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Abstract
Nanomaterials usually have specific characteristics due to their incredibly tiny size, which also increases their surface area, 
providing a more interactive surface. Compared to their macro-sized counterparts, these tiny nanoparticles exhibit a multi-
tude of size-dependent properties. Plant tissue culture (PTC) plays an important role in bioactive chemical synthesis, mass 
cultivation, protection, genetic control, and plant enhancement. Different nanoparticles (NPs) are utilized to improve the 
tissue culture responses of explants. Various nanoparticles, including cobalt, copper, silver, gold, zinc, selenium, titanium, 
iron, palladium, cerium, indium, manganese, aluminum, barium, silicon, nickel, zirconium, and their oxides, are used in 
this regard. Nowadays, it is critical to use nanosystems in conjunction with PTC for mass reproduction, conservation, 
genetic engineering, crop enhancement, and the synthesis of bioactive compounds. Nanostructured metal oxides play an 
important role in in vitro plant cultivation. The use of metal nanoparticles (MNPs) has successfully removed microbial 
contaminants from explants and had a favorable impact on organogenesis (increasing the growth of shoots, roots, and 
multiplication ratios), callus induction, metabolic changes, and the synthesis of secondary metabolites (NPs are used as 
elicitors or stress agents). Additionally, NPs cause somaclonal variation (modifications to DNA), improve cryopreservation 
(increasing the survival rate), and enhance genetic transformation (facilitating gene transformation to bypass the plant cell 
wall barrier and accelerating protoplast isolation). This review aims to summarize the current breakthroughs achieved by 
integrating nanotechnology with PTC.
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Introduction

The biosphere naturally contains nanoparticles (NPs) due 
to hydrothermal activity and volcanic eruptions. These par-
ticles have a large ratio of relative surface area to volume 
and at least one dimension smaller than 100 nm (Večeřová 
et al. 2016). NPs have recently gained significance in many 
industries including energy, healthcare, environment, and 
agriculture. Among these, nanomedicine, in particular, is 
widely accepted as a tool for improving the diagnosis and 
treatment of human diseases. A wide array of biotechno-
logical instruments could be transformed by nanotechnol-
ogy, becoming more individualized, less expensive, more 
portable, safer, and simpler to use. It is possible for poorly 
soluble, poorly absorbed, and labile physiologically active 
molecules to be converted into promising deliverable chem-
icals by means of nanotechnologies (Hasan 2015).

NPs can be synthesized by physical, chemical, or biolog-
ical (green synthesis) methods. Considering some adverse 
effects like toxic products production, requirement of spe-
cific instrumentation, and economically high expenditure, 
the biological method is the most convenient, more stable, 
faster, and eco-friendly alternative. Biological method uses 
plant extracts, plant wastes, enzymes, algae, fungi and 
microorganisms (Prasad et al. 2019; Gericke and Pinches 
2006). NPs show remarkable properties and vary widely 
according to their morphology, dimensions, composition, 
uniformity states, and agglomeration. Metal-, carbon-, com-
posite- and organic-based NPs are examples of nanomateri-
als (Sengul and Asmatulu 2020).

A shell consisting of either organic or inorganic mate-
rial or metal oxide often encases the inorganic metal core 
that forms the basis of metal nanoparticles (MNPs) (e.g., 
gold, silver, platinum, zinc, iron, etc.) or their compounds 
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(e.g., oxides, sulfides, chlorides, hydroxides, etc.). They 
are prepared by adding metal salt solution (precursor) to 
the plant extract (reducing agent). A change in colour is the 
first indication of the formation of MNPs. NPs characteriza-
tion can be confirmed using UV-visible spectroscopy, XRD, 
SEM and TEM. An absorption peak associated to the sur-
face plasmon resonance (SPR) and collective oscillations of 
conduction band electrons in response to electromagnetic 
waves can be seen in the UV-visible spectrum of synthe-
sized MNPs, confirming the reduction process and success-
ful synthesis of metallic NPs (Nasrollahzadeh et al. 2019; 
Piñón-Segundo et al. 2013).

The in vitro aseptic cultivation of cells, tissues, organs, 
or complete plants under strict environmental controls is 
known as tissue culture. PTC systems provide a highly con-
trolled and reproducible environment, making them ideal 
tools for investigating the multifaceted effects of nanopar-
ticles. Clones of plants are frequently created using this 
technique. The clones produced are true to the genotype 
that was chosen. Regardless of the season or weather, a 
single explant can be reproduced into thousands of plants 
in a very short time and space (Sengul and Asmatulu 2020). 
In addition to being utilized as a research instrument, PTC 
approaches have become increasingly significant in the 
industrial domains of agriculture, horticulture, forestry, 

plant propagation, disease eradication, crop improvement, 
and the production of secondary metabolites. This is due to 
the widespread use of tissue culture technology for large-
scale plant multiplication. In PTC, there are several papers 
that demonstrate the beneficial effects of nanotechnology. 
Research on crop improvement, plant breeding, commercial 
plant micropropagation, functional gene studies, the devel-
opment of transgenic plants with industrial and agronomical 
traits, the removal of viruses from infected materials to pro-
duce healthy, high-quality plant material, the conservation 
and preservation of genetic resources, and more are some 
examples of these (Loyola-Vargas and Ochoa-Alejo 2018; 
Oseni et al. 2018; Tariq et al. 2020).

Reactive oxygen species (ROS), a primary source of tox-
icity, can be produced by NP exposure, according to both in 
vitro and in vivo research (Sengul and Asmatulu 2020). In 
normal plants, ROS is a consequence of aerobic metabolism 
and is used as a signaling molecule. Nevertheless, when 
ROS levels rise above a certain point, a range of detrimental 
consequences known as oxidative stress can occur. These 
include membrane damage, DNA damage, protein oxida-
tion, electrolyte leakage, and lipid peroxidation, all of which 
ultimately demolish the cell. (Yang et al. 2017; Fig. 1).

Fig. 1  Toxic and non-toxic effects of MNPs on cells
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the effects of AgNPs antibacterial activity on the in vitro 
establishment of the G N15 (almond-peach hybrid) root-
stock in comparison to the control group. AgNPs consid-
erably decreased external and internal contaminations 
whether incorporated into the culture medium directly or 
via immersion; however, immersion had less of an impact 
on bacterial and fungal contamination (Arab et al. 2014). 
After surface sterilization, treatment with 100 mg/L AgNPs 
solution resulted in the highest percentage of disinfected 
explants (89%). The characters measured were unaffected 
by the AgNPs solution.

AgNPs was found to have a high potential for eliminating 
bacterial contamination from PTC processes. The change of 
cell membrane structure and function is just one of the any 
biological processes that silver is known to disrupt microor-
ganisms. Although the precise antibacterial action of silver 
is poorly known, it also affects the expression of proteins 
linked to ATP generation. Transmembrane ATP synthesis 
and ion transport across cell membranes are mediated by the 
proteins. According to Lok et al. (2006), upon engagement, 
both AgNPs and Ag (+) ions modify the three-dimensional 
structure of proteins, beak the disulfide bonds, and obstruct 
active binding sites, leading to broad functioning issues 
within the microbe. Another connection between AgNPs’ 
bactericidal action and sugar metabolism blockage has been 
made. As a result of interacting with AgNPs, the enzyme 
phosphomannose isomerase (in glycolytic cycle) is ren-
dered inactive and results in diminished sugar metabolism 
(Bhattacharya and Mukherjee 2008). According to Dakal et 
al. (2016) study, the AgNP-DNA interaction may result in 
DNA denaturation or shearing as well as halting division 
of cells.

The elimination of endogenous and foreign contaminat-
ing bacteria is essential for the successful tissue culture of 
all plants. The two types of microorganisms that are most 
frequently found in plant tissues are fungi and bacteria. The 
tobacco tissue culture treated with AgNPs (35 nm) had the 
same outcomes (Abdi et al. 2008; Safavi et al. 2011a, 2011b; 
Table 1). When compared to other antibacterial agents, NPs 
offers long-term residual that is completely safe and works 
quickly. This technology might significantly reduce the 
cost of managing plant diseases, and it would undoubtedly 
enhance profits in the areas where it is used (Shanmugam et 
al. 2015; Fig. 2).

