipeline stage. For a node u with variable latency min latu ∼ max latu , the node is annotated

with an interval [min latu, max latu]. As some resources (e.g., floating point multiplier)

in modern processors are fully pipelined, we also annotate such resources with initiation
intervals (II). Initiation interval of a resource is defined as the number of cycles that must

elapse between issuing two instructions to that resource. For example, a fully pipelined

floating point multiplier can have a latency of 6 clock cycles and an initiation interval of

1 clock cycle. For a non-pipelined resource, II is the same as latency. Also, if we have

multiple copies of the same resource (e.g., 2 ALUs), then we define the multiplicity of that

resource.

The dependence relation in our execution graph is used to model the following dependen-

cies.� Dependencies among pipeline stages of the same instruction. This is because an instruction

must proceed from the first stage to the last stage in order, for example, I D(Ii ) must follow

I F(Ii ).� Dependencies due to finite-sized buffers and queues such as I-buffer or ROB. For exam-

ple, assuming a 4-entry I-buffer, there will be no entry available for I F(Ii+4) before the

completion of I D(Ii ) (which removes Ii from the I-buffer). Therefore, there should be

a dependence edge I D(Ii ) → I F(Ii+4). Similarly, with an 8-entry ROB, there should be

a dependence edge C M(Ii ) → I D(Ii+8) because C M(Ii ) frees up the entry occupied by

Ii in the ROB. Note that we can draw these edges as both the I-buffer and the ROB are

allocated and freed in program order.� Dependencies due to in-order execution in IF, ID, and CM pipeline stages. For exam-

ple, in a scalar processor (degree of superscalarity = 1) there will be dependence edges

I F(Ii ) → I F(Ii+1) because I F(Ii+1) can only start after I F(Ii ) completes. For a super-

scalar processor with n-way fetch (degree of superscalarity = n), we draw dependence

edges I F(Ii ) → I F(Ii+n). This captures the fact that Ii+n cannot be fetched in the same

cycle as Ii .� Data dependencies among instructions. If instruction Ii produces a result that is used by

instruction I j , then there should be a dependence edge W B(Ii ) → E X (I j ).

Apart from the dependence relation among the nodes in an execution graph (denoted by

solid edges), we also define contention relations among the execution graph nodes. Contention

relations model structural hazards in the pipeline. We do not make the contention relation

part of the execution graph so as to clearly identify what we mean by “paths” in the execution

graph; paths in the execution graph refer to chains of dependence edges.

Definition 2 (Contention relation). Let B be a basic block and G B = (VB, DRB) be its

execution graph. We define a contention relation C RB ⊆ VB × VB such that for two nodes

u, v ∈ VB , we say that (u, v) ∈ C RB iff nodes u and v may delay each other by contending

for a resource, for example, functional unit.

Our definition of contention relation is symmetric, that is, (u, v) ∈ C RB ⇒ (v, u) ∈ C RB .

We will often show the contention between u and v as an undirected dashed edge in the

execution graph. Contention can only happen in the EX stage with our pipeline model. For

two instructions Ii , I j in basic block B (i 
= j) we define (E X (Ii ), E X (I j )) ∈ C RB iff

1. instructions Ii and I j utilize the same functional unit type,
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2. there is no path from E X (Ii ) to E X (I j ) or from E X (I j ) to E X (Ii ) in the execution graph

G B , and

3. |i − j | < RO B size

The second condition ensures that there is no dependency between the two nodes, i.e., they

can indeed contend for a functional unit. The final condition simply excludes the possibility

of two far-away nodes contending with each other. For example, if the ROB has eight entries

then clearly instructions Ii and Ii+8 cannot coexist in the ROB to contend for a functional

unit. The contention between two instructions obeys the following rules.� If two instructions contend for a resource in the same clock cycle, the earlier instruction

(according to program order) gets access to the resource, and� Once an instruction gets access to a resource, it runs to completion without getting

pre-empted.

Given two instructions Ii , I j where i < j (i.e., Ii appears earlier in program order) contending

for a functional unit, suppose I j becomes ready before Ii . This is possible since Ii may be

delayed due to data dependencies. Instruction I j thus starts executing ahead of Ii . Meanwhile

Ii may receive its operands and get ready. However, Ii now has to wait for the functional unit

to be free, that is, until I j completes. This is how instructions later in the program order can

delay the execution of an earlier instruction.

Finally, we define a parallelism relation to model superscalarity, for example, multiple

issues and multiple decodes.

Definition 3 (Parallelism Relation). Let B be a basic block and G B = (VB, DRB) be its

execution graph. We define a parallelism relation P RB ⊆ VB × VB such that for two nodes

u, v ∈ VB , we say that (u, v) ∈ P RB iff� nodes u, v denote the same pipeline stage (call it stg) of two different instructions Ii , I j� instructions Ii and I j may start execution of this pipeline stage stg in parallel

The second condition—instructions Ii and I j may start execution of pipeline stage stg in
parallel—requires some explanation. If the pipeline stage in question processes instructions

in-order (the IF, ID and CM stages) this simply means that |i − j | is less than the degree

of superscalarity of the corresponding stage (i.e., the fetch, decode or commit width respec-

tively). However, for the out-of-order pipeline stages the instructions are accommodated in

the re-order buffer ROB; hence two instructions can start execution in parallel if they can

co-exist in the ROB (i.e., |i − j | < RO B size).

Figure 3 shows an example of execution graph. This graph is constructed from a basic block

with five instructions as shown in Figure 3(a); we assume that the degree of superscalarity is 2.

In Figure 3(b), the edges W B(I1) → E X (I3), W B(I2) → E X (I5), and W B(I4) → E X (I5)

reflect data dependencies. The other solid edges capture dependencies due to the structure of

the pipeline and resource constraints. The dashed edges represent contention relations. The

contention relation between E X (I1) and E X (I4) implies: (a) if instructions I1 and I4 are both

ready to execute and the multiplication unit is free, then E X (I1) will be issued for execution

as I1 appears before I4 in program order; and (b) if E X (I4) has already started execution

before E X (I1) is ready, then E X (I4) will be allowed to complete and thereby delay E X (I1).

Our problem definition Let B be a basic block consisting of a sequence of instructions

CodeB = I1 . . . In . Estimating the WCET of B can be formulated as finding the maximum
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Fig. 3 A basic block and its execution graph. The solid directed edges represent dependencies and the dashed
undirected edges represent contention relations

(latest) completion time of the node C M(In) assuming that I F(I1) starts at time zero. Note

that this problem is not equivalent to finding the longest path from I F(I1) to C M(In) in B’s

execution graph (taking the maximum latency of each pipeline stage). The execution time

of a path in the execution graph is not a summation of the latencies of the individual nodes

because of two reasons.� The total time spent in making the transition from I D(Ii ) to E X (Ii ) is dependent on the

contentions from other ready instructions.� The initiation time of a node is computed as the max of the completion times of its immediate

predecessors in the execution graph. This models the effect of dependencies, including data

dependencies.

