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Abstract
Determining foliar mineral status of tissue cultured shoots can be costly and time consuming, yet hyperspectral signatures 
might be useful for determining mineral contents of these shoots. In this study, hyperspectral signatures were acquired 
from tissue cultured little-leaf mockorange (Philadelphus microphillus) shoots to determine the feasibility of using this 
technology to predict foliar nitrogen and calcium contents. After using a spectroradiometer to take hyperspectral images for 
determining foliar N and Ca contents, the correlation between the hyperspectral bands, vegetation indices, and hyperspectral 
features were calculated from the spectra. Features with high correlations were selected to develop the models via different 
regression methods including linear, random forest (RF), and support vector machines. The results showed that non-linear 
regression models developed through machine learning techniques, including RF methods and support vector machines 
provided satisfactory prediction models with high R2 values (%N by RF with R2 = 0.72, and %Ca by RF with R2 = 0.99), 
that can estimate nitrogen and calcium content of little-leaf mockorange shoots grown in vitro. Overall, the RF regression 
method provided the most accurate and satisfactory models for both foliar N and Ca estimation of little-leaf mockorange 
shoots grown in tissue culture.

Key message 
Hyperspectral signatures were used to estimate foliar %N and %Ca of micropropagated Philadelphus microphyllus (little-leaf 
mockorange) shoots. Non-linear regression models provided satisfactory prediction with high R2 values.

Keywords  Tissue culture · Axillary shoot culture · Hyperspectral signatures · Machine learning · Leaf mineral estimation · 
Spectral characteristics

Introduction

Hyperspectral sensing is the measurement of the spec-
tral characteristics of materials by the using sensing sys-
tems with more than 60 spectral bands and with spectral 
resolutions less than 10 nm. This resolution can produce a 

continuous portion of the light spectrum defining the chemi-
cal composition of an object through its spectral signatures 
(Gomez 2020). With substantial developments in recording 
spectral bands of electromagnetic waves, hyperspectral sen-
sors can provide data with a large number of spectral bands 
due to their high resolution in the range of 350 to 2500 nm, 
and spectral bands are acquired by passive optical sensors. 
Spectral data are detected from any surface that can reflect, 
absorb, and transmit electromagnetic radiation (Hruška et al. 
2018).

Hyperspectral imaging provides the ability to complete 
reflectance or fluorescence spectroscopy on all single spatial 
pixels of a spectral image thereby discerning characteristics 
that cannot be seen by human eyes (Robila 2004; Gomez 
2020). The basic shape of a curve over the spectral range 
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is characteristic of the parent material of the object being 
analyzed by spectroscopy (Liang 2004). In the visible (VIS) 
to near infrared (NIR) spectrum (approximately between 400 
and 1100 nm), characteristics of water, soil, or plant canopy 
give rise to specific curvatures in the reflectance spectrum, 
which makes them recognizable (Liang 2004; Robila 2004).

Perhaps the biggest advantage of hyperspectral data over 
simpler red–green–blue (RGB) imagery and multispectral 
data is that hyperspectral data can detect more accurate 
information of the object due to more spectral bands being 
recorded. Hyperspectral acquisition devices, including sen-
sor types, acquisition modes and unmanned aerial vehicle 
(UAV)-compatible sensors, provide information that is 
needed or used both for research and commercial purposes, 
(Adão et al. 2017). Hyperspectral sensors and UAV have 
been useful in many areas of study including material identi-
fication, precision agriculture (vegetative coverage, nutrition 
deficiencies, foliar water content, physiological disorders, 
etc.), environmental aspects (wetlands, hydrology, etc.), 
health care (medical diagnoses, food safety, food quality 
assessment, etc.), and many more applied fields (Adão et al. 
2017; Gomez 2020).

A vegetative index (VI) describes an equation that pro-
cesses spectral data for the purpose of determining informa-
tion about plant health. Detectable vegetation indices (VIs) 
from hyperspectral signatures can provide an estimation 
and analysis of several plant characteristics, such as bio-
physical, physiological, or even biochemical parameters in 
crops, including leaf chlorophyll content (LCC), leaf water 
content (LWC), leaf area index (LAI), fractional photosyn-
thetically active radiation (FPAR) absorbed by a canopy, 
surface roughness, and phenology, which are some of the 
most important inputs to land surface process models (Liang 
2004; Adão et al. 2017; Morcillo-Pallarés et al. 2019). These 
VIs can be applied in the regression models to help estimat-
ing plant status, such as foliar mineral contents.

With the importance of nitrogen increasing yield effi-
ciency and crop health, modern application of hyperspectral 
signatures in preventing nitrogen deficiencies in the field 
have become widespread. Hence, much research has been 
conducted using remote sensing and applying hyperspectral 
signatures to determine crop nitrogen deficiency, required 
rates of fertilizers to increase crop production, or even the 
amount of nitrogen uptake by plants to improve agricultural 
production and yield efficacy (Maes and Steppe 2019). 
DeOliveira et al. (2017) applied selected vegetation indices 
to estimate foliar N concentration in three Eucalyptus tree 
clones grown in the field. Liu et al. (2016) applied multiple 
linear regression and neural network analysis to find a rela-
tionship between the leaf nitrogen content of field grown 
winter wheat and vegetative indices in narrow bands. Other 
studies have used hyperspectral indices to check the nutrition 
status of sodium and potassium content in grass (Capolupo 

et al. 2015), potassium deficiency level in canola (Severtson 
et al. 2016), nitrogen concentration in field grown oat (Van 
Der Meij et al. 2017), corn (Gabriel et al. 2017), rice (Wen 
et al. 2018), and wheat (Zhu et al. 2018), and leaf N, P, K, 
Ca, Mg, and few micronutrients of corn and soybean plants 
(Pandey et al. 2017).

