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Abstract
The antimicrobial activity of green silver nanoparticles (AgNPs) offers a promising approach for combating in vitro pathogen 
infections in Eucalyptus pellita (E. pellita) plants. This strategy provides an environmentally sustainable method to improve 
plant health and resistance. The effect of green synthesised AgNPs on the pathogen-infected in vitro regenerated E. pellita 
plantlets was examined. Firstly, shoots regenerated from cotyledonary leaf explants of E. pellita were examined in vitro 
through a direct organogenesis technique using murashige and Skoog (MS) medium supplemented with different concentra-
tions (0.4, 1.3, 2.2, 3.1 and 3.9 µM) of 6-benzylaminopurine (BAP). The elongated shoots were rooted in vitro using ½ MS 
medium supplemented with different concentrations (0.5, 1, 1.5, 2 and 2.5 µM) of indole-3-butyric acid (IBA). The highest 
shoot formation from cotyledonary leaves was observed in the MS media supplemented with 2.2 µM BAP, followed by 
3.1 µM BAP giving a mean of 7.4 and 6 shoots per explant, respectively. The highest root formation was observed in the ½ 
MS media supplemented with 1.5 µM IBA, yielding an average of 17.47 roots per explant. Secondly, the antibacterial effect 
of green AgNPs on tissue-cultured plants was examined by inoculating green AgNPs and three bacterial strains (Bacillus 
sp. strain EU_UPM1, Pantoea dispersa strain EU_UPM3 and Pantoea dispersa strain EU_UPM2). The results showed 
that green AgNPs controlled bacterial growth at 100 ppm concentration. The focal point of the current research is to use of 
green synthesised AgNPs as an efficient antibacterial agent that particularly targets in vitro pathogen infections in E. pellita 
plants. Thus, this study finds that green AgNPs possess potent antibacterial activity and could therefore be developed as a 
promising antimicrobial agent for the treatment of bacterial infections, including gram-positive and gram-negative bacteria.

Key Message 
In vitro inoculation of green AgNPs resulted in better development and enhanced morphological characteristics in the hor-
ticulturally important E. pellita plantlets.
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Introduction

In recent forestry breeding programs and biotechnology 
research, micropropagation opened up new promises for 
increasing the coefficient of plant propagation (Abiri et al. 
2020). Plant tissue culture is a technique in which plant 
tissues, organs or cells are cultured in vitro under asepti-
cally nutritional and controlled environmental conditions, 
commonly for plant cloning (Oseni et al. 2018). These 
clones represent the true type of the chosen genotype 
(Hussain et al. 2012). Under such a properly monitored 
environment, the culture can develop and multiply (Suman 
2017). An aseptic environment includes an adequate sup-
ply of nutrients, the pH value of the medium, a suitable 
temperature, as well as a balanced gaseous and liquid envi-
ronment (Oseni et al. 2018). The plant tissue culture tech-
nique is mainly exploited for large-scale plant propagation 
(George et al. 2008). Besides its use as a research tool, 
it has acquired considerable industrial relevance in plant 
improvement, plant propagation, production of secondary 
metabolites and disease control (George et al. 2008).

Eucalyptus (group of the Myrtaceae family) is a widely 
distributed evergreen genus. Eucalyptus has a fast growth 
rate, including about 900 species that are highly available 
in Chile, Australia, Brazil, Portugal, Indonesia and South 
Africa (Batista et al. 2018). Eucalyptus has long been 
known for its economic value and commercial importance 
owing to its rapid growth, hard timber, high profitabil-
ity and resistance to biotic stresses (Rezende et al. 2014; 
Nogueira et al. 2020). E. pellita is a perennial tree species 
with a huge densely branched crown which can grow to a 
height of 40 m (Menucelli et al. 2019). It has been culti-
vated for wood across many tropics and subtropic areas. 
E. pellita is great to be used as a shelter and windbreak 
(Hirsch et al. 2020). Moreover, it is ideal for coastal refor-
estation, and due to its ornamental value, it is commonly 
planted in parks (Thu et al. 2021).