Notations Before we discuss our WCET estimation method, we explain the notations used

in our estimation algorithm. In the following, u, v denote nodes in the execution graph of the

basic block B being analyzed.� earliest[t ready
v ], latest[t ready

v ]: Ready time of a node v is defined as the time when all its

predecessors have completed execution. earliest[t ready
v ] (latest[t ready

v ]) defines the earliest

(latest) ready time of node v.� earliest[t start
v ], latest[t start

v ]: Start time of a node v is defined as the time when it starts execu-

tion. A node may not be able to start execution when it becomes ready due to unavailability

of a resource and/or limited degree of superscalarity. Therefore, t start
v ≥ t ready

v .� earliest[tfinish
v ], latest[tfinish

v ]: Finish time of a node v is defined as the time when it completes

execution. Given a node v, we add the minimum (maximum) latency of v to t start
v when

we compute its earliest (latest) finish time.� separated(u, v): If the executions of the two nodes u and v cannot overlap, then

separated(u, v) is assigned to true; otherwise, it is assigned to false.� instr id(v): The instruction id corresponding to a node v.� early contenders(v): Contending instructions that appear earlier in program order, i.e., the

set of nodes u s.t. (u, v) ∈ C RB and instr id(u) < instr id(v). Recall that C RB denotes

the contention relation among the nodes in the execution graph of basic block B.� late contenders(v): Contending instructions that appear later in program order, i.e., the set

of nodes u s.t. (u, v) ∈ C RB and instr id(u) > instr id(v).
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start execution in parallel with v and appear earlier in program order. Hence these nodes

can potentially delay the execution of v due to limited degree of superscalarity.� min latv, max latv: Minimum and maximum execution latencies of node v.� II(res), multiplicity(res): Initiation interval (the number of cycles that must elapse between

issuing two instructions to the resource) and multiplicity (number of copies) of a resource

res.

Estimation Algorithm – the big picture As mentioned earlier, our problem is not equivalent

to finding the longest path in the execution graph due to resource contentions and dependen-

cies. We account for the timing effects of the dependencies by using a modified longest path

algorithm that traverses the nodes in topologically sorted order. This topological traversal

ensures that when a node is visited, the completion times of all its predecessors are known. To

model the effect of resource contentions, we conservatively estimate an upper bound on the

delay due to contentions for a functional unit by other instructions. A single pass of the modi-

fied longest path algorithm computes loose bounds on the lifetime of each node. These bounds

are used to identify nodes with disjoint lifetimes. These nodes are not allowed to contend in

the next pass of the longest path search to get tighter bounds. These two steps repeat until

there is no change in the bounds. Termination is guaranteed because of the following reason.� We start with all pairs of instructions in the contention relation (i.e., every instruction can

potentially delay every other instruction).� At every step of the fixed-point computation, we remove instruction pairs that are shown

to be separated in time from the contention relation.

As the number of instructions in a basic block is finite, the number of pairs initially in the

contention relation is also finite. Furthermore, we remove at least one pair in every step of

the fixed-point computation—so the fixed point computation must terminate in finitely many

iterations; if the number of instructions in the basic block being estimated is n, the number

of fixed-point iterations is bounded by n2.

Algorithm 1 WCET estimation for execution graph G

Estimation Algorithm – the detailed picture Algorithm 1 gives the outline for computing

the WCET given an execution graph corresponding to a basic block. The top level algorithm

iteratively performs two operations: LatestTimes and EarliestTimes, which compute the upper

and lower timing bounds of the nodes.

Algorithm 2 computes the latest ready, start, and finish times for each node of the execution

graph. The latest start time of node v, denoted as latest[t start
v ], is computed according to

(a) its latest ready time latest[t ready
v ] (which is obtained from the latest finish times of its

predecessors), (b) its contenders, and (c) its peers.
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Algorithm 2 LatestTimes(G)

Algorithm 3 EarliestTimes(G)

We first consider the delay of v’s start time by contenders later in program order (see Lines

6–9 of Algorithm 2). Note that the start time of node v can be delayed by at most one late con-

tender. We exclude the contenders who have been identified to be separated from v (i.e., whose

lifetimes cannot overlap with v). Given two nodes u and v in the execution graph, we simply

set separated(u, v) to true if earliest[t ready
u ] ≥ latest[tfinish

v ] or earliest[t ready
v ] ≥ latest[tfinish

u ].1

Thus, the tighter the time intervals obtained, the more is the number of pairs of nodes

that can be identified as separated. On the other hand, the more the number of separated

pairs identified, the tighter are the timing intervals computed in subsequent iterations due

1 There exist more sophisticated techniques for finding nodes with disjoint lifetimes in a graph, e.g., see
McMillan and Dill (1992). In our experiments we found that our simplified approach for identifying separated
nodes substantially increases the efficiency of our WCET analysis.
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to lesser number of contending nodes. Also, a late contender u ∈ late contenders(v) can-

not delay v after v is ready since v has higher priority. So, late contenders who do not

satisfy the condition earliest[t start
u ] < latest[t ready

v ] are excluded. The delay from a late con-

tender u is bounded by u’s latest start time plus the initiation interval of the corresponding

resource latest[t start
u ] + I I (res). Here res is the resource being contended for (say a functional

unit) and I I (res) is the initiation interval of resource res. In addition, u cannot delay v by

more than the initiation interval of the corresponding resource; thus, we have another bound

latest[t ready
v ] + I I (res) − 1. The minimum of the two bounds is taken.

Apart from the delay due to late contenders of node v, we also need to estimate the delay

in v’s start time due to its early contenders. Note that the early contenders appear before v in

program order. So in the worst case, all of them, except those proved to be separated from v

(i.e., not overlapping with v’s lifetime), can contend with v and delay its start time. This is

captured in Lines 10–13 of Algorithm 2. First, the delay due to early contention cannot be

beyond the time when all contenders have started execution and the initiation interval of the

corresponding resources have elapsed; so

t start
v ≤ max

u∈Searly

(
latest

[
t start
u

] + I I (res)
)

On the other hand, the maximum delay is also bounded by  |Searly|×I I (res)

multiplicity(res)
�, where each early

contender executes before node v.

