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Abstract. Large-scale distributed applications such as online information retrieval and collaboration over
computational elements demand an approach to self-managed computing systems with a minimum of human
interference. However, large scales and full distribution often lead to poor system dependability and security,
and increase the difficulty in managing and controlling redundancy for fault tolerance. In particular, fault
tolerance schemes for mobile agents to survive agent server crash failures in an autonomie environment are
complex since developers normally have no control over remote agent servers. Some solutions inject a replica
into stable storage upon its arrival at an agent server. But in the event of an agent server crash the replica is
unavailable until the agent server recovers. In this paper we present a failure model and an exception handling
framework for mobile agent systems. An exception handling scheme is developed for mobile agents to survive
agent server crash failures. A replica mobile agent operates at the agent server visited prior to its master’s
current location. If a master crashes its replica is available as a replacement. The proposed scheme is examined
in comparison with a simple time-out scheme. Experimental evaluation is performed, and performance results
show that the scheme leads to some overhead in the round trip time when fault tolerance measures are
exercised. However the scheme offers the advantage that fault tolerance is provided during the mobile agent
trip, i.e. in the event of an agent server crash all agent servers are not revisited.

Keywords: autonomic computing, exception handling, fault tolerance, mobile agents, performance evalua-
tion, server crash failures

1. Introduction

Traditionally, fault tolerance and security policies for large-scale distributed systems
have taken a “host-central” view so that the emphasis has been on protecting hosts, and
making hosts dependable and fault-tolerant. This has worked very well for traditional
client-server models, but is no longer adequate for envisaged approaches for the next
generation of distributed computing in an autonomic environment. One of the major
problems with client-server architectures is that there can be a very high overhead in
moving resources round a big distributed system (e.g. data). In contrast, with mobile
code, we aim to move the code so that it is local to the associated resources needed. The
gain s in terms of performance (locality), late binding, reconfiguration (resource location
is not built into the application) and scalability. Specific application examples include
mobile e-commerce, online purchasing and delivery, and Web access for retrieval of real-
time information such as stock quotes, flight and reservation information, navigational
maps, and weather reports (Fuggetta et al., 1998). However, if mobile code is to be
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used for serious industrial applications, it is imperative that fault tolerance and security
architectures are used a priori, otherwise users will not be able to trust the system. Fault
tolerance must be provided for both hosts and mobile code. Especially, effective and
feasible solutions must be developed to protect mobile code against host crashes and
against malicious attacks from hosts.

Suppose that a computer C containing a user application, in a large-scale, distributed
and autonomic environment, needs remote resources. It therefore despatches executable
code to remote hosts to acquire the resources. The resource could be data, and /or it
could be side effecting (e.g. ‘switch off this valve’). The code could be executed on
hardware, or using a software interpreter. The code reports back to C in terms of some
state information. Thus mobile code is defined as executable code which is despatched,
which uses remote resources, and which reports back on its results. In other words, code
mobility is the capability to dynamically change the bindings between code fragments
and the location where they are executed. A special design paradigm of mobile code
technology is mobile agents; a mobile agent is distinguishable by the properties of
autonomy and the capability to migrate the entire execution unit freely to a foreign
host. At a remote host, the mobile code could relocate again, or it could spawn further
mobile code (thus giving a recursive structure).

Mobile agents introduce new levels of complexity: operating within an environment
that is autonomous; open to security attacks (directed by malicious agents and hosts);
agent server crashes and failure to locate resources (Silva et al., 2000). Without repli-
cation, a mobile agent is a single point of failure whereby all its internal state is lost in
the event of:

e A remote agent server crashing during execution;

e A mobile agent spawning a child and migrating to a remote agent server that crashes.
The child will be orphaned and unable to communicate with its parent;

e A mobile agent spawning a child and subsequently migrating to a remote agent
server. The child will be lost when its agent server crashes. Subsequently the parent
blocks waiting for its child to report back.

