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Abstract. We consider the problem of supertasking in Pfair-scheduled multiprocessor systems. In this
approach, a set of tasks, called component tasks, is assigned to a server task, called a supertask, which is
then scheduled as an ordinary Pfair task. Whenever a supertask is scheduled, its processor time is allocated
to its component tasks according to an internal scheduling algorithm. Hence, supertasking is an example of
hierarchal (or group-based) scheduling.

In this paper, we present a generalized framework for “reweighting” supertasks. The goal of reweighting is
to assign a fraction of a processor to a given supertask so that all timing requirements of its component tasks
are met. We consider the use of both fully preemptive and quantum-based scheduling within a supertask.
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1. Introduction

Multiprocessor real-time scheduling techniques fall into two general categories: parti-
tioning and global scheduling. In the partitioning approach, each processor schedules
tasks independently from a local ready queue. In contrast, all ready tasks are stored
in a single queue under global scheduling and interprocessor migration is allowed.
Presently, partitioning is the favored approach in real-time systems, largely because
well-understood uniprocessor scheduling algorithms can be used for per-processor
scheduling. Despite its popularity, the partitioning approach is inherently suboptimal
when scheduling periodic tasks. A well-known example of this is a two-processor sys-
tem that contains three synchronous periodic tasks, each with an execution cost of 2 and
a period of 3. Completing each job before the release of its successor is impossible in
such a system without migration.

One particularly promising global-scheduling approach is proportionate-fair (Pfair)
scheduling, first proposed by Baruah et al. (1996). Pfair scheduling is presently the
only known optimal method for scheduling recurrent real-time tasks in a multiprocessor
system. Under Pfair scheduling, each task is assigned a weight that specifies the fraction
of a single processor to which that task is entitled. Scheduling decisions are then made
so that each task receives approximately its designated share of processor time.

Unfortunately, Pfair scheduling poses many practical problems. First, migration is
unrestricted. Even if tasks do not need to execute on specific processors, unrestricted
migration can result in significant overhead (Moir and Ramamurthy, 1999). Second, task
suspensions can result in wasted processor time in the form of partially used quanta.

∗Work supported by NSF grants CCR 9732916, CCR 9972211, CCR 9988327, ITR 0082866, CCR 0204312,
and CCR 0309825. Preliminary versions of some content appeared previously in (Holman and Anderson,
2001, 2003).



126 HOLMAN AND ANDERSON

Minimizing such waste requires the use of shorter quanta, which increases scheduling
overhead and makes efficient synchronization more difficult (Holman, 2004). Finally,
Pfair scheduling is somewhat strict in that each task is required to make progress at
an approximately steady rate. As a result, the scheduler tends to evenly distribute each
task’s quanta over time, which is not desirable in cache-based systems.

One technique that has the potential to ameliorate these problems is the use of group-
based, or hierarchal, scheduling techniques (Holman, 2004; Holman and Anderson,
2001, 2002a, b, 2003; Moir and Ramamurthy, 1999). Under this approach, task groups
are scheduled instead of individual tasks; when a group is selected to execute, an in-
ternal scheduler is invoked to distribute the processor time among the group members.
Using the terminology of Moir and Ramamurthy (1999), a Pfair-scheduled group is
called a supertask, and a supertask member is called a component task. Supertasking
effectively relaxes the strictness of Pfair scheduling: the group is required to make
progress at a steady rate rather than individual tasks. Unfortunately, Moir and Rama-
murthy demonstrated that using an ideal weight assignment with a supertask cannot, in
general, guarantee the timeliness of its component tasks.

Contributions of this paper. In this paper, we extend the supertasking approach pro-
posed by Moir and Ramamurthy (1999). We present four primary contributions. First, we
show that scheduling within a supertask is analogous to scheduling on a dedicated unipro-
cessor. Second, we identify the root cause of the timing violations observed in (Moir and
Ramamurthy, 1999). Third, we present a flexible framework for selecting a supertask
weight that guarantees the timeliness of its component tasks. We demonstrate the util-
ity of this framework by considering two common scenarios. Finally, we compare and
contrast Pfair scheduling with supertasks to partitioning. As we later explain, the two
approaches are quite similar conceptually. Because of this, many benefits of partitioning
can also be obtained through the use of supertasks.

The remainder of the paper is organized as follows. We begin by summarizing relevant
background information in Section 2. Section 3 provides insight into supertasking and
its relationship to other approaches. In Section 4, a sufficient schedulability condition for
component tasks is derived. In Section 5, this last condition is used to derive a “reweight-
ing” condition, which is a sufficient schedulability condition in the form of a collection of
supertask weight restrictions. Section 6 focuses on selecting a “safe” supertask weight,
i.e., one that satisfies the reweighting condition and hence guarantees schedulability.
Section 7 then presents and proves basic properties of an algorithm for selecting safe
supertask weights. Section 8 presents the results of an experimental evaluation of su-
pertasking. We conclude in Section 9.

2. Background

In this section, we summarize background information that is related to the results
presented herein.

The problem. We consider the scheduling of a collection τ of component tasks within
the processor time allocated to the supertask that represents them. We let S denote both
the supertask and the set of component tasks. The supertask is assume to be scheduled
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Figure 1. Sample schedules for τ = {A, B, C} where A = PF( 1
4 ), B = PF( 1

4 ), and C = PF( 1
2 ). (a) Schedule

produced by a fluid scheduler. (b) Schedule produced by a Pfair lag-based scheduler.

as a Pfair task (explained below), while the scheduling of component tasks will vary
based on the scenario under consideration.

Pfair scheduling. Under Pfair scheduling, each task T is characterized by a weight T.w
in the range (0, 1]. Conceptually, T.w is the fraction of a single processor to which T is
entitled. We let T = PF(w) to denote a Pfair task with T.w = w.

Time is subdivided into a sequence of fixed-length slots. To simplify the presentation,
we use the slot length as the basic time unit, i.e., slot i corresponds to the time interval [i, i
+ 1). Within each slot, each processor may be allocated to at most one task. For instance,
in Figure 1(b), task B is scheduled in slot 3, which corresponds to the time interval [3, 4).
(The rest of this figure is considered in detail below.) Task migration is allowed. We let Q
denote the quantum size, i.e., the amount of processor time actually provided by each pro-
cessor within each slot. In a real system, some processor time is unavoidably consumed
in each slot by system activities, such as scheduling. We refer to such overhead as per-slot
overhead. When practical overheads are ignored, as is commonly done in the literature,
Q = 1.

Pfair scheduling tracks the allocation of processor time in a fluid schedule; deviation
is formally expressed as lag(T, t), which is defined below.

lag(T, t) = fluid(T, 0, t) − received(T, 0, t) (1)

In the above equation, received(T, t1, t2) denotes the amount of processor time received
by T over [t1, t2), while fluid(T, t1, t2) denotes the amount of processor time guaranteed
by fluid scheduling over this interval. As explained in (Holman, 2004), fluid(T, t1, t2) is
defined as shown below.1

fluid(T, t1, t2) = T .w · (t2 − t1) · Q (2)
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The above formula follows from the fact that each processor provides (t2 − t1) · Q units
of processor time to tasks over [t1, t2). Each task T is then entitled to a fraction T.w of
this quantity. (See (Holman, 2004) for a more detailed explanation of fluid scheduling.)
Using this notion of lag, the Pfairness timing constraint for a task T can be formally
defined as shown below.

for all t, |lag(T, t)| < Q (3)

Informally, T’s allocation must always be within one quantum of its fluid allocation.
Figure 1(a) shows ideal (i.e., Q = 1) fluid and Pfair uniprocessor schedules for a task

set containing three Pfair tasks: A = PF( 1
4 ), B = PF( 1

4 ), and C = PF( 1
2 ). In Figure 1(b),

changes in each task’s lag are shown across the top of the schedule.
Baruah et al. (1996) showed that a schedule satisfying (3) exists on M processors for

a set τ of Pfair tasks if and only if the following condition holds.

∑

T ∈τ

T .w ≤ M (4)

Subtasks and windows. The use of quantum-based scheduling effectively subdivides
each task into a sequence of quantum-length subtasks. Scheduling constraints, e.g.,
(3), have the effect of specifying a window of slots in which each subtask must be
scheduled. We let Ti denote the ith subtask of task T, and let ω(Ti) denote the window
of that subtask. Figure 2(a) shows the window within which each subtask of the task
PF( 3

10 ) must execute based on (3). For example, ω(T2) = [3, 7). ω(Ti) extends from Ti’s
pseudo-release,2 denoted r(Ti), to its pseudo-deadline, denoted d(Ti). In Figure 2(a),
r(T2) = 3 and d(T2) = 7. A schedule satisfies Pfairness if and only if each subtask Ti

executes in the interval [r(Ti), d(Ti)).

Pfair schedulers. Several Pfair algorithms have been proposed, including PF (Baruah
et al., 1996), PD (Baruah et al., 1995), PD2 (Anderson and Srinivasan, 2001), and EPDF
(Anderson and Srinivasan, 2000; Srinivasan and Anderson, 2003). Each of PF, PD, and
PD2 is optimal, i.e., its use will result in a Pfair schedule whenever (4) is satisfied. EPDF
has been shown to be optimal only for systems of at most two processors (Anderson
and Srinivasan, 2000). Despite this, EPDF offers some practical advantages over the
optimal algorithms, such as lower scheduling overhead.

In this paper, we consider only the guarantees provided by the scheduler and base our
work on properties that follow from these guarantees. There are two primary benefits
to abstracting the scheduler in this way. First, our results can be applied easily to
both the optimal and sub-optimal Pfair schedulers. As demonstrated by Anderson and
Srinivasan (2000), sub-optimal policies, such as EPDF, are capable of providing fairness
guarantees similar to, but weaker than, the Pfairness guarantee. Such relaxed fairness
poses an interesting trade-off since weaker guarantees are often offset by practical gains,
such as lower scheduling overhead. By enabling the use of our results under a variety of
schedulers, we lay the foundation for a quantitative evaluation of this trade-off. Second,
more scheduling policies will likely be proposed in the future. By developing a model
for Pfair-like schedulers, we provide some forward compatibility with future work and
try to avoid the need to revisit this issue each time a new scheduler is proposed.
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Figure 2. The first six windows of a task with weight 3
10 are shown up to time 20. (a) Windows defined by

Pfairness constraint. (b) Relaxed windows defined by β+ = β− = 1.5. (c) Extended windows defined by β+
= β− = 1.5, εr = 0, and εd = 1.

To characterize these guarantees, we use a four-parameter model, previously proposed
in (Holman and Anderson, 2003). First, we let β− (≥ 1) and β+ (≥ 1) denote (real-valued)
lower and upper lag scalers. These scalers are multiplied by −Q and Q, respectively, to
yield the actual lag bounds guaranteed by the scheduler, as shown below.

for all t, −Q · β− < lag(T, t) < Q · β+ (5)

To simplify the presentation, we let

β = β+ + β−. (6)

The constraint given by (5) generalizes (3), which corresponds to the β− = β+ = 1 case.
Relaxing lag bounds scales each subtask window. However, due to the use of quantum-

based scheduling, windows are clipped to slot boundaries, resulting in non-uniform
scaling. We refer to the windows defined by (5) as relaxed windows. Figure 2(b) shows
the first six relaxed windows for a task with weight 3

10 when β− = β+ = 1.5; Figure 2(a)
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shows the corresponding Pfair window layout. Note that ω(T2)’s release occurs two slots
earlier in Figure 2(b), while ω(T3)’s release occurs only one slot earlier.