Despite the wide availability of wild Eucalyptus trees, 
seed propagation has become a traditional cultivation tech-
nique with varying levels of success and achievement (Abiri 
et al. 2020). While this species is important for wood pur-
poses, few reports have studied their properties and mass 
production techniques (Batista et al. 2018). Despite the 
advancement in the micropropagation strategy, the obstacles 
due to microbial contamination during early and late growth 
stages are still significant barriers to the clonal propagation 
of Eucalyptus sp. (Hirsch et al. 2020). Therefore, the first 
objective of the current study is to induce shoots and roots 
from leaf explants of E. pellita using cytokinin and auxin 
plant growth regulators (PGRs). Hence, the second objective 
of this study is to examine the influence of green AgNPs on 
the pathogen-infected in vitro E. pellita plant.

Nanotechnology has linked engineering, chemistry, bio-
logical sciences and materials science to create novel nano-
materials owing to its innovative nature (Salem and Fouda 
2021; Dezfuli et al. 2023; Abdelfattah et al. 2023; Salem 
2023). Nanotechnology has touched several industries owing 
to its distinct and observable effects, providing the scien-
tific community with countless advancements in the fields 
of medicine, agriculture, and other domains. Nanotechnol-
ogy opens a plethora of emerging applications in the field of 
biotechnology and agriculture, owing to its unique physico-
chemical properties, biocompatibility, bioactivity, antitumor, 
antimicrobial activity, reduce inflammation, and drug deliv-
ery agent (Mahendran et al. 2019; Salem and Fouda 2021). 
It has great promise in biotechnology, food technology, 
agricultural, environmental and medical activities (Nagan-
thran et al. 2022; De Silva et al. 2021; Thakur et al. 2018). 
It entails molecular-scale structures less than 100 nm in at 
least one dimension (Sharma et al. 2019). Their tiny size and 
large surface area to volume ratio impart specific features 
that differ from their bulk materials (Thakur et al. 2018).

Bacterial resistance towards antibiotics has become a sig-
nificant concern in environmental and public health; there-
fore, there has been a considerable effort to create novel bac-
tericides (Terreni et al. 2021). Numerous investigations have 
studied the relevance of NPs as antimicrobial agents (Aisida 
et al. 2020; Simo et al. 2018; Kaviyarasu et al. 2017). The 
AgNPs have been studied to have antibacterial, antifun-
gal, antiviral and anti-biofilm as well as anti-inflammatory 
properties (Naganthran et al. 2022; Tufail and Liaqat 2021; 
Majoumouo et al. 2019; Wang et al. 2015; Galdiero et al. 
2011; Valodkar et al. 2010).

The synthesis mechanism of AgNPs is an essential part 
of nanotechnology, as they can be obtained either physically, 
chemically or biologically (Said et al. 2024; Salem 2022; 
Elakraa et al. 2022). Using chemical and physical means, 
including the use of toxic and hazardous compounds respon-
sible for various environmental risks, can be quite expensive 
and potentially harmful to the environment (De Silva et al. 
2021; Dağlıoğlu and Yılmaz Öztürk 2019). Thus, there is a 
need to use eco-friendly and sustainable strategies for syn-
thesising AgNPs (Aisida et al. 2020). With more outstanding 
biological capabilities, AgNPs are now being synthesised 
using various biological entities and microorganisms such 
as plant extracts yeasts, bacteria and fungi (Arif and Uddin 
2021; Liu et al. 2021; De Silva et al. 2020; Pirtarighat et al. 
2019).