An information retrieval mobile agent visits a sequence of remote hosts consuming
information that satisfies criteria provided by its user. At each host the mobile agent
updates its internal state (e.g. to log the cheapest hard disk drive on the behalf of its
user). In the event of an agent server crash all information relating to the current cheapest
buy is lost. Consequently there is significant attention for fault tolerance against mobile
agent loss at agent servers that fail by crashing (Silva et al., 2000; Strasser et al., 1998;
Schneider, 1997; Pleisch and Schiper, 2000; Silva and Popescu-Zeletin, 2000; Vogler et
al., 1997; Mohindra et al., 2000). Some solutions (Silva et al., 2000; Strasser et al., 1998;
Silva and Popescu-Zeletin, 2000; Vogler et al., 1997) employ transaction processing to
satisfy failure dependencies with agent servers, i.e. execution of a mobile agent modifies
its internal state and the state of the agent server. However, for information retrieval
applications, transaction processing solutions are too costly and introduce unnecessary
performance overheads since there are no state dependencies introduced between the
mobile agent and remote agent servers. Furthermore, some solutions (Mohindra et al.,
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2000) introduce fault tolerance into the agent server platform, e.g. mobile agents are
replicated into stable storage upon arrival.

In this paper we propose an exception handling approach that uses mobile shadows
(Pears et al., 2003) to maintain mobile agent availability in the presence of agent server
crashes. An exception handler design is proposed and analysed for performance using
an experimental case study application. Mobile agents filter information, i.e. no state
dependencies are introduced with the agent server. Furthermore there is no stable storage
at remote agent servers. (Stable storage and transaction processing will be addressed in
a future paper.) In Pears et al. (2003) an Ajanta (Tripathi and Karnik, 1998) implementa-
tion was used for a single faulty agent server. This paper presents an IBM Aglets (Oshima
et al., 1998) implementation for a random agent server crash.

This paper has the following structure. Section 2 introduces exception handling for
mobile agents and provides a failure model. Section 3 outlines the exception handler
designs and failure assumptions. Section 4 describes the case study. Section 5 introduces
the experiment. Section 6 analyses exception handler performance. Finally Section 7
provides a conclusion and outlines future work.

2. A Framework for Mobile Agent Fault Tolerance

A mobile agent is a computational entity that is capable of relocating its code and data
to remote hosts to execute a task on behalf of its user. The sequence of hosts that a
mobile agent visits is described by its itinerary. (Weak mobility (Fuggetta et al., 1998)
is assumed in this paper, i.e. the mobile agent restarts its execution at each host.) A
remote host runs an agent server platform that provides an execution environment for
the mobile agent. The home agent server is where the mobile agent is created. Remote
hosts visited by a mobile agent are assumed to execute the same agent server platform.

2.1. Exception Handling Model for Mobile Agents

A mobile agent can be regarded naturally as a software component. Figure 1 illus-
trates an adaptation of the exception model for software components presented in Xu
and Randell (2000) for mobile agents. An agent server AG; offers a set of services
S = {s1,5,...,8,}. A service s; is a software component that a mobile agent manip-

Mobile agent MA ; (spawned by Service s;or mobile agent MA,
service S, or mobile agent MA,) wating for child MA, to return.
i Retry or signal failure exception
Agent Server AG; r;,_ — p
1 [
|L> ‘ MNormal | Exceptional | Mobile agent MA;
. AL___&4 .
Mobile agent MA, service =i external exception
(with response or request |TSPONSE (interface or failure)
; b . A
external exception 4
from service of AG,) [ Normal | Exceptional | Service S,
| E—
local exceptions

Figure 1. Mobile agent exception handling framework.
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ulates by issuing method calls (service requests). A software component (i.e. an agent
or a service) defines its own set of internal or local exceptions I = {e, ez, ..., e,} and
associated handlers IH = {hy, h,, ..., h,} that serve to provide corrective actions. An
internal exception occurrence e; triggers the exceptional activity /; within the software
component. If the exception is successfully handled normal activity resumes and com-
pletes, e.g. a service s; completes its execution by providing a response to the mobile
agent that made the service request. A mobile agent completes its activity by migrating
to the next agent server in its itinerary.

A corrective action performed by a service or mobile agent in response to an internal
exception is application specific and may involve dispatching a compensating mobile
agent CM to interact with service s; at a remote agent server AG;. For example a mobile
agent may spawn a child to cancel a purchase made at AG;_; and locate a cheaper
product because it exceeded its budget.

A service s; signals a set of external exceptions E = {interface, failure} to a mobile
agent when it fails to satisfy the service request.

There are two classifications of external exceptions:

1. interface: input values supplied by the mobile agent violate the service specification.

2. failure: the service is unable to provide a suitable response, e.g. a commerce service
is unable to meet the delivery deadline for a given order.