The second parameter pair is εr and εd, which denote the number of slots by which
each pseudo-release and pseudo-deadline, respectively, is extended (beyond its lag-
based placement). More precisely, the scheduler treats a subtask with a relaxed window
spanning [tr, td) as having the window [tr − εr, td + εd). Figure 2(c) shows the window
layout obtained by β− = β+ = 1.5, εr = 0, and εd = 1. Note that each deadline
is extended by one slot, relative to Figure 2(b), due to εd. Such windows are called
extended windows. For example, T2 in Figure 2(c) has an extended deadline at time 10.
We let

ε = ετ + εd . (7)

Basic properties. We now state without proof the following properties of the global
scheduling. (The proofs are given in an Appendix.) These properties represent only the
guarantee provided by the scheduler; we make no assumptions about how this guarantee
is provided by the scheduler, beyond those already stated.

The theorem, shown below, provides formulas for determining the placement of
extended windows.

Theorem 1 The following formulas define the placement of extended windows:

r (Ti ) =
⌊

i − β+
T .w

⌋
− εr d(Ti ) =

⌈
(i − 1) + β−

T .w

⌉
+ εd .

The next lemma bounds the number of slots spanned by a sequence of n consecutive
windows, which we refer to as an n-span. For instance, the interval [3, 14) in Figure
2(a) is a 3-span since r(T2) = 3 and d(T4) = 14. In general, each n-span corresponds to
an interval [r(Ti+1), d(Ti+n)) for some integer i.

Lemma 1 Every sequence of consecutive subtasks Ti+1, . . . , Ti+n satisfies the follow-
ing:

⌈
n + β − 2

T .w

⌉
+ ε ≤ d(Ti+n) − r (Ti+1) ≤

⌈
n + β − 2

T .w

⌉
+ ε + 1.

Periodic and sporadic tasks. Each periodic (Liu and Layland, 1973) and sporadic
(Mok, 1983) task T is characterized by four parameters: an offset T.φ, a per-job execution
requirement T.e, a period T.p, and a relative deadline T.d. Each time the task is invoked,
a job is released that must complete within T.d time units. The first invocation occurs at
time T.φ. Under the periodic (respectively, sporadic) task model, the next invocation oc-
curs exactly (respectively, at least) T.p time units after the previous invocation. Each job
requires T.e units of processor time to complete. We let T = P(φ, e, p, d) (respectively, T =
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S(φ, e, p, d)) denote a periodic (respectively, sporadic) task T with T.φ =φ, T.e = e, T.p =
p, and T.d = d. We make the simplifying assumption that T.p = T.d for each task T. (Other
cases are considered in (Holman, 2004).) Under such an assumption, a task T is often
characterized by its utilization T.u, which is defined by T .e

T .p . Informally, a task’s utilization
is the fraction of a single processor’s time that will be consumed by that task in the limit.

3. Understanding supertasking

Supertasking is a natural extension of Pfair scheduling. Baruah et al. (1996) observed that
timeliness can be guaranteed by assigning a dedicated processor to each task. Under
such an approach, each processor’s speed could be scaled so that it exactly matches
the requirements of the assigned task. As a result, processor speeds would vary. Pfair
scheduling, by design, simulates such a system by time-sharing “virtual” processors
(i.e., the Pfair tasks) among a collection of M identical processors. Each Pfair task
effectively acts as a dedicated (virtual) processor for the associated task.

Virtual processors differ from dedicated processors in that the amount of processor
time available to the task set varies over time. Proper analysis requires that these
variations be bounded and predictable. Under Pfair scheduling, this variance is a function
of the assigned weight and the guaranteed lag bounds, as we later show. When a unit
weight is assigned, a virtual processor perfectly imitates a dedicated processor.

Related concepts. Using server tasks (i.e., virtual processors) to multiplex several ap-
plications onto a single platform is a relatively old idea. For instance, Tucker and Gupta
(1989) suggested using virtual processors to more seamlessly support workload changes
when multiplexing parallel applications onto a multiprocessor. In addition, thread pack-
ages, which are now commonly available, are a direct application of the virtual-processor
concept. For instance, Java programs are executed on a virtual processor referred to as
the Java virtual machine (or JVM) (Bollella, 2000).

Server tasks are a central concept in work on open systems. In open systems, inde-
pendently developed applications share one or more physical processors and must be
isolated from each other. By far, the most-investigated real-time approach is the use
of periodic and sporadic server tasks. Abeni and Buttazzo’s constant-bandwidth server
(CBS) approach (Abeni and Buttazzo, 1998) uses such server tasks to allocate processor
time to collections of one-shot jobs and non-real time applications without compromis-
ing real-time guarantees. In recent years, this work has even been extended to support
resource sharing across servers (Caccamo and Sha, 2001; Lamastra et al., 2001).

Shin and Lee (2003) proposed a similar approach that uses periodic server tasks to
schedule periodic workloads. The benefit of using the same task model for server and
client tasks is that the system can be arranged into a task hierarchy of arbitrary depth,
i.e., a server task can be the client of another server task. Unfortunately, some loss
inevitably results from the use of server tasks, as shown in (Shin and Lee, 2003). Since it
is unclear how using a multi-level hierarchy will improve upon using an equivalent two-
level hierarchy, it remains to be shown whether such composability is of any practical
interest.

Unfortunately, effective use of CBS and similar approaches on a non-partitioned
multiprocessor requires the ability to globally schedule periodic and sporadic tasks
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effectively. (Partitioning was mentioned earlier in Section 1.) Ironically, it was the
inability to produce an effective means for accomplishing this same goal that prompted
research into the Pfair approach. In addition, to the best of our knowledge, no analysis
allows for the use of CBS and similar approaches when tasks executing on remote
processors can potentially interfere with the execution of the servers. Hence, the scope of
these approaches is limited even on partitioned multiprocessors. Since Pfair scheduling
is not based on the periodic and sporadic task models, these approaches are not a viable
solution to the problem considered in this paper.

On the other hand, prior work on the resource partition model (Lipari and Bini, 2003;
Feng and Mok, 2002; Mok and Feng, 2001; Mok et al., 2001) is applicable here. Under
this model, a server task is characterized by two parameters: its guaranteed bandwidth
and its maximum execution delay. The advantage of such a server model is that it
divides the problem of group-based scheduling into two independent sub-problems.
First, the system scheduler must guarantee that the server is scheduled in a manner
that respects its parameters. Second, the server’s internal scheduler must schedule its
clients so that all client constraints are respected whenever the server is scheduled
correctly.

Unfortunately, this additional layer of abstraction also introduces the primary limi-
tation of this approach. Specifically, analysis under this model does not consider the
approach used to schedule the server tasks. Instead, the amount of processor time al-
located to server tasks is estimated based only on the model parameters assigned to
the server (e.g., guaranteed bandwidth and maximum delay) and on the assumption
that these parameters are always respected. Basing these estimates on the server model
instead of the actual scheduling parameters of the servers (e.g., the task weights) and the
scheduling approach in use (e.g., Pfair scheduling) almost certainly results in consistent
underestimation, and hence in more loss. Due to this limitation, we do not consider the
use of this model here.

Supertasking and partitioning. Supertasking extends the one-to-one relationship be-
tween virtual processors and tasks (considered in (Baruah et al., 1996)) into a one-
to-many relationship. In doing so, a new problem is introduced: how should tasks be
grouped? In practice, tasks may not always be implicitly grouped. In such cases, tasks
can be artificially grouped in order to reduce contention and overhead. Note that dividing
tasks among groups bears a strong resemblance to partitioning approaches.

The primary difference between supertasking and partitioning is that partitioning
binds tasks to physical processors, while supertasking binds tasks to virtual processors.
Under partitioning, exactly M processors are available, each with a fixed capacity.3

Neither of these values (i.e., the processor count and capacity) can be varied. On the
other hand, the number of supertasks is unrestricted and capacities (i.e., weights) can be
assigned after making task assignments. Hence, the assignment of tasks to supertasks
can be accomplished through an algorithm of the following form:

1. Assume initial parameter values (e.g., weights, blocking estimates, etc.) for all
tasks.

2. Create one empty supertask per task.
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3. Assign S.w = 1 to each supertask S.

4. Apply a heuristic to assign each task to some supertask.

5. Remove all empty (unused) supertasks.

6. Update parameter values of all tasks based on assignments.

7. Update supertask weights based on component-task parameters.

8. If any supertask weight exceeds unity, start over at Step 2.

Step 7 in the above algorithm is the primary difference between supertasking and par-
titioning. In this step, supertask capacities are reduced to better match the requirements
of the assigned component tasks. Such an action is clearly not possible when assigning
tasks directly to physical processors.

3.1. The Cost of Supertasking

In order to quantify the cost of using supertasks, it is necessary to first define an ideal
form to use as a baseline for comparison. In this paper, we consider the use of both
quantum-based and fully preemptive scheduling within supertasks. We define an ideal
form of supertasking for each of these alternatives below.

Quantum-based supertasking. Under quantum-based supertasking, we assume that
all component tasks are Pfair tasks. As observed by Moir and Ramamurthy (1999), a
quantum-based supertask would ideally be granted a weight equal to the cumulative
weight of its component tasks. Letting S.IQ denote this ideal weight results in the
definition given below.

S.IQ
def=

∑

T ∈S
T .w (8)

Hence, the overhead resulting from the use of a quantum-based supertask is given by
S.w − S.IQ . We refer to this overhead as inflation or reweighting overhead.

Fully preemptive supertasking. Under fully preemptive supertasking, we assume that
all tasks are either periodic or sporadic tasks. In this case, we must first consider the
relationship between weight and utilization, due to the fact that component tasks are not
characterized by weights. Over an interval of length L, a task with weight w is allocated
approximately w · L quanta, which results in a total allocation of (w · L) · Q. Hence, the
utilization of the task over the interval is given by (w·L)·Q

L , which simplifies to w · Q. It
follows that a utilization of u is achieved by a weight of u

Q .
We now use this relationship to define the ideal weight. Ideally, a supertask would be

assigned the smallest weight necessary to ensure the total utilization of its component
tasks. This utilization is given by
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S.u
def=

∑

T ∈S
T .u.

Using the relationship between weight and utilization, the ideal weight, denoted S.IP ,
is defined as shown below.

S.IP
def= S.u

Q
(9)

Hence, the overhead produced by a fully preemptive supertask is given by S.w − S.IP .

3.2. Understanding Failures

To see why supertasking (as proposed by Moir and Ramamurthy (1999)) can fail,
consider the two-processor Pfair schedule shown in Figure 3. The task set consists of
four Pfair tasks (V = PF( 1

2 ), W = PF( 1
3 ), X = PF( 1

3 ), Y = PF( 2
9 )) and one supertask

S that represents the two component tasks T = PF( 1
5 ) and U = PF( 1

45 ) (shown in the
lower region). Pfair global scheduling is assumed. In Figure 3(a), S competes with its
ideal weight, i.e., S.w = S.IQ = 1

5 + 1
45 = 2

9 . All scheduling decisions in the upper
(respectively, lower) region are consistent with the PD2 (respectively, EPDF) policy.
(Under EPDF, subtasks with earlier pseudo-deadlines are given higher priority.)

As the schedule shows, T misses a pseudo-deadline at time 10. This is because no
quantum is allocated to S in the interval [5,10). In general, component tasks may violate
their timing constraints whenever there exists an interval [t1, t2) over which the total
processor time required by the component tasks, denoted demand(S, t1, t2), exceeds
the minimum amount of processor time guaranteed to the supertask, denoted supply (S,
t1, t2). Observe that [5, 10) is such an interval since demand(S, 5, 10) = Q due to T2,
while supply(S, 5, 10) = 0. To ensure the timeliness of component tasks, it is sufficient
(though not necessary in most cases) to guarantee that supply(S, t1, r2) ≥ demand(S, t1,
t2) over all intervals in which a violation could potentially occur. Selecting a supertask
weight that provides such a guarantee, called reweighting, is the focus of this paper.

Figure 3(b) illustrates how reweighting can ensure timeliness. In this schedule, S.w

has been increased to 2
5 , resulting in an inflation of 2

5 − 2
9 = 8

45 . As shown, no component
task violates its timing constraints. However, an unfortunate side effect of reweighting
is that a supertask will inevitably be allocated more processor time than its component
tasks can utilize; quanta marked with an “X” are allocated to the supertask but cannot be
used.