Recently, the preferred approach for synthesising nano-
particles is by green synthesis using various biological 
entities such as (plants, algae, fungi, bacteria, viruses, and 
actinomycetes) which is preferred due to its safe, clean, cost-
effective, and easily accessible method for large-scale NPs 
synthesis (Aref and Salem 2020; Al-Rajhi et al. 2022; Salem 
et al. 2022; Al-Zahrani et al. 2022). The investigation into 
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the impact of green AgNPs on E. pellita produced in vitro 
holds substantial significance for the fields of agriculture and 
environmental research. The results of the current research 
indicate that these NPs, presumably produced using eco-
friendly techniques, can impact the growth and development 
of E. pellita plants. Gaining a comprehensive understanding 
of their influence gives useful insights into prospective uses 
for augmenting agricultural productivity or mitigating the 
effects of in vitro culture contamination. Nevertheless, it 
also prompts worries regarding unanticipated impacts on 
ecosystems and the necessity for additional investigation to 
guarantee the sustainable and secure application of silver 
NPs in agricultural activities. In summary, the study high-
lights the significance of maintaining a balance between 
innovation and environmental responsibility in contempo-
rary agricultural practices. Therefore, the first objective of 
the current study is to induce shoots and roots from leaf 
explants of E. pellita using cytokinin and auxin plant growth 
regulators (PGRs). Hence, the second objective of this study 
is to examine the influence of green AgNPs on the pathogen-
infected in vitro E. pellita plant.

Materials and methods

Plant material and surface sterilization

Seeds of E. pellita were provided from Sabah Softwoods 
Berhad (Sabah, Malaysia) and green AgNPs were biologi-
cally synthesised from Janthinobacterium svalbardensis 
strain AQ5-NA17 accession number OP643518 (unpub-
lished) with a size range (4.34 – 15.75 nm) which obtained 
from Eco-Remediation laboratory, Faculty of Biotechnol-
ogy and Biomolecular Sciences, Universiti Putra Malaysia, 
Malaysia. All in vitro propagation studies used MS medium. 
The composition of the nutrient media was supplemented 
with 3% (w/v) sucrose and 0.7% (w/v) gelrite gelling agent 
for medium solidification (Aggarwal et al. 2010). The pH 
of the medium was adjusted to 5.8 using 0.1 N NaOH/HCl. 
The media were sterilised by autoclaving under 121 °C and 
6.79 Ibs for 15 min. Then, they were poured into sterile 
(90 × 15 mm) Petri dishes with ~ 10 mL media per dish.

Seed explants were germinated in MS basal media with-
out any PGRs. Seeds were put under the running tap water 
for 24 h to hydrate them. Then, soaked in 70% (v/v) ethanol 
for 60 s and rinsed with distilled water three times. Under 
the laminar flow hood, seeds were immersed in 5.25% (v/v) 
sodium hypochlorite for 15 min and rinsed with autoclaved 
distilled water five times to remove residues. The surface 
sterilisation procedure was conducted according to Kup-
pusamy et al. (2019) with slight modifications. Ten seeds 
per petri dish were put in touch with the medium surface 

containing 10 ml of full-strength MS medium (Murashige 
and Skoog 1962).

Shoot induction from leaf explants

Cotyledonary leaves were excised from the germinated seeds 
and inoculated under the aseptic conditions on MS solidified 
media supplemented with different concentrations (0.0, 1.0, 
3.0 and 5.0 µM) of BAP. Four leaf discs were placed in a 
single petri dish with five replicates. Petri dishes were kept 
under special conditions, 25 ± 1 °C at 16:8-h light: dark pho-
toperiod provided by a white LED bulb (300–500 lumens). 
After four weeks of culture, the shoot cultures were sub-
cultured onto a fresh medium and incubated under similar 
culture conditions. The elongated shoots were expressed as 
the number of responsive leaf discs and the number of regen-
erated shoots per explant. The shoot induction technique was 
carried out following Patricia et al. (2021).

Root induction of elongated shoots

Elongated shoots were cut off and cultured in ½ MS media 
supplemented with different IBA concentrations (0.0, 0.5, 
1.0, 1.5, 2.0 and 2.5 µM), while ½ MS media without auxin 
was used as a control treatment, according to Bhandari et al. 
(2022) with minor modifications.