Upon receiving an external exception the mobile agent may retry service s;, locate a
service at an alternative agent server or report back to either the home agent server or
parent mobile agent.

Figure 1 illustrates that the exception handling framework is recursive. For example,
service s; at agent server AG; may spawn a mobile agent MA; to visit an agent server
AG/ in reaction to a request made by MA;. Similarly mobile agent MA; may spawn child
MA; to perform a delegated task such as information retrieval. Consequently the owner
of a child is either a service or mobile agent. A mobile agent is dispatched a second
time if it crashes or reports a failure exception to its owner. If the owner is a service a
failure exception is signalled to the mobile agent that made the request, provided that
the retry failed and no alternative service could be located. If the owner is a mobile
agent, the failure exception is forwarded to its parent. The relationship between a parent
and child is normally asynchronous. However if the parent depends upon the results
collected from its child a synchronous relationship is introduced, i.e. the parent must
remain stationary until its child returns. For example, assume a mobile agent maybe
dispatched to determine a purchase plan for PC system components, e.g. motherboard,
CPU etc. The mobile agent dispatches a child to determine the best deal for a CPU. Due
to hardware dependencies the parent can only consider a motherboard when its child
returns.

2.2. Failure Model for Mobile Agents

A failure model defines the ways in which failures may occur in order to provide an
understanding of the effects of failure (Coulouris et al., 2001). Ideally, a failure model
should be defined by conducting field-based observations over a large time period for
different systems in operation (Marsden et al., 2002). Information may be collected such
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Table 1.  Mobile agent system failure model.

Class Description
Security There are two types of malicious attacker: agent or host
Malicious agent Example malicious agent attacks include: unauthorised access to services,

denial of service (e.g. recursive cloning), and monitoring agent server and
mobile agent activity.
Malicious host Example malicious host attacks include: denial of execution, masquerading as a

trusted agent server or mobile agent, state corruption, improper execution of
code and modifying system call results.

Communication There are two classes of communication fault: transport and message.

Transport Mobile agent transport failure, e.g. communication link failure or an untrusted
agent is refused permission to execute at an agent server.

Message Message failure due to dynamic location, e.g. out of sequence, duplicate or
corrupted messages.

Software Software faults exist within a mobile agent or a service at the agent server
Invalid inputs or response values from a software service at agent server.
Denied access to service due to heavy load.
Locking failures, e.g. deadlock, livelock.
Crash failures Mobile agent fails to report back to the home agent server
Mobile agent loss Node crash due to hardware or systems software fault.

Agent server crash due to OS process deletion, system software failure or
security attack. All active mobile agents and services at the agent server are
lost.

Mobile agent crash due to deadlock, node or agent server crash.

Application crash A mobile agent blocks waiting to communicate with its child (parent) that has
failed by crashing.

as failure classification, frequency and the activities that lead to failure. However, few
studies exist for mobile agents. So far there are few concrete failure models for mobile
agent systems (Waldo, 2001). To the best of our knowledge the only existing failure
model is Tripathi and Milner (2001). Table 1 illustrates a suggested failure model for
mobile agent systems based on Tripathi and Milner (2001). This will provide the basis
for designing and developing mobile agent fault tolerance schemes.

This paper, in particular, presents a scheme for tolerating mobile agent loss due to
agent server crash failure. Consequently the scheme provides the foundation for the
revised exception handling framework to operate in the presence of agent server crash
failures.