3.3. Example Scenarios

One advantage of the reweighting methodology presented here is the ease with which it
can be adapted to new scheduling scenarios. Unfortunately, since each scenario typically
requires unique reasoning, it is not possible to derive formulas that can be universally
applied in all scenarios. To facilitate the presentation, we have tried to use variable and
function definitions to isolate scenario-specific details from the parts of the methodology
that are common to all scenarios.
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Figure 3. Two-processor schedule with: (a) normal and (b) reweighted supertask S.

However, explaining the methodology without providing any concrete examples to
illustrate each step can also be confusing. As a compromise, we have chosen two
example scenarios that will be used to illustrate the application of our methodology
(i.e., we demonstrate the derivation of the scenario-specific details for each of these
scenarios). These examples have been selected to highlight common problems and to
provide a reasonable coverage of the issues involved when reweighting. (Additional
examples can be found in (Holman, 2004).) Specifically, we consider the following
scenarios:

Scenario 1: Quantum-based EPDF scheduling (QB-EPDF)

Component tasks are Pfair tasks, and are scheduled by a quantum-based supertask.
Subtasks are prioritized by the EPDF policy. The global scheduler is assumed to
respect Pfairness, i.e., β− = β+ = 1 and εr = εd = 0.

Scenario 2: EDF scheduling with nonpreemptable code segments (FP-EDF-NP)

Component tasks are periodic and sporadic tasks that never suspend, but may execute
non-preemptably (with respect to other component tasks).4 Tasks are scheduled
by a fully preemptive EDF policy within the supertask, i.e., tasks with earlier
job deadlines are given higher priority. For this scenario, we let U.v denote an
upper bound on the execution requirement of any nonpreemptable code segment
of task U. This scenario is a generalization of fully nonpreemptive scheduling
(within the supertask), which can be achieved by letting U.v = U.e for all U ∈ S.
Similarly, fully preemptive scheduling without non-preemptable code segments
can be achieved by letting U.v = 0 for all U ∈ S.
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Figure 4. Sample DBA schedule consisting of four synchronous periodic tasks: T1 = P(0, 1, 3, 3), T2 =
P(0, 1, 4, 4), T3 = P(0, 2, 6, 6), and T4 = P(0, 3, 19, 19). The task set is scheduled using a fully preemptive
EDF policy and experiences its first violation at time 24, as shown.

4. Deriving a Schedulability Condition

We next derive a sufficient schedulability condition for a set of component tasks. To
accomplish this, we present a framework for analysis based on uniprocessor demand-
based analysis (DBA). When discussing DBA, we use the term request to refer to any
request for processor time issued by a task (i.e., either a job or a subtask depending on
the scenario).

DBA on a dedicated uniprocessor. We begin by illustrating the ideas underlying DBA
with an example. Figure 4 shows a schedule in which four independent, synchronous
(i.e., T.φ = 0) periodic tasks are scheduled on a dedicated uniprocessor using a fully
preemptive EDF policy. As shown, a timing violation (i.e., deadline miss) occurs at time
24.

The goal of DBA is to characterize the state of the system leading up to a violation. Let
R denote the request (job) that experiences the violation. (We will refer to R repeatedly
throughout the section.) R is the sixth job of T2 in Figure 4. Let td and tr denote the times
at which the violation occurs and at which R was released, respectively. In Figure 4, td
= R.d = 24 and tr = R.a = 20.

Now, consider the state of the system over [tr, td). First, due to the existence of R and
the EDF-based prioritization of tasks, no idling occurred within [tr, td) and every job
that executed in the interval had a deadline at or before td. Hence, Property BP, shown
below, held throughout [tr, td).

Busy period (BP). A ready or executing job exists that has priority at least that of R.
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Unfortunately, characterizing the state of the system at tr is difficult. Under DBA, this
problem is addressed by simply moving the start of the interval under observation to
an earlier point at which the state is known. Specifically, let tP denote the earliest time
within the interval [0, tr] for which a given property P holds throughout [tP, tr).5 In the
DBA example, Property BP is P. It is often necessary to modify P to account for events
that may occur at runtime, such as task suspensions. Indeed, we necessarily consider
a different choice of P below to account for the scheduling of the supertask. Since tP
= tr trivially satisfies the requirement when no other points do, some valid choice of
tP always exists. In Figure 4, tP = 0. Based on the selection criteria for tP, [tP, td) also
satisfies the properties stated above for [tr, td). In addition, the fact that Property BP does
not hold immediately prior to tP implies that all jobs executing in [tP, td) are released at
or after time tP.

It follows from the above observations that all processor time in [tP, td) is consumed by
jobs with releases at or after tP and with deadlines at or before td. The total processor time
required to complete all such jobs is called demand and is denoted demand(τ , tP, td). The
available processor time in [tP, td) is then called supply and is denoted supply(τ , tP, td). On
a dedicated uniprocessor, supply is simply determined by the interval length, i.e., supply
(τ , tP, td) = td − tP. The fact that a deadline miss occurs implies the following relationship
(and a necessary condition for a deadline miss).

demand(τ, tP , td ) > supply(τ, tP , td )

In Figure 4, demand(τ , tP, td) = 25 and supply(τ , tP, td) = 24.

Formalizing the condition. The goal of DBA is to derive a necessary condition for a
timing violation to occur, i.e., to find a condition C that satisfies

a violation occurs ⇒ C.

Restating the relationship between supply and demand more formally produces the
following definition for C:

C
def= (∃tP , td : td−tP ≥ min{T.p | T ∈ τ } : demand(τ, tP , td ) > supply(τ, tP , td )).

The constraint td − tP ≥ min{T.p | T ∈ τ} follows from the fact that [tP, td), defined
above, always contains [tr, td). (The inequality td − tr ≥ min {T.p | T ∈ τ} follows from
the fact that td − tr = R.d and each task’s relative deadline equals its period.) Taking
the contrapositive of a violation occurs ⇒ C produces the sufficient schedulability
condition

¬C ⇒ no violation occurs.

Hence, no deadline misses can occur if the following condition is satisfied:

(∀tP , td : td − tP ≥ min{T.p | T ∈ τ } : demand(τ, tP , td ) ≤ supply(τ, tP , td )).

(10)
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Generalizing DBA for supertasking. Applying DBA to supertasks follows the same
steps given above. However, several modifications are necessary. First, Property BP
cannot be applied effectively because it does not account for the scheduling of the
supertask. For the example scenarios considered here, we consider Property SBP, shown
below.

Supertask busy period (SBP). Whenever S is scheduled, an eligible or executing
request of a component task exists that has priority at least that of R.

Note that the only significant difference between Property SBP and Property BP is
that attention is restricted to times at which S is executing. To the best of our knowledge,
all properties proposed for DBA on a dedicated uniprocessor can be similarly adapted to
supertasking with relative ease. Second, since component tasks can only execute when
S is scheduled, it follows that supply(S, tP, td) = received(S, tP, td).

Bounding demand. The most difficult part of DBA is deriving bounds on the demand
generated by the tasks. In the DBA example given in Figure 4, all demand was mandatory
in the sense that the jobs contributing to the demand existed only within the interval
[tP, td). Hence, successful scheduling required that all such jobs, called mandatory
jobs, be executed within [tP, td). For instance, no combination of scheduling policy and
synchronization protocols can successfully schedule the task set without executing the
third job T3 within [0, 24).

Real task systems are typically more complex, which results in additional demand
being introduced into each interval. We refer to such demand as circumstantial demand.
Circumstantial demand is generated by dependencies between requests (e.g., precedence
constraints, resource sharing, etc.) and the use of suboptimal policies (e.g., using rate-
monotomic (RM) scheduling6 on a uniprocessor, allowing non-preemptable execution,
etc.).

The circumstantial demand stemming from the latter source is the result of how policy
choices can impact the difficulty of scheduling. For instance, if a fully preemptive RM
policy is used on a dedicated uniprocessor, then a job J with a later deadline than R may
be prioritized over R. Hence, the choice of scheduling policy imposes the unnecessary
constraint that J be executed before R (if both requests are pending). When the goal of
scheduling is to meet deadlines, such a constraint is illogical. Indeed, this policy choice
actually makes scheduling more difficult due to the fact that more processor time is
needed to guarantee that R’s deadline is met (as compared to that required when an
optimal prioritization is used). Since it is not necessary to schedule J in [tP, td), the
demand contributed by J is circumstantial demand. Similarly, a job J can contribute to
the circumstantial demand by holding a lock that is needed by a mandatory job or by
initiating a non-preemptive code segment immediately prior to tP.

To distinguish between these two forms of demand, we decompose demand(S, tP, td)
into mandatory demand, denoted demandM(S, tP, td), and circumstantial demand, de-
noted demandC(S, tP, td). Hence, demand(S, tP, td) = demandM(S, tP, td) + demandC(S,
tP, td). Since the QB-EPDF scenario schedules subtasks in deadline order and considers
only independent tasks, demandC(S, tP, td) = 0 under this scenario. However, circum-
stantial demand does arise under the FP-EDF-NP scenario due to non-preemptable
execution.
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Schedulability condition. We now state the schedulability condition that will be used
to drive the reweighting process, which is discussed later in Section 5. The condition,
which generalizes (10), is shown below.

(∀t, L : L ≥ L0 : demandM (S, t, t + L)

+demandC (S, t, t + L) ≤ supply(S, t, t + L)). (11)

(11) is derived from (10) by replacing tP and td with t and t + L, respectively. (The
purpose of this substitution is to make the interval length, L, an explicit parameter.) L0 is
used to denote the shortest interval over which a request can be released and experience
a violation. As explained above, [t, t + L) must always contain these two points. All
terms in (11) are scenario-specific. In the subsections that follow, we derive bounds for
these terms for each of the example scenarios.

4.1. Defining L0

Deriving L0 is straightforward as it depends only on the shortest interval that can contain
a release and the associated violation.

Scenario 1 (QB-EPDF). This scenario focuses on subtasks with Pfair windows. Hence,
by the n = 1 case of Lemma 1, L0 can be defined as shown below.

L0 = min

{⌈
1

U.w

⌉ ∣∣∣∣ U ∈ S
}

(12)

Scenario 2 (FP-EDF-NP). Under this scenario, each request is a job. Since periods
are assumed to equal deadlines, L0 is defined as shown below.

L0 = min{U.p | U ∈ S}. (13)

4.2. Defining supply(S, t, t + L)

We now derive a bound on the minimum amount of processor time guaranteed to a
task over any interval of length L. Since a supertask behaves like any other Pfair task,
supply(S, t , t + L) can be defined using such a bound. The following theorems bound
the amount of processor time guaranteed over intervals [0, t) and [t, t + L), respectively,
that align to slot boundaries at both ends. These theorems are stated without proof. (The
proofs can be found in an Appendix.)

Theorem 2 The amount of processor time received by a task T over the interval [0, t),
where t is an integer, under scheduling characterized by β−, β+, εr, and εd, is bounded
as shown below.

(	T .w · (t − εd ) − β+
+1)·Q ≤ received(T, 0, t) ≤ (�T .w · (t + εr ) + β−�−1)·Q
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Theorem 3 The amount of processor time received by a task T over the interval [t, t
+ L), where t and L are integers, under scheduling characterized by β−, β+, εr, and εd,
is bounded as shown below.

(	T .w · (L − ε) − β
+1)·Q ≤ received(T, t, t+L) ≤ (�T .w · (L + ε) + β�−1)·Q

Using the above results, we now bound supply(T, t, t + L) in the pair of corollaries
given below. Each corollary corresponds to a case that can arise under supertasking.
Specifically, the interval under inspection can align to slot boundaries on both ends
(Corollary 1), on only one end (not considered here), or on neither end (Corollary
2). (See (Holman, 2004) for a discussion of the omitted case.) Due to quantum-based
scheduling, Corollary 1 applies to the QB-EPDF scenario. However, since job releases
and deadlines may lie off slot boundaries, Corollary 2 must be used for the FP-EDF-NP
scenario.