Little-leaf mockorange (Philadelphus microphyllus A. 
Gray) is a species from the Hydrangeaceae family. This 
species is a shrub native to the western United States (Cali-
fornia, Colorado, Utah, Nevada, Wyoming, Arizona, Texas, 
and New Mexico) and grows in arid rocky slopes, cliffs, or 
pinyon-juniper to coniferous woods (Gardenia 2019; Lady 
Bird Johnson Wildflower Center 2015; Khajehyar et al. 
2024). Species within the mockorange genus have histori-
cally been propagated by seeds, summer soft-wood cuttings, 
hardwood cuttings and layering (Dirr and Heuser 2006), 
but little-leaf mockorange can be difficult to propagate as 
ex vitro cuttings and fails to breed true from seed (Khaje-
hyar et al. 2024; Steve Love, University of Idaho, personal 
communication), meaning a more efficacious propagation 
system, such as micropropagation, would be advantageous. 
To our knowledge, this Philadelphus species is new to tis-
sue culture and no other Philadelphus species have been put 
into culture to date, and little-leaf mockorange is the first to 
be put into tissue culture for asexual plant production. No 
other Philadelphus species have been produced via different 
tissue culture techniques. So, this species was used since a 
nursery in the state (Idaho) wanted to see mass production 
of the selected plant. Axillary shoot proliferation is easier 
to complete than most other in vitro procedures to use for 
rapid clonal reproduction of this species, particularly since 
this technique can take advantage of axillary bud production 
on its stems. For these reasons, this species was used as a 
test for trying to determine if hyperspectral analysis could be 
used to try to obtain the proper nutrient levels to use in the 
culture medium for a species to put into culture for the first 
time. If hyperspectral analysis could be used successfully 
for this species, then other species of plants that have higher 
economic production in tissue culture could be studied.

Establishing axillary shoot cultures in vitro may require 
adjusting the nutrient medium components to optimize desir-
able shoot growth of the new species. Finding the optimum 
concentration of each component is critical and requires time 
and money. Estimating an explant’s foliar mineral status to 
check its health status is important to attain optimal in vitro 
growth. Usually, destructive methods are applied to estimate 
foliar mineral contents, especially for tissue cultured plants. 
Finding nondestructive methods, such as applying hyper-
spectral signatures can help growers to reduce their produc-
tion cost and save time.

To date, reports on using hyperspectral devices and 
hyperspectral vegetation indices in tissue culture envi-
ronments are lacking. To check the feasibility of using 
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of this technology to evaluate the mineral content of tis-
sue cultured little-leaf mockorange shoots, we used a 
spectroradiometer during the shoot proliferation stage of 
micropropagation to determine if hyperspectral imaging 
could help in estimating nutrition status of the explants 
during shoot proliferation. If hyperspectral imaging shows 
success, it can help tissue culture plant producers save 
money by avoiding destructive sampling for foliar nutri-
ent analysis and save time waiting for nutrient analyses to 
be completed.

Materials and methods

Plant materials and tissue culture

Stems from the selected Little-leaf Mockorange (Phila-
delphus microphyllus A. Gray) plant were established as 
axillary shoot cultures as described elsewhere (Khajehyar 
et al. 2024). Shoot cultures were subcultured monthly for 
6 months until the shoots were acclimated to in vitro condi-
tions. Stable shoot cultures were used in all experiments.

Philadelphus microphyllus stems from stable shoot 
cultures were subcultured and grown on half-strength 
Murashige and Skoog (½ MS) medium (Murashige and 
Skoog 1962) supplemented with different cytokinins (all 
purchased from PhytoTech Laboratories, Inc., Lenexa, 
KS), such as zeatin (Zea, product ID: Z125), kinetin (Kin, 
Product ID: K750), benzylaminopurine (BA, Product ID: 
B800), meta-Topolin (MT, product ID: T841), thidiazuron 
(TDZ, Product ID: T888), or dimethylallylamino purine 
(2iP, Product ID: D217) (each used at concentrations of 0, 
1.1, 2.2, 4.4, or 8.8 µM in separate experiments), or differ-
ent concentrations of minerals such as N (0, 15, 22.5, 30, 
37.5, 45, or 60 mM), or Fe (0, 0.5, 5, 25, 50, 75, 100, or 
500 µM). Iron was tested in the culture media since it is 
an essential and often limiting micronutrient. The cytokinin 
applied in the culture media for the mineral experiments 
was 1.1 mM zeatin. Six stem explants (per jar) were placed 
on the culture medium in 195 ml culture vessels (baby food 
jars) filled with 40 ml ½ MS medium containing 0.5 mg·L−1 
thiamine-HCl, 0.25 mg·L−1 nicotinic acid, 0.25 mg·L−1 
pyridoxine–HCl, 1 mg·L−1 glycine, and 0.05 g·L−1 myo-
inositol, with pH = 5.6. Four replicate jars were used per 
treatment (different PGRs or minerals at each concentra-
tion used). Cultures were incubated in a SG-30S germina-
tor (Hoffman Manufacturing Inc., Albany, OR) at 25 ± 1 °C 
under a 16-h photoperiod (cool-white fluorescent lamps), 
with 38 μmol·m−2·s−1 photosynthetic photon flux (PPF), for 
8 weeks with one subculture onto the fresh media after the 
4th week. The fresh media contained the same concentra-
tions of cytokinin, N, or Fe and were made 1 day before 

subculturing. At the end of week eight, explants were har-
vested for collection of growth data and measurement of 
hyperspectral signatures.