3. A Dynamic Mobile Shadow Scheme for Mobile Agent Fault Tolerance

The mobile shadow scheme employs a pair of replica mobile agents, master and shadow,
to survive remote agent server crashes. It is assumed that the home agent server is always
available. For example, if the home agent server crashes its mobile agents may return to a
replica agent server. The master is created by its home agent server H and is responsible
for executing a task T at a sequence of hosts described by its itinerary. Initially the master
spawns a shadow shadownome at its home agent server before it migrates and executes
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11 master = true 28: pingNotify() { // callback for ping thread }
2: alive = true 29: [alive=false
3: 30:if master {1/ if master then replace shadow ]
4: |// application specific task | 31:  shadowDispatched=false: k = 2
5: execute() 32 prev 1.getPrevDestination( & )
6 33 while !shadowDispatched && prev !=null
7: [/ determine if mobile agent at home agent server | 34 try
8: atHome() 35: shadowProxy=spawnShadow()}
B A 36: pingShadow( prev )
10: run(}{ // mobile agent execution thread | Y H dispatch{shadowProxy, prev)
11 | if master && atHome() | // if master at home } 38: shadowDispatched = true
12: { /l spawn a shadow } 39: catch(UnknownHostException)
13 shadowProxy=spawnShadow() 40: k++
14:  else if master {// if mobile agent is a master} 41: prev=itin.getPrevDestination( & )
15: | /f start thread to ping shadow loc. | : }
16: pingShadow( shadowHost ) 3:
17: execute() | M execute application task | 44: monitorMaster()
18: [ /f spawn a new shadow | 45: | | /f start pinging master |}
19: shadowProxy=spawnShadow() 46: PingThread pinger=new PingThread(masterHost,
20: send(die) [/ terminate previous shadow |} this)
21:  else { // mobile agent is a shadow } 47:  pinger.start()
35 monitorMaster() | // ping master | 48:  while(alive && !receive(die))
23 49: if talive [ // if master crash detected |
24: if master 50: itinskip() | # skip crashed agent
25: [ // migrate to next agent server | server |
26: itin.go() 51; shadowProxy=spawnShadow()
27: ) 52: master = true {#/ change to master
status |
53}

Figure 2. Mobile shadow scheme pseudo code.

at the first agent server in its itinerary, i.e. AG;. Before the master migrates to the next
host in the itinerary, i.e. AG;,1, it spawns a clone or shadow; and sends a die message to
terminate shadownome. The shadow; repeatedly pings agent server AG;4 until it receives
a die message from its master. The functionality of shadow and master roles (Figure 2)
is now discussed with respect to exception handling.

Shadow: A shadow is a clone of the master that acts as an exception handler for a
master crash. The shadow pings its master’s agent server. If a shadow detects a master
crash it raises a local exception to signify master failure. The exception handler skips
the master’s current location and migrates the shadow to the next agent server.

A shadow terminates when it receives a die message from its master. This signifies
the master has completed execution at AG;; and spawned a new clone shadow;,; to
monitor agent server AG;;;. However, assume the master is lost due to an agent server
crash at AG;, |, e.g. AG;y could crash before the master migrates or during execution.
In this case shadow; at AG; detects the master crash, spawns a new clone shadow’; and
visits the next agent server AG;.,. The new master is now shadow;.

Master: A master pings its shadow’s agent server AG,_; concurrently with the exe-
cution of task 7. In the normal case the master completes its execution and spawns a
new clone shadow’ to monitor the next host in the itinerary AG,;,. Before the master
migrates a die message is sent to terminate the shadow at AG;_;. If the master detects
a shadow crash it raises a local exception to signify the failure of its shadow. The mas-
ter’s exception handler then spawns and dispatches a replacement shadow” to the next
preceding active agent server, i.e. AG;_; Before the master migrates to the next host in
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its itinerary it sends a die message to terminate the replacement shadow at AG;_;. It
is assumed that an itinerary and mobile agent have the following meta operations and

state:

Itinerary

e _destinations: queue of agent servers to Vvisit.
e _visited: stack of visited agent servers.

e g0(): remove next agent server in the sequence from _destinations queue and push
onto _visited stack. Dispatch mobile agent to the next agent server.

e skip(): skip next agent server by removing its address from the head of _destinations
queue.

e Joc =itin.getPrevDestination(k): get the address of the kth previous agent server
visited.

Mobile Shadow Design

e [tin: itinerary instance.
e master: true when the mobile agent is a master.
e alive: false when a mobile agent is notified that its shadow or master has crashed.

e dieProxy: proxy reference to shadow that the master will terminate before it is
dispatched to next agent server.

e shadowProxy: proxy reference to master’s shadow.
e masterHost: address of master agent server that shadow pings.

e shadowHost: address of shadow agent server that master pings.

o shadowProxy = spawnShadow(): spawn a new replica and return its reference. The
dieProxy is updated to reference the master’s previous shadow and master = false
in the replica. If the agent is a shadow that has detected its master has crashed then
masterHost is set to the next available host in the itinerary. If the agent is a master
then masterHost is the next host visited in the itinerary. shadowHost is always the
address of the current agent server.

o PingThread(HostName, proxy): thread that pings host HostName. The mobile agent
proxy is notified of a crash by sending it a pingNotify message.
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e dispatch(proxy, HostName): dispatch mobile agent proxy to agent server HostName.
e send(die): message master sends to terminate shadow.

e receive(die): shadow listens for die message sent by its master for termination.

o receive(pingNotify): notification of a master or shadow crash.

e execute(): start execution at the current agent server.

e atHome(): return true if at home agent server.