Corollary 1 The supply of a supertask S that does not delay any subtask releases over
the interval [t, t + L), where t and L are integers, while executing under scheduling
characterized by β−, β+, εr, and εd, satisfies

supply(S, t, t + L) ≥ (	S.w · (L − ε) − β
 + 1) · Q.

Proof: Since supply(S, t , t + L) = received(S, t , t + L), the corollary follows trivially
from Theorem 3. �

Corollary 2 The supply of a supertask S that does not delay any subtask releases over
any interval [t, t + L), while executing under scheduling characterized by β−, β+, εr,
and εd, satisfies

supply(S, t, t + L) ≥ (	S.w · (	L
 − 1 − ε) − β
 + 1) · Q.

Proof: The subinterval [�t�, 	t + L
) always has length at least 	L
 − 1 and aligns to
slot boundaries on both ends. Hence, the corollary follows from Theorem 3. �

Corollary 2 reflects a straightforward estimate of the supertask supply. Specifically,
when either of t or t + L lies off of a slot boundary, this estimate pessimistically
assumes that the supertask is not scheduled within those partially overlapped slots. This
assumption is implied by the proof, which only considers processor time allocated in
the subinterval [�t�, 	t + L
). We consider this estimate because it makes for a simpler
example. (Recall that these scenarios are presented only to provide examples of using
our framework.) This pessimism can be avoided through the use of a more complex
analysis that also takes into account the amount of processor time allocated over the
subintervals [	t
, 	t + L
) and [�t�, �t + L�).
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4.3. Defining demandM(S, t, t + L)

In this subsection, we derive bounds on the mandatory demand of a component task
set. Indeed, the bounds that we derive apply to any task set. For this reason, the results
derived below do not refer specifically to component tasks, but rather to an arbitrary set
of tasks.

One advantage to separating demand into its mandatory and circumstantial compo-
nents is that bounds on mandatory demand depend only on the timing constraint (e.g.,
job deadline, subtask deadlines, etc.) used. Hence, bounds are universal across schedul-
ing policies. Our example scenarios require consideration of two cases: subtask demand
(QB-EPDF) and job demand (FP-EDF-NP). These cases are addressed by Corollaries 3
and 4, respectively, which are given below.

Scenario 1 (QB-EPDF). Subtask demand is bounded by the following theorem and
corollary.

Theorem 4 When scheduling subtasks of tasks described by the Pfair task model, the
mandatory demand generated by a task T, over the interval [t, t + L), where t and L are
integers, is upper-bounded by

demandM (T, t, t + L) ≤ 	T .w · L
 · Q.

Proof: The mandatory demand of T over [t, t + L) can be computed as the difference
between T’s minimum allocation at t + L less its maximum allocation at t. Applying
Theorem 2 with β+ = β− = 1 and εr = εd = 0 produces the following formula:

demandM (T, t, t + L) = (	T .w · (t + L)
 − �T .w · t�) · Q.

Rewriting the first term yields the following formula

demandM (T, t, t + L) = (	T .w · t + T .w · L
 − �T .w · t�) · Q.

Since 	a + b
 ≤ �a� + 	b
, it follows that

demandM (T, t, t + L) ≤ (	T .w · L
 + �T .w · t� − �T .w · t�) · Q.

Simplifying this bound establishes the theorem. �

Corollary 3 When scheduling subtasks of tasks described by the Pfair task model and
its variants, the following formula gives a series of progressively looser upper bounds
on the total mandatory demand generated by the component task set of the supertask S
over the interval [t, t + L), where t and L are integers.

demandM (S, t, t + L) =
∑

T ∈S
demandM (T, t, t + L)

≤ Q.
∑

T ∈S
	T .w · L
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≤ Q.

⌊
∑

T ∈S
(T .w · L)

⌋

≤ Q.
∑

T ∈S
(T .w · L)

Proof: The first inequality follows trivially fromTheorem 4. The second and third
inequalities follow from the properties 	a
 + 	b
 ≤ 	a + b
 and 	a
 ≤ a, respectively.�

Scenario 2 (FP-EDF-NP). Finally, the next theorem and corollary bound the manda-
tory demand produced by jobs.

Theorem 5 When scheduling jobs of a periodic or sporadic task, the mandatory
demand generated by a task T over the interval [t, t + L) is upper-bounded by

demandM (T, t, t + L) ≤
⌊

L

T .p

⌋
· T .e.

Proof: At most 	 L
T .p 
 jobs are enclosed in an interval of length L. The bound given

in the theorem follows trivially from the fact that each job requires at most T.e units of
processor time. �

Corollary 4 When scheduling jobs of a periodic or sporadic task, the following
formula gives a series of progressively looser upper bounds on the total mandatory
demand generated by the component task set of the supertask S over the interval [t, t +
L).

demandM (S, t, t + L) =
∑

T ∈S
demandM (T, t, t + L)

≤
∑

T ∈S

(⌊
L

T .p

⌋
· T .e

)

≤
∑

T ∈S
(T .u · L)

Proof: The first inequality follows from Theorem 5. The second follows from 	a

≤ a. �

4.4. Defining demandC (S, t, t + L)

Unfortunately, bounding circumstantial demand requires unique reasoning for each
scenario. (Indeed, this is why we use the term “circumstantial.”) We now bound this
demand for each of the example scenarios. All analysis presented in this section assumes
the use of Property SBP, given earlier. As before, let [t, t + L) denote the interval under
consideration.
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Scenario 1 (QB-EPDF). This step is trivial due to the fact that all tasks are independent
and never suspend. Because requests are processed in deadline order, the mandatory
demand is always serviced before all other requests. Hence, no circumstantial demand
exists.

Scenario 2 (FP-EDF-NP). Under the FP-EDF-NP scenario, a job of some task U with
priority lower than the job experiencing the violation (i.e., R) can begin nonpreemptable
execution immediately before t and, consequently, avoid preemption at t. By Property
SBP, such a job, if one indeed exists, does not need to complete until after t + L. Since
this job must have been released and executed prior to t to initiate its nonpreemptable
execution, it follows that U.p > L holds. Furthermore, at most one such job can execute
within [t, t + L) since two component tasks cannot be executing nonpreemptably at the
same time. Hence, circumstantial demand under Scenario 2 is upper bounded as shown
below.

demandC (S, t, t + L) ≤ max{U.v | U ∈ S ∧ U.p > L} (14)

Observe that demandC(S, t, t + L) = 0 for all L ≥ max{U.p | U ∈ S}. Indeed,
circumstantial-demand terms often go to zero as L increases. We refer to such terms as
transient demand.

4.5. Summary

The table shown below summarizes which of the results presented in the previous
subsections define the component parts of (11) under each scenario.

Scenario L0 supply demandM demandC

1 (12) Corollary 1 Corollary 3 N/A

2 (13) Corollary 2 Corollary 4 (14)

5. Deriving a Reweighting Condition

In this section, we use the schedulability condition derived in the Section 4 to derive a
reweighting condition. A reweighting condition consists of a set of weight restrictions
(i.e., lower bounds on the supertask’s weight) such that satisfying all restrictions ensures
the timeliness of component tasks. A reweighting condition takes the following abstract
form:

S.w ≥ max{�(S, L) | L ∈ L}. (15)

Condition (15) consists of two elements: the reweighting function �(S, L) and the
testing set L. �(S, L) is the minimum weight needed to ensure that no timing violation
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occurs over any interval of length L, i.e., �(S, L) is the weight restriction imposed by
all intervals of length L. Let S.wopt denote the smallest weight satisfying (15), as shown
below.

S.wopt
def= max{�(S, L) | L ∈ L} (16)

As in the previous section, we consider the derivation of each element in a separate
subsection. Specifically, the three subsections of this section address the following
issues:

1. deriving �(S, L);

2. defining L;

3. efficient generation of L values from L.

5.1. Deriving �(S, L)

We begin by deriving the reweighting formula.

Scenario 1 (QB-EPDF). Filling in the terms of the inequality in (11) using Corollary 1
and the tightest bound provided by Corollary 3 yields the inequality shown below (after
canceling the common Q term on both sides).

∑

T ∈S

	T .w · L
 ≤ 	S.w · (L − ε) − β
 + 1

By the property 	x
 ≤ 	y
 ⇔ 	x
 ≤ y, the above inequality is equivalent to
∑

T ∈S
	T .w · L
 ≤ S.w · (L − ε) − β + 1.

Rearranging to isolate S.w yields the following weight restriction (and definition of
�(S, L)).

S.w ≥
∑

T ∈S 	T .w · L
 + β − 1

L − ε

def= �(S, L), (17)

where L0 is required to satisfy

L0 > ε. (18)

Constraint (18) ensures that L − ε > 0 for all L ≥ L0. When this constraint does not
hold, it is not possible to reweight the supertask using the technique presented here. By
(12), the constraint given in (18) can also be stated as shown below.

min

{⌈
1

U.w

⌉∣∣∣∣U ∈ S
}

> ε (19)
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Since periods are expected to be much larger than the slot size and ε is expected to be
small, (19) should seldom, if ever, not hold.

Scenario 2 (FP-EDF-NP). Again, filling in the terms of (11) using Corollary 2, (14),
and the tightest bound provided by Corollary 4 yields the inequality shown below.

∑

T ∈S

(⌊
L

T .p

⌋
· T .e

)
+ vL ≤ (	S.w · (	L
 − 1 − ε) − β
 + 1) · Q

where

vL
def= max{U.v | U ∈ S ∧ U.p > L}. (20)

Rewriting this inequality yields the equivalent form shown below.

∑

T ∈S

(⌊
L

T .p

⌋
· T .e

Q

)
+ vL

Q
− 1 ≤ 	S.w · (	L
 − 1 − ε) − β


This condition is satisfied if
⌈

∑

T ∈S

(⌊
L

T .p

⌋
· T .e

Q

)
+ vL

Q

⌉
− 1 ≤ S.w · (	L
 − 1 − ε) − β

is satisfied. Notice that this latter condition is slightly stronger. Rewriting this inequality
to isolate S.w produces the following weight restriction (and definition of �(S, L)):

S.w ≥
⌈∑

T ∈S
(⌊

L
T .p

⌋ · T .e
Q

) + υL
Q

⌉ + β − 1
⌊

L
⌋ − 1 − ε

def= �(S, L) , (21)

which requires

L0 ≥ ε + 2. (22)

Again, the above restriction ensures that 	L
 − 1 − ε > 0 for all L ≥ L0. By (13), this
constraint is equivalent to that given below.

min {U.p | U ∈ S} ≥ ε + 2. (23)

As with (19), (23) should seldom, if ever, be violated.

The impact of the mandatory-demand bound. Both derivations given above are based
on the tightest bounds on mandatory demand provided by Corollaries 3 and 4. Alterna-
tively, one of the looser bounds provided by these corollaries could have been used. The
benefit of using a looser bound is that it speeds the reweighting process. This is due to
the fact that the running time of the reweighting algorithm (presented later in the paper)
is proportional to the reweighting overhead. Since looser mandatory-demand bounds
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overestimate demand, they produce more inflation. Consequently, reweighting requires
less time.

Unfortunately, using looser bounds is a poor method for reducing the execution time
of the reweighting algorithm because the impact of the bound on both the execution time
and the reweighting overhead is difficult to predict. For this reason, we do not recommend
the use of looser bounds or consider their use beyond this point. As an alternative, the
reweighting algorithm has been equipped with input parameters that allow manipulation
of the speed-versus-accuracy trade-off in a controlled and predictable way.

5.2. Defining L

As a starting point, consider letting L def= { L | L ≥ L0 ∧ L ∈ N } when using quantum-

based supertasking and L def= { L | L ≥ L0} when using fully preemptive supertasking.
(In the first set definition, N denotes the set of natural numbers.) These definitions
ensure the correctness of the reweighting condition, but include an unnecessarily high
number of points in L.