Bacterial strain and identification

Three bacterial isolates were subculture and activated in nutri-
ent broth (NB) in prior to the use. 200 µL of bacterial growth 
were added to 10 mL of new NB and put in orbital shaker 
under 25 °C. After that, Optical density (OD600 nm) measure-
ment were taken every hour to reach the 0.5 McFarland stand-
ard (EUCAST 2003). The bacterial isolates used in this study 
were isolated from the infected in vitro Eucalyptus plantlets. 
Green AgNPs were biologically synthesised from bacterial 
strain Janthinobacterium svalbardensis strain AQ5-NA17 
with accession number of OP643518 with a size range of 4.34 
–15.75 nm which obtained from the Eco-Remediation Tech-
nology laboratory, Faculty of Biotechnology and Biomolecular 
Sciences, Universiti Putra Malaysia, Malaysia. The genomic 
DNA was extracted for 16 s rRNA sequencing (Ruimy et al. 
1994) using NucleoSpin® Microbial DNA Kit supplied by 
Qiagen following the manufacturer's protocol. Then, the DNA 
product amplified using PCR with the following forward and 
reverse primers: 27F (5’-AGA​GTT​TGA​TCA​TGG​CTC​AG-3') 
and 1492R (5’-TAC​GGT​TAC​CTT​GTT​ACG​ACTT-3'). The 
PCR products for the three isolates were purified and sent 
to Apical Scientific Laboratories for automated sequencing. 
A multiple alignment method was used on 20 16 s rRNA 
gene sequences that closely match the selected isolate, which 
were retrieved from GeneBank and aligned using clustal_W 
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(Thompson et al. 1994). Then, the phylogenetic trees were 
created using The Molecular Evolutionary Genetics Analysis 
(Mega) software, version 11 (Kumar et al. 2018).

Antibacterial activity of green AgNPs

The antibacterial activity of green AgNPs was studied by 
measuring minimum inhibitory concentration (MIC), disc dif-
fusion assay (Gopal et al. 2018), and direct exposure of green 
AgNPs on the in vitro regenerated E. pellita plantlets. Different 
concentrations (80, 85, 90, 95 and 100 ppm) of green AgNPs 
were tested to measure the MIC. Ultrapure water and 25% of 
Ampicillin were used as the negative and positive controls, 
respectively. The tubes were incubated at 37 °C for 24 h and 
thereafter inspected for turbidity. Following that, a loopful of 
broth from each microcentrifuge tube that did not demonstrate 
growth was inoculated into a nutrient agar plate.

The measurement of the zone of inhibition (ZOI) in this 
study was performed to confirm the sensitivity of bacterial iso-
lates toward the green AgNPs. The bacterial isolate was grown 
on Muller-Hinton agar medium (Mahboob et al. 2019). The 
broth from the non-turbidity tube was streaked on the whole 
surface of the medium using a sterile cotton cloth. The anti-
bacterial susceptibility of green AgNPs was performed using 
filter paper discs dipped in 10 µL of distilled water (negative 
control), 25% Ampicillin (positive control) and green AgNPs. 
Then, the diameter of the inhibition zone surrounding each 
disc was measured in mm to evaluate the susceptibility of the 
tested bacteria.

The direct exposure of bacteria and green AgNPs on in vitro 
regenerated plants was carried out by inoculating 50 µL of 0.5 
McFarland standard of the activated bacteria in nutrient broth 
and green AgNPs near the roots according to Vicente-Hernan-
dez et al. (2019). The number of leaves and shoot length were 
measured after three weeks from the application bacteria and 
green AgNPs.

Statistical analysis

All experiments were conducted in triplicates, and the average 
diameter of the ZOI was measured. The data sets were then 
analysed using analysis of variance (ANOVA) according to 
Tukeys' post-test by the statistical analysis system (GraphPad 
Prism_5.0). Means between groups were statistically com-
pared using Tukey's test. The significance level was set up at 
P < 0.05.