Apart from contention, the execution of node v may get delayed due to limited degree of

superscalarity such as issue width (Lines 15–23). If the pipeline stage has in-order execution,

then v cannot start execution before its peers (Lines 16–19). For an out-of-order pipeline

stage, if the the number of competing peers (captured by |Speer |) is greater than the degree

of superscalarity, then v may not be able start execution in the current clock cycle and it gets

delayed (Lines 22–23). Note that this is a conservative delay estimate due to limited issue

width. As we have already considered delay due to contention, node v is guaranteed to find

its corresponding functional unit free. It simply has to find an issue slot by competing with

the peers requesting the same or other functional unit types. Given issue width equal to p,

this delay is bounded by  |Speer |
p �.

The latest finish time of v is obtained by simply adding the maximum latency of the

functional unit to latest[t start
v ] (Line 24). This is because an instruction cannot get preempted

once it has started execution on a functional unit. The immediate successors of v get their

latest ready times updated if v’s latest finish time is higher than the current approximation

of their latest ready times (see Lines 25–26 of Algorithm 2). Note that we have initialized

latest ready time of all nodes to zero. In this way the LatestTimes algorithm estimates the

latest ready/start/finish times of each node in the execution graph of the basic block being

analyzed.

The EarliestTimes algorithm (see Algorithm 3) computes the earliest ready, start, and

finish times of all nodes in the execution graph. We only need to ensure that they are not

over-estimated to ensure correctness. Therefore, we conservatively set the earliest start time

to the earliest ready time.

5.2. Estimation for a basic block with context

In the last section, our technique for estimating the WCET of a basic block B is based on

the simplifying assumption that the execution of instructions outside B does not interact
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Fig. 4 An example prologue

with B’s execution and the initial pipeline state is empty. This is, however, an unrealistic

assumption. In this section, we extend our technique to consider the instructions preceding and

succeeding B.

The execution context of a basic block B is defined in terms of the instructions that

directly affect the timing of B’s execution. To model the execution time of a basic block B,

we need to consider (1) contentions and data dependencies among instructions prior to B
and instructions in B, and (2) contentions between instructions in B and instructions after

B2. The instructions before (after) a basic block B that directly affect the execution time of

B constitute the contexts of B and are called the prologue (epilogue) of B. For example,

assuming a 2-entry I-buffer and a 4-entry ROB3, at most (4 + 2) − 1 = 5 instructions can

be in the pipeline when B enters the pipeline. Similarly, due to the 4-entry ROB, at most

4 − 1 = 3 instructions after B can contend with instructions in B. Of course, a basic block B
may have multiple prologues and epilogues corresponding to the different paths along which

B can be entered or exited. To capture the effects of contexts, our analysis constructs execution

graphs corresponding to all possible combinations of prologues and epilogues. Each execution
graph consists of three parts: the prologue, the basic block itself (called the body) and the
epilogue.

Time intervals for prologue nodes Figure 4 shows a prologue with 5 instructions preceding

the body. We need to estimate the time intervals of the start/ready/finish of prologue nodes in

order to compute their effects on body nodes. As the execution context of the prologue itself

is not clear, we conservatively estimate the time intervals as follows. We set the ready time

of I F(I1) to 0 and then we derive the time intervals of the nodes in prologue with respect to

the ready time of I F(I1); here I1 is the first instruction in the basic block whose WCET is

being estimated. Algorithm 4 shows the computation of latest ready, start, and finish times

2 Here, we only consider contentions but not dependencies because data dependencies between instructions
in B and instructions after B cannot affect the execution time of B.
3 We use smaller buffers here for illustration purposes only. The default configuration used for experiments is
4-entry I-buffer and 8-entry ROB.

Springer



Real-Time Syst (2006) 34:195–227 211

Algorithm 4 Estimation of latest times of prologue nodes

of the nodes in the prologue. First, we observe that certain nodes in prologue (shaded in

Figure 4) have at least one path to the node I F(I1)4. Let u be a node in prologue with a path

to I F(I1). Thus the finish time of u must be before the ready time of I F(I1). Consider any

path π connecting u and I F(I1), and let nodes(π ) be the nodes in π appearing between u
and I F(I1). Clearly

latest[tfinish
u ] ≤ latest

[
t ready
I F(I1)

] −
∑

x∈nodes(π )

min latx (1)

where min latx is the minimum latency of node x . That is, the finish time of prologue node

u cannot be later than the right-hand-side expression in Inequality 1 even assuming an ideal

execution where each node along the path from u to v (a) becomes ready immediately at the

completion of execution of its predecessor, (b) starts execution as soon as it becomes ready

(i.e., there is no delay due to contention) and (c) executes as fast as possible by taking the

minimum latency. Clearly, Inequality 1 holds for all paths between u and I F(I1). Therefore,

for any prologue node u with a path to I F(I1) we can estimate the latest finish time of u as

latest
[
tfinish
u

] ≤ minπ∈paths(u,IF(I1))

(
latest

[
t ready
IF(I1)

] −
∑

x∈nodes(π )

min latx

)
(2)

where paths(u, I F(I1)) is the set of paths between u and I F(I1) in the execution graph

with prologue/epilogue. Since we compute the time intervals for prologue nodes relative to

ready time of I F(I1) we can set latest[tready
I F(I1)] = 0 in Inequality 2; this is shown on Line 3 of

Algorithm 4. In this way we compute the latest finish times of prologue nodes which have a

path to I F(I1). Given the latest finish times, it is straightforward to estimate the latest start

and ready times of these nodes (Line 4 of Algorithm 4).

Some prologue nodes do not have any path to I F(I1), but they are peers of some nodes

with paths to I F(I1). For example, in Figure 4 the node I F(I−2), which has no path to I F(I1),

is a peer of I F(I−1). For in-order pipeline stages, if a node u waits for the completion of a

node v, it also waits for the completion of any node in peers(v). By exploiting this implicit

constraint, latest times of nodes like I F(I−2), I D(I−2), I F(I−4) and I D(I−4) in Figure 4

4 All prologue nodes with a path to I F(I1) are shaded in Figure 4. In addition, some nodes without paths to
I F(I1) are also shaded; we discuss more on this later.
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are bounded by Lines 8–9 of Algorithm 4; thus, these nodes are also marked as shaded in

Figure 4.

For the rest of prologue nodes (unshaded nodes in Fig. 4), the latest time calculation

is similar to Algorithm 2. Now, how are we taking into account the timing effects of the

pre-prologue nodes on the prologue nodes? Suppose I−n is the instruction just preceding the

prologue. Then the latest finish time of C M(I−n) is bounded by the following equation.

latest
[
tfinish
CM(I−n )

] = − max
π∈paths(CM(I−n ), IF(I1))

∑
x∈nodes(π )

min latx

Clearly, for any pre-prologue predecessors or contenders, they must have completed execution

by latest[tfinish
C M(I−n )]. Therefore, although we do not know the impact of pre-prologue nodes,

we can safely use latest[tfinish
C M(I−n )] as a safe bound. This observation is used for the following

change—on Line 26 of Algorithm 2, the computed latest[t ready
w ] is further bounded with the

following equation.

latest
[
t ready
w

] = max
(
latest

[
t ready
w

]
, latest

[
tfinish
CM(I−n )

])
Earliest times of prologue nodes do not affect the WCET estimation significantly. There-

fore, we conservatively assume earliest ready, start, and finish times of the prologue nodes

as −∞.