Scenario 1 (QB-EPDF). Consider the reweighting function given in (17) and a range
L ∈ [L1, L2) over which the numerator remains constant. Due to the L parameter in the
denominator, the function’s value can only decrease as L takes on larger values within
[L1, L2). Hence, a search for the maximum value requires only that the smallest L value
from the testing set in [L1, L2) need be checked. In (17), changes are caused by the
argument to the floor operation; the kth increase of T’s term in the summation occurs at
the following value of L.

L(k)
def= min {L | T .w · L ≥ k } = k

T .w

However, L(k) may not be in N . Applying this additional restriction produces the set
{�L (k)� | k > 1}, which can also be expressed as

{⌈
k

T .w

⌉ ∣∣∣∣ k ≥ 1

}
.

The definition of L, for Scenario 1 is then the result of unioning these per-task testing
sets, as shown below.

L def=
⋃

T ∈S

{⌈
k

T .w

⌉ ∣∣∣∣ k ≥ 1

}
(24)

Scenario 2 (FP-EDF-NP). In Scenario 2, the process of defining L follows the same
steps. Specifically, the numerator of the reweighting function given in (21) changes only
due to changes in either a floor term of the summation or the vL term.

First, consider the floor terms. As before, we compute the value of L corresponding
to the kth increase in the term’s value, as shown below.



GROUP-BASED PFAIR SCHEDULING 147

L(k)
def= min

{
L

∣∣∣∣
L

T .p
≥ k

}
= k · T .p.

Since L is not required to be an integer when using fully preemptive scheduling, the
per-task sets {L(k) | k ≥ 1} are simply unioned to obtain the following definition of L.

L def=
⋃

T ∈S
{k · T .p | k ≥ 1} (25)

It remains to account for changes in the numerator caused by vL . Consider the defi-
nition of vL given in (20). It follows from the U.p > L condition in the set definition
that if vL differs from vL−ε, for arbitrarily small ε, then U.p = L for the task U that
defines vL−ε, i.e., U is eliminated from consideration at L but is still being considered
at L − ε. Hence, the set of L values at which the vL term may change its value is given
by {T .p | T ∈ S}. Since this set is a subset of the previous definition of L, it follows
that the definition given in (25) is sufficient in this scenario.

5.3. Generating L Values from L

In this subsection, we present an efficient algorithm for generating a monotonically
increasing sequence of L values from L such that no values in L are skipped. This
algorithm is used as a subroutine by our reweighting algorithm (presented later).

The generator pseudo-code is shown in Figure 5. The algorithm consists of two
routines: InitGenerator and Generate. InitGenerator initializes the generator,
while Generate generates the next L value in the sequence. A detailed description
follows.

Data structures. The set of L values generated by a specific task T is represented by a
nodetype record. The f(n) function field defines the L-value generating function, i.e., the
function implied by either (24) or (25). For instance, under Scenario 2, f(n) = n·T.p + T.c,
as suggested by (25). The L field stores the next L value in T’s sequence. The minimum
of these candidate values is determined by storing the records in a min-ordered heap
by L.

Detailed description. The generator is initialized by a call to InitGenerator. In line
1, the heap is created. In line 3–5, each task’s record is created and fields are initialized;
the record is then stored in the heap in line 6.
Generate retrieves the smallest unreported L value in L. Line 7 identifies this value.

Lines 8–12 update the heap entry of each task that has the selected L value. The selected
value is returned in line 13. For both routines, O(|S|log|S|) time complexity can be
achieved by using a binomial heap.

6. Selecting a Safe Weight

TheL definitions given above imply that reweighting may require an unbounded number
of computations. In this section, we address this issue by presenting a technique for
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Figure 5. Algorithm for generating L values in sequence based from a definition of L.

detecting when the process can safely terminate. The solution presented here not only
detects termination, but also provides a means for forcing termination at the expense of
a predictable amount of extra inflation.

Concept. Our approach is based on examining the behavior of a bounding function
φ(S, L) of �(S, L). Specifically, φ(S, L) must satisfy the following constraints:

Bounding Constraint (BC). (∀L: L ≥ Lφ : φ(S, L) ≥ �(S, L)).
Monotonicity Constraint (MC). φ(S, L) is a monotonic function of L.

Property BC ensures that φ(S, L) upper bounds �(S, L) for all values of L at and
after Lφ , which is called the activation point. Hence, if this property holds and L ≥ Lφ ,
then S.w ≥ φ(S, L) ⇒ S.w ≥ �(S, L). As explained below, Lφ allows φ(S, L) to more
tightly bound �(S, L) by skipping over smaller L values at which transient demand
exists. We postpone a discussion of Property MC until after the derivation of φ(S, L) is
presented.

6.1. Deriving φ(S, L)

φ(S, L) and Lφ can typically be defined using the following rules of thumb:

Rule 1: Let Lφ be the maximum of the following values:

• L0 (i.e., the smallest L value considered when reweighting);

• the smallest L value such that no transient demand exists in intervals of length L′ ≥
L.
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The second value ensures that transient demand in �(S, L) can be ignored when
applying Rule 2.

Rule 2: Derive φ(S, L) from �(S, L) by replacing all non-continuous terms in �(S, L)
with continuous upper bounds. For instance, x and x + 1 are continuous upper bounds
of 	x
 and �x�, respectively.

Scenario 1 (QB-EPDF). In Scenario 1, no circumstantial demand exists. Hence, tran-
sient demand never exists and can be ignored. Applying Rule 1 yields

Lφ
def= L0. (26)

Applying Rule 2 to (17) produces the following upper bound:
∑

T ∈S T .w · L + β − 1

L − ε
.

Reorganizing the terms produces the following equivalent form.

∑

T ∈S
T .w +

( ∑
T ∈S T .w

) · ε + β − 1

L − ε

Applying (8) produces the following equivalent form:

S.IQ + S.IQ · ε + β − 1

L − ε
.

This leads to the following definition:

φ(S, L)
def= S.IQ + 	(S)

L − ε
, (27)

where

	(S)
def= S.IQ · ε + β − 1. (28)

By (18), the denominator of the second term in (27) is always positive. Hence, the
behavior of φ(S, L) as L (≥ Lφ) increases is determined by the value of 	(S). We refer
to 	(S) as the characteristic function of φ(S, L). Specifically, φ(S, L) is decreasing
when 	(S) > 0, constant when 	(S) = 0, and increasing when 	(S) < 0. Since 	(S)
is independent of L, its value can be pre-computed prior to reweighting.

Scenario 2 (FP-EDF-NP). By Rule 1 and (20), Lφ is defined as shown below.

Lφ
def= max(L0, max{T .p | T ∈ S ∧ T .υ > 0}) (29)

By (20), L = max{T .p | T ∈ S∧T .v > 0} is the smallest L value at which circumstantial
demand no longer exists, i.e., vL becomes 0.

Removing vL from (21) and applying Rule 2 produces the upper bound shown below.
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∑
T ∈S

(
T .u·L

Q

) + β

L − ε − 2

Reorganizing the terms produces the equivalent form shown below.

1

Q
·
∑

T ∈S
T .u +

1
Q · (∑

T ∈S T .u
) · (ε + 2) + β

L − ε − 2

Applying (9) produces the following equivalent form:

S.IP + S.IP · (ε + 2) + β

L − ε − 2
.

This leads to the following definition:

φ(S, L)
def= S.IP + 	(S)

L − ε − 2
, (30)

where

	(S)
def= S.IP · (ε + 2) + β. (31)

Again, the behavior of φ(S, L) is determined by the characteristic function 	(S).

6.2. Termination

We now explain how Property MC is used to detect and to force termination.

Decreasing monotonicity. The following theorem and corollary characterize how de-
creasing monotonicity allows the unbounded reweighting search space to be truncated
(possibly at the cost of increased inflation) by considering a single value of φ(S, L).

Theorem 6 If φ(S, L) is decreasing and w ≥ φ(S, L) for some L ≥ Lφ , then

w ≥ max{�(S, L ′) | L ′ ≥ L}.

Proof: Since φ(S, L) is a decreasing function, Property MC implies that if w ≥ φ(S,
L) for some L ≥ Lφ , then w ≥ φ(S, L ′) for all L′ ≥ L. It follows from Property BC that
w ≥ �(S, L ′) for all L′ ≥ L. Hence, the theorem holds. �

Corollary 5 If φ(S, L) is decreasing, w ≥ max{�(S, L ′) | L > L ′ ≥ L0} , and
w ≥ φ(S, L) for some L ≥ Lφ , then w ≥ S.wopt.

Proof: Follows trivially from Theorem 6. �
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Non-decreasing monotonicity. The next theorem and corollary consider the case in
which φ(S, L) is non-decreasing with increasing L. These results are based on the limit
of φ(S, L) as L →∞, which is denoted S.wφ . By Property MC, which guarantees that
φ(S, L) does not oscillate, and the fact that φ(S, L) cannot approach ∞ in the limit,7

this limit always exists. When φ(S, L) tightly bounds �(S, L), S.wφ typically equals
the ideal weight of the supertask, which is the case when applying Rules 1 and 2 to the
example scenarios considered here. For instance, consider (30). As L → ∞, the second
term (i.e., 	(S)

L−ε−2 ) goes to zero. Hence, S.wφ = S.IP.

Theorem 7 If φ(S, L) is non-decreasing and w ≥ S.wφ , then

w ≥ max{�(S, L ′) | L ′ ≥ Lφ}.

Proof: Since φ(S, L) is a non-decreasing function, the value S.wφ , upper bounds
φ(S, L ′) for all L′ ≥ Lφ . It follows from Property BC that the theorem holds. �

Corollary 6 If φ(S, L) is non-decreasing, w ≥ max{�(S, L ′) | Lφ > L ′ ≥
L0} and w ≥ S.wφ , then w ≥ S.wopt.

Proof: Follows trivially from Theorem 7. �

Ensuring termination. The results presented above demonstrate how comparing a
candidate weight to a single value of φ(S, L) is sufficient to draw conclusions about an
unbounded number of comparisons to �(S, L) values. Forcing termination is equally
trivial: we can ensure that the candidate weight w upper bounds either φ(S, L) or S.wφ

by assigning w := max(w,φ(S, L)) or w := max(w,S.wφ), respectively. In the next
section, we present a general reweighting algorithm based on the properties described
in this section.

7. The Reweighting Algorithm

Using the results of the last section, a supertask weight can be selected using the
algorithm shown in Figure 6. This algorithm takes five parameters and returns a boolean
value. The return value is true if and only if an acceptable weight was found, where
“acceptable” is defined by the parameters, as described below.

7.1. Parameter Descriptions

The first and most obvious parameter is the supertask S for which a weight should be se-
lected. wmin and wmax define the range of acceptable supertask weights, i.e., an algorithm
invocation returns true if and only if S · w ∈ [wmin, wmax] upon termination and S.w

ensures the timeliness of the component tasks. These parameters are assumed to satisfy
0 ≤ wmin ≤ wmax ≤ 1. Our algorithm is conservative in that a failure (i.e., a return value
of false) does not preclude the existence of a weight in the range [wmin, wmax] that is
capable of ensuring timeliness.
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Figure 6. Algorithm for selecting a safe supertask weight.

Lmax and nmax are the length limit and computation limit, respectively. Lmax specifies
the largest value of L to consider before forcing the invocation to terminate. Simi-
larly, nmax specifies the maximum number of �(S, L) values to check before forcing
termination. Termination is forced using the approach described in the previous section.