Results and discussion

Shoot induction from leaf explant

The germination of E. pellita seeds started from day 4 of the 
culture and grew cotyledonary leaves after 14 days. Then, 
cotyledonary leaves were gently excised at the petiole base 
from each seedling and transferred to a new fresh medium 
supplemented with plant growth regulators for multipli-
cation. The analysis of variance reveals a statistically sig-
nificant difference (P ≤ 0.05) in both shoot length and the 
number of leaves. The results indicated that the full strength 
of the MS medium was influential in the seed germination 
of E. pellita seeds. The mean number of germinated seeds 
varied from 7 to 8 after 14 days 14 of culture, as shown in 
Fig. 1. This experiment also revealed the shortcomings of 
relying solely on 14 days of germination since cotyledonary 
leaves will develop into true leaves with a slower multipli-
cation rate after this period. In addition, investigations on 
plant propagation from cotyledonary explants of Eucalyptus 
have been reported for E. globulus (Serrano et al. 1996), E. 
grandis (Hajari et al. 2006), E. tereticornis (Parthiban et al. 
1999), E. urophylla (Tibok et al. 1995), and E. gunnii (Hervé 
et al. 2001). Similarly, Afroze et al. (2021) demonstrated 
that a duration of four to ten days was sufficient to assess 
germination characteristics for the majority of 15 tested 
Eucalyptus species.

Furthermore, all the explants responsive to initiate mul-
tiple shoots in the media supplemented with different con-
centrations of BAP after 8 weeks of culture. The number 
of responded explants were in MS media supplemented 
with BAP (0.4, 1.3, 2.2, 3.1 and 3.9 µM) giving a mean 
of 4 explants per treatment, as depicted in Fig. 1. Figure 2 
shows that the maximum number of shoots induced per 
explant were produced in MS media supplemented with 
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Fig. 1   Effect of different concentrations of BAP supplemented with 
MS medium on multiple shoot production from cotyledonary leaf 
explants of E. pellita excised from in  vitro germinated seeds after 
eight weeks of culture. Letters above the bars indicate significant dif-
ference at (P < 0.05) according to Tukeys' post-test
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2.2 µM BAP, followed by 3.1 µM BAP, giving a mean of 
7.4 and 6 shoots, respectively. The multiple shoots induced 
per explant increased from 1.3 µM to 3.1 µM for BAP. 
Meanwhile, the MS media fortified with 1.3 µM, 2.2 and 
3.1 µM produced highest shoots with 4.25, 7.3 and 5.7, 
respectively.

The cytokinin BAP stimulates axillary bud formation and 
cell division, while prohibiting root formation (Sutter 1996). 
In this study, the response to 2.2 μM BAP of cotyledonary 
leaf explants of E. pellita was considerable and fast. George 
et al. (2008) realised that excessive amounts of cytokinin 
in the culture media may harm the explant, leading to seri-
ous problems in the subsequent stages, which supports the 
results from 3.1 µM and 3.9 µM BAP concentrations used 
in this experiment. Shoots from cotyledonary nodes of E. 
saligna were successfully multiplied on MS medium con-
taining 1.1 μM BAP (Da Silva et al. 2015). Micro-cutting 
of E. benthamii x E. dunnii was successfully induced in MS 
and ½ MS media containing 2.8 μM BAP and 0.3 μM NAA 
(Brondani et al. 2011). Bisht et al. (1999) proved that the 
concentration of BAP of more than 8.6 μM significantly 
decreased the number of proliferated buds per explant. 
Bennett et al. (1994) investigated that BAP concentration 
exceeding 2.5 μM on MS medium reduced the number of 
proliferated buds per explant of E. globulus. Similarly to 
the current findings, they also stated that the concentrations 
above 2.2 μM BAP decreased the number of regenerated 
buds per explant. On the contrary, it has been found that, E. 
camaldulensis cultured in MS medium without BAP showed 
considerably greater shoot length at 4 and 8 wees of culture 
(Afroze et al. 2021). Which contracdicts the current research 
results. This is may due to the difference a enough amount of 
endogenous cytokinins that might stimulate morphological 
growth, specifically in terms of shoot length (Afroze et al. 
2021).