MNPS in in vitro response of explant, calli, seed, 
shoot and root

MNPs have garnered considerable interest in agricultural 
and biotechnological studies owing to their potential utility 
in PTC, namely in the stimulation of callus formation and 
organ development (Dikshit et al. 2021; Mohammadinejad 

This article aims to highlight the beneficial properties of 
MNPs in PTC and to conduct an in-depth analysis to identify 
the best MNPs currently available for in vitro propagation.

Application of MNPS

Application of nanostructured metal oxides in in vitro plant 
cultivation ranges from effective removal of microbial con-
taminants and promoting organogenesis, callus induction, 
metabolic changes, secondary metabolite synthesis, soma-
clonal variation, cryopreservation and genetic transforma-
tion, thereby enhancing protoplast isolation and cell wall 
modifications.

MNPS as surface disinfectant and sterilizer

Micropropagation is a highly successful method for produc-
ing a large number of plants quickly. It is also useful for 
plant breeding. However, one of the biggest challenges it 
faces is microbial contamination, which can lead to the loss 
of valuable stocks and the lower plant quality. Therefore, 
the sterilization of culture material is a crucial step in plant 
micropropagation. Regulators of plant development and 
the nutritional elements of the culture medium can, regret-
tably, lose some of their efficacy when exposed to sterilized 
media. If NP is used as a culture medium ingredient, it can 
reduce the cost of micropropagation and improve the quality 
of plants and in addition it acts as a sterilizer (Tung, 2021).

TiO2NPs are excellent bactericides with an aseptic effect, 
with no detrimental impact on callus quality (Mandeh et al. 
2012). Copper nanoparticles (CuNPs) enhanced the sur-
face disinfection of somatic embryos in tuberous begonias 
(Begonia x tuberhybrida Voss) in an in vitro study con-
ducted by Bao et al. (2022).

Incorporation of ZnNPs and ZnONPs on growth media 
at various concentrations can successfully eradicate micro-
bial contaminants in in vitro cultures of Banana with no 
detrimental effects on regeneration (Helaly, 2014). ZnONPs 
have been shown to reduce contamination and improve the 
recovery of Coffea arabica leaf explants cultivated in vitro 
(Devasia et al. 2020). In Murashige and Skoog (MS) media 
containing 25 mg/L of ZnONPs, the highest explant recov-
ery was seen.

The most harmful endophytic plant-pathogenic fun-
gus, Colletotrichum gloeosporioides is responsible for the 
anthracnose disease that affects many economically sig-
nificant plants. Through in vitro direct and indirect model 
systems, bioactive bile salt sodium deoxycholate (NaDC) 
encapsulated silver nanoparticles (AgNPs) successfully 
decreased the endophytic fungus with no damage to treated 
plants (Shanmugam et al. 2015). Another best result was 

1 3

33  Page 4 of 18



Plant Cell, Tissue and Organ Culture (PCTOC) (2024) 158:33

N
o.

N
an

op
ar

tic
le

s
R

ol
e

Pl
an

t
R

ef
er

en
ce

s
1.

A
gN

Ps
A

n 
in

cr
ea

se
 in

 su
rv

iv
or

sh
ip

 a
nd

 th
e 

av
er

ag
e 

nu
m

be
r o

f n
ew

 sh
oo

ts
 p

er
 e

xp
la

nt
.

Te
co

m
el

la
 u

nd
ul

at
a

A
gh

da
ei

 e
t a

l. 
20

12
2.

A
gN

Ps
R

ed
uc

e 
th

e 
in

fe
st

at
io

n 
of

 p
hy

to
pa

th
og

en
s, 

ha
st

en
 th

e 
gr

ow
th

 o
f r

oo
ts

 a
nd

 sh
oo

ts
, a

nd
 h

as
 a

 g
re

at
 p

ot
en

tia
l 

fo
r r

es
is

ta
nc

e 
to

 st
re

ss
.

G
ra

y 
po

pl
ar

 (P
op

ul
us

 ×
 c

an
es

-
ce

ns
 A

ito
n.

 S
m

.)
Va

sy
uk

ov
a 

et
 a

l. 
20

21

3.
A

gN
Ps

Su
rf

ac
e 

di
si

nf
ec

ta
nt

.
Vi

tis
 v

in
ife

ra
G

ou
ra

n 
et

 a
l. 

20
14

4.
A

gN
Ps

R
ed

uc
in

g 
ba

ct
er

ia
l a

nd
 fu

ng
al

 c
on

ta
m

in
at

io
n 

in
 c

ul
tu

re
 m

ed
iu

m
.

G
 N

15
 (a

lm
on

d-
pe

ac
h 

hy
br

id
)

A
ra

b 
et

 a
l. 

20
14

5.
A

gN
Ps

H
ig

he
st

 se
ed

 g
er

m
in

at
io

n.
Ar

te
m

is
ia

 a
bs

in
th

iu
m

H
us

sa
in

 e
t a

l. 
20

17
6.

A
gN

Ps
Pr

ol
ife

ra
tio

n 
of

 c
al

lu
s.

Pr
un

el
la

 v
ul

ga
ri

s
Fa

za
l e

t a
l. 

20
16

7.
A

gN
Ps

Pr
od

uc
tio

n 
of

 o
le

fin
 e

th
yl

en
e,

 p
ro

m
ot

e 
ex

pl
an

t l
ife

tim
e 

an
d 

m
ul

tip
lic

at
io

n.
Te

co
m

el
la

 u
nd

ul
at

e
Sa

rm
as

t, 
20

15
8.

A
gN

Ps
Pr

od
uc

tio
n 

of
 a

lo
in

.
Al

oe
 V

er
a

R
ae

i e
t a

l. 
20

14
9.

A
gN

Ps
St

im
ul

at
e 

se
co

nd
ar

y 
m

et
ab

ol
ite

 sy
nt

he
si

s.
C

at
ha

ra
nt

hu
s r

os
eu

s
Sh

ah
in

 2
01

8
10

.
A

gN
Ps

En
ha

nc
ed

 a
nt

io
xi

da
nt

 a
ct

iv
ity

.
Pr

un
el

la
 v

ul
ga

ri
s

Fa
za

l, 
20

16
11

.
A

gN
Ps

H
yp

er
hy

dr
ic

ity
 re

ve
rs

al
.

D
ia

nt
hu

s c
hi

ne
ns

is
Sr

ee
le

ks
hm

i e
t a

l. 
20

22
12

.
A

gN
Ps

El
ev

at
io

n 
of

 p
ro

lin
e,

 p
ro

te
in

, c
ar

bo
hy

dr
at

es
, c

ar
ot

en
oi

ds
, a

nd
 c

hl
or

op
hy

ll 
A

 a
nd

 B
.

Ph
oe

ni
x 

da
ct

yl
ife

ra
El

sa
yh

, 2
02

2
13

.
A

gN
Ps

Is
ol

at
io

n 
of

 p
ro

to
pl

as
t.

N
ic

ot
ia

na
 ta

ba
cu

m
B

an
so

d,
 2

01
5

14
.

A
gN

Ps
El

im
in

at
e 

th
e 

ad
ve

rs
e 

eff
ec

t o
f A

gr
ob

ac
te

riu
m

-m
ed

ia
te

d 
tra

ns
fo

rm
at

io
n.

Te
co

m
el

la
 u

nd
ul

at
e,

 N
ic

ot
ia

na
 

ta
ba

cu
m

Sa
rm

as
t a

nd
 S

al
eh

i 2
01

6

15
.

A
gN

Ps
En

ha
nc

e 
to

ta
l p

he
no

lic
, fl

av
on

oi
d 

co
nt

en
t, 

an
d 

hi
gh

 p
ha

rm
ac

ol
og

ic
al

 a
ct

iv
iti

es
.

M
om

or
di

ca
 c

ha
ra

nt
ia

C
hu

ng
 e

t a
l. 