Time intervals for epilogue nodes Time intervals for epilogue nodes are initialized and

iteratively tightened almost the same way as Algorithms 2, 3 with only one difference. Since

the E X nodes in epilogue may have late contenders beyond the epilogue, we conservatively

assume maximum late contentions for each of them when latest times are estimated.

Time intervals for body nodes Given the time intervals for prologue and epilogue nodes,

the timing estimation of body nodes (i.e., the nodes in the basic block we are analyzing)

still follows Algorithms 2 and 3. The only difference is that the dependencies and contention

from the prologue nodes and contentions from the epilogue nodes are taken into account in

the estimation process.

Overlapped execution For a basic block B with instruction I1, . . . , In , the execution time

estimate of B can be calculated as the time between the fetch of I1 to the commit of In ,

that is, tfinish
CM(In ) − t ready

IF(I1). However, this definition does not produce tight timing estimates. This

is because the execution of two or more successive basic blocks have some overlap due to

pipelined execution.

Definition 4. The overlap δ between a basic block B and its preceding basic block B ′ is the

period during which instructions from both the basic blocks are in the pipeline, that is

δ = tfinish
CM(I0) − t ready

IF(I1) (3)

where I0 is the last instruction of block B ′ and I1 is the first instruction of block B.
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We want to avoid duplicating the overlap in time estimates of successive basic blocks.

Therefore, we calculate the execution time estimate of a basic block with a given context as

follows.

Definition 5. For a basic block B with instructions I1, . . . , In , its execution time tB is the

interval from the time when the instruction immediate preceding B has finished commit to

the time when B’s last instruction has finished commit, that is

tB = tfinish
CM(In ) − tfinish

CM(I0) (4)

where I0 is the instruction immediately prior to B.

Note that the first basic block of the program does not have any preceding instructions.

As a special case, we calculate its execution time as the time between the fetch of its first

instruction and commit of its last instruction.

Now, we estimate the execution time for basic block B w.r.t. the time at which the first

instruction I1 of B is fetched, i.e., t ready
IF(I1) = 0. Thus

tB = tfinish
CM(In ) − δ

We can conservatively estimate tB by finding the largest value of tfinish
CM(In ) and the smallest

value of δ. The largest value of tfinish
CM(In ) is simply the quantity latest[tfinish

CM(In )], calculated by

our LatestTimes algorithm. The smallest value of the overlap δ is obtained as follows.

Minimum value of overlap δ Let u be the node among IF(I1)’s immediate predecessors

with the longest (maximum) finish time. Then,

t ready
IF(I1) = tfinish

u (5)

Let z be the CM node in the prologue to which every predecessor of IF(I1) has a path

(for scalar pipeline, z is CM(I0); for pipeline with degree of superscalarity equal to p, z is

CM(I1−p)), Clearly,

t ready
z ≥ tfinish

u +
(

max
π∈paths(u,z)

∑
x∈nodes(π )

min latx

)
(6)

This is because z can become ready only after its predecessors along the paths from u have

executed. Therefore,

tfinish
CM(I0) ≥ tfinish

z ≥ tfinish
u +

(
max

π∈paths(u,z)

∑
x∈nodes(π )

min latx

)
+ min latz (7)

From Equations (5) and (7), we get:

tfinish
CM(I0) − t ready

IF(I1) ≥ tfinish
z − t ready

IF(I1) ≥
(

max
π∈paths(u,z)

∑
x∈nodes(π )

min latx

)
+ min latz (8)
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By the definition of overlap, the above inequality can be re-written as

δ ≥
(

max
π∈paths(u,z)

∑
x∈nodes(π )

min latx

)
+ min latz

≥ min
u

u→IF(I1)

(
max

π∈paths(u,z)

∑
x∈nodes(π )

min latx

)
+ min latz (9)

In the above derivation of overlap δ, we use z instead of CM(I0) because for superscalar

pipelines, some predecessors of IF(I1) have no paths to CM(I0). Node z is a peer node of

CM(I0), and it often completes in the same cycle as CM(I0). Therefore, using z (instead of

CM(0)) in overlap estimation rarely introduces extra pessimism.

Putting it all together Note that the execution time estimate tB of a basic block B is

obtained for a specific prologue and a specific epilogue of B. A basic block B in general has

multiple choices of prologues and epilogues. So, we estimate B’s execution time under all

possible combinations of prologues and epilogues. The maximum of these estimates is used

as B’s WCET cB . Let P and E be the set of prologues and epilogues for B.

cB = max
p∈P, e∈E

(tB with prologue p and epilogue e)

cB is used in defining the WCET of the program as the following objective function.

maximize
∑
B∈B

NB ∗ cB

The quantity NB denotes the execution count of basic block B and is a variable. B is the

set of all basic blocks in the program. This objective function is maximized over the con-

straints on NB given by control flow equations, loop bounds and user-provided infeasible

flow information. This is done by using an Integer Linear Programming solver like CPLEX.

6. Integrating branch prediction and instruction cache

We have studied out-of-order pipelines for WCET analysis in Section 5. However, in current

generation of processors, pipelining is always coupled with other micro-architectural fea-

tures to reduce pipeline stalls (Hennessy and Patterson, 1996). In this section, we integrate

the timing effects of branch prediction and instruction cache into our out-of-order pipeline

modeling.

The modeling of branch prediction follows from our earlier work (Li et al., 2005). In

particular, (Li et al., 2005) presents an Integer Linear Programming (ILP) based modeling

where program path analysis as well as branch prediction are formulated as linear constraints;

an ILP solver is used to maximize the objective function denoting program’s execution time.

For instruction cache modeling, we use a categorization-based technique (Arnold et al.,

1994; Theiling et al., 2000) that independently classifies instruction accesses as cache hit,
or unknown. An important issue in our instruction cache analysis is the impact of specu-

lative execution (due to branch prediction) on instruction caching. To get safe estimates,

we let speculative execution update the instruction cache conditionally in our instruction
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cache analysis. If an instruction is brought into the instruction cache conditionally, it will be

classified as unknown.

The rest of this section will focus on integrating branch prediction and instruction cache

analyses into the pipeline analysis. First we describe how the WCET estimation of a basic

block is affected by branch prediction (Section 6.1), and instruction cache (Section 6.2).