Preparing the spectroradiometer and taking 
readings

For this research, we used either an Analytical Spectrum 
Devices FieldSpec 4 High-Resolution spectroradiometer 
(Malvern Panalytical Ltd., Westborough, MA, USA) or 
an Analytical Spectrum Devices FieldSpec HandHeld-2 
spectroradiometer (Analytical Spectral Devices Company, 
Boulder, CO, USA) (Supplementary Fig. 1). After 30 min 
of spectroradiometer warm up, the device was optimized and 
calibrated with a Spectralon® 99% white reference panel. 
During calibration, an average of 100 dark current measure-
ments were calibrated together, and an average of 50 scans 
of the Spectralon® white reference were measured every two 
minutes (Labsphere Inc., North Sutton, NH, USA) (Beck 
2019). Target reference recordings displayed an average of 
20 scans at an optimized integration time of approximately 
1 s.

Shoots from all the cytokinin experiments, all N, and all 
Fe experiments used at the various concentrations (Sup-
plementary Fig. 2), were analyzed for their hyperspectral 
reflectance and then their shoot mineral contents.

Reflectance readings of mockorange shoots were made 
immediately (within 2 min) after they were taken out of the 
jar and prior to completion of the reflectance spectra proce-
dure (Supplementary Fig. 3). Four jars for each treatment 
(PGR or mineral at each concentration) were read for the 
data. For each jar 3 readings were done which resulted in 12 
observations overall for each treatment. Measurements were 
completed in a dark-room and conducted on a black-colored 
bench to exclude external light and reduce outside lights. 
The probe was held about 5 to 10 cm over the explants to 
take the reflectance. Measurements were taken on all six 
shoots that were grown within each culture jar. Three dupli-
cate readings were recorded for shoots grown in each jar in 
order to reduce error effects. Four jars per treatment were 
used for a total of 12 hyperspectral readings. After every 10 
to 12 readings, a new calibration was completed to reduce 
the error from external white light. All measurements were 
acquired using RS3 software version 6.4 (Malvern Panalyti-
cal Ltd., Westborough, MA, USA).

Reflectance spectral data represented the full range of 
VIS, NIR, and short wave infrared (SWIR) light between 350 
and 2500 nm, with a resolution of 1 nm. The spectral sam-
pling interval was automatically interpolated from 1.4 nm 
to 1 nm at the time of each individual measurement by RS3 
software, so a single value for each wavelength from 350 to 
2500 nm was recorded (Beck 2019). Data were exported by 
the ViewSpec Pro software version 6.2 (Malvern Panalytical 
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Ltd., Westborough, MA, USA). The average of three read-
ings of the reflectance from the group of six explants (per 
jar) was used to create a single treatment reflectance spec-
trum for each jar of shoots.

Tissue analysis for mineral content

After taking the hyperspectral reflectance, the shoots were 
separated from the agar medium, placed in an envelope and 
dried at 70˚C for 72 h. Dried shoots were ground using a 
pestle and mortar. Dried tissues were sent to the tissue analy-
sis lab (Brookside Laboratories, Inc., New Bremen, OH) 
for foliar nutrient analysis. Tissue analysis was completed 
by using a combustion method applying a Carlo Erba 1500 
C/N analyzer to estimate total N content (method B2.20, 
Miller et al. 2013). For Ca, lab procedures entailed use of 
nitric acid and hydrogen peroxide in a closed Teflon vessel 
and digested in a CEM Mars Microwave and analyzed on a 
Thermo 6500 Duo ICP (method B4.30, Miller et al. 2013). 
Results from foliar analyses were used for correlation model 
training with the hyperspectral signatures (Supplementary 
Table 1 and 2).

Hyperspectral data analysis

Preprocessing the spectral signatures was the first step in 
hyperspectral dataset analysis, particularly for spectra col-
lected by the spectrometer. To further reduce noise, spec-
tra were preprocessed with a Savitzky–Golay smooth filter 
(window size = 5 and polynomial order = 4) (Ge et al. 2019). 
The process of selecting an appropriate order and window 
size was done by trial and error, with the goal of smoothing 
out only large changes on a signature's surface.

The success of developing regression models is contin-
gent upon the number of features assigned to the feature 
space (Zhao et al. 2019). Apart from the reflectance value 
at each wavelength, the hyperspectral dataset was used to 

extract spectral indices and geometric features from contin-
uum removal regions. Thus, the number of features used for 
regression becomes even more critical when hyperspectral 
datasets are used; the large number of spectral bands makes 
determining whether spectral bands or spectral vegetation 
indices generated from spectral bands, or both, are associ-
ated with foliar chemical or physiological status, or in this 
case, leaf mineral content. To address this question, related 
features (explained in the following sections) were extrapo-
lated from the spectra and then feature selection approaches 
were suggested for training the model with fewer but more 
informative features.

Spectral indices

Spectral indices defined by the mathematical operators 
between two or more spectral bands are also widely used for 
features extraction in remote sensing (Lu et al. 2020). Many 
spectral indices used in agricultural applications are suitable 
for the specific purpose of plant monitoring. In this study, 
some commonly used spectral indices for mineral estimation 
were selected (Table 1).

Continuum removal

The absorption bands of the electromagnetic spectrum con-
tain valuable information about the minerals or chemical 
compounds present in the target. This information has been 
used in various studies. Huanga et al. (2004) and Gomeza 
et al. (2008) used absorption features to estimate the amount 
of clay and calcium in the soil and the nitrogen concentration 
in a tree's canopy leaf surface, respectively.