20
18

16
.

A
gN

Ps
C

al
lu

s p
ro

lif
er

at
io

n,
 in

cr
ea

se
d 

ca
llu

s b
io

m
as

s, 
hi

gh
er

 p
ro

du
ct

io
n 

of
 p

he
no

lic
s, 

fla
vo

no
id

s a
nd

 a
nt

io
xi

da
nt

 
ac

tiv
ity

.
C

ar
al

lu
m

a 
tu

be
rc

ul
at

a
A

li 
et

 a
l. 

20
19

17
.

A
gN

Ps
In

cr
ea

se
d 

pr
od

uc
tio

n 
of

 c
ap

sa
ic

in
.

C
ap

si
cu

m
 fr

ut
es

ce
ns

B
ha

t a
nd

 B
ha

t 2
01

6
18

.
A

gN
Ps

M
or

e 
nu

m
be

r o
f m

et
ax

yl
em

.
M

us
a 

ac
um

in
at

a
V

id
ya

la
ks

hm
i e

t a
l. 

20
17

.
19

.
A

gN
Ps

El
ev

at
ed

 p
ro

du
ct

io
n 

of
 ta

xo
l.

C
or

yl
us

 a
ve

lla
na

Ja
m

sh
id

i e
t a

l. 
20

16
20

.
A

gN
Ps

C
el

lu
la

r a
cc

um
ul

at
io

n 
of

 b
is

xa
nt

ho
ne

, g
an

ca
on

in
 O

 a
nd

 fu
sa

ro
sk

yr
in

.
H

yp
er

ic
um

 p
er

fo
ra

tu
m

K
ru

sz
ka

 e
t a

l. 
20

22
21

.
A

gN
Ps

In
cr

ea
se

 su
rv

iv
al

 ra
te

 in
 c

ry
op

re
se

rv
at

io
n.

Pi
nu

s r
ad

ia
ta

TP
U

, 2
01

8
22

.
A

l2
O

3 
N

Ps
A

n 
in

cr
ea

si
ng

 e
ffe

ct
 o

n 
ph

ys
io

-b
io

ch
em

ic
al

 a
ct

iv
iti

es
 su

ch
 a

s c
ar

ot
en

oi
d 

co
nc

en
tra

tio
ns

, c
hl

or
op

hy
ll 

a,
 

ch
lo

ro
ph

yl
l b

, a
nd

 sh
oo

t a
nd

 ro
ot

 le
ng

th
s a

s w
el

l a
s g

ro
w

th
 a

ttr
ib

ut
es

 in
cl

ud
in

g 
fr

es
h 

w
ei

gh
t, 

dr
y 

w
ei

gh
t, 

an
d 

le
af

 a
re

a.

H
ib

is
cu

s s
ab

da
ri

ffa
A

bd
el

 L
at

ef
 e

t a
l. 

20
20

23
.

A
l2

O
3 

N
Ps

Im
pr

ov
ed

 p
ro

te
in

, s
ug

ar
, a

nd
 p

ig
m

en
t c

on
ce

nt
ra

tio
ns

 a
s w

el
l a

s s
ee

dl
in

g 
gr

ow
th

.
Br

as
si

ca
 o

le
ra

ce
a 

va
r. 

ca
pi

ta
ta

A
m

is
t e

t a
l. 

20
17

24
.

A
uN

Ps
In

du
ce

d 
m

ax
im

um
 c

al
lu

s p
ro

lif
er

at
io

n,
 b

io
m

as
s a

cc
um

ul
at

io
n,

 p
he

no
lic

s a
nd

 fl
av

on
oi

d 
co

nt
en

t.
Pr

un
el

la
 v

ul
ga

ri
s

Fa
za

l e
t a

l. 
20

16
25

.
A

uN
Ps

In
cr

ea
se

 th
e 

gr
ow

th
 o

f s
ho

ot
, r

oo
ts

 a
nd

 m
ul

tip
lic

at
io

n 
ra

tio
. P

la
nt

 lo
ng

ev
ity

 a
nd

 q
ua

lit
y 

ar
e 

in
cr

ea
se

d.
 

Th
e 

in
du

ce
d 

m
et

ab
ol

ic
 a

nd
 g

en
et

ic
 c

ha
ng

es
 c

an
 m

od
ify

 th
e 

ph
en

ot
yp

ic
s.

La
m

pr
oc

ap
no

s s
pe

ct
ab

ili
s

K
ul

us
 e

t a
l. 

20
22

26
.

A
uN

Ps
In

cr
ea

se
d 

se
co

nd
ar

y 
m

et
ab

ol
ite

 p
ro

du
ct

io
n.

Ar
te

m
is

ia
 a

bs
in

th
iu

m
H

us
sa

in
 e

t a
l. 

20
17

27
.

A
uN

Ps
D

is
pl

ay
 fa

vo
ra

bl
e 

eff
ec

ts
 o

n 
th

e 
de

ve
lo

pm
en

t o
f r

oo
t a

nd
 sh

oo
tle

ts
.

G
lo

ri
os

a 
su

pe
rb

a
G

op
in

at
h 

et
 a

l. 
20

16
28

.
A

uN
Ps

In
du

ce
d 

hy
pe

rx
an

th
on

e 
C

 p
ro

du
ct

io
n.

H
yp

er
ic

um
 p

er
fo

ra
tu

m
K

ru
sz

ka
 e

t a
l. 

20
22

29
.

A
uN

Ps
Im

pr
ov

e 
th

e 
cr

yo
pr

es
er

va
tio

n 
effi

ci
en

cy
.

La
m

pr
oc

ap
no

s s
pe

ct
ab

ili
s

K
ul

us
 a

nd
 T

ym
os

zu
k 

20
21

30
.

C
ar

bo
n-

su
p-

po
rte

d 
A

uN
Ps

Tr
an

sp
or

t D
N

A
.

N
ic

ot
ia

na
 ta

ba
cu

m
, O

ry
za

 
sa

tiv
a,

 L
eu

ca
en

a 
le

uc
oc

ep
ha

la
V

ija
ya

ku
m

ar
 e

t a
l. 

20
10

31
.

C
eO

2N
Ps

H
ig

he
r a

cc
um

ul
at

io
n 

of
 b

io
m

as
s.

Ar
ab

id
op

si
s t

ha
lia

na
M

a 
et

 a
l. 

20
13

32
.

C
eO

2N
Ps

Im
pr

ov
e 

bi
om

as
s a

nd
 ro

ot
 e

lo
ng

at
io

n.
G

ly
ci

ne
 m

ax
Ló

pe
z-

M
or

en
o 

et
 a

l. 
20

10
a

Ta
bl

e 
1 

A
pp

lic
at

io
n 

of
 M

N
Ps

 in
 P

TC

1 3

Page 5 of 18  33



Plant Cell, Tissue and Organ Culture (PCTOC) (2024) 158:33

N
o.

N
an

op
ar

tic
le

s
R

ol
e

Pl
an

t
R

ef
er

en
ce

s
33

.
C

eO
2N

Ps
Im

pr
ov

e 
yi

el
d.

So
la

nu
m

 ly
co

pe
rs

ic
um

Ló
pe

z-
M

or
en

o 
et

 a
l. 

20
10

b
34

.
C

eO
2N

Ps
In

cr
ea

se
d 

gr
ow

th
 a

nd
 b

io
m

as
s.

Tr
iti

cu
m

 a
es

tiv
um

R
ic

o 
et

 a
l. 

20
14

35
.

C
eO

2N
Ps

En
ha

nc
ed

 p
ro

du
ct

io
n 

of
 e

m
od

in
 a

nt
hr

on
e.

H
yp

er
ic

um
 p

er
fo

ra
tu

m
K

ru
sz

ka
 e

t a
l. 

20
22

36
.

G
ol

d-
co

at
ed

 
m

es
op

o-
ro

us
 si

lic
a 

na
no

pa
rti

cl
es

Tr
an

sf
er

 D
N

A
 a

nd
 c

he
m

ic
al

s i
nt

o 
th

e 
pr

ot
op

la
st

.
Te

co
m

el
la

 u
nd

ul
at

a
To

rn
ey

 e
t a

l. 
20

07

37
.