Then, in Section 6.3, we describe the ILP formulation for WCET estimation of the whole

program in the presence of pipeline, cache and branch prediction.

6.1. Timing estimation of a basic block in the presence of branch prediction

Clearly, if a branch is predicted correctly, then our pipeline analysis does not require any

modification. However, a branch misprediction results in instructions along the wrong path

being executed in the pipeline (without commit) and flushed out after the branch is resolved.

This involves changes in the execution graph of a basic block. Before describing these

changes, we make the following assumptions.

Assumptions First, we assume that the processor allows only one unresolved branch at any

point of time during execution. Thus, if another branch is encountered during speculative

execution, the processor simply waits till the previous branch is resolved. Second, we assume

that the outcome of a branch is resolved at the end of its corresponding W B stage. If it

is a misprediction, the wrong path instructions are flushed out and the processor resumes

execution along the correct path immediately. Last, we assume that the branch prediction

takes place at the end of the fetch stage. That is, the target address is available at the end of

the fetch stage irrespective of whether a branch is predicted as taken or non-taken. In reality,

this is easy for a non-taken prediction; but for a taken prediction, extra resources, such as

branch target buffer, are needed to achieve this goal (Hennessy and Patterson, 1996).

6.1.1. Changes to execution graph

We now describe the changes to the execution graph of a basic block in order to account for

instructions executed due to branch misprediction; these instructions are referred to as wrong
path instructions. In particular, we discuss the changes to execution graph nodes, dependence

relation, contention relation and parallelism relation among nodes. Consider the execution

graph of a basic block B with a body, prologue and epilogue. If the last instruction of the

prologue is a branch b, we include instructions along the mispredicted path of b; otherwise

no change is made to the execution graph.

A fragment of an execution graph without misprediction is shown in Figure 5(a) and

the modified execution graph fragment due to the misprediction of branch b is shown in

Figure 5(b). In Figure 5(b), the shaded nodes are the wrong path nodes (only one instruction

I ′ is drawn for simplicity). There are no C M nodes for wrong path instructions as these

instructions are not allowed to commit.

Additional nodes in the execution graph A mispredicted branch brings the instructions

along the wrong path into the pipeline. In order to capture their effect on the execution of

normal instructions, we construct nodes corresponding to these wrong path instructions in

the execution graph. Consider a basic block B whose WCET is being estimated; thus the

instructions in B contribute to the body nodes of the execution graph. Let b be a conditional

branch instruction which is the last instruction of the prologue. Then, b is the last instruction

of a basic block B ′ s.t. B ′ → B is an edge in the program’s control flow graph. Let the
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Fig. 5 Execution graph with branch prediction

outcome of branch b which leads to flow of control from block B ′ to block B be called X
(non-taken or taken, denoted as 0 and 1, respectively). That is, if the prediction at branch b
is X , we do not need to change the execution graph. Now, given a conditional branch b and

its actual outcome X , we can identify the maximum sequence of wrong path instructions

that can enter the pipeline if the prediction is ¬X . We call this sequence as Spec(b, X ). The

length of this sequence is bounded by two factors.� |Spec(b, X )| < ROB size + I Buffer size where ROB size is the size of the re-order buffer

(ROB) and the I Buffer size is the size of the instruction fetch buffer (I-buffer).� If another conditional branch b′ is encountered along the wrong path, then the sequence

Spec(b, X ) is terminated at b′.

Changes to dependence relation Due to the changes in the execution graph nodes, the nodes

can now be categorized as (a) prologue nodes (b) wrong path nodes (c) body nodes (this is the

basic block being analyzed) and (d) epilogue nodes. The dependence edges among the nodes

in each category are drawn as usual. However, the dependence edges among nodes in different

categories require some explanation. First, we observe that the lifetimes of the wrong-path

nodes and body nodes are disjoint. We do not draw any dependence edges between wrong

path nodes and body nodes. Instead we add a dependence edge between W B(b) and I F(I1)

where b is the branch in the prologue whose misprediction we are considering, and I1 is the

first instruction in the basic block being analyzed. This reflects the fact that instructions in

the correct path (the body nodes) are fetched after the mispredicted branch is resolved. The

dependence edges between the prologue and body nodes are drawn as usual, that is, they are

not affected by the insertion of the wrong path nodes. This is because we do not make any

assumptions about when the mispredicted branch is resolved.

Changes to contention/parallelism relation Contention/parallelism among prologue, body

and epilogue nodes remain unchanged. We also consider contention/parallelism of prologue

and wrong path nodes in the estimation algorithm. Contention/parallelism of body and wrong
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path nodes are not considered since the body nodes and wrong path nodes are guaranteed to

have disjoint lifetimes.

6.1.2. Changes to estimation algorithm

As before, we use Algorithm 4 to estimate latest times of prologue nodes; earliest times of

prologue nodes are conservatively estimated to −∞. We still use Algorithms 2, 3 to estimate

the latest times and the earliest times of the body and epilogue nodes in the modified execution

graph. For the wrong path nodes, we use Algorithms 2, 3 to estimate the latest/earliest times

but with one important change. We observe that the wrong path nodes are flushed after branch

b is resolved (at the end of W B(b)). Therefore, the ready, start, and finish times of all the

wrong path nodes are additionally bounded by latest[tfinish
WB(b)].

6.1.3. Handling prediction of other branches

So far we have discussed how to handle a mispredicted branch at the end of the prologue (i.e.,

if the last instruction before the current basic block is a mispredicted branch). However, the

prologue and epilogue can contain multiple conditional branches if the basic blocks are too

small. One possibility is to consider both the scenarios (correct and misprediction) for these

conditional branches. However, this would require considering a large number of possibilities

and is clearly very inefficient.

We observe that only the last conditional branch in the prologue has significant impact on

the execution time of a basic block. Therefore, for this branch, we consider both the correct

prediction and the misprediction scenarios and compute the execution time of the basic block

accordingly. This leads to two possible WCET estimates of the basic block under the two

scenarios.

We avoid enumerating correct/wrong prediction of other branches in prologue/epilogue

(i.e., any branch in prologue/epilogue apart from the last branch of prologue) as follows.

Consider any such branch b in the prologue/epilogue. We modify the execution graph such

that correct as well wrong prediction of b is considered. This is done by defining the special

edge from the W B(b) to the I F stage of the first instruction along the correct path as a

conditional edge. This conditional edge is considered during the estimation of the latest

times; but it is ignored in the estimation of earliest times. Similarly, all the wrong path nodes

due to misprediction of b and their contentions are also considered to be “conditional”. These

are considered during latest times calculations but are ignored for earliest times calculations.

The intuition behind this approach is to take both possibilities of prediction (correct/wrong

prediction) into account so as to compute safe bounds.