Basically, the presence of organic components on the sur-
faces of plant leaves results in absorptions in the VIS and 
NIR wavelength ranges. These molecules include C-N, NH, 
and OH (Hunt 1980), which indicate significant biochemi-
cal substances found on plant surfaces, such as lignin and 

Table 1   The highest correlated 
vegetation indices determined 
by using hyperspectral 
imaging in this study. Formula 
calculations were obtained 
from Anonymous, Index 
Database 2011

Index Name Abbreviation Formula

Cellulose Absorption Index CAI 0.5(2000nm + 2200nm) − 2100nm

Normalized Difference Nitrogen Index NDNI log
(

1

1754nm

)

−log
(

1

1680nm

)

log
(

1

1754nm

)

+log
(

1

1680nm

)

Chlorophyll Absorption Ratio Index CARI
�

700nm

670nm

�
√

(a ∗ 670 + 670nm + b)2∕
√

(a2 + 1)

Normalized difference vegetation index NDVI (NIR−RED)

(NIR+RED)

Leaf Area Index LAI NIR

RED

Double Peak Index DPI (688nm+710nm)

697nm2

Normalized Difference Water Index NDWI (NIR −MNIR)∕(NIR +MNIR)

Normalized Difference Lignin Index NDLI log
(

1

�1754

)

−log(
1

�1600
)

log
(

1

�1754

)

+log(
1

�1600
)
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starch, as well as nitrogen-containing components found in 
plants, such as protein and chlorophyll. These chemical and 
organic compounds may produce absorption in the spectral 
signature of plants due to the electron transfer phenomenon 
in the VIS region of the electromagnetic spectrum. On the 
other hand, specific absorptions in the SWIR region of the 
plant’s spectral signature may be connected to the cellulose, 
glucose, and water content of the plant’s leaf structure.

To demonstrate the geometrical differences between 
absorption regions, spectra need to be transformed into 
numerical features. To extract numerical information from 
the absorption region's surface, the spectrum's general con-
cave shape must be ignored. This approach to normalization 
is referred to as “continuous removal” or “convex body”, and 
it enables the comparison of spectra acquired with various 
equipment or under varying lighting conditions (Sowmya 
and Giridhar 2017).

The continuum removal, spectral signatures, and convex 
hulls of spectra can be shown graphically (Supplementary 
Fig. 4). Three characteristics are defined in this study by 
the geometry of the spectral signature following continuum 
removal. The depth, area, and asymmetry features in Sup-
plementary Fig. 4 correspond to the continuum values at the 
lowest point of absorption, the area under the continuum 
curve in an absorption region, and the ratio of the left to 
right area. In this study, fifteen ranges in spectral signatures 
were selected (Table 2). To choose these spectral ranges, the 
spectral signature was carefully examined, and the absorp-
tion regions were selected based on a visual comparison 
between the absorption regions and the surrounding (left 
and right extremum) wavelengths.

The AreaLeft is the area of space between the continuum 
line and the continuum removed spectrum on the left, and 
AreaRight is the area of space between the continuum line and 
the continuum removed spectrum on the right, the features 
are defined as follows (Aspinall et al. 2002):

•	 D = The absorption depth (the lowest point in continuum 
region)

•	 Area = AreaLeft + AreaRight
•	 Asymmetry =

AreaLeft

AreaRight
= Asy

For example, Asy 2 means the Asymmetry in the second 
wavelength range.

Model development

From the feature selection section, relevant features from 
spectral signatures were identified for tissue cultured shoots. 
The next steps were to 1) fit the regression model by using 
machine learning methods and 2) validate their significance 
using test data. Linear, Random Forest and Support Vector 
Machine were three regression models used in this research 
and are briefly explained below.

•	 Linear Regression: is a linear model that assumes a lin-
ear relationship between the input variable (x) and the 
single output variable (y). To select the relevant features, 
defined features (independent variables), such as reflec-
tance values, continuum removal, and spectral indices 
for a linear model, a correlation test was used. Pearson's 
correlation coefficient is the covariance of the two vari-
ables divided by the product of their standard deviations 
(Freedman et al. 2007). Pearson correlation coefficient 
was used so that features with high correlation values 
were first recognized and selected from the list of defined 
features. In addition to a single variable linear model, a 
multi-variant linear model was also examined to deter-
mine the performance of different combinations of spec-
tral features on the estimation results.

•	 Random Forest Regression (RF): This type of regression 
is a supervised learning algorithm that uses an ensemble 
learning method for regression and also is constructed by a 
set of decision trees. Group learning technique is combined 
with multiple decision trees to compare against a single 
regression model, enabling RF to obtain satisfactory and 
acceptable results for an R-square (R2) value close to 1 or 
root mean square error (RMSE) close to zero, which shows 
ideal estimation. For this reason, RF has been widely used 
by researchers in regression and classification problems. 
The performance of a random forest model depends on 
the number of trees and the input variables. Therefore, in 

Table 2   Fifteen wavelength ranges taken from spectra extracted from 
little-leaf mockorange shoot cultures by using a spectroradiometer

Range number From (Lower wavelength 
(nm))

To (Higher 
wavelength 
(nm))

1 364 369
2 378 559
3 559 772
4 838 843
5 898 903
6 928 1057
7 1121 1258
8 1287 1670
9 1670 1714
10 1714 1819
11 1819 2150
12 2253 2332
13 2341 2389
14 2389 2419
15 2428 2490
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this paper, different random forest regression models were 
trained to achieve the best model.

•	 Support-Vector Machines (SVM): This type of regression 
is a supervised learning model with associated learning 
algorithms that analyze data for classification and regres-
sion analysis. Various models can be produced based on 
changing the parameters in SVM, including the kernel type 
and the c-constant penalty term, which has the responsi-
bility of balancing and maximizing the separator margin 
in features space (for example a two-dimensional space 
constructed by reflectance values in two wavelengths). In 
this study to reach an optimal model, parameter tuning was 
considered first by using RBF (Radial Basic Function), 
Linear and Polynomial (commonly used or built-in func-
tions in SVM algorithm for transferring values of a variable 
to another space, these functions are known as kernels). 
Kernels and C values of 10, 100 and 1000 were used and 
then models with satisfactory results were selected.