C
oN

Ps
B

oo
st

 th
e 

pl
an

t’s
 h

ei
gh

t, 
gr

ow
th

 in
de

x,
 n

um
be

r o
f s

ho
ot

s, 
nu

m
be

r o
f i

nt
er

no
de

s, 
an

d 
re

pr
od

uc
tio

n 
co

ef
-

fic
ie

nt
. i

nc
re

as
ed

 th
e 

ou
tp

ut
 o

f e
ss

en
tia

l o
ils

.
M

en
th

a 
lo

ng
ifo

lia
Ta

la
nk

ov
a-

Se
re

da
, 2

01
6

38
.

C
uN

Ps
Im

pr
ov

ed
 th

e 
su

rf
ac

e 
di

si
nf

ec
tio

n 
of

 so
m

at
ic

 e
m

br
yo

s.
Be

go
ni

as
 (B

eg
on

ia
 x

 tu
be

rh
yb

-
rid

a 
Vo

ss
)

B
ao

 e
t a

l. 
20

22

39
.

C
uN

Ps
H

ei
gh

t, 
gr

ow
th

 in
de

x,
 n

um
be

r o
f i

nt
er

no
de

s, 
nu

m
be

r o
f s

ho
ot

s, 
an

d 
re

pr
od

uc
tio

n 
co

effi
ci

en
t s

ho
ul

d 
al

l b
e 

in
cr

ea
se

d.
M

en
th

a 
lo

ng
ifo

lia
Ta

la
nk

ov
a-

Se
re

da
, 2

01
6

40
.

C
uN

Ps
In

cr
ea

se
d 

th
e 

pe
rc

en
ta

ge
 o

f e
xp

la
nt

s t
ha

t p
ro

du
ce

d 
so

m
at

ic
 e

m
br

yo
s a

s w
el

l a
s t

he
 a

ve
ra

ge
 n

um
be

r o
f 

re
ge

ne
ra

te
d 

pl
an

tle
ts

.
O

ci
m

um
 b

as
ili

cu
m

Ib
ra

hi
m

, 2
01

9

41
.

C
uN

Ps
In

cr
ea

se
d 

se
co

nd
ar

y 
m

et
ab

ol
ite

 p
ro

du
ct

io
n.

Ar
te

m
is

ia
 a

bs
in

th
iu

m
H

us
sa

in
 e

t a
l. 

20
17

42
.

C
uN

Ps
 a

nd
 

C
uO

N
Ps

En
ha

nc
ed

 p
ro

du
ct

io
n 

of
 A

pi
ge

ni
n,

 d
ih

yd
ro

xy
di

m
et

ho
xy

xa
nt

ho
ne

 I
H

yp
er

ic
um

 p
er

fo
ra

tu
m

K
ru

sz
ka

 e
t a

l. 
20

22

43
.

C
uO

N
Ps

R
oo

t i
nd

uc
tio

n.
St

ev
ia

 re
ba

ud
ia

na
A

hm
ad

, 2
02

0.
44

.
C

uO
N

Ps
En

ha
nc

ed
 e

ffe
ct

 in
 g

ro
w

th
 p

ar
am

et
er

s a
nd

 n
ut

rit
iv

e 
pr

op
er

tie
s a

t t
he

 n
an

o-
sc

al
e.

O
ry

za
 sa

tiv
a

A
nw

aa
r e

t a
l. 

20
16

45
.

C
uO

N
Ps

A
n 

in
cr

ea
se

 in
 th

e 
ov

er
al

l c
on

te
nt

 o
f fl

av
on

oi
ds

 a
nd

 p
he

no
ls

.
St

ev
ia

 re
ba

ud
ia

na
A

hm
ad

, 2
02

0
46

.
Fe

N
Ps

B
et

te
r c

ha
ra

ct
er

is
tic

s u
nd

er
 h

ar
sh

 si
tu

at
io

ns
.

Fr
ag

ar
ia

 a
na

na
ss

a
H

av
as

 a
nd

 G
ha

de
ri,

 2
01

8.
47

.
Fe

N
Ps

In
cr

ea
se

d 
pr

ol
in

e,
 p

ro
te

in
 a

nd
 e

nz
ym

at
ic

 a
nt

io
xi

da
nt

 a
ct

iv
ity

, r
ed

uc
in

g 
th

e 
am

ou
nt

 o
f h

yd
ro

ge
n 

pe
ro

xi
de

.
Vi

tis
 v

in
ife

ra
M

oz
af

ar
i a

nd
 G

ha
de

ri 
20

18
48

.
Fe

N
Ps

Pr
om

ot
e 

ro
ot

 d
ev

el
op

m
en

t a
nd

 se
ed

 g
er

m
in

at
io

n 
an

d 
en

ha
nc

e 
ch

lo
ro

ph
yl

l c
on

te
nt

.
C

ap
si

cu
m

 a
nn

uu
m

, S
ol

an
um

. 
ly

co
pe

rs
ic

um
, G

ly
ci

ne
 m

ax
O

va
is

 e
t a

l. 
20

20

49
.

Fe
3O

4 
N

Ps
 a

nd
 

Fe
2O

3 
N

Ps
C

re
at

e 
tra

ns
ge

ni
c 

se
ed

s.
G

os
sy

pi
um

 h
er

ba
ce

um
Zh

ao
 e

t a
l. 

(2
01

7)

50
.

Fe
2O

3N
Ps

Im
pr

ov
ed

 se
ed

 g
ro

w
th

, c
hl

or
op

hy
ll 

co
nt

en
ts

, a
nd

 g
as

 e
xc

ha
ng

e.
Tr

iti
cu

m
 a

es
tiv

um
R

iz
w

an
 e

t a
l. 

20
19

51
.

In
2O

3N
Ps

In
cr

ea
se

d 
bi

om
as

s a
cc

um
ul

at
io

n.
Ar

ab
id

op
si

s t
ha

lia
na

M
a 

et
 a

l. 
20

13
52

.
M

nN
Ps

Pr
om

ot
e 

gr
ow

th
 a

nd
 in

cr
ea

se
 se

co
nd

ar
y 

m
et

ab
ol

ite
s.

At
ro

pa
 b

el
la

do
nn

a
Ti

an
 e

t a
l. 

20
18

53
.

N
iO

N
Ps

En
ha

nc
ed

 e
xp

re
ss

io
n 

of
 g

en
es

 re
la

te
d 

to
 o

xi
da

tiv
e 

st
re

ss
 a

nd
 p

he
no

lic
 c

om
po

un
ds

Br
as

si
ca

 ra
pa

 ss
p.

 p
ek

in
en

si
s

C
hu

ng
 e

t a
l. 

20
19

54
.

Pd
N

Ps
In

du
ce

d 
pr

od
uc

tio
n 

of
 e

m
od

in
.

H
yp

er
ic

um
 p

er
fo

ra
tu

m
K

ru
sz

ka
 e

t a
l. 

20
22

55
.

Se
N

Ps
En

ha
nc

ed
 o

rg
an

og
en

es
is

 a
nd

 ro
ot

 sy
st

em
 g

ro
w

th
.

N
ic

ot
ia

na
 ta

ba
cu

m
D

om
ok

os
-S

za
bo

lc
sy

 e
t 

al
. 2

01
2

56
.

Se
N

Ps
In

cr
ea

se
 se

co
nd

ar
y 

m
et

ab
ol

ite
s, 

pl
an

t p
ro

du
ct

iv
ity

 a
nd

 d
ev

el
op

m
en

t. 
C

au
se

 E
pi

ge
ne

tic
 re

sp
on

se
.

M
om

or
di

ca
 c

ha
ra

nt
ia

R
aj

ae
e 

et
 a

l.,
 2

02
0

57
.