Root induction from elongated shoots

Micro-cuttings of 1.5 cm E. pellita shoots were obtained 
from the in vitro induced cotyledonary leaf explants and 
cultured on both PGR-free ½ MS media and ½ MS con-
taining different concentrations of IBA (0.5, 1.0, 1.5, 2.0 
and 2.5 µM). The analysis of variance revealed a significant 
difference (P ≤ 0.05) among the treatments in terms of root 
length and the number of roots, as depicted in Fig. 3. It was 
observed that the excised shoots of E. pellita demonstrated 
the capability to elongate shoots and produce roots on both 
PGR-free and auxin-supplemented ½ MS nutrient medium 
after six weeks of culture. However, the average length of 
shoots and number of roots formed were significantly higher 
on the hormone-enriched medium. Among the different 
concentrations of IBA, the number of roots increased from 
0.5 µM to 1.5 µM of IBA. The maximum number of roots 
with an average of 17.47 roots per explant was produced on 

Fig. 2   In vitro effect of different 
concentrations of BAP (a) con-
trol, (b) 0.4 µM, (c) 1.3 µM, (d) 
2.2 µM, (e) 3.1 µM and f) 3.9 
µM on direct shoot regeneration 
from cotyledonary leaf explants 
of E. pellita. Bars = 1cm
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Fig. 3   In vitro effect of different concentrations of IBA supplemented 
with ½ MS medium on the number of roots induced from in  vitro 
regenerated E. pellita shoots after six weeks of culture. Letters above 
the bars indicate significant difference at (P < 0.05) according to Tuk-
eys' post-test
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½ MS media supplemented with 1.5 µM IBA on week 6 of 
culture. However, the average number of roots declined to 
11.4 and 10.9 roots at 1.0 µM and 2.0 IBA, respectively, as 
depicted in Fig. 3. The roots formed on the media supple-
mented with IBA were longer and denser as shown in Fig. 4.

The emergence of adventitious roots is a developmental 
stage in which new roots arise from leaves, stems or non-
pericycle tissues in roots (Velada et al. 2020). Adventitious 
roots may be occurred naturally or under environmental 
stress conditions (Steffens and Rasmussen 2016). Moreo-
ver, they may be induced using a mechanical injury or, after 
the shoot, regeneration using the tissue culture technique 
(Guan et al. 2015; Porfirio et al. 2016). In this study, the root 
induction of E. pellita micro-cuttings was conducted using 
different concentrations of IBA.

Auxins play a key role in controlling adventitious root 
formation (Pacurar et al. 2014; Pop et al. 2011) and, there-
fore, are frequently employed as rooting inducers. Several 
studies have been done to investigate the role of auxins, for 
example, in the control of zygotic embryo development 
(Wolters et al. 2011), tropisms (Kimura and Kagawa 2006; 
Palme et al. 2006), growth of leaves and flowers (Guenot 
et al. 2012; Bainbridge et al. 2008), nodulation (van Noorden 
et al. 2007), development of shoots and roots (Lewis et al. 
2011; Overvoorde et al. 2010; Dubrovsky et al. 2008), plant 
tolerance to stress (Min et al. 2014; Van Ha et al. 2013), as 
well as apical dominancy regulation (Prusinkiewicz et al. 
2009; Leyser 2005). The results of this experiment showed 
that low concentrations of ½ MS + 1.5 µM IBA were effi-
cient in stimulating the root formation of E. pellita plantlets. 
Microcuttings of E. camaldulensis were also successfully 
rooted in ½ MS media culture (Ho et al. 1998). Similar find-
ings were confirmed by Ito et al. (1996) for micro cutting 

of E. camaldulensis, E. grandis, E. botryoides and E. deg-
lupta using B5 medium (Gamborg et al. 1968). Neverthe-
less, contradictory results were reported by Barrueto Cid 
et al. (1999). According to Das and Mitra (1990), the best 
rooting media of Eucalyptus tereticornis axillary buds can 
be achieved in Knop's medium supplemented with 5.5 µM 
IBA. A recent study by de Oliveira et  al. (2017) found 
that the maximum rooting percentage (35%) of E. gran-
dis × E. urophylla AEC 224 clone was recorded on ½ MS 
medium + 2.46 µM IBA. Based on this experiment’s results, 
it is noteworthy that rooting culture medium formulation 
should be adjusted based on the studied species.