To manage the results, the following procedures involved 
separately adding variables into the model and then calculating 
the coefficient of determination (R2), RMSE and the correla-
tion coefficient (Corr). Next, a combination of variables was 
added to the model (multiple-inputs) and then new calculations 
for R2, RMSE and Corr were made. The best model was cho-
sen by comparing the results and using the best R2 and Corr 
values and by using error bar plots and scatter plots. The error 
bar plots showed the error between observed and predicted 
values and the scatter plots showed the correlation between 
observed versus estimated values.

R2 =

⎡

⎢

⎢

⎢

⎣

1

N

∑N

i=1

�

(Pi − P)(Oi − O)
�

�p�o

⎤

⎥

⎥

⎥

⎦

2

where N is the number of observations, Oi is the observed 
values, Pi is the estimated values, O is the mean of the 
observational values, P is the mean of the estimated param-
eter and is the standard deviation of the observations and is 
the standard deviation of the estimated values.

Data partitioning

Data sets were divided into model training and model test 
groups for generating the optimum regression model. Data 
partitioning or splitting data sets (hyperspectral recorded 
samples) into training and sample (test) groups was one 
of the crucial steps in regression. In our case, 39 samples 
(reflectance spectra) out of 56 samples (70%) were used for 
model training and the rest of samples were used for model 
testing (17 samples out of 56 samples). The training data 
set was then used to develop a regression model with wave-
lengths in the spectral signature and vegetation indices cal-
culated from those spectral signatures, as well as generated 
features obtained from those spectral signatures correlated to 
the foliar nutrient content from lab analysis. The developed 
model was validated and evaluated by using test datasets.

Model evaluation criteria (Statistical criteria 
for numerical evaluation of the developed model)

A schematic diagram of the methods used for developing 
a regression model from the hyperspectral bands and the 
mineral content in little-leaf mockorange shoots, is shown in 
Fig. 1, and the evaluation criteria were calculated separately 
for foliar N or Ca contents.

RMSE = (
1

N

N
∑

i=1

[Pi − Qi]
2)

1∕2

Fig. 1   Schematic diagram 
of model development from 
hyperspectral bands and foliar 
mineral analysis for little-leaf 
mockorange shoots grown in 
tissue culture
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The flowchart can be divided into the following steps:

•	 Step 1: Separately adding variables into model and cal-
culation of R-Square (R2), Root Mean Squared Error 
(RMSE), and Correlation.

•	 Step 2: Adding a combination of variables (multiple 
inputs) into the model and then calculation of R2, RMSE 
and Correlation.

•	 Step 3: Comparing the results and choosing the best mod-
els given their performance in terms of evaluation criteria 
to be shown using error plot and scattering plots.

•	 Step 4: Plotting the best results in error plot (showing 
the error between observed and estimated values) and 
scatterplot (showing scattering of observed and predicted 
values to each other).

Results

The correlation between spectral features including spectral 
bands, spectral indices and continuum removal features were 
calculated. Spectral bands with higher correlation to leaf N 
content were used in regression model training (Figs. 2 and 
3). As shown, the wavelengths from 648 to 651 nm were 
shown to have a moderately high correlation with %N with 
correlation value of 0.30 (Fig. 2). In general, leaf reflectance 
between 505 and 670 nm had the highest correlation with N 
content of microshoots and was used for developing a linear 
model for N estimation (Fig. 2).

Model development

Results showed that the reflectance values at the wave-
length of 648 nm, asymmetric feature in range 1819 nm to 

2150 nm (Asy 11) and the area from 559 to 772 nm (Area 
3) had correlation values of 0.30, 0.31 and 0.37 with %N 
content (Fig. 3). These spectral features provided infor-
mation needed for predicting the %N to generate a linear 
model for N content measurement. The best single vari-
able linear model was obtained by Asymmetric features in 
range 11 shown below.

Based on these spectral data, N content acquired by a 
linear model was estimated by R2 = 0.21, RMSE = 0.54 and 
Corr = -0.45 (Supplementary Fig. 5).

Random Forest regression was used in the next model. 
One of the main advantages of RF regression is that the 
number of input variables lack an effect on this model 
(Horning 2010). The algorithm is able to apply the most 
effective variables given to entropy value, and then 
develop the regression model by using the most effective 
variables, meaning that RF algorithm could also be a fea-
ture selection. All the selected spectral bands from the cor-
relation test and all the spectral features (indices and con-
tinuum removal) were added to the RF model. Based on 
the results, the RF regression model revealed that asym-
metric point from 1819 to 2150 nm (Asy 11), asymmetric 
point from 559 to 772 nm (Asy 3), the reflectance values 
at the wavelength of 2480 nm, reflectance at wavelength of 
525 nm, and the Double Peak Index (DPI) were the most 
effective features to generate a nonparametric (non-linear) 
model (Fig. 3).

To develop a RF model, besides using optimal feature 
selection as effective inputs to the model, the number of 
trees in a RF model must be determined. By testing vari-
ous models with different combinations of the mentioned 
features and/or indices, eventually the most accurate 

%Nitrogen = 4.47
∗(Asy11) − 3.45

Fig. 2   Correlation between leaf 
%N and the hyperspectral sig-
natures acquired by a spectro-
radiometer from tissue cultured 
little-leaf mockorange shoots. 
The boxes show the wavelength 
of the peak in the spectrum and 
the correlation value
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model was selected (Table 3). The fitted model with DPI 
index and reflectance at 525 nm and the tree number of 5 
was a more accurate model fitted by RF regression, with 
R2 = 0.72 and RMSE = 0.30, and correlation = 0.84 (Sup-
plementary Fig. 6) compared to the other fitted models.