Figure 2 describes the protocol. When the master starts at its home agent server (line
11), i.e. atHome() = true, it spawns a shadow (line 13) and migrates to the first host in
the itinerary (line 26). If the mobile agent is a master and is at a remote agent server
(line 14) it creates a thread to ping its shadow (line 16). Before the master migrates to
the next agent server it spawns a new shadow (line 19) and sends a die message (line
20) to terminate the old one.

However, if the mobile agent is a shadow, i.e. master = false, it invokes monitorMas-
ter() (lines 44-53) which creates a ping thread to monitor the master’s current agent
server. Pinging continues if the master is alive and has not dispatched a die message, i.e.
alive = true and !receive(die).

If the ping thread detects a crash the pingNotify() callback method is invoked (lines
28-42) and the alive flag is set to false to trigger exception handling activity. If the mobile
agent is a master then the shadow exception handler is activated (lines 31-41) to spawn a
replacement shadow at the first active previous agent server, itin.getPrevDestination(k).
The master can then ping the location of the new shadow (line 36). Alternatively if
the mobile agent is a shadow then master exception handling activity is activated (lines
49-52). The master exception handler spawns a new shadow and initialises the shadow
to become the new master, i.e. master = true.

The mobile shadow exception handler offers the advantage that all agent servers are
not revisited in the event of a crash failure since a replica is available at an agent server
that precedes the master. Consequently there is less information loss. However, greater
performance overheads are imposed on a mobile agent since a replica must be spawned
by the master before it migrates to the next host in its itinerary. Furthermore a limited
number of remote agent server crashes are addressed.

In this research the following assumptions are made to tolerate loss of mobile agents
from agent server crashes:

e Reliable communication links are assumed.
e All agent servers are correct and trustworthy.

e A mobile agent crashes when its current local agent server halts execution due to a
host crash or fault in the agent server process.
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e No stable storage mechanism is provided at visited agent servers for the recovery of
executing agents.

e At least once failure semantics are assumed whereby the agent performs its desig-
nated task at least once. If an agent server crashes it is possible to repeat the task at
agent servers ignoring those that crashed.

e A mobile agent ignores crashed agent servers.

e A mobile agent visits agent servers to consume information, i.e. agent server state
is not modified.

e There are no simultaneous crashes of the agent servers where the master and shadow
are operating.

3.1. An Aternative Design: Timeout

We now consider a timeout-based scheme for the purpose of comparison and evaluation.
In this scheme a crash exception handler at the home agent server is associated with a
group of independent mobile agents dispatched to perform an information retrieval task.
The handler (Figure 3) waits for a timeout period and resends mobile agents that did not

return.
The following meta operations and state are provided at the home agent server:

1. task(): create dispatch list and send a group of mobile agents to perform an infor-
mation retrieval task.

2. dispatch: list of dispatched mobile agents.
3. add(A, dispatch): add a mobile agent A to the dispatch list.

4. remove(A, dispatch): remove mobile agent A from the dispatch list. A mobile agent
is removed from the dispatch list when it returns home.

5. handler(): crash exception handler that executes after task operation completed.
6. handlerTimeOut(t). wait for t seconds

7. handlerResend(dispatch): resend mobile agents in dispatch list.

while !dispatch.isEmpty() {//while agents to send}
handlerTimeOut(t) {// wait t seconds}

Figure 3.  Timeout scheme pseudo code.
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The time out exception handler tolerates any number of agent server crash failures with
no additional overheads imposed on mobile agents and remote agent servers. However, in
the event of an agent server crash all agent servers are revisited. Furthermore it is difficult
to select a timeout value in asynchronous systems since there are no established bound-
aries for processor speed and communication delay. If an aggressive timeout value is used
many duplicate agents are dispatched, e.g. a mobile agent may not return within the time-
out period if it executes at one or more slow agent servers. If a conservative timeout value
is chosen the application blocks until timeout expiry, even when some mobile agents
return.