Si
N

Ps
En

ha
nc

ed
 p

la
nt

 p
ro

du
ct

io
n 

an
d 

gr
ow

th
 in

 te
rm

s o
f h

ei
gh

t a
nd

 c
hl

or
op

hy
ll 

co
nt

en
t.

C
uc

um
is

 sa
tiv

us
A

ls
ae

ed
i e

t a
l. 

20
19

58
.

Si
O

2N
Ps

In
du

ce
 so

m
ac

lo
na

l v
ar

ia
tio

n.
O

ry
za

 sa
tiv

a
A

bo
ul

ila
 a

nd
 G

al
al

 2
01

9
59

.
Ti

O
2N

Ps
In

du
ce

d 
pr

od
uc

tio
n 

of
 q

ue
rc

et
in

.
H

yp
er

ic
um

 p
er

fo
ra

tu
m

K
ru

sz
ka

 e
t a

l. 
20

22
60

.
Ti

O
2N

Ps
B

oo
st

 c
al

lo
ge

ne
si

s a
nd

 c
al

li 
si

ze
.

H
or

de
um

 v
ul

ga
re

M
an

de
h 

et
 a

l. 
20

12

Ta
bl

e 
1 

(c
on

tin
ue

d)
 

1 3

33  Page 6 of 18



Plant Cell, Tissue and Organ Culture (PCTOC) (2024) 158:33

et al. 2019). NPs, particularly those comprised of met-
als have been investigated for their capacity to impact 
plant growth and development through several processes 
(Mahendran et al. 2019). MNPs can promote the process 
of cell division and proliferation in plant tissues, which is 
essential for the development of calli. NPs, because to their 
huge surface area and tiny size, may easily enter plant cells 
and interact with cellular components, hence influencing 
cellular processes (Giorgetti et al. 2011; Liu et al. 2021). 
In some cases, the NP can adversely affect the development 
of the plant segments. For example, the study investigated 
the impact of various copper oxide (CuO) particles on cell 
division and gene expression in soybean root tips. It was 
shown that CuONPs had a strong inhibitory effect on the 
growth of soybean roots, both in terms of exposure dura-
tion and concentration (Liu et al. 2021). But on the other 
hand, Willow trees exhibit no acute toxicity when exposed 
to TiO2 NPs and there was no significant impact on growth, 
transpiration, or water use efficiency during the experiment. 
These findings indicate that NPs may be advantageous for 
specific types of plants, detrimental to others, and may have 
no impact on other species. Response varies based on the 
characteristics of the NPs and the specific plant it is intended 
to affect (Seeger et al. 2009). Plant responses to NPs vary 
widely depending on the NPs’ unique properties. The effec-
tiveness of these tiny particles in influencing plants is deter-
mined by several factors, including their chemical makeup, 
size, reactivity, surface coating, and most importantly, the 
amount applied (Doria-Manzur et al. 2023; Hossain et al. 
2015; Khan et al. 2021).

According to research on Tecomella undulata (Roxb.) 
Seem. in vitro propagation, AgNPs’ ethylene-blocking 
impact increased the proportion of explants that produced 
shoots, the mean number of new shoots per explant, and plant 
longevity (Aghdaei et al. 2012). Incorporation of ZnNPs 
and ZnONPs on growth media in banana in vitro culture 
resulted in the largest percentage of somatic embryogenesis 
and had the greatest impact on augmenting the regeneration 
of plantlets with well-formed root systems at 100 mg/L dose 
(Helaly, 2014). Likewise, ZnONPs had a positive influ-
ence on the formation of callus and somatic embryos in in 
vitro cultivated Coffea arabica leaf explants, as explained 
by Devasia et al. 2020. Root induction is enhanced by the 
modulatory action of ZnO and CuONPs in MS medium of 
in vitro produced regenerates of Stevia rebaudiana (Ahmad, 
2020). Under in vitro conditions, drought stress negatively 
affected all assessed parameters of strawberry plantlets. 
Mature embryos of Barley were grown in MS medium with 
TiO2NPs suspension and have the potential to greatly boost 
callogenesis and calli size (Mandeh et al. 2012).

Havas and Ghaderi (2018) treated their plantlets with 
iron nanoparticles (FeNPs) and salicylic acid (SA) and 
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addition of AuNPs to the culture media, particularly at 75 
ppm. Further encourage the growth of roots length and its 
branching (Kulus et al. 2022).

Dehkoudi and Mosavie, (2013) examined the impact of 
nano priming on parsley germination parameters in tissue 
culture. The addition of nano-anatase (TiO2NPs) resulted in 
significant improvements in various growth parameters of 
seedlings, including germination percentage, germination 
rate index, root and shoot length, fresh weight, vigour index, 
and chlorophyll content. The optimal nano-anatase concen-
tration was 30 mg/mL. CuONPs showed a significant effect 
on plant growth parameters for the regeneration of Oryza 
sativa and it has the nutritive properties at the nanoscale 
(Anwaar et al. 2016). When utilised in nutritional mediums 
during clonal reproduction of Mentha longifolia, copper and 
cobalt NPs boost the plant’s shoot quantity, height, inter-
node quantity, growth index, and reproduction coefficient 
(Talankova-Sereda, 2016).

The effects of single or mixed Au and AgNPs on 
Prunella vulgaris callus growth were examined by Fazal 
et al. (2016). In comparison to the control, callus prolifera-
tion was increased by the Ag, Ag-Au NPs and NAA. When 
AuNPs were added to the culture medium, the maximum 
biomass was obtained.

A study by Ibrahim et al. 2019 investigated the effects of 
CuNPs (20–40 nm) on Ocimum basilicum plant regenera-
tion by somatic embryogenesis. The outcomes clearly dem-
onstrated that the addition of CuNPs (5 M) boosted both the 
average number of regenerated plantlets and the percentage 
of explants that produced somatic embryos. In PTC, tita-
nium trisulphide nano ribbons have an impact on the downy 
birch and poplar-aspen hybrid (Table 1). Zakharova, (2021) 
have discovered that this specific nanomaterial works well 
both as a sterilising and stimulating agent during the early 
growth stage and as a rhizogenesis-activating agent during 
the rooting stage.

Adding 20  mg/L of Cerium oxide (CeO2) and 
50–500  mg/L of Indium oxide (In2O3) to ½ MS medium 
increased biomass accumulation in Arabidopsis thaliana 
(Ma et al. 2013). Studies show that Cerium oxide nanopar-
ticles (CeO2NPs) enhance root elongation and biomass in 
Soybeans when exposed to a concentration range of 500–
4000  mg/L. CeO2NPs also significantly improve tomato 
yield at 10 mg/L. CeO2NPs alter the nutritional profile and 
physiology of Wheat and enhance biomass and growth in 
response to different CeO2NPs treatments (López-Moreno 
et al., 2010 (a and b); Rico et al. 2014).

Aluminum oxide nanoparticles (Al2O3 NPs) had varied 
effects on the growth traits and physio-biochemical activi-
ties of plants. Abdel Latef et al. (2020) found that a 0.01% 
concentration of Al2O3 NPs had the most significant impact 
on Egyptian roselle cultivar plants. Similarly, Amist et al. 

the result of all parameters of strawberry performed better 
under harsh situations than untreated strawberry plantlets. 
Additionally, it had a significant impact on the plantlets’ 
assessed characteristics and growth factors.

The impact of MNPs (Ag, Cu, and Au) in Artemisia 
absinthium seeds that were inoculated on MS medium sup-
plemented with different combinations of MNPs suspen-
sion was examined by Hussain et al. (2017) reported that 
the highest seed germination rates were seen for AgNPs 
suspensions. In comparison to the application of CuNPs 
and AuNPs, significant results were found for root length, 
shoot length, and seedling vigour index (SVI). Both tobacco 
callus cultures and rooted tobacco plantlets absorbed the 
red nano-sized elemental selenium (nano Se). Organogen-
esis and root system growth were promoted by Nano Se 
(265–530 µM concentration range) (Domokos-Szabolcsy et 
al. 2012). PTC provides a valuable platform for exploring 
the intricate influence of AgNPs on plant development. The 
recently discovered synergy with plant growth hormones 
offers promising avenues for enhancing plant propagation. 
When the biosynthesized AgNPs were added to the tis-
sue culture media, they increased the frequency of callus 
induction, callus renewal, and rhizogenesis. Upon further 
analysis of the natural hormone levels within regenerating 
calli, it was shown that the presence of AgNPs improved the 
process of regeneration by reducing the levels of ethylene 
and abscisic acid in the plant tissue (Manickavasagam et al. 
2019). However, delving deeper into the underlying mecha-
nisms and potential side effects is paramount for responsible 
and sustainable utilization of this exciting technology.