Special cases. In addition to searching for safe supertask weights within a range of
values, three special cases of reweighting are common in practice. First, the optimal8

weight (i.e., S.wopt) can be sought by invoking Reweight(S, 0, 1, ∞, ∞). (As discussed
below, it may not be possible to identify the optimal weight in bounded time.) Second, the
safety of a given weight w can be determined by invoking Reweight(S, w,w,∞,∞).
Third, an upper bound on inflation can be computed by the call Reweight(S, 0, 1,
0, ∞). This call immediately forces termination of line 9. As a result, the return
value is the most pessimistic solution that can be generated by Reweight and equals
max(max{�(S, L) | Lφ ≤ L < L0}, φ(S, L0)). When Lφ = L0, this bound is simply
φ(S, L0) and can be computed without invoking Reweight.

7.2. Algorithm Description

Reweight begins by initializing variables in lines 1–4. In lines 5 and 6, each L ∈ L that
satisfies L < Lφ is checked to ensure that S.w ≥ max{�(S, L ′) | Lφ > L′ ≥ L0} holds
at line 7. The remaining values are then handled by either line 8 or lines 9–11, based
on whether φ(S, L) is non-decreasing or decreasing, respectively. In the former case,
Corollary 6 implies that ifS.w ≥S.wφ , thenS.w is guaranteed to be safe. Line 8 ensures
that S.w ≥ S.wφ holds. In the latter case, weight restrictions must be checked (lines
9–10) until either a user-provided limit is reached (checked by the first two conditions
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given in line 9) or an value L is found that satisfies the conditions set forth in Corollary
5 (checked by the third condition given in line 9). In the event that termination is forced,
line 11 ensures that the conditions set forth in Corollary 5 still hold and hence that S.w

is a safe weight. (Note that if the while loop terminates due to the third condition in line
9, then line 11 has no effect.) Line 12 then reports whether the invocation was successful
(see below).
CheckWeight is invoked to compare the current supertask weight to the �(S, L)

restriction, which is done in line 13. Line 14 then updates the computation counter to
reflect the comparison. Finally, L is advanced to the next highest value of L ∈ L in line
15.

Correctness of the return value. An important property of Reweight is thatS.w is non-
decreasing after line 4, as implied by lines 8, 11, and 13. As a result, bothS.w ≥ wmin and
S.w > wmax are invariant once established. Since line 4 establishes the S.w ≥ wmin, it
follows that S.w ≤ wmax ⇔ S.w ∈ [wmin, wmax] holds at line 12. To avoid unnecessary
computation, both loops terminate immediately if failure (S.w > wmax) is detected (see
lines 5 and 9).

7.3. Properties

We now state and prove basic properties of Reweight. First, a lower bound on S.w

following the successful completion of a Reweight invocation is proved in the theorem
given below. This theorem also establishes a lower bound on the inflation produced
when reweighting a supertask using the approach described here.

Theorem 8 If an invocation of Reweight on S terminates, then upon termination,
S.w ≥ S.wφ holds if 	(S) ≤ 0 and S.w > S.wφ holds if 	(S) > 0.

Proof: The 	(S) ≤ 0 case follows trivially from line 8 of Reweight. When 	(S) >

0, φ(S, L) approaches S.wφ from above in the limit. Hence, φ(S, L) > S.wφ holds for
all L. Thus, S.w > S.wφ holds after the eventual execution of line 11. It follows that
S.w > S.wφ holds upon termination also. �

Theorem 8 raises the question of whether termination is guaranteed. When 	(S) ≤ 0
holds, termination obviously occurs. However, termination may not occur when 	(S) >

0 holds. The following lemma, theorem, and corollary characterize the circumstances
under which termination does not occur.

Lemma 2 If S.w > S.wφ is established during an invocation Reweight, then termi-
nation is guaranteed.

Proof: Termination can only be avoided by taking the code branch leading to line
9,9 which only occurs when 	(S) > 0. In this case, φ(S, L) decreases as L increases.
Because φ(S, L) approaches S.wφ in the limit, the value of φ(S, L) will eventually drop
(and remain) below any weight in the range (S.wφ, 1].
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Figure 7 illustrates this property. In this example, S.wφ = 0.603. Suppose that
S.w = 0.615 (> 0.603) is established during an invocation of Reweight. As shown,
the value of φ(S, L) drops below S.w around L = 2200. Hence, S.w ≥ φ(S, L) holds
for all L ≥ 2200 since φ(S, L) is a decreasing function. It follows that the loop at line
9 must eventually terminate due to its third condition. The lemma follows. �

Theorem 9 An invocation Reweight on S does not terminate if and only if all of the
following conditions hold:

1. 	(S) > 0;

2. wmin ≤ S.wφ ;

3. S.wopt ≤ S.wφ ;

4. S.wopt ≤ wmax;

5. Lmax = nmax = ∞.

Proof: By the algorithm’s code listing, termination can be avoided only by becoming
trapped in the while loop at line 9. To prove sufficiency, we show that the conditions
given above guarantee that the loop is reached and that the four conditions in line 9
always hold (and hence that the loop never terminates). Condition 1 is sufficient to
ensure that the loop is reached via line 7. Now consider the four conditions in line 9. By
Condition 5, the first two conditions in line 9 always hold. It remains to show that the
third and fourth conditions always hold.
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To show that the third condition in line 9 holds, we show that S.w ≤ S.wφ is
invariant after the execution of line 4. We begin by explaining why S.w ≤ S.wφ ⇒
S.w < φ(S, L). By Condition 1, φ(S, L) is decreasing. Hence, φ(S, L) approaches (but
never equals) S.wφ in the limit. For instance, consider the definition of φ(S, L) given in
(27). In this case, S.wφ = S.IQ and φ(S, L) = S.wφ + 	(S)

L−ε
. The term 	(S)

L−ε
approaches

(but never equals) zero as L → ∞. Hence, if S.w ≤ S.wφ is invariant, then it follows
that S.w < φ(S, L) holds for all L (and that the third condition in line 9 always holds).

We now prove that S.w ≤ S.wφ is invariant after line 4. It follows from Condition
2 that S.w ≤ S.wφ holds immediately after line 4. By (16), �(S, L) ≤ S.wopt for all
L. Hence, by Condition 3, S.w ≤ S.wφ holds after each execution of line 13. Hence,
S.w ≤ S.wφ is invariant after line 4.

Similarly, we show that the fourth condition in line 9 always holds by showing
that S.w ≤ wmax is invariant after line 4. By Condition 2 and the property wmin ≤
wmax,S.w ≤ wmax holds immediately after line 4. By Condition 4, S.w ≤ wmax holds
after each execution of line 13. Hence, S.w ≤ wmax is invariant after line 4. This
completes the proof of sufficiency.

Now, consider necessity. If Condition 1 does not hold, then the loop in line 9 is never
executed and hence cannot prevent termination. We now argue that negating each of the
remaining conditions guarantees termination. First, if Condition 5 does not hold, then
one of the first two conditions in line 9 will eventually cause termination. If Condition
4 does not hold, then S.w > wmax is eventually established by line 13 (unless it is
established sooner by line 4), which results in termination of the loop by its fourth
condition. Similarly, if either Condition 2 or 3 does not hold, then S.w > S.wφ is
eventually established by either line 4 or 13, respectively. By Lemma 2, termination is
ensured once S.w > S.wφ is established. This completes the proof of necessity. �

Corollary 7 If Reweight is invoked on S, then termination is guaranteed whenever
either wmin > S.wφ or 	(S) ≤ 0 holds.

Proof: Follows trivially from Theorem 9. �

7.4. Balancing Speed and Inflation

Reweight provides three methods for controlling the speed-versus-accuracy trade-off,
each of which involves the use of one of wmin, Lmax, or nmax. Each method discussed
here provides a predictable lower bound on reweighting overhead and an upper bound
on the amount of computation performed. For the initial description of each method
(given below), we assume that only one of wmin, Lmax, or nmax is set to a non-trivial
value.10 When two or more parameters are used simultaneously, the speed and accuracy
of the process is determined by the parameter that implies the smallest number of
computations.

First, the reweighting process can be seeded with a non-ideal minimum weight, i.e.,
wmin can be assigned a value larger than S.wφ. The benefit of such an assignment can
be seen in Figure 7. Specifically, φ(S, L) crosses larger weights at lower values of L. It
is straightforward to calculate the smallest L value for which φ(S, L) is less than wmin

(and hence, for which the third condition at line 9 is guaranteed to hold). Let Llast denote
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this derived value. It follows that using wmin produces the same result as passing Llast as
the Lmax parameter.

Second, the Lmax parameter can be used to bound the search space of the reweighting
process. As in the previous case, the wmin parameter can be used to achieve the same
result. Specifically, the use of Lmax achieves the same result as passing φ(S, Lmax) as the
wmin parameter. Hence, the accuracy and speed bounds are computed as in the previous
case.

Finally, the nmax parameter can be used to bound the number of �(S, L) computations.
Unfortunately, it is difficult to characterize how nmax relates to using the Lmax parameter
due to the fact that only a subset of the L values are actually checked. Under the
pessimistic assumption that every L value is tested, Llast = L0 + nmax − 1. (Here, we
assume that termination is forced.) Using this relationship, nmax can be related to both
Lmax and wmin as described above.

8. Experimental Results

In this section, we present the results of an experimental evaluation of Reweight. This
evaluation consisted of two studies. Due to length considerations, only a small subset
of the results produced by this evaluation are presented here. The complete results can
be found in (Holman, 2004).

The first study focused on the reweighting overhead produced by scheduling periodic
tasks under each of the example scenarios. For the QB-EPDF scenario, task parameters
had to be mapped to weights first. The mapping rules for periodic and sporadic tasks
can be found in (Holman, 2004). An FP-EDF scenario was actually tested instead of
the FP-EDF-NP scenario. As explained earlier in the paper, scheduling without non-
preemptable code segments can be considered by simply setting the maximum duration
of such segments to zero in the equations presented earlier.

The second study focused on the speed-versus-accuracy trade-off. Again, both the
QB-EPDF and FP-EDF scenarios were considered. The primary goal of this study
was to approximate the relationship between inflation and the amount of computation
performed. Specifically, the objective was to determine the number of computations that
must be performed to produce a solution that is approximately optimal.

8.1. Study 1: Reweighting Overhead

In this section, we present the details and results of the first study.

Sampling. Both studies presented in this section are based on comparing randomly
generated component task sets uniformly drawn from a sample space. For this study,
the component-task count was chosen from the range 2, . . . , 40. The total utilization
of all component tasks was chosen from 0.02, . . . , 0.9. Finally, task periods were
chosen from 5, . . . , 5,000. To ensure that the random samples provided reasonable
coverage of this sample space, the task count, total utilization, and minimum period
were systematically chosen so that coverage of the sample space (with respect to these
parameters) would be uniform.
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Figure 8. Plots show overhead under both the QB-EPDF and FP-EDF scenarios with scheduling periodic
and sporadic tasks. The “No Supertasks” measurement shows the mapping overhead produced by assigning
weights to the tasks to enable use of the QB-EPDF scenario. The figure shows (a) the mean overhead, and (b)
the 99% confidence interval associated with each sample mean.

Measurement. The following measurements were taken during the experimental runs.
No Supertasks: a baseline measurement of the total weight of all tasks before reweight-

ing; this measurement reflects the mapping overhead produced when assigning
weights to the periodic tasks.

QB-EPDF: the weight assigned to the supertask under the QB-EPDF scenario; this
measurement reflects both mapping and reweighting overhead.

FP-EDF: the weight assigned to the supertask under the FP-EDF scenario; this measure-
ment reflects reweighting overhead alone since fully preemptive supertasking does
not require parameter mapping.

To ensure termination, S.wφ + 10−5 was passed as wmin when invoking Reweight.
The quantity 10−5 was used because we consider such a small degree of inflation to be
negligible. Only samples which were schedulable under all approaches were considered.
We refer to such samples as valid. When invalid samples were generated, they were
simply discarded and replaced by a new sample.

Results. We present only the plots of inflation versus the minimum period here, which
are shown in Figure 8. Our goal is only to demonstrate the behavior of inflation under
each approach by presenting a representative sample of the results. The full results can
be found in (Holman, 2004).