Support vector machine, one of the most commonly used 
regression methods, was used for the developing another 
regression model. In the SVM model, two main objectives 

were considered. First, the selected features from the cor-
relation test and those selected by RF methods were added 
to a SVM model. Second, the parameters of the SVM model, 
including the kernel type and the penalty term, were evalu-
ated by trial and error such that the most accurate SVM 
model fitted by the optimal model had the lowest RMSE.

The model generated by SVM regression provided 
an estimation of foliar %N content that compared to 

Fig. 3   Correlation value between features and VIs with leaf N content of little-leaf mockorange shoots produced in tissue culture. The ovals 
show the features with highest correlation with the leaf N content

Table 3   Various models developed for %N estimation in little-leaf mockorange shoots produced in tissue culture. Each model has different fea-
ture combinations and a different number of trees via the Random Forest algorithm

Features (N) ntree = 5 ntree = 50 ntree = 100

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation

2 features
(DPI + Reflectance 525)

0.72 0.30 0.84 0.37 0.61 0.43 0.22 0.59

2 features
(DPI + Asy11)

0.78 0.72 0.60 0.64 0.58 0.64

2 features
(DPI + Asy3)

0.73 0.86 0.49 0.72 0.39 0.74
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the linear model, and the fitted SVM model including 
Double Peak Index (DPI) with asymmetric point from 
1819 to 2150 nm (Asy 11) (Table 4). Another model 
including DPI with asymmetric point from 559 to 772 
nm (Asy 3), provided an approximate accurate method 
to estimate foliar N content, respectively at R2 = 0.58 and 
RMSE = 0.32, or R2 = 0.61 and RMSE = 0.33 for little-
leaf mockorange shoots produced in tissue culture (Sup-
plementary Fig. 7).

Foliar calcium content

After analysis of the hyperspectral bands and checking for 
their correlation with the Ca content of the shoots received 
from the tissue analysis, the bands with higher correlations 
were selected, and those were 721 nm, 541 nm, 1293 nm, 
1805 nm, and 2209 nm, with correlation values of 0.35, 
0.33, 0.30, 0.28, and 0.26, respectively (Fig. 4).

Examining the correlation values between %Ca with dif-
ferent features and VIs spectra showed that the minimum 

(depth) external of the wavelength between 1819 to 2150 nm 
(Min 11), and minimum (depth) external wavelength 
between 1287 to 1670 nm (Min 8) had the highest correla-
tion values with Ca, respectively 0.59 and 0.45 (Fig. 5).

Model development

Model development showed that Ca content determined by 
a linear model consisted of parameters of minimum (depth) 
external wavelengths between 1819 to 2150 nm (Min 11) 
and the area from 559 to 772 nm (Area 3) could be estimated 
by R2 = 0.83 and RMSE = 0.09. Nevertheless, the coefficient 
of Area 3 was low enough to ignore it to draw the error bar 
graph (Supplementary Fig. 8).

%Calcium = 1.13*(Min11) + 0.08

The Random Forest algorithm provided a successful model 
to estimate the %Ca of little-leaf mockorange shoots. 
After examining several models with different feature 

Table 4   Various models developed for %N estimation of little-leaf 
mockorange shoots produced in tissue culture. The models had dif-
ferent feature combinations and different penalty terms via SVM 

algorithm. RMSE, R2 and correlation values resulted from the SVM 
model tuned by the linear kernel and three different values of penalty 
term

Features (N) cost = 10 cost = 50 cost = 100

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation

2 features
(DPI + Asy11)

0.58 0.32 0.76 0.58 0.32 0.76 0.58 0.32 0.76

2 features
(DPI + Asy3)

0.61 0.33 0.78 0.61 0.33 0.78 0.61 0.33 0.78

2 features
(DPI + Area4)

0.56 0.34 0.75 0.56 0.34 0.75 0.56 0.34 0.75

Fig. 4   Correlation between 
leaf %Ca and the hyperspec-
tral signatures acquired by the 
spectroradiometer from tissue 
cultured little-leaf mockorange 
shoots. The numbers in the 
rectangles represent wavelength 
(in nm) and correlation values, 
respectively
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combinations and tree numbers, the model including four 
features of minimum (depth) from 838 to 843 nm (Min 4), 
area from 2428 to 2490 nm (Area 15), asymmetric point 
from 1670 to 1714 nm (Asy 9), and Cellulose Absorption 
Index (CAI), with the tree number of 5 were the most effec-
tive features to generate a nonparametric (non-linear) model 
(Fig. 6, Table 5), yielding R2 = 0.99 and RMSE = 0.03 and 
correlation value = 0.99 (Supplementary Fig. 9, right). The 
error bar plot in Supplementary Fig. 9 (left) reveals only 
slight differences between observed and estimated Ca among 
test samples proving the success of developed RF model for 
shoot Ca estimation.

Using the specific spectral features and a selected index 
(CAI) acquired from the RF algorithm as the best variables 
to use in model development. The specific spectral features 
and CAI index used for the RF algorithm were also used 
to develop a fitted model for SVM regression. After devel-
oping and running several models with different penalty 
terms (costs = 10, 50, or 100) and different kernels (linear, 
polynomial, or radial) (Table 6), eventually a model via lin-
ear kernel, including all four features of minimum (depth) 

reflectance from 838 to 843 nm (Min 4), area from 2428 to 
2490 nm (Area 15), asymmetric point from 1670 to 1714 nm 
(Asy 9), and CAI was eventually developed. This model had 
a R2 = 0.59 and RMSE = 0.16 and was determined to be the 
better model, regardless of the penalty term (cost value) 
(Table 6, Supplementary Fig. 10).