Bacterial strain and identification

The morphological colony properties of the three bacte-
rial isolates (EU_UPM1, EU_UPM2, and EU_UPM3) 
including colour, appearance and texture were recorded 
on agar plates and summarised in Table 1. The colony 
of isolate EU_UPM1 displayed creamy coloured, frosted 
glass appearance and dull texture. Furthermore, colonies 
of isolate EU_UPM2 and isolate EU_UPM3 exhibited the 
same yellow colour, translocated appearance and smooth 

Fig. 4   Morphological appear-
ance of E. pellita roots after six 
weeks of regenerated shoots 
culture in ½ ms medium sup-
plemented with different con-
centrations of IBA (a) control, 
(b) 0.5 µm, (c) 1.0 µm, (d) 1.5 
µm, (e) 2.0 µm and 2.5 µm). 
bars = 1cm

a) b) c)

d) e) f)

Table 1   Morphological characteristics of bacterial isolates (EU_
UPM1, EU_UPM2 and EU_UPM3) on agar plates

Colony Morphology on NA

Bacterial isolate Colour Appearance Texture

EU_UPM1 Creamy frosted glass appearance Dull
EU_UPM2 Yellow translocated appearance Smooth
EU_UPM3 Yellow translocated appearance Smooth
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texture. Table 2 shows the morphological characteristics of 
the three bacterial isolates as seen under the light micro-
scope. Isolate EU_UPM1 demonstrated Gram-positive, 
rod-shaped and spore-forming bacterium. Meanwhile, iso-
lates EU_UPM2 and EU_UPM3 displayed Gram-negative, 
rod-shaped bacterium.

Genomic DNA extraction of the isolates EU_UPM1, 
EU_UPM2 and EU_UPM3 was successfully done using 
NucleoSpin® Microbial DNA Kit. The genomic DNA of 
the three bacterial isolates were tested using agarose gel 
electrophoresis as shown in Fig. 5. The high intensity of 
the genomic DNA band indicated the high concentration 
of DNA samples. Marker lane indicated the DNA ladder 
VC 1 kb marker used to determine the DNA size. The 
sizes of all genomic DNA were exhibited approximately 
10,000 bp.

Based on genomic DNA results, the 16S rRNA gene 
was amplified using PCR with the forward 27F (5’-AGA​
GTT​TGA​TCA​TGG​CTC​AG-3') and reverse 1492R (5'TAC​
GGT​TAC​CTT​GTT​ACG​ACTT-3') 16S rDNA primers. The 
16S rRNA gene amplification of the three bacterial isolates 

gave rise to a fragment with a predicted size of nearly 
1000 kb as confirmed in agarose gel electrophoresis.

The forward and reverse sequences of isolates EU_
UPM1, EU_UPM2 and EU_UPM3 were provided from the 
sequencing results. The PCR products for the three isolates 
were purified and sent to Apical Scientific Laboratories 
for automated sequencing. Results from the combined 16S 
rRNA gene sequence were aligned using NCBI official web-
site. The bases were compared with 20 closely related taxa 
of the three isolates obtained from the database of GenBank. 
The analysis above displayed that isolate EU_UPM1 was 
94% closely related to Bacillus subtilis and Bacillus cereus. 
Furthermore, Isolates EU_UPM2 and EU_UPM3 were 88% 
closely related to Pantoea dispersa, with a maximum align-
ment of 99%. Figure 6 depicts a neighbour-joining phyloge-
netic tree according to the alignment of gene sequences with 
20 closely related taxa to the three isolates.

Antibacterial activity of green AgNPs

Measurement of minimum inhibitory concentration

AgNPs are revolutionising the field of science through their 
antimicrobials. AgNPs have a broad spectrum of antimicro-
bial activity and can kill bacteria (De Silva et al. 2020). 
The minimum inhibitory concentration (MIC) of green 
AgNPs on EU_UPM1, EU_UPM2 and EU_UPM3 strains 
was examined in this study. Turbidity of bacterial cultures 
was detected after 24 h of incubation under aerobic condi-
tions at 37 °C in the test tubes of 20, 40, 80 and 100 ppm 
containing AgNPs confirming the bacterial growth. Whereas 
no turbidity was detected at 100 ppm concentration, indicat-
ing the inhibition of bacterial growth. After that, the range 

Table 2   Characteristic of bacterial isolates (EU_UPM1, EU_UPM2 
and EU_UPM3)