6.2. Timing estimation of a basic block in the presence of instruction cache

So far we have assumed perfect instruction cache, that is, each instruction fetch takes a single

clock cycle. We now discuss how we can capture the effects of instruction cache misses.

6.2.1. Categorization-based instruction cache analysis

Given a cache configuration, a basic block Bi can be partitioned into a fixed number of

memory blocks, with instructions in each memory block being mapped to the same cache

block (cache accesses of instructions other than the first one in a memory block are always

cache hits). Let the memory blocks of Bi be denoted as Bi.1, Bi.2, . . . , Bi.ni , where ni is
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the number of memory blocks in Bi . We now examine what may happen to a memory

block Bi. j when it is visited in the context of a loop level lp. For n-way set-associative

cache, if lp contains less than n conflicting memory blocks of Bi. j , then the repeated visit to

Bi. j in lp will always be a cache hit; otherwise we classify it as “unknown”, which means

both hit and miss are possible. We define the following categorization function for this

purpose.

cache cat(Bi. j , lp) =
{

hit, #conflicting memory blocks in lp < associativity
unknown, otherwise

In a straightforward manner, we can take each loop level as the execution context, and

perform the categorization of a basic block accordingly. However, a basic block may have

identical categorizations in different loop levels, that is,

∀ j, cache cat(Bi. j , lp1) = cache cat(Bi. j , lp2)

In such cases, it is unnecessary to differentiate lp1 and lp2 as two contexts. Therefore, we

can have fewer execution contexts than loop levels for categorization. We call such execution

contexts as cache scenarios. All cache scenarios of Bi is denoted as �i , which is a subset

of the loop levels where Bi is contained. The number of times Bi is executed under a cache

scenario ω, denoted as Nω
Bi

, can be bounded in the following way. Recall that ω corresponds

to a loop level, whose execution count is given as flow constraints. For ω0, the cache scenario

corresponding to the outermost loop level, we have the constraint

Nω0

Bi
≤ Nω0

where Nω0
is the execution count of the loop level of ω0. For the rest of cache scenarios

except the innermost one, we have constraints

Nωk
Bi

≤ Nωk −
∑
l<k

Nωl
Bi

For the innermost cache scenario ωk , it is constrained by

Nωk
Bi

= NBi −
∑
l<k

Nωl
Bi

6.2.2. Changes to timing estimation

Now we study the changes to be made to the estimation of Bi under a particular cache

scenario ω. First, it is obvious that the instruction cache only affects the latency of the

instruction fetch (I F) stage, but does not affect data dependencies or contentions. Thus no

changes need to be made to the execution graph. Second, there is a slight change to the

estimation algorithm. Recall that when instruction cache was not modeled, the I F stage was

assigned a single-cycle latency. Now the latency of I F stage is determined by the cache

access result of an instruction under the particular cache scenario ω. If it is a hit, then we

assign a one-cycle latency; otherwise an interval [1, penalty] (where penalty is the cache

miss penalty) is assigned to capture the possibilities of either hit or miss.
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For the instructions in prologue and epilogue of Bi , we do not distinguish their cache

scenarios. In other words, for prologue/epilogue instructions which are the first ones in their

respective memory blocks, we conservatively assume their cache access results are unknown.

Thus, we assign the interval [1, penalty] to the I F stage for those instructions.

6.3. Putting it all together

Considering the possible cache scenarios and correct/wrong prediction of the preceding

branch for a basic block, the ILP objective function denoting a program’s WCET is now

written as follows.

Maximize T =
N∑

i=1

∑
j→i

∑
ω∈�i

t c,ω
j→i ∗ Ec,ω

j→i + tm,ω
j→i ∗ Em,ω

j→i (10)

where t c,ω
j→i is the WCET of Bi executed under the following context: (1) Bi is reached from

a preceding block B j , (2) the branch prediction at the end of B j is correct or B j does not

have a conditional branch, and (3) Bi is executed under a cache scenario ω ∈ �i . Recall

that �i is the set of all cache scenarios of block Bi . Also, Ec,ω
j→i is the number of times that

Bi is executed under this context. Similarly, tm,ω
j→i is the WCET of Bi executed under the

following context: (1) Bi is reached from a preceding block B j , (2) the branch at the end of

B j is mispredicted, and (3) Bi is executed under a cache scenario ω ∈ �i . Again, Em,ω
j→i is

the number of times that Bi is executed under this context.

Using our out-of-order pipeline analysis (Section 5) as well as the extensions proposed

in Section 6.1, 6.2 we can estimate the WCET of a basic block provided the correct/wrong

prediction of the preceding branch and the cache scenario is known. In other words, we can

estimate t c,ω
j→i and tm,ω

j→i as constants. We now need to develop constraints to bound the ILP

variables Ec,ω
j→i and Em,ω

j→i .

In our earlier work (Li et al., 2005), we have proposed an ILP-based branch prediction

modeling technique, which can bound the number of correct predictions and mispredictions.

Let Ec
j→i and Em

j→i be the number of correct predictions/mispredictions when control flow

is transferred from B j to Bi (in case block B j does not have a conditional branch, Em
j→i is

simply set to zero). In Li et al. (2005) we give a detailed ILP modeling to bound Ec
j→i and

Em
j→i , which we do not repeat here. The key idea is to bound the number of mispredictions

at Bi by considering a global branch prediction scheme and finding the possible predictor

states when control reaches at Bi .

Now we observe that Ec,ω
j→i and Em,ω

j→i are refined forms of Ec
j→i and Em

j→i where block

Bi ’s executions are further distinguished with cache scenarios at Bi . This leads to

Ec
j→i =

∑
ω∈�i

Ec,ω
j→i ; Em

j→i =
∑
ω∈�i

Em,ω
j→i (11)

With the above two sets of constraints, Ec,ω
j→i and Em,ω

j→i can be bounded.

Finally, the objective function in Equation 10 can be maximized by the ILP solver subject

to (1) the control flow constraints and information about program loop bounds, (2) modeling

of branch prediction (Li et al., 2005), (3) instruction cache modeling described in Section 6.2,

and (3) the constraints presented in this section.
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Table 1 The benchmark programs

Program Description Bytes #P #BB #BR #LP S

adpcm Adaptive pulse code modulation 7296 16 140 43 18 N

dhry Dhrystone benchmark 3144 16 98 34 8 Y

fdct Fast Discrete Cosine Transform 2800 1 10 3 3 Y

fft 1024-point Fast Fourier Transformation 2216 1 27 8 5 Y

fir FIR filter with Gaussian function 3824 7 69 13 8 N

ludcmp LU decomposition algorithm 4728 2 60 17 11 N

matsum Summation of two 100x100 matrices 232 1 5 2 2 Y

minver Inversion of a floating point matrix 6144 3 102 31 17 N

qurt Root computation of quadratic equations 1928 3 32 8 1 N

whet Whetstone benchmark 2520 4 36 18 8 Y

7. Experimental evaluation

In this section, we evaluate the accuracy of our estimation technique with ten benchmarks

(see Table 1). These programs have previously been used by other researchers for WCET

analysis. Among them, dhry, fdct, fft, matsum, and whet were used by Li et al. (1999);

the others are from the real-time research group at Seoul National University and the Real-

Time Research Center at Mälardalen University.