In Lamprocapnos spectabilis ‘Valentine,’ the growth of 
shoots and the multiplication ratio are stimulated by the 

Fig. 2  MNPs as surface disinfectant and sterilizer in in vitro

 

1 3

33  Page 8 of 18



Plant Cell, Tissue and Organ Culture (PCTOC) (2024) 158:33

(Rivero-Montejo et al. 2021; Anjum et al. 2019; Marslin et 
al. 2017; Fig. 1).

Plants when exposure to NPs, which can induce com-
plex physiological and biochemical responses. NPs such 
as Ag, ZnO, Al2O3, etc., induce ROS production in plants 
through various mechanisms. Upon NP exposure, ROS 
like hydrogen peroxide (H2O2) and superoxide anion (O2

−) 
accumulate due to NADPH oxidase activation at the plasma 
membrane. This oxidative burst triggers downstream signal-
ing pathways involving mitogen-activated protein kinases 
(MAPKs), which regulate gene expression for defense 
responses (Humbal et al., 2023, Thwala et al. 2013; Zhao 
et al. 2012).

Arabidopsis thaliana root hair defective 2 mutant lacking 
NADPH oxidase (RBOH) exhibited a considerably lower 
amount of ROS formation in response to AgNPs. This sug-
gests that the enzymes that make ROS at the apoplast, which 
are attached to the plasma membrane, are responsible for 
mediating the accumulation of ROS in cells (Sosan et al. 
2016; Mittler 2017). However, based on AgNPs’ ability to 
block Ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Rubisco) activity and PSII’s potential for photoprotec-
tion, Chloroplastic ROS production was seen in Spirodela 
polyrhiza (Jiang et al. 2017). According to Jiang et al. 
(2017), ions released from NPs rather than intact particles 
are the source of ROS activation. Internalized silver (Ag) in 
S. polyrhiza has the same potential to produce ROS whether 
it comes from exposure to Ag ions or AgNPs. Likewise, 
other studies have demonstrated that ZnO, CuO, and CeO2 
dissolve into the corresponding ions (Zn2+, Cu2+, Ce4+) 
(Ebbs et al. 2016; Bradfield et al. 2017).

Additionally, the ion balance of plant cells was disturbed 
by NP exposure. NP-induced stress responses depend criti-
cally on Ca2+ influx and efflux, which are mediated by chan-
nels and pumps. Increased levels of cytosolic Ca2+ stimulate 
a number of signaling pathways and transcription factors, 
affecting the expression of genes linked to the generation 
of secondary metabolites and stress adaption (Sosan et al. 
2016). Plants utilize both non-enzymatic (glutathione) and 
enzymatic (superoxide dismutase, catalase, and ascorbate 
peroxidase) antioxidant mechanisms to counteract oxidative 
damage caused by NPs. These systems are essential for cel-
lular survival and function under stress because they detox-
ify ROS and preserve redox balance inside cells (Sewelam 
et al. 2016; Tripathi et al. 2017).

According to previous research, NPs may regulate plant 
secondary metabolism and interfere with signalling path-
ways. The specific mechanism of this modulation is still 
unknown. It is believed that early plant responses to NP 
exposure may involve elevated levels of reactive oxygen 
species (ROS), cytoplasmic calcium (Ca2+), and activation 
of mitogen-activated protein kinase (MAPK) cascades.

(2017) reported that lower doses of Alumina NPs improved 
the growth, pigments, sugar, and protein contents of Cab-
bage (Brassica oleracea var. capitata) seedlings. Silicon NPs 
(SiNPs) were studied for their effect on Cucumber plants 
under water deficit and salinity stresses. Results showed that 
200 mg/Kg of SiNPs significantly improved plant growth 
and productivity in terms of height, chlorophyll content 
(Alsaeedi et al. 2019). It was reported that Zirconia (ZrO2) 
nanoparticles can enhance the germination of Berberis vul-
garis and Eruca sativa (Jalill et al. 2017).

FeNPs and TiO2NPs have positive effects on plant 
growth, depending on their concentration. Low concentra-
tions of Iron oxide nanoparticles promote root development 
and seed germination and enhance chlorophyll content in 
certain plants, such as Capsicum annuum, Solanum. lyco-
persicum, and Soybeans. TiO2NPs enhance photosynthetic 
efficiency in Spinacia oleracea L., S. lycopersicum, and 
Cucumis sativus plant species (Ovais et al. 2020). ZnONPs 
or Fe2O3NPs priming for 24 h improved wheat seed growth, 
chlorophyll contents, and gas exchange. ZnONPs also 
reduced lipid peroxidation and increased photosynthetic 
pigments in Coriandrum sativum (Rizwan et al. 2019; Pul-
lagurala et al. 2018).

MNPS on enhancement of secondary metabolites

All plants produce secondary metabolites, which are chal-
lenging to extract and purify since they are frequently 
unique to a single species or genus under particular environ-
mental conditions. Since ancient times, secondary metabo-
lites have been important in medicine. The poor output of 
metabolites is a significant barrier to the manufacture of 
secondary metabolites using plant cell culture technologies 
(Ramachandra-Rao & Ravisankar, 2002; Shilpa et al. 2010). 
One of the main methods for increasing the supply of sec-
ondary metabolites has been the use of elicitors in cell cul-
tures. As per recent investigations, MNPs may be employed 
as a potential elicitor to boost the synthesis of bioactive 
plant metabolites, (Radman et al. 2003; Rivero-Montejo et 
al. 2021).

Elicitors can be abiotic stressors and biostimulants, 
which are products that are designed to enhance plant nutri-
tion, production, and other aspects. Stress is the main trig-
ger for plants to release active secondary metabolites, and a 
range of elicitors can mimic stress by triggering the plant’s 
active chemical defenses. ROS and secondary signalling 
messengers that result in transcriptional control of plant sec-
ondary metabolism have been suggested by specific authors 
as being induced by NPs. Significant second messengers 
(ROS and calcium ions (Ca2+) that cause the up-regula-
tion of transcriptional regulators of secondary metabolites 
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ROS production took place on the surface of cellular mem-
branes of ryegrass due to ZnONP phytotoxicity.

Cell cultures of H. perforatum were exposed to Ag, 
Au, Cu, Pd, CeO2, CuO, TiO2, and ZnO NPs to study the 
changes in secondary metabolism. Among the NPs tested, 
Ag and CuO induced the most significant changes. Ag NPs 
caused the cellular accumulation of bisxanthone, ganca-
onin O and fusaroskyrin. Other NPs induced the following 
compounds the most: hyperxanthone C (Au), apigenin (Cu), 
emodin (Pd), emodin anthrone (CeO2), dihydroxydime-
thoxyxanthone I (CuO), quercetin (TiO2), and gallic acid 
(ZnO). Therefore, the types of NPs have varying effects on 
the secondary metabolites elicitation (Kruszka et al. 2022).

Manganese (MnNPs) NPs is a less explored NP. Mn2O3 
NPs, at a concentration of 25  mg/L, promote growth and 
increase secondary metabolites in in vitro culture of Atropa 
belladonna plants by activating antioxidant enzymes (Tian 
et al. 2018). Exposure of Corylus avellana cell suspension 
culture to 5 mg/L Ag NPs significantly increased taxol pro-
duction (Jamshidi et al. 2016). The biosynthesized Barium 
(BaONPs) NPs have shown strong antibacterial, antioxidant, 
and anti-inflammatory properties, making them a promising 
candidate for future therapeutic use (Abdullah, et al., 2023).