Discussion

Regression modeling plays an important role in estimating 
various plant characteristics, such as mineral content and 
water content. Accurate prediction of these parameters can 
assist in better understanding of plant growth and develop-
ment, and improving agricultural practices. In this context, 
several regression models have been developed for hyper-
spectral data analysis, including the Random Forest (RF) and 
Support Vector Machine (SVM) models. In this study, we 
compared the performance of linear, RF, and SVM regres-
sion models in predicting the nitrogen (%N) and calcium 
(%Ca) content of tissue-cultured shoots. Additionally, we 

Fig. 5   Correlation value between features and VIs with leaf calcium content of little-leaf mockorange shoots produced in tissue culture. The 
abbreviations and numbers in the ovals represent the features and their correlation with the leaf Ca content
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evaluated the importance of selecting the best features and 
wavelengths from the hyperspectral bands for accurate pre-
diction. Our findings indicated that the RF model outper-
formed the SVM model in predicting %N, whereas %Ca was 
better predicted by the RF model with higher R2 and lower 
RMSE values. These results demonstrated the importance 
of selecting the appropriate regression model and optimal 
features for hyperspectral data analysis in predicting plant 
characteristics.

This research demonstrated that hyperspectral imag-
ing can be used to predict the percentages of N and Ca in 

little-leaf mockorange shoots produced in tissue culture. Lin-
ear, RF and SVM regression procedures were used to obtain 
an accurate model to estimate the %N and %Ca in little-leaf 
mockorange shoots produced in tissue culture. Among the 
three developed regression models used to estimate and pre-
dict the foliar nitrogen content, random forest regressions 
and SVM, could estimate %N more accurately than the lin-
ear regression model. Nevertheless, the models developed to 
predict %N were slightly less accurate than those developed 
for predicting %Ca in the tissue cultured shoots.

Fig. 6   The importance value of generated features and selected VIs 
regarding leaf %Ca in little-leaf mockorange shoots produced in tis-
sue culture as determined via Random Forest algorithm. The abbre-

viations and numbers in the rectangles represent the features and their 
correlation with the leaf Ca content via RF regression model

Table 5   Various models developed for %Ca estimation in little-leaf mockorange shoots produced in tissue culture. The models contain different 
features combinations and different number of trees via the Random Forest algorithm

Features ntree = 5 ntree = 50 ntree = 100

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation

2 features
(Min4 + Area15)

0.99 0.06 0.96 0.95 0.09 0.95 0.95 0.1 0.96

3 features
(Min4 + Area15 + CAI)

0.98 0.04 0.93 0.89 0.09 0.93 0.87 0.09 0.98

4 features
(Min4 + Area15 + Asy9 + CAI)

0.99 0.03 0.99 0.92 0.08 0.96 0.85 0.1 0.92
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The RF (tree number = 5) could estimate %N better than 
SVM (no matter what the cost (parameter or penalty term) 
used for this regression model). For %Ca, the RF model had 
a higher R2 (0.99), had a lower RMSE (0.03) and provided a 
better model than SVM with a lower R2 (0.59) and a higher 
RMSE (0.16). Finding the best regression model and the best 
features or indices as well as the best wavelengths through-
out the hyperspectral bands is highly important for predict-
ing a specific mineral content or other plant characteristics, 
such as water content.

Although the linear regression model provided an accept-
able R2 value, the model failed to predict %Ca. Hence, RF 
and SVM regression models were alternately considered. 
Based on the results obtained from this research, foliar %Ca 
content could best be estimated using a non-linear regres-
sion model rather than a linear model. Although the fea-
tures used in the model (including the Cellulose Absorp-
tion Index) worked for both RF regression model and SVM 
regression model, the RF regression had stronger R2 and 
correlation, and therefore was a better model to estimate 
the %Ca of tissue cultured shoots of little-leaf mockorange. 
Cellulose is an important component in the structure of pri-
mary cell walls of green plants (Khajehyar 2021; Khajehyar 
et al. 2024). Calcium interacts with cellulose as a cellular 
structural component. A high correlation between %Ca and 
CAI is likely due to this relationship, and in the future more 
detailed experiments can be conducted to determine any pos-
sible relationship between %Ca and CAI index.

To date, research using hyperspectral images to estimate 
shoot mineral contents of shoots or plantlets produced in tis-
sue culture (in vitro) is lacking. Studies, however, have been 
conducted to estimate N content of agronomic field crops, 
such as estimating N in winter wheat at different growth 
stages, based on NIR wavelengths via multivariate linear 
regression and Back Propagation (BP) neural network using 
vegetation indices (Liu et al. 2016), estimating leaf N con-
tent of winter wheat via selected spectral indices and around 

NIR wavelengths (Zhu et al. 2018), estimating N content in 
potato plants in NIR (Clevers and Kooistra 2012), N estima-
tion in maize via VIs, such as NDVI, Renormalized differ-
ence vegetation index (RDVI) or Optimized Soil-Adjusted 
Vegetation Index (OSAVI) (Gabriel et al. 2017), N estima-
tion in rice with Gaussian process regression (GPR) model 
(Wen et al. 2018), N estimation of eucalyptus using NDVI 
in red-edge and modified red-edge NDVI (DeOliveira et al. 
2017), and estimation of macro- and micronutrients such 
as N and Ca in soybean and maize via partial least squares 
regression (PLSR) models (Pandey et al. 2017).

Although some reports describe the use of NIR or lower 
short wave infrared (SWIR) wavelengths to provide effective 
estimates of N, almost all of these studies have used only 
vegetation indices such as NDVI or other VIs. The differ-
ence between this study and other hyperspectral studies was 
application of different geometric features generated from 
continuum removal, such as minimum reflectance (depth), 
area under the spectrum, and asymmetric point of the spec-
trum alongside the reflectance spectrum acquired from little-
leaf mockorange shoots produced in tissue culture. Apply-
ing these geometric features for plants grown in an in vitro 
environment, nevertheless, resulted in satisfactory R2 and 
RMSE values obtained from the regression models used to 
predict N and Ca contents in the shoots.