In Table 1, column “Bytes” gives the size of the object code for each benchmark program.

Here we do not count library code or other segments that are not included in our WCET anal-

ysis (data segments, stack, symbol table, etc). Column “#P” gives the number of procedures

in each benchmark. Column “#BB” gives the total number of basic blocks in each program.

Column “#BR” gives the number of conditional branches. Column “#LP” gives the number

of loops. Finally, column “S” indicates whether the program has a single execution path or

multiple execution paths.

For the single-path programs (dhry, fdct, fft, matsum, and whet) whose branch

conditions are not dependent on input data, if the execution latencies of the instructions

are fixed, we can precisely know their actual WCET by simulation. However, apart from

matsum, all the single path programs contain variable latency instructions. Therefore, we

cannot possibly use simulation to determine their WCET. Of course, for the multiple path

programs (adpcm, fir, ludcmp, minver, qurt) the WCET estimation needs to consider

variations in execution times due to multiple program paths as well variable latencies of

instructions in each path.

7.1. Methodology

We use the SimpleScalar architectural simulation toolset (Burger and Austin, 1997) for our

experiments. The SimpleScalar instruction set architecture (ISA) is a superset of MIPS ISA.

We use the compiler provided by SimpleScalar toolset to generate executables corresponding

to the benchmark programs. We wrote a prototype analyzer that accepts the SimpleScalar

executable annotated with user-provided constraints such as loop bounds. It is parameterized

with respect to the cache configurations, branch predictor configurations, degree of super-

scalarity, the latencies of the functional units as well as the number of entries in the I-buffer

and the ROB. The estimation tool first disassembles the code, constructs the control flow

graph of the program, estimates the WCETs for basic blocks, and finally generates the ILP

constraints and the objective function for the program’s WCET. The ILP formulation is solved
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by CPLEX (2002), a commercial ILP solver. The WCET obtained through this analysis is

the Estimated WCET. The source code of our WCET analyzer, called Chronos, is available

for download from http://www.comp.nus.edu.sg/∼rpembed/chronos/.

Finding the actual WCET is difficult even for programs with few paths in the presence of

out-of-order pipeline. This is because a program path with variable latency instructions can

have many possible execution schedules and the exact worst case can only be determined

by exhaustively evaluating the executions under all the schedules. In our experiments, we

simulate the program using several data inputs that are likely to lead to longer execution

times. We call the result obtained through simulation Observed WCET, which is guaranteed

to be less than the actual WCET. The WCET value produced by our analysis, Estimated
WCET, on the other hand is guaranteed to be more than the actual WCET. Thus

Estimated WCET ≥ Actual WCET ≥ Observed WCET

Ideally, we would like to compare the Estimated WCET with the actual WCET to find the

accuracy of our analysis. Since we do not know the actual WCET, we conservatively compare

the Estimated WCET with the Observed WCET to asses the accuracy of our WCET analysis.

If the Estimated WCET is close to the Observed WCET, clearly this means that the Estimated

WCET is close (or maybe even closer) to the actual WCET.

The processor configuration we have used is the following. We consider a two-issue su-

perscalar processor consisting of an in-order front-end (IF and ID stages), an out-of-order

execution core (EX and WB stages), and an in-order back-end (CM stage). The processor has

a 4-entry instruction fetch buffer and 8-entry re-order buffer or ROB. It contains the following

functional units: (a) two ALUs—each with single cycle latency, (b) a multiplication unit with

variable latencies of 1 ∼ 4 cycles, (c) a floating point unit with variable latencies 1 ∼ 12 cy-

cles, and (d) a load/store unit with a single cycle latency since we assume a perfect data cache.

The branch predictor is gshare (McFarling, 1993; Yeh and Patt, 1992). It has a 128-entry

branch history table (BHT). The three most recent branch history bits are XOR-ed with the

seven least significant bits of the branch address to index into the BHT. Note that branch

misprediction penalty is not specified here, as its effect has been accounted for in the

pipelined execution. The penalty is bounded but not necessarily a constant as it depends on

when the branch is resolved, i.e., the WB stage of the mispredicted branch is completed. We

use 1KB two-way set associative instruction cache with 16 sets and 32 bytes line size. Thus

matsum can be completely accommodated by the cache. The other programs have sizes

ranging from two to seven times of the cache size, thus they will suffer from conflict misses.

We assume that the cache miss penalty is 30 clock cycles. We conducted all our experiments

on a 3 GHz Pentium 4 processor with 2 GB main memory; the operating system running on

the PC was Fedora Core 3 (Linux Kernel 2.6.12).

7.2. Results

We first present experimental results for pure pipeline analysis, that is, we assume perfect

instruction cache and branch prediction. Under this configuration, we simply assume that each

instruction fetch takes one clock cycle and every conditional branch is correctly predicted,

that is, there is no pipeline stall caused by instruction cache miss or branch misprediction.

Table 2 presents the observed WCET (Obs. WCET) and the estimated WCET (Est. WCET), as

well as the ratio Est. WCET / Obs. WCET. The estimated WCET is not far from the observed

WCET for most benchmarks. There are mainly two reasons for the overestimation—(1) the

bounds on execution counts of basic blocks in the estimation are often higher than the actual
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Table 2 Accuracy and running time of our out-of-order pipeline analysis

Obs. WCET Est. WCET Analysis ILP Solving

Program (cycles) (cycles) Ratio Time (sec) Time (sec)

adpcm 117835 166846 1.42 1.92 0.01

dhry 65498 85244 1.30 1.19 0.01

fdct 2691 2882 1.07 0.05 0.01

fft 749465 845295 1.13 0.23 0.01

fir 37862 42383 1.12 0.51 0.01

ludcmp 7024 8564 1.22 0.22 0.01

matsum 60406 60512 1.00 0.04 0.01

minver 4280 5259 1.23 0.77 0.01

qurt 1377 1709 1.24 0.50 0.01

whet 755354 803872 1.06 0.70 0.01

Fig. 6 Overall and pipeline overestimations

execution counts during simulation (overestimation from program path analysis), and (2)

the WCET estimation algorithm for the basic blocks introduces some amount of pessimism

(overestimation from pipeline analysis).