The application of NPs in medicinal plants as a method 
to boost biological activity without phytotoxicity was dem-
onstrated by current research as a way to promote the manu-
facture of bioactive chemicals. However, further research is 
required on the possible impacts of using nanomaterials as 
an elicitor on ecosystems and human risk (Rivero-Montejo 
et al. 2021).

MNPS as biochemical alterations

The enzyme 1-aminocyclopropane-1-carboxylic acid 
(ACC) synthase, a pivotal enzyme in the biosynthesis of 
the simplest olefin ethylene, is significant in in vitro culture 
conditions and can modulate many facets of the plant life 
cycle. Transgenic plants with altered ethylene levels, such 
as tomatoes, can be produced by using ACC synthase and 
ACC oxidase, which silences the expression of endogenous 
genes, resulting in slow ripening fruits due to very low lev-
els of ethylene. (Arshad and Frankenberger 2012). In in vitro 
MS medium with AgNPs may promote explant lifetime and 
multiplication in regenerated Tecomella undulate (Roxb.) 
Seem. leaves, enhancing survival and delayed explant 
senescence, according to gene expression patterns of acetyl-
CoA synthetase (ACS) gene. (Sarmast and Salehi, 2015). 
When exposed to saline stress, grape softwood cuttings cul-
tures treated with potassium silicate and iron nanoparticles 
may significantly increase total protein and free proline lev-
els as well as enzymatic antioxidant activity, hence lowering 
hydrogen peroxide levels. Iron and potassium silicate has 

Molecules that are important to cells, like proteins, DNA, 
and lipids, can be harmed by excessive ROS production 
in reaction to NPs. According to Van Breusegem and Dat 
(2006) and Faisal et al. (2016), this damage compromises 
the integrity of the membrane, hampers the function of 
organelles, and may result in programmed cell death. Chro-
mosomal abnormalities, DNA fragmentation, and muta-
genesis are genotoxic consequences they cause in plants. 
According to Kumari et al. (2009) and Rajeshwari et al. 
(2016), these impacts hinder plant growth and development 
and demonstrate the potential for NPs to be cytotoxic in 
some situations.

The most significant secondary metabolite in Aloe vera L 
is called Aloin. The findings demonstrated that nano silver 
(NS) treatment of aloe suspension cell cultures caused the 
Aloin content to rise to 43.7% in 48 h following treatment 
before progressively declining and reaching the control 
level. A 48 h Nano-Tio2 treatment produced the most Aloin, 
which was reduced to a lower level at 168  h (Raei et al. 
2014). The modulatory effect of CuONPs (up to a 20 mg/L 
dosage) and ZnONPs (up to a 2 mg/L dosage) applied to 
the MS culture medium of in vitro grown regenerants of 
Candy leaf noticeably triggered biochemical profiling. 
Total phenolic, total flavonoid content, steviol glycosides 
concentration and 2,2-diphenyl-1-picryl hydrazyl-free 
radical scavenging activity were calculated to be the high-
est (Ahmad, 2020). MNPs, specifically Ag, Cu, and Au, 
showed an increased secondary metabolite production, total 
phenolic and flavonoid content, antioxidant, superoxide dis-
mutase (SOD) activity, and total protein content (Hussain 
et al. 2017). Copper and Cobalt NPs intensified the essen-
tial oil production in Mentha longifolia (Talankova-Sereda, 
2016). Likewise, AgNPs as the elicitor that can induce 
the production of secondary metabolites of Catharanthus 
roseus L., which incite defence responses. The high con-
tent of vinblastine was seen in those explants treated with 
75  mg/L AgNPs (Shahin 2018). The transcription factor 
WRKY1 in Momordica charantia, which is involved in sec-
ondary metabolism and growth regulation, was upregulated 
as a result of the administration of nano Se to the culture 
medium. These can boost the immune system, development 
and plant productivity (Rajaee et al., 2020). The Ag-AuNPs, 
in combination with NAA induced maximum accumulation 
of phenolics and flavonoid content. Moreover, Ag-AuNPs 
without NAA enhanced antioxidant activity in Prunella vul-
garis (Fazal, 2016; Table 1).

According to Oukarroum et al. (2013), AgNP phytotox-
icity was mediated by ROS generation because there was a 
strong association between the reduction in viable cells and 
ROS generation at doses of Ag NPs up to 10 mg/mL over the 
course of a week-long treatment period. Lin and Xing (2008) 
suggested that lipid peroxidation and particle-dependent 
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CoA-ligase (4CL) (Rajaee et al., 2020). The DNA changes 
and mutations in four rice genotypes caused by SiO2NPs 
were analyzed and somaclonal variations using RAPD and 
SSR analyses. Genotype significantly affected callus induc-
tion and plant regeneration. The genome template stability 
percentage (GTS%), reflecting changes in Random ampli-
fied polymorphic DNA (RAPD) profiles (DNA based tech-
niques used to evaluate the variation at the DNA sequence 
level), was the most sensitive endpoint. Two SSR markers 
generated polymorphism, aiding in rice plant breeding for 
drought tolerance (Aboulila and Galal 2019; Table 1).

MNPS on genetic transformation

Plant genetic engineering, a modern innovation in plant sci-
ence, is a significant tool for enhancing yield, crop quality, 
secondary metabolite levels in medicinal plants, and culti-
vating crops suited for sustainable agriculture (Cardoso et 
al. 2019; Niazian 2019). MNPs can augment the efficacy of 
genetic transformation in plants by facilitating the absorp-
tion and incorporation of exogenous DNA into plant cells 
(Cunningham et al. 2018).

A new method using NPs for plant gene transformation 
accurately transports DNA or RNA, enabling transient or 
stable transformation. NP-mediated gene transformation 
gets around the barrier of the plant cell wall (Lv, 2020). This 
process can result in transgenic plants possessing advanta-
geous characteristics, which can be valuable for enhancing 
crop quality. A novel method utilizing nanoparticle-medi-
ated gene transformation offers a solution to the challenge 
posed by the plant cell wall, facilitating precise delivery 
of DNA or RNA into plants to produce transient or stable 
transformation (Lv et al. 2020; Mali et al. 2020). For the 
delivery of nucleic acids in plant cells, several nanomateri-
als such as mesoporous silica NPs, magnetic NPs, carbon 
nanotubes, etc., have been used recently (Jat, 2020).

Secondary metabolite levels have increased due to recent 
advances in plant genetic engineering (Lv et al. 2019). 
Plants may now efficiently receive DNA or RNA through 
the use of nanoparticles, circumventing the plant cell wall 
and enabling either transient or permanent genetic modifi-
cations. Nanoparticle-based gene transformation is widely 
used in animal cells, but it is still in its infancy when it comes 
to plants (Billingsley et al. 2020; Lv et al. 2020). Growing 
capabilities in genetic engineering have made it possible for 
scientists to precisely target particular plant gene regions for 
desired molecular changes (Cunningham et al. 2018). Many 
molecular techniques are used to accomplish this; among 
them is the recently developed CRISPR-Cas9 (Cluster regu-
larly interspaced short palindromic repeat (CRISPR)-asso-
ciated protein 9) method, which provides more precision 
than the others. Because of its precise gene-editing abilities, 

been demonstrated to boost potassium levels and decrease 
sodium content when exposed to salinity stress. The results 
of this study suggest that the use of micronutrients in stress-
ful situations is a practical and effective strategy to mitigate 
the negative effects of saline stress (Mozafari and Ghaderi 
2018). Bleeding heart’s metabolite profile is altered by Lam-
procapnos spectabilis ‘Valentine’ in medium-temperature 
cultivation with AuNPs, and acclimated plants’ longevity 
and quality were increased (Kulus et al. 2022). One of the 
most significant issues in PTC is hyperhydricity (HH). The 
use of biogenic AgNPs greatly decreased the proportion of 
HH in MS medium cultures of Dianthus chinensis because 
of the biological activity of Ag + ions and water controlling 
mechanisms. Also successfully decreased the amount of 
hydrogen peroxide (H2O2). The genetic stability of AgNPs-
directed HH reversed shoots was observed (Sreelekshmi et 
al. 2022). The physiology of tobacco plants, including their 
levels of total soluble sugars, chlorophyll, carotenoid, and 
flavonoids, was reported to be improved using 20 mg/L of 
TiO2 NPs in comparison to untreated controls (Somporn-
pailin and Chayaprasert 2020). Carotenoids, Chlorophyll A 
and Chlorophyll B are increased in the date palm cultivar 
Hayani’s culture medium when 3.0 ml/L AgNPs are present. 
Additionally, the proline, protein, and carbohydrate contents 
have all increased (Elsayh, 2022; Table 1). The nutraceuti-
cal business can profit from metallic oxide NPs as they can 
improve the generation of bioactive metabolic components 
from medicinal plants in in vitro batch cultures. (Ahmad, 
2020). Nickel oxide NPs (NiONPs) exposure on Chinese 
cabbage led to enhanced expression of genes related to oxi-
dative stress and phenolic compounds (Chung et al. 2019).