As shown, the FP-EDF scenario produces very little reweighting overhead. Indeed,
the overhead appears to be negligible on average for period sizes of twenty or more. The
QB-EPDF scenario performs worse, but still sacrifices only around 0.005 to reweighting
overhead.11 The difference in overhead is due to the fact that tasks are required to
execute at approximately steady rates under EPDF. Hence, scheduling is inherently
more difficult, and hence more costly.

These plots suggest that both reweighting and mapping overhead are inversely pro-
portional to the minimum task period. Since our focus in this paper is only reweighting
overhead, we ignore the mapping overhead here. (See (Holman, 2004) for a discussion
of mapping overhead.) Indeed, this relationship is not surprising. A simple upper bound



158 HOLMAN AND ANDERSON

on inflation is given by φ(S, L0). As demonstrated by (27) and (30), φ(S, L) ≈ I + ψ(S)
L

where I denotes the ideal weight of the supertask (i.e., either S.IQ or S.IP ). Hence,
reweighting overhead is bounded (approximately) by ψ(S)

L0
. By (13), L0 scales directly

with periods when scheduling jobs. By (12), L0 scales with windows sizes under EPDF
scheduling. Window sizes decrease with increasing weight. Using the mapping rules in
(Holman, 2004), weights tend to increase as periods decrease. Hence, L0 scales propor-
tionally to periods under EPDF as well. As a result, the worst-case and average-case
reweighting overhead tends to decrease as periods are increased.

8.2. Study 2: Speed Versus Accuracy

In this section, we present the details and results of the second study, which focused on
the speed-versus-accuracy trade-off. Specifically, two experiments were conducted. In
the first experiment, the value of nmax was varied and the impact on the inflation was
observed. In the second experiment, the value of wmin was varied and the impact on the
number of computations performed was observed. Since the impact of Lmax depends on
the task periods (due to L), the impact of setting this parameter to a specific value will
certainly not impact all task sets equally. Hence, this parameter was not considered in
this experiment.

Sampling. In the first experiment, nmax was systematically varied across the range
1, . . . , 100,000. In the second experiment, the difference wmin−S.wφ was systematically
varied over the range 0.00001, . . . , 0.1. In both experiments, the task count was chosen
from the range 2, . . . , 40, the total utilization was chosen from the range 0.02, . . . , 0.9,
and the task periods were chosen from the range 5, . . . , 2000. Again, the task count,
total utilization, and minimum task period were systematically varied to ensure uniform
sampling.

Per-computation execution time. To place the estimates of computation in perspective,
we ran the reweighting algorithm on a 1.4 GHz Pentium 4 desktop computer and
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Figure 9. Plots show the impact of nmax on the reweighting overhead under each of the (a) QB-EPDF and
(b) FP-EDF scenarios.



GROUP-BASED PFAIR SCHEDULING 159

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e-05  0.0001  0.001  0.01  0.1

N
um

be
r 

of
 C

om
pu

ta
tio

ns

Inflation Lower Bound (w_min - w_phi)

Inflation vs. Number of Computations for QB-EPDF

99% Confidence Interval
Mean

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e-05  0.0001  0.001  0.01  0.1

N
um

be
r 

of
 C

om
pu

ta
tio

ns

Inflation Lower Bound (w_min – w_phi)

Inflation vs. Number of Computations for FP-EDF

99% Confidence Interval
Mean

Figure 10. Plots show the impact of wmin on the number of computations performed under each of the (a)
QB-EPDF and (b) FP-EDF scenarios.

measured the resulting mean per-computation execution time, i.e., the total execution
time divided by the value of n upon termination of the algorithm. Since several
computations within the algorithm have time complexity O(|S|), we varied |S|
to determine how the execution time scales. The collected data suggests that the
per-computation execution time in microseconds is approximately 1.32 + 0.1357·|S|,
i.e., on the order of a few microseconds. Hence, a single task set can be reweighted in
at most a few seconds, even when high precision is desired.

Using nmax. Figure 9 shows the impact of nmax under both the QB-EPDF and FP-EDF
scenarios. Notice that both graphs are shown in log scale. As shown in Figure 9, the
mean inflation produced by reweighting stabilizes at approximately nmax = 1000 under
each scenario. However, the mean of the FP-EDF scenario, shown in Figure 9(b), is
reasonably stable much earlier, i.e., around nmax = 100.

Using wmin. Figure 10 shows the impact of using an inflated wmin value under the QB-
EPDF and FP-EDF scenarios. Again, both plots are shown in log scale. Surprisingly, the
relationship between wmin − S.wφ and the number of computations performed appears
to be approximately linear12 throughout the graph. By extrapolation, the line segment
over the x range [0.00001, 0.1] for QB-EPDF (respectively, over the x range [0.00001,
0.001] for FP-EDF) appears to fit the equation y = 10−k 1

x , where k = 0.5 (respectively,
k = 1). The cause of this behavior is not immediately obvious; further study is needed
to better understand the relationship between these quantities. For larger wmin values,
this relationship does not hold. We speculate that the reason for this is that the wmin

parameter is set so high that φ(S, L0) > wmin holds initially. When this happens, the
invocation terminates after performing only minimal computation.

9. Conclusion

In this paper, we have presented a general framework for assigning supertask weights so
that the timing constraints of component tasks are guaranteed. This framework consists
of a combination of analysis and a weight-selection algorithm. The primary limitation of
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this approach is that reweighting may require considerable (possibly even unbounded)
computation. To address this concern, we presented a necessary and sufficient condition
for termination. In addition, we supplemented the reweighting algorithm with parame-
ters that allow a user to force early termination after a specified amount of computation,
at the expense of some additional weight inflation. To demonstrate the use of this frame-
work, we considered one quantum-based and one fully preemptive scheduling scenario.
We concluded by presenting a subset of the results from an experimental evaluation
of the proposed reweighting algorithm. This evaluation suggests that weight inflation
due to reweighting should be reasonably low in most cases. Hence, the proposed tech-
nique is a practical means to implementing hierarchal scheduling in real multiprocessor
systems.

Due to length considerations, we have not presented all results relating to this work. A
more complete coverage of this topic can be found in (Holman, 2004). Additional results
not presented here include a slightly more general analytical framework, additional
examples, the full results of the experimental evaluation, and a discussion of how
supertasks can be used as an optimization tool.

Practical considerations. As with any analysis, pessimism can arise from a variety of
sources when using the proposed framework. We divide this pessimism into two general
categories: user-introduced pessimism and inherent pessimism.

User-introduced pessimism results from the use of poor-quality bounds and estimates
when defining the scenario-specific parts of the framework (e.g., supply and demand
formulas). To ensure high-quality results, such formulas should always be justified by
additional analysis and proofs, as was done for the examples in this paper. One potential
source of user-introduced pessimism that may not be immediately obvious is φ(S, L).
By Corollary 7, wmin > S.wφ is needed to ensure termination of the reweighting algo-
rithm. Since S.wφ is the limit of φ(S, L) as L → ∞, using a loose bound for φ(S, L)
can result in an unnecessarily large S.wφ value, and hence in additional inflation.

Inherent pessimism results from the derivations and general approach taken by the
framework. The only step of the framework that has the potential to introduce pessimism
is the derivation of �(S, L) (see Section 5.1). In order to make the reweighting compu-
tation tractable, the focus of the analysis shifts at this point from considering the supply
and demand over a specific interval [t, t + L) to the minimum supply and maximum
demand over any interval of length L. However, unless the minimum supply and maxi-
mum demand can actually occur within the same interval, this shift will result in some
additional pessimism. In addition, when manipulating the schedulability condition to
isolate the S.w term, it may be necessary to relax some bounds slightly, as demonstrated
by the derivation of �(S, L) for the FP-EDF-NP scenario.

Future work. Many interesting aspects of supertasking remain uninvestigated, of which
three are most prominent. First, the approach presented in this paper considers only the
use of servers based on the Pfair task model. Servers based on other task models, such as
the ERfair model proposed by Anderson and Srinivasan (2000), may exhibit less weight
inflation and provide other interesting properties.

Second, the problem of assigning tasks to supertasks in order to minimize the total
system overhead has not been investigated in detail. (We briefly outlined an algorithm
for this problem when discussing the partitioning approach in Section 3.) In prior work,
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we have considered a few assignment heuristics for reducing synchronization overhead
(Holman and Anderson, 2002a,b). (Since the task-assignment problem is a more com-
plex form of the bin-packing problem, which is known to be intractable, we consider
only the use of heuristics.) However, such simple heuristics will likely not be effective for
real systems, in which there are typically several significant forms of overhead (e.g., in-
terrupt handling, scheduling, interprocessor communication, resource contention, cache
misses, hardware contention, etc.). This problem is further complicated by the fact that
the relationship between supertask assignments and the different forms of overhead
present in real systems is often difficult to quantify. For instance, by constraining which
processors a supertask may execute upon in a bus-based multiprocessor, the worst-
case volume of bus traffic (and hence the worst-case contention for the shared bus)
can be reduced. However, the relationship between overhead stemming from such bus
contention and supertask assignments may be difficult to express in an optimization
problem.

Finally, the analysis presented here does not allow for transient periods of overload.
Indeed, no prior research has investigated the behavior of Pfair scheduling and its
variants under overload conditions. Due to the fair allocation of processor time, Pfair
scheduling and variants should continue to behave in a predictable manner even under
such conditions.

Appendix A: Summary of Notation

Symbol Meaning

N Set of all natural numbers

Z Set of all integers

Q Quantum size

M Processor count

τ Set of tasks

|S| Size of the set S

τ.u Cumulative utilization of all tasks in τ

J, K Jobs

T, U Tasks

T .w Weight of a task T

Ti The ith subtask of a task T

ω(Ti ) The window associated with the ith subtask of a task T

r(Ti) The pseudo-release of the ith subtask of a task T

d(Ti) The pseudo-deadline of the ith subtask of a task T

(Continued on next page)
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(Conitnued)

Symbol Meaning

PF(w) A Pfair task with weight w

fluid(T, t1, t2) Share of processor time entitled to task T over the interval [t1, t2)

lag(T, t) The lag of task T at time t

received(T, t1, t2) Processor time allocated to task T over the interval [t1, t2)

β+ Upper lag sealer

β− Lower lag sealer

β Sum of the lag sealers

εr Pseudo-release extension

εd Pseudo-deadline extension

ε Sum of window extensions

T .φ Offset of a periodic or sporadic task T

T .p Period of a periodic or sporadic task T

T.e Per-job execution requirement of a periodic or sporadic task T

T.d Per-job relative deadline of a periodic or sporadic task T

T.u Utilization of a periodic or sporadic task T

P(φ, e, p, d) A periodic task with an offset of φ, a per-job execution requirement of e, a period of p,
and a per-job relative deadline of d

S(φ, e, p, d) A sporadic task with an offset of φ, a per-job execution requirement of e, a period of
p, and a per-job relative deadline of d

S, T Supertasks

S.IQ Ideal weight of a supertask using quantum-based scheduling

S.IP Ideal weight of a supertask S using fully preemptive scheduling

demand(S, t1, t2) The minimum amount of processor time needed by tasks in S to avoid a timing
violation over the interval interval [t1, t2)

supply(S, t1, t2) The amount of processor time provided to tasks in S over the interval [t1, t2)

demandM (S, t1, t2) The minimum amount of processor time needed by mandatory requests in S to avoid a
timing violation over the interval [t1, t2)

demandC (S, t1, t2) The minimum amount of processor time needed by requests in S that are not
mandatory to avoid a timing violation over the interval [t1, t2)

L Interval length

L0 The shortest interval length over which a request of a component task can arrive and
experience a timing violation

�(S, L) The minimum value of S.w needed to avoid timing violations over intervals of length
L

L The testing set of �(S, L)

S.wopt The smallest value of S.w that satisfies all �(S, L) restrictions, i.e., the optimal
reweighting solution

υL The maximum circumstantial demand generated by non-preemptable code segments
over an interval of length L

φ(S, L) The monotonic bounding function of �(S, L)

	(S) The characteristic function of φ(S, L)

S.wφ The limit of φ(S, L) as L → ∞
Lφ The activation point of φ(S, L)

T .υ Maximum duration for which task T can execute non-preemptably
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Appendix B: Additional Proofs

In this section, we derive the basic properties of scheduling summarized earlier in
Sections 2 and 4.