An interesting aspect of %N and %Ca estimation was 
that both were predictable in spectrum ranges from 1819 to 
2150 nm (Range 11) and from 559 to 772 nm (Range 3). Using 
different features of these ranges provided information for each 
of these two minerals in little-leaf mockorange shoots. In addi-
tion, correlation plots of estimated and measured values for N 
and Ca concentrations, revealed a small gap between higher 
concentrations and lower concentrations of these two minerals, 
probably due to the limited number of samples (less than 100) 
used for predicting their concentrations. The other possibility 
for the gap was that hyperspectral images could estimate N or 
Ca only at higher concentrations, due to the tiny size of the 

Table 6   Various models developed for %Ca estimation of little-leaf mockorange shoots produced with tissue culture. The models used different 
feature combinations and different penalty terms via the SVM algorithm

Features cost = 10 cost = 50 cost = 100

R2 RMSE Correlation R2 RMSE Correlation R2 RMSE Correlation

2 features
(Min4 + CAI)

0.57 0.17 0.75 0.57 0.17 0.75 0.57 0.17 0.75

3 features
(Min4 + Area15 + Asy9)

0.18 0.22 0.42 0.18 0.22 0.42 0.18 0.22 0.42

3 features
(Min4 + Area15 + CAI)

0.51 0.18 0.71 0.51 0.18 0.71 0.51 0.18 0.71

4 features
(Min4 + Area15 + Asy9 + CAI)

0.59 0.16 0.76 0.58 0.16 0.76 0.58 0.16 0.76
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leaves and stems on the shoot cultures, meaning less informa-
tion was acquired from their reflectance.

A deeper look at the scatter plot of %Ca obtained from 
the RF algorithm (Supplementary Fig. 9, error bar plot) 
showed that samples with values higher than 0.15 of CAI 
features had much lower differences between the measured 
and estimated values compared to the differences between 
measured and estimated values of CAI less than 0.15. This 
result indicated that for a more accurate prediction, features 
with higher correlation values must be selected. On the other 
hand, except for two samples (error bars shown in Supple-
mentary Fig. 10, left), the developed model either accurately 
estimated or slightly over-estimated %Ca.

Most of the earlier foliar nutrient content studies have 
used mostly the vegetation indices to estimate canopy miner-
als especially N. Unfamiliarity with hyperspectral features 
relative to prediction of foliar mineral status may be a limita-
tion on using of this technique in comparison with vegeta-
tion indices. Recruitment of a team of plant scientists, plant 
nutritionists, and hyperspectral scientists, may provide an 
opportunity to apply these features more effectively. This 
study illustrated the potential for success of such a team of 
a plant scientists and hyperspectral scientists.

All these results were obtained from a specific selected 
mockorange genotype. Application of hyperspectral imaging 
was successfully completed for shoots from this little-leaf 
mockorange grown in vitro, but the success of this method 
for other mockorange species as well as other plant species 
still needs to be tested.

This study showed that hyperspectral imaging could help 
to predict foliar nutrient contents (N and Ca particularly) of 
little-leaf mockorange shoots produced in tissue culture and 
could help to avoid destructive methods of foliar mineral 
analysis. This nondestructive method, can save tissue culture 
producers the time necessary for drying, grinding, sending 
the samples off to a tissue analysis lab, and then waiting for 
the analysis, and the money by avoiding paying for shipping 
and foliar tissue analyses, enabling producers to save money.

However, it is highly recommended to employ hyper-
spectral imaging on a larger number of samples to enhance 
data collection and minimize potential errors. This approach 
facilitates a more robust reliance on correlations by increas-
ing the dataset. Moreover, conducting additional experi-
ments analyzing nitrogen content in shoot cultures and 
incorporating these findings into modeling experiments can 
refine the random forest model. This necessitates further 
data analysis to validate the model's efficacy.

Additionally, it is advisable to extend the application of 
imaging techniques to monitor a broader range of plant spe-
cies, particularly those with substantial foliage in their tissue 
culture scales.

Conclusion

This study demonstrated that strong regression models could 
be developed to predict N and Ca contents of tissue cultured 
little-leaf mockorange shoots. The best features to estimate %N 
were reflectance values at the wavelength of 648 nm, asym-
metric point from 1819 to 2150 nm (Asy 11) and the area 
from 559 to 772 nm (Area 3), and reflectance at wavelength of 
1919 nm. These features were used in a nonparametric (non-
linear) model, with RF regression to provide the best model for 
estimation of foliar %N content. Best features to estimate %Ca 
in the shoots were minimum reflectance from 838 to 843 nm 
(Min 4), area from 2428 to 2490 nm (Area 15), asymmetric 
point from 1670 to 1714 nm (Asy 9), and Cellulose Absorption 
Index (CAI). Random forest regression provided a more accu-
rate model to estimate %Ca than the other regression models. 
The best RF regression model for %N in little-leaf mockorange 
shoots resulted in an R2 = 0.72 and correlation = 0.84. Like-
wise, the best RF model for %Ca estimation resulted in an 
R2 = 0.99 and correlation = 0.99. These strong statistical values 
clearly demonstrated that hyperspectral imaging can be used to 
predict accurately %N and %Ca in tissue cultured shoots from 
one selected little-leaf mockorange genotype. Other mock-
orange species as well as other plant species produced in tissue 
culture would need to be tested to validate using hyperspectral 
imaging to predict N and Ca contents of their shoots.
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