MNPS on somaclonal variation

For every micropropagation system, the development of 
somaclonal variation is a major subject of concern. The 
term “somaclonal variation” refers to phenotypic and geno-
typic differences brought by tissue culture. Kokina et al. 
2017 investigated how Linum usitatissimum’s somaclonal 
variation was impacted by Au and AgNPs. Both calli and 
regenerants grown on media containing Au and AgNPs had 
a higher incidence of somaclonal variation. Au and AgNPs 
use in tissue culture has expanded recently, although it’s 
still unclear how nanoparticles cause modifications to the 
DNA. When used in high amounts, AuNPs (a substance that 
acts as a mutagen) can cause genetic diversity. The induced 
metabolic and genetic changes can modify the phenotypic 
characteristics of Lamprocapnos spectabilis, resulting in the 
development of new cultivars (Kulus et al. 2022). Through 
cytosine DNA methylation, nanoSe supplementation in 
bitter melon was linked to an epigenetic response, and 
the treatments elevated genes like PAL and 4-coumarate: 
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silica NPs to deliver DNA and chemicals into the callus and 
leaves using a biolistic gun. Antibiotics used in Agrobac-
terium-mediated transformation can negatively impact the 
regeneration potential and genetic stability of regenerated 
plantlets due to their phytotoxic effects on explants. Accord-
ing to Sarmast and Salehi (2016) Agrobacterium tumefa-
ciens and A. rhizogenes growth was entirely inhibited on 
LB medium with AgNPs. The scientists also showed that 
the co-cultivation of Tecomella undulata and tobacco with 
Agrobacterium led to the successful elimination of bacteria 
with the addition of AgNPs to the culture medium (Table 1).

MNPS on cryopreservation

The process of preserving plant genetic resources for the 
long term by storing cell lines, tissues, organs, calli, etc., 
at a temperature of liquid nitrogen (-196 °C) is called cryo-
preservation (Kaviani 2011). The addition of NPs to the 
cryoprotectant process can improve thermal conductivity 
and viscosity, induce vitrification, suppress devitrification, 
and enhance solution stability during rewarming (Wang et 
al. 2015). The unique thermal properties of NPs have sig-
nificant potential in cryobiology, such as preventing the for-
mation of ice crystals at temperatures below zero (Hou et al. 
2018). In addition, NPs also maintain the recovery poten-
tial of explants upon introduction to the plant tissue culture 
medium, protective bead matrix, or to the recovery medium 
(Tymoszuk and Miler 2019).

The culture medium and preserving medium of Pinus 
radiata embryogenic cell lines were supplemented with Ag 
NPs and stored at -80 °C, resulting in a 75% recovery rate 
(TPU, 2018). Researchers used in vitro-derived shoot tips 
of Lamprocapnos spectabilis ‘Valentine’ and cryopreserved 
them with AuNPs added either into the preculture medium, 
the protective bead matrix, or the recovery medium. The 
study found that adding 10 ppm of AuNPs into the alginate 
bead matrix improved the recovery level of LN-derived 
shoot tips (70.0%) compared to the non-NPs-treated cryo-
preserved control (50.5%). However, adding nanoparticles 
to the recovery medium had a negative effect on the survival 
of explants. Moreover, adding AuNPs affected the enzy-
matic activity in L. spectabilis. Adding AuNPs at a lower 
concentration (10 ppm) into the protective bead matrix can 
significantly improve the cryopreservation efficiency in L. 
spectabilis without altering the DNA sequence (Kulus and 
Tymoszuk 2021). There is currently limited information 
available on the use of NPs in the cryopreservation of plant 
material.

CRISPR offers researchers a valuable tool to improve the 
production of significant natural products by allowing them 
to change specific genes involved in biosynthetic processes 
(Sidhic et al. 2024). Scientists are intrigued by the prospect 
of delivering the CRISPR system, which does away with the 
need for viruses through nanoparticles (Cunningham et al. 
2018). Different approaches have been investigated to intro-
duce nanoparticles into plant cells. These include combin-
ing distinct CRISPR/Cas9 variants with different kinds of 
nanoparticles, including nanocapsules, gold nanoparticles, 
hydrogels, peptide-based nanoparticles, DNA nanoclew, 
polymeric nanoparticles, magnetic nanoparticles, and nano-
capsules. By serving as carriers, these nanoparticles make 
it easier for target genes to enter host cells. These nanopar-
ticles can be absorbed by plants to modify the target gene 
sequence in a precise way (Vats et al. 2022). Compared 
to animal cells, plants have diverse cellular architecture 
and complex cell walls, which pose special problems for 
nanoparticle-based gene delivery (Peng et al. 2022). Further 
research is required to optimise nanoparticle-based gene 
delivery methods for plants, addressing the issues while 
improving the efficiency and reliability of genetic alteration 
approaches.

Magnetofection is a drug delivery method using mag-
netic NPs to transfer genes into the cell nucleus. Magnetic 
Fe3O4 and Fe2O3 NPs are ideal for various applications due 
to their thermal stability, large surface area, small size, sta-
bility and low toxicity (Lv et al. 2020). Zhao et al. (2018) 
created a method that uses magnetic NPs to create trans-
genic seeds. A magnetic field was used to push the plasmid 
DNA into the pollen after it had been enclosed in magnetic 
NPs. The resulting transgenic cotton generated seeds with 
stable inheritance of the transformed DNA.

Research on plants can benefit from leaf protoplast isola-
tion. Standard reference techniques for isolating protoplasts 
are laborious, damaging cells, generating minimal amounts 
of material, time consuming, and are prone to microbial 
contamination. The addition of 10  mg/L AgNPs to leaf 
incubation buffer during protoplast isolation produced 3 h of 
protoplast isolation that produced 34% viable protoplasts. 
This is the first account of the manufacture of AgNPs from 
used plant media, which was used to sterilize explants and 
quickly isolate protoplasts (Bansod, 2015). Through the 
use of a gene gun, Vijayakumar et al. (2010) showed that 
carbon-supported AuNPs can transfer DNA into plants such 
as Nicotiana tabacum, Oryza sativa, and Leucaena leuco-
cephala with minimal damage to the cells and with less 
gold and plasmid, thus encouraging plant regeneration and 
transformation frequency. The authors Torney et al. (2007) 
demonstrated how mesoporous silica NPs may be used to 
transport DNA into tobacco protoplasts by endocytosis. 
They achieved this by utilizing gold-capped mesoporous 
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Conclusion and future prospects

The burgeoning field of nanotechnology with PTC has 
opened a plethora of promising applications, including 
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enhancement, and bioactive compound synthesis. Nano-
structured metal oxides have emerged as particularly cru-
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adoption of green NPs in various applications. Delving 
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the future prospects of nanotechnology in plant science hold 
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nessing the synergistic power of green nanotechnology and 
PTC, we can revolutionize agriculture, enhance food secu-
rity, and contribute to the well-being of humanity in various 
dimensions by addressing the United Nations Sustainable 
Development Goal 3- Good Health and Well-being.
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