To see how much overestimation is caused by our pipeline analysis, we use the execution

counts of basic blocks observed in simulation as user constraints for analysis. Figure 6

compares the overall overestimation to pipeline-only overestimation. Benchmarks with single

execution path are excluded from this figure as they suffer no overestimation from program

path analysis. The adpcm benchmark has relatively higher overestimation. In this benchmark,

the program path analysis contributes to a significant portion of the overestimation. For

the other benchmarks shown in Fig. 6, the WCET overestimation primarily comes from the

pipeline analysis. However this overestimation does not constitute a large percentage of the

observed WCET; so our estimated WCET is still close to the observed WCET as shown in

Table 2.

Now we present the experimental results with the instruction caching and branch predic-

tion enabled. These resuls are shown in Table 3. As can be seen from the ratio column, the

overestimation increases due to the additional pessimism from branch prediction and instruc-

tion cache modeling. We can also observe some increase in WCET analysis time and ILP

solving time, but the total estimation time (analysis + ILP solving) is less than 15 seconds

for all our benchmarks.
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Table 3 Accuracy and running time of our combined analysis for out-of-order
pipeline, branch prediction and instruction cache.

Obs. WCET Est. WCET Analysis ILP Solving

Program (cycles) (cycles) Ratio Time (sec) Time (sec)

adpcm 139346 227134 1.32 3.41 9.90

dhry 275177 436610 1.53 1.84 0.10

fdct 15006 16956 1.13 0.08 0.01

fft 944397 1146474 1.14 0.44 0.01

fir 77004 101333 1.26 0.79 0.31

ludcmp 17617 23818 1.28 0.43 0.12

matsum 62138 62734 1.01 0.07 0.01

minver 14221 21315 1.33 1.28 0.98

qurt 4114 6464 1.45 0.85 0.62

whet 760010 950818 1.14 1.24 0.01

Fig. 7 Variation of overestimations under different cache configurations

Scalability of analysis Finally, we perform experiments to check whether our analysis

scales up for different choices of the architectural parameters. In particular, we measure the

changes in analysis time/accuracy owing to variation of cache configurations and re-order

buffer (ROB) size. Figure 7 shows the variation of WCET overestimation under different

cache configurations. Three cache configurations were used in these experiments. The first

one is a 1KB cache (16 sets, 2-way, 32 bytes per cache line) with a cache miss penalty (CMP)

of 30 clock cyles; the second one differs from the first one with a more aggressive CMP

of 50 clock cycles; and the last one has a larger size of 4KB (32 sets, 4-way, 32 bytes per

cache line). Except for the qurt benchmark, the variation of WCET overestimation due to

variation in cache configuration is not significant.

At the core of an out-of-order processing pipeline is the re-order buffer or ROB. So, it is

worth studying whether variations in ROB size affect our analysis time/accuracy. We found

that the analysis accuracy is not significantly affected; so we do not report these results

here. The analysis time is however affected with variation in ROB size as can be seen from

Table 4. Three sizes of the ROB are used in these experiments—a default 8-entry ROB, a

16-entry ROB, and a 32-entry ROB. The results show that the ROB size has a significant

impact on analysis time. The main reason is that a larger ROB increases the size of each
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Table 4 Analysis time (in
seconds) under different ROB
sizes

Program 8-entry ROB 16-entry ROB 32-entry ROB

adpcm 3.41 86.98 136.09

dhry 1.84 41.44 156.10

fdct 0.08 0.24 1.63

fft 0.44 3.25 177.06

fir 0.79 4.52 81.59

ludcmp 0.43 1.75 18.02

matsum 0.07 0.33 11.93

minver 1.28 8.35 168.59

qurt 0.85 7.34 156.78

whet 1.24 61.97 137.43

prologue/epilogue and also leads to many more prologues/epilogues for each basic block

during pipeline analysis. The benchmark fdct is an exception—its analysis time increases

only slightly with a larger ROB. This is due to the large basic blocks infdct, which effectively

limits the number of prologues/epilogues.

8. Discussion

Timing anomaly complicates the Worst Case Execution Time (WCET) analysis of out-

of-order pipelined execution. It invalidates the assumption that a global worst-case can

be constructed by nicely composing local worst cases. On the other hand, an exhaustive

enumeration of all possible local cases can be quite inefficient. In this paper, we have modeled

an out-of-order superscalar processor pipeline for WCET analysis. The key idea behind our

approach is to avoid exhaustive enumeration of instruction schedules by bounding the time

intervals at which the events can occur in pipelined execution. We have combined our pipeline

modeling with instruction cache and branch prediction modeling for WCET analysis. We

have implemented our technique and experimentally validated its estimation accuracy

against several standard benchmark programs used by other WCET research groups.

Although the technique is proposed for out-of-order pipelines, it can also model many

other architectural features. We first list the additional features that have been modeled and

implemented in this paper.

Features that have been modeled Apart from out-of-order execution, we have modeled the

following. All our experiments include these features.� Supercalarity The Parallelism Relation introduced in this paper captures superscalar

architectures.� Multiplicity of resources Our processor contains two ALUs, and arithmetic instructions

(except multiply and divide) can be issued to any of them.� Resource capacity Some resources such as buffers and queues have limited capacity

and thus introduce dependencies between instructions in an earlier pipeline stage and other

instructions in a later stage. The examples include the fetch buffer and re-order buffer

(I F(Ii ) depends on I D(Ii−2) if we have a 2-entry fetch buffer), and these dependencies

have been captured in our execution graph.� Cache and branch prediction We have modeled branch prediction and instruction

caching as well as their interactions with the pipeline. Although each of the non-pipelined
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features needs custom modeling techniques, the integration with the pipeline modeling has

shown that the proposed technique for pipeline provides a good framework for incorporat-

ing other architectural features.

Features that can be modeled We give a list of miscellaneous features that can be modeled

by the proposed technique (with some straightforward extensions to the execution graph

or estimation algorithms). We have not implemented the modeling of these features in our

WCET analyzer.� Multiple pipeline paths An instruction may go though one of the several possible

pipeline paths before these paths merge prior to instruction commit. In this case we can

conduct analysis for each individual pipeline paths until the merge point, where we bound

the latest time at which the instruction can arrive at the merge point.� Other resource contentions This paper focuses on contentions of functional units. In

reality, contentions may arise in some other parts of the processor, for example, contentions

for write-back ports, buses, etc. These contentions can be handled similarly provided the

policy for resolving contentions is similar (i.e., break ties based on program order).

Finally, certain commercial processors may contain architectural features that do not fall into

any of the above categories. Whether our proposed technique can model those new features

with straightforward extensions is of course an open question.
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