4. A Case Study Application

This research employs a case study application using IBM Aglets (Oshima et al.,
1998) to provide an experimental environment for the simulation of agent server crash
failures and subsequent analysis of the exception handler design. A frequently adopted
application domain for mobile agents is within an electronic commerce business supply
chain.

4.1. General Requirements

The supply chain case study scenario (Figure 4) executes within a local area network,
each node hosting an agent server that represents a supplier of computer hardware
components. The system enables each supplier to replenish stock using mobile agent
technology. A mobile agent is dispatched for each product component to several known
suppliers to dynamically determine the best deal with respect to delivery date and
price.

A supplier provides a mobile agent server, capable of hosting mobile agents from
other suppliers. It is assumed that each supplier hosts the same agent server platform
that consists of a proxy to a data source (catalogue) enabling mobile agents from other
suppliers to query item prices and availability.

The following sections discuss the architecture further looking at the interaction
between the mobile agent and the seller for determining the best buy.

xml order criteria

Supplier X  Supplier Y Suppher Z

Figure 4.  Supply chain architecture.
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Figure 5. Interaction sequence for querying supplier product catalogue.

4.2. Using Mobile Agents to Obtain Estimates

An XML shopping list describes the order criteria for each product. Order criteria
include the class of the product (e.g. motherboard), required stock, delivery date, search
criteria parameters and a list of suppliers.

The buying subsystem is responsible for parsing the XML file and constructing an
object graph of components. The object graph is traversed to create a mobile agent for
each component, initialised with an itinerary of suppliers, search criteria and constraints
(delivery date and stock). At each supplier’s agent server the mobile agent queries the
product catalogue to determine the best buy advertised by the supplier that satisfies the
given order criteria. Provided the best buy is competitive the mobile agent updates its
best buy parameter and visits the next agent server in its itinerary.

4.3. The Supplier Interface

Every supplier hosts an agent server to provide a static DataSourceManager agent that
visiting mobile agents interact with to retrieve a proxy to the product catalogue (Figure 5).
A DataSourceManager agent listens for connect messages and responds by spawning
a SalesAgent and returning its proxy to the sender. A SalesAgent is a static agent that
provides mobile agents with an interface to the supplier product. A mobile agent queries
the product catalogue by sending an execute_query message to the SalesAgent proxy
with the following parameters:

e product class: the class of product, e.g. hard drive.

e product criteria: search criteria, e.g. a CPU has criteria regarding speed and hard-
ware interface.

e order: order constraints, i.e. stock and delivery date.

In response to an execute_query message the SalesAgent returns a list of matching
items that satisfy both the product and order criteria. For a given business domain
the SalesAgent must implement an interface for product queries. For example “pub-
lic Estimate[] Query Case(String form Factor, int intCapacity, int extCapacity, String
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style, Order 0)” represents a method to query estimates for case units that match a
specific form factor, internal bay capacity, external bay capacity and design style. Each
method represents a specific product query and accepts an Order object. A matching
product is represented as an Estimate object. An Order object encapsulates the order
constraints including total stock and required delivery date. The Estimate object en-
capsulates matching product details including item id, total stock and delivery date.
The appropriate method is invoked in the SalesAgent depending upon the product class
provided in the execute_query message. Figure 5 illustrates a simple example for a 1.2
Ghz socket A CPU.

5. [Experimental Evaluation

The aim of the experimental evaluation is to apply the case study to analyse the per-
formance of the crash exception handler design in the presence of a single agent server
crash.

A single mobile agent will visit three suppliers to determine the best buy for fifteen 8
GB IDE hard drives. For simplicity, each supplier represents its product catalogue using
Mysql 3.23 with JDBC driver 2.0.8. The experiment is performed on a 10 Mbps LAN
using four 64 MB Intel Pentium I 400 MHz (Celeron) PC’s running RedHat Linux 7.2
and IBM Aglets (Oshima et al., 1998).

5.1. Simulating a Random Crash

To simulate a crash the mobile agent terminates an agent server using the Java command
System.exit(l). Permission to terminate the Java virtual machine is assigned in the
security policy file for each supplier agent server. The CrashSimulator class (Figure 6)
is initialised with the total number of suppliers to visit (iTripSize). A random number
is generated (iCrashindex) to represent the nth visited supplier that will crash, i.e. 0 <
iCrashindex <= iTripSize. Before a mobile agent migrates to the next agent server in its
itinerary it increments the total number of hosts visited (iVisited), i.e. crash.increment().
When execution begins at the next agent server the mobile agent determines if it is at
the agent server selected to crash (iVisited = = iCrashlndex). This is done by invoking
CrashSimulator.crash(). If so, the mobile agent terminates the agent server.