Window placement. Theorem 1 is established by a trivial extension of the lemma
shown below.

Lemma 3 The following formulas define the placement of relaxed windows:

r (Ti ) =
⌊

i − β+
T .w

⌋
d(Ti ) =

⌈
(i − 1) + β−

T .w

⌉
.

Proof: These formulas follow directly from (5), which implies that the release and
deadline of a subtask Ti are defined as follows:

r (Ti ) = min{k | k ∈ Z ∧ i · Q − fluid(T, 0, k + 1) < Q · β+}; and

d(Ti ) = min{k | k ∈ Z ∧ (i − 1) · Q − fluid(T, 0, k) ≤ −Q · β−}.

In the above formulas, Z denotes the set of all integers. Informally, the r(Ti) constraint
identifies the earliest slot (k) such that the upper lag constraint (Q · β+) is not violated
when the ith quanta is received in that slot (i.e., in the interval [k, k + 1)). The subtask
release corresponds to the start of this slot, i.e., time k.13 On the other hand, the d(Ti)
constraint identifies the earliest time k such that the lower lag bound (−Q · β−) is
violated when only i − 1 quanta are received by k. It follows that the ith quantum must
be received in the interval [k − 1, k), at the latest. Hence, the subtask deadline occurs at
time k.

Applying (2) and rearranging terms to isolate k produces the following equivalent
forms.

r (Ti ) = min

{
k

∣∣∣∣ k ∈ Z ∧ k >
i − β+

T .w
− 1

}

d(Ti ) = min

{
k

∣∣∣∣ k ∈ Z ∧ k ≥ (i − 1) + β−
T .w

}

The lemma follows. �

Window span. Lemma 1, shown below, bounds the number of slots spanned by a
sequence of n consecutive windows.

Lemma 1 Every sequence of consecutive subtasks Ti+1, . . . , Ti+n satisfies the follow-
ing:

⌈
n + β − 2

T .w

⌉
+ ε ≤ d(Ti+n) − r (Ti+1) ≤

⌈
n + β − 2

T .w

⌉
+ ε + 1
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Proof: The following derivation establishes the upper bound in the first claim.

d(Ti+n) − r (Ti+1)

=
(⌈

(i + n − 1) + β−
T .w

⌉
+ εd

)
−

(⌊
(i + 1) − β+

T .w

⌋
− εr

)
, by Theorem 1

≤
⌈

n + β+ + β− − 2

T .w

⌉
+

⌊
i + 1 − β+

T .w

⌋
+ 1 −

⌊
i + 1 − β+

T .w

⌋
+ εr + εd ,

�a + b� ≤ �a� + 	b
 + 1

=
⌈

n + β+ + β− − 2

T .w

⌉
+ εr + εd + 1, simplification

=
⌈

n + β − 2

T .w

⌉
+ ε + 1, by (6) and (7)

The following derivation establishes the lower bound in the first claim.

d(Ti+n) − r (Ti+1)

=
(⌈

(i + n − 1) + β−
T .w

⌉
+ εd

)
−

(⌊
(i + 1) − β+

T .w

⌋
− εr

)
, by Theorem 1

≥
⌈

n + β+ + β− − 2

T .w

⌉
+

⌊
i + 1 − β+

T .w

⌋
−

⌊
i + 1 − β+

T .w

⌋
+ εr + εd ,

�a + b� ≥ �a� + 	b

=

⌈
n + β+ + β− − 2

T .w

⌉
+ εr + εd , simplification

=
⌈

n + β − 2

T .w

⌉
+ ε, by (6) and (7)

This completes the proof. �

Guaranteed allocation bounds. We now derive bounds on the amount of processor
time guaranteed to a task under the global scheduler. We begin by proving the following
theorem, which bounds the allocation granted to any Pfair task over the interval [0, t).

Theorem 2 The amount of processor time received by a task T over the interval [0, t),
where t is an integer, under scheduling characterized by β−, β+, εr , and εd , is bounded
as shown below.

(	T .w · (t − εd ) − β+
 + 1) · Q ≤ received (T, 0, t)

≤ (�T .w · (t + εr ) + β−� − 1) · Q

Proof: The proof consists of two parts. First, we restrict attention to the impact of
relaxed lag constraints. After addressing this impact, we then consider the impact of εr

and εd .
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Figure 11. The figure shows the task PF ( 3
10 ) when β− = β+ = 1 (i.e., with Pfair lag bounds). The window

layouts show the impact of εr and εd .

Combining (1), (2), and (5) produces

−β− · Q < Q · T .w · t − received (T, 0, t) < β+ · Q,

which must hold for all values of t. Dividing all terms in the previous inequality by Q
and rearranging terms to isolate 1

Q · received (T, 0, t) yields the following inequality.

T .w · t − β+ <
1

Q
· received (T, 0, t) < T .w · t + β−

By the statement of the theorem, t is an integer, and hence Q| received (T, 0, t) (i.e.,
received(T, 0, t) is divisible by Q) holds since processor time is allocated in units
of Q. It follows that 1

Q · received (T, 0, t) is an integer. When a
b is an integer, then

x < a
b < y ⇔ 	x
 + 1 ≤ a

b ≤ �y� − 1 ⇔ (	x
 + 1) · b ≤ a ≤ (�y� − 1) · b.

This property implies that the previous inequality can be rewritten as

(	T .w · t − β+
 + 1) · Q ≤ received (T, 0, t) ≤ (�T .w · t + β−� − 1) · Q.

Intuitively, 	T .w · t −β+
+1 (respectively, �T .w · t +β−�−1) is the number of subtasks
with relaxed deadlines at or before (respectively, with relaxed releases before) time t.

We now consider the impact of εr and εd on the above allocation bounds. A subtask
with a relaxed deadline at time td may not complete until its extended deadline at time
td + εd . Hence, the lower bound may be smaller than that given above. For instance,
consider Figure 11, which shows the relaxed and extended windows for a task T =
PF( 3

10 ) when β− = β+ = 1, εr = 1, and εd = 2. The lower bound of received(T, 0, 10)
with respect to relaxed windows includes T3 since its relaxed deadline occurs at time 10.
However, when considering extended windows, T3 cannot be counted in the lower bound
since it may be executed after time 10. In general, the number of subtasks with extended
deadlines at or before time t equals the number with relaxed deadlines at or before time
t − εd . By the lower bound derived above for relaxed windows, 	T .w · t − β+
 + 1
subtasks have relaxed deadlines at or before time t. It follows that the lower bound with
respect to extended windows is given by (	T .w · (t − εd ) − β+
 + 1) · Q.

Similarly, subtasks with relaxed releases before t + εr may be scheduled before t
when using extended windows. Hence, the upper bound of received(T, 0, t) may be
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larger than that given above. Again, consider received(T, 0, 10) in Figure 11. T4 has
a relaxed release at time 10. Hence, it must be excluded from the upper bound when
considering relaxed windows. However, when using extended windows, the window
release occurs at time 9. In general, the number of extended windows with releases at or
after time t equals the number of relaxed windows with releases at or after time t + εr .
By the upper bound derived above for relaxed windows, �T .w · t + β−� − 1 subtasks
have relaxed releases at or after time t. It follows that the upper bound with respect to
extended windows is �T .w · (t + εr ) + β−� − 1) · Q. �

The next theorem extends the above result to an arbitrary interval [t, t + L).

Theorem 3 The amount of processor time received by a task T over the interval [t, t
+ L), where t and L are integers, under scheduling characterized by β−, β+, εr , and εd ,
is bounded as shown below.

(	T .w · (L − ε) −β
+ 1) · Q ≤ received (T, t, t + L) ≤ (�T .w · (L + ε) + β�− 1) · Q

Proof: Due to the absence of IS delays over the interval [t, t + L), it is sufficient
to consider the allocation that is guaranteed to a task that never experiences IS delays.
Since t and L are integers, Theorem 2 can be applied to derive the lower bound, as shown
below. received(T, t, t + L)

= received(T, 0, t + L) − received(T, 0, t), by definition

≥ (	T .w · ((t + L) − εd ) − β+
 + 1) · Q − (�T .w · (t + εr ) + β−� − 1) · Q,

by Theorem 2

= 	(T .w · (L − εd − εr ) − β+ − β−) + (T .w · (t + εr ) + β−)
 · Q

− �T .w · (t + εr ) + β−� · Q + 2 · Q, by rewriting

≥ �T .w · (t + εr ) + β−� · Q + (	T .w · (L − εd − εr ) − β+ − β−
 − 1) · Q

− �T .w · (t + εr ) + β−� · Q + 2 · Q, 	a + b
 ≥ �a� + 	b
 − 1

= (	T .w · (L − εd − εr ) − β+ − β−
 + 1) · Q, simplification

= (	T .w · (L − ε) − β
 + 1) · Q, by definition of ε and β

Similarly, the derivation given below establishes the upper bound.

received(T, t, t + L)

= received(T, 0, t + L) − received(T, 0, t), by definition,

≤ (�T .w · ((t + L) + εr ) + β−� − 1) · Q − (	T .w · (t − εd ) − β+
 + 1) · Q,

by Theorem 2

= �(T .w · (L + εd + εr ) + β+ + β−) + (T .w · (t − εd ) − β+)� · Q

− 	T .w · (t − εd ) − β+
 · Q − 2 · Q, by rewriting

≤ (�T .w · (L + εd + εr ) + β+ + β−� + 1) · Q + 	T .w · (t − εd ) − β+
 · Q

− 	T .w · (t − εd ) − β+
 · Q − 2 · Q, �a + b� ≤ �a� + 	b
 + 1
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= (�T .w · (L + εd + εr ) + β+ + β−� − 1) · Q, simplification

= (�T .w · (L + ε) + β� − 1) · Q, by definition of ε and β

The combination of these bounds establishes the theorem. �

Notes

1. Because Q = 1 is commonly assumed, Q typically does not appear in similar formulas in the literature.
2. The “pseudo” prefix avoids confusion with job releases and deadlines. This prefix will be omitted when

the proper interpretation is clearly implied.
3. The capacity is the maximum schedulable utilization, which is determined by the scheduling algorithm

and task models.
4. We do not consider making the supertask nonpreemptable since that would also impact global scheduling
5. Typically, P is selected to be a property that holds over [tr , td). However, this approach does not necessarily

produce the best results. Unfortunately, effective selection of P requires insights into the scenario under
consideration and some degree of intuition, i.e., we are aware of no systematic method for selecting P

6. Under RM scheduling, tasks with smaller periods are given higher priority.
7. Such behavior would imply that demand is unbounded. However, unbounded demand cannot be produced

by a finite number of tasks.
8. This solution is optimal with respect to the presented approach. This weight is not guaranteed to be the

smallest weight for which timeliness is guaranteed.
9. Since Lφ is required to be finite, the loop at line 5 must eventually terminate due to its first condition.

10. Lmax and nmax are set to ∞ when not used; wmin can be set to any value in [0,S.wφ ].
11. The reweighting overhead under the QB-EPDF scenario corresponds to the difference between the QB-

EPDF and “No Supertasks” measurements.
12. By linear, we mean only that the graph depicts a straight line. Because the graph is presented in log scale,

this does not suggest that the relationship can be expressed as a linear equation.
13. Notice that the release time may be negative. It is important to understand that time 0 is simply a reference

point that records when scheduling begins. Since no scheduling occurs prior to this point, windows with
negative release times are effectively truncated to begin at time 0.
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