CrashSimulator

int iTripSize
int iVisited
int iCrashIndex

CrashSimulator(int TripSize)

CrashSimulator(int TripSize, boolean ShadowCrash)
void increment()

boolean crash()

Figure 6. CrashSimulator class.
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The crash simulation outlined above is applicable to a master crash. To simulate a
shadow crash the master delegates the responsibility of terminating the agent server to its
shadow. Furthermore a random number must be generated in the range 0 < iCrashlndex
< =1TripSize-1 since it is assumed that when a master returns back to the home agent
server it discards its shadow. Consequently the crash simulator class provides a second
constructor CrashSimulator(TripSize, ShadowCrash).

5.2. Performance measurements

Two performance measures are obtained to gain an insight into the overheads introduced:

e Normal round trip time: time taken to complete an itinerary and return to home
agent server with the best buy. Visited agent servers suffer no crash failures.

e Crash round trip time: time taken to complete an itinerary and return to home
agent server with the best buy in the presence of one agent server crash.

Furthermore, the performance overheads in Figure 7 are measured in the event of a
single agent server crash.

To simulate a random agent server crash the mobile agent state is augmented with
an instance of the CrashSimulator class in addition to performance measurements. To
provide accurate normal and crash round trip times there are two sets of normal round trip
times:

1. Normal round trip time assumes an augmented mobile agent state that includes an
instance of the CrashSimulator class and performance variables.

2. Normal round trip time assumes no augmented mobile agent state.

6. Results and Analysis

The normal and crash round trip times are obtained from forty trial runs. Under normal
conditions, the same mobile agent is dispatched forty times. When a crash is simulated,
the agent server is reset before the next trial.

Master crash Shadow crash
1. Time to spawn and start 1. Time for master to
shadow detect shadow failure
2 Time for shadow to detect 2. Time for master to
master failure spawn replacement
3. Time for shadow to spawn .

and start shadow

Figure 7. Performance measurements.
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Figure 8. Mobile shadow trip times.

6.1. Round Trip Time Performance

A comparison of crash round trip times for the crash of a master and a shadow are
illustrated in Figure 8. Performance calculations for the mobile shadow scheme impose
a minor increase of 0.50% on the round trip times. In the results that follow, the normal
round trip time reflects no state augmentation with performance calculations or the
CrashSimulator class.

The mobile shadow scheme provides an average normal round trip time of 2.1 s.
When fault tolerance measures are exercised in the presence of a single agent server
crash the round trip time significantly increases. A shadow crash offers a quicker round
trip time of 13.8 s (11.7 s increase) compared to 14.6 s (12.5 s increase) for a master
crash. A shadow crash performs quicker since the shadow terminates its agent server
while its master is in transit. Consequently the ping thread detects the crash early
before the mobile agent begins application execution. The following sections analyse
the performance overheads for a master and shadow crash.

6.2. Exception Handler Overheads

Figure 9 illustrates the performance overheads for both a master and shadow crash. The
time taken to spawn and start a shadow is negligible for both a master and shadow crash.
For example, when handling a master crash, the average time to spawn a shadow or a
sub-shadow is 159.4 ms (0.16 s) and 76.5 ms (0.08 s) respectively.

The largest overhead is the time taken for a shadow to detect its parent’s agent server
crash (4.4 s). This is explained by the concurrent execution of the shadow and its ping
thread. Every shadow starts a thread to ping its master’s agent server. The ping thread
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Figure 9.  Performance overheads of mobile shadow exception handler.

pings until it detects a crash and notifies the blocked shadow. Similarly the master pings
its shadow concurrently.

The mobile shadow exception handler demonstrates a significant increase to the round
trip time when fault tolerant measures are activated in the event of an agent server crash.
A shadow crash marginally offers the quicker round trip time with a saving of 0.4 s.

With respect to the exception handling model presented in Section 2.1, the mobile
shadow scheme provides a fault tolerant service for maintaining mobile agent availability
in the presence of agent server crashes. This service is embedded within the mobile agent.
Provided that developers use a mobile shadow agent, the exception handler is invoked
during the mobile agent trip.

So far the mobile shadow exception handler scheme is recursive for child mobile
agents, provided there is no synchronous relationship between the child and parent.
Furthermore the shadow does not notify the home agent server in the event of a master
crash, i.e. the shadow skips the crashed agent server and continues at the next host in
the itinerary. In the worst case scenario a mobile agent may visit none of the hosts in
its itinerary if all have crashed. One solution is to use an itinerary pattern (Tripathi and
Milner, 2001) whereby the mobile agent logs the success for each itinerary entry. The
home agent server can take appropriate action when the mobile agent returns, e.g. a
mobile agent may be dispatched to all failed agent servers.

The guardian exception handling model presented in Tripathi and Milner (2001)
provides a guardian at the home agent server that encapsulates recovery behaviour for
exceptions that cannot be handled by mobile agents. The guardian may also be used to
co-ordinate recovery of mobile agent groups. In the exception handling model presented
in Section 2, the guardian may encapsulate the recovery behaviour at the home agent
server when a mobile agent fails to retry or locate an alternative software service.

6.3. Timing Issues

Figure 10 indicates the crash trip time for both mobile shadow and timeout schemes.
The mobile time out scheme offers a quicker average normal and crash round trip,
i.e. 3 s and 23.2 s respectively. This is compared to the mobile shadow scheme that
provides an average of 22.2 s and 39.6 s. However, the crash trip time for the timeout
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Figure 11. Timeout overheads.

scheme depends upon the total agent servers visited. Longer trips need a larger timeout,
increasing the crash round trip time. The mobile shadow scheme is independent of trip
length and consequently may perform better for longer trips.

Figure 11 illustrates the performance overheads for the timeout exception handler
scheme. The timeout exception handler has insignificant times for initialising a record
of agents to dispatch (0.1 ms) and resending those agents (0.6 s) that failed to return. Both
measures fall within 1 second. However these measures were obtained from dispatching
a single mobile agent.

The major performance overheads for the mobile timeout exception handler are the
timeout period (20 s) and recovery time (20.7 s). The recovery time represents the time
to resend agents that have not returned in addition to the timeout period that elapsed
when the handler completed.

To summarise, the mobile shadow scheme provides the foundation for using the
exception handling framework in information retrieval environments where mobile
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agent loss must be tolerated. The scheme offers two advantages. Firstly, mobility and
replication provide fault tolerance during the mobile agent trip, i.e. an exception handler
that is independent of trip length migrates with the mobile agent. This is compared to
a timeout scheme (Pears et al., 2003) where the application developer must vary the
timeout interval for different trip lengths. Secondly, the scheme is useful for groups of
collaborative information retrieval mobile agents since the master and shadow comprise a
single fault tolerant group member. Alternative schemes exist (e.g., Strasser et al., 1998;
Pleisch and Schiper, 2000; Silva and Popescu-Zeletin, 2000), that replicate a mobile
agent at each stage of its itinerary to an anticipated set of agent servers. However this
may introduce a complex design for collaborative information retrieval mobile agents,
i.e. for one mobile agent group member a group of replicas must exist at alternative
agent servers for each itinerary stage.

7. Conclusions and Future Work

This paper has presented an exception handling scheme for tolerating crash failures
of mobile agents in an autonomic environment that satisfies the failure assumptions
outlined in Section 3. Results and analysis show that the scheme leads to an increase in
the round trip time when fault tolerance measures are exercised. However the scheme
offers the advantage that fault tolerance is provided during the mobile agent trip, i.e. in
the event of an agent server crash all agent servers are not revisited. Furthermore, it is
believed that the scheme is simple to employ for collaborative groups of information
retrieval mobile agents.

Potential areas of future work involve the experiment and exception model. Firstly, a
stricter failure model could be introduced to enforce exactly once semantics. Secondly,
a simulation system may be built to measure the cost of schemes in different failure
environments (Park et al., 2002). Finally the exception model could be extended for
mobile agent groups (Nagamuta and Endler, 2002; Macedo and Silva, 2001).

Further research is underway regarding an exception model for groups of mobile
agents. Process groups, e.g. (Renesse et al., 1996; Moser et al., 1996), are traditionally
used for reliable event communication. The process group abstraction may be
considered for communicating exception events between a group of mobile agents.
However, adapting process groups for mobile agents is difficult since the location of
mobile agents dynamically changes.
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