Bacterial 
isolate

Gram Shape Catalase test Oxidase test

EU_UPM1 Positive rod-shaped 
and spore-
forming

Positive Negative

EU_UPM2 Negative rod-shaped Positive Negative
EU_UPM3 Negative rod-shaped Positive Negative

(b)(a)

1 3Marker

Genomic

PCR

Product

2 2Marker

10000 bP 

1000 bP 

1 3

Fig. 5   Agarose gel electrophoresis. a Genomic DNA extraction of 
isolates EU_UPM1, EU_UPM2 and EU_UPM3 is indicated by the 
arrow. Marker lane: VC 1kb ladder marker in bp. Lane 1: indicates 
the isolate EU_UPM1, lane 2 indicates the isolate EU_UPM2, and 

lane 3 indicates the isolate EU_UPM3 (b) PCR product of 16SrRNA 
gene of the three isolates. Marker: VC 1kb ladder marker in bp; 
(EU_UPM1 lane: 1000 bp, EU_UPM2 lane:1000 bp, and EU_UPM3 
lane:1000 bp), indicated by arrow
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Fig. 6   Phylogenetic tree 
analysis based on 16s rRNA 
sequences. a strain EU_UPM1; 
Escherichia coli used as out 
goup, b strain EU_UPM2, and 
c strain EU_UPM3; Bacillus 
infantis used as outgroup for 
both strains.The test neighbour-
joining trees were constructed 
using MEGA X Molecular 
Evolutionary Genetics Analysis 
software

a)

b)

c)
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of concentrations was narrowed to determine the specific 
MIC, which included 80, 85, 90 and 100 ppm. The bacte-
rial suspension from the tube of 100 ppm was streaked on a 
Muller-Hinton agar plate and incubated for 24 h to confirm 
the absence of bacterial growth. Nevertheless, no growth 
of bacteria was observed in all the plates, proving 100 ppm 
as an effective concentration of green AgNPs to inhibit the 
three bacterial growths as shown in Table 3.

The antimicrobial activities of silver are mainly traced to 
silver ions (Chen and Schluesener 2008; Matsumura et al. 
2003). AgNPs regularly produce silver ions in an aqueous 
microenvironment (Lok et al. 2007). Owing to their larger 
surface area, AgNPs demonstrate a stronger and higher bac-
tericidal effect (Doty et al. 2005). The main reason for the 
effective bactericidal activities of AgNPs lies behind their 
ability to bind and interfere with the bacterial cellular struc-
ture (Makkar et al. 2014), considerably to their SH-groups 
(Zhou et al. 2012; Morones et al. 2005). In addition, AgNPs 
release reactive oxygen species and free radicals, which are 
known to cause damage to the bacterial cell wall and hinder 
the activity of respiratory enzymes (Loo et al. 2018). AgNPs 
interrupt DNA replication and inhibit the bacteria. AgNPs 
have a biocidal activity against several Gram-positive and 
Gram-negative bacteria (Prabhu and Poulose 2012).

A study found that the MIC of green AgNPs was in a 
concentration of 0.5 ppm against Bacillus subtilis (Raji et al. 
2019). Another study by Ahmad et al. (2017) reported the 
antibacterial effect of green AgNPs against Bacillus subti-
lis at MIC 12.50 ppm. Chavan and Nadanathangam (2019) 
revealed that the MIC of green AgNPs against Bacillus sub-
tilis and Pantoea dispersa were 3 and 15 ppm, respectively. 
This variance might be attributed to the methodology used 
to synthesise AgNPs.

Measurement of zone of inhibition

In this study, the green synthesised AgNPs were tested 
to determine their antimicrobial activity by disc diffu-
sion method against plant pathogenic strains (EU_UPM1, 
EU_UPM2 and EU_UPM3). The pure cultures of bacterial 
organisms were sub-cultured on NB at 30 °C on an incu-
bator shaker at 150 rpm. A concentration of 100 ppm of 
green AgNPs was the strongest concentration that exhib-
ited the strongest antibacterial concentration against all 
tested bacterial strains. At the same time, distilled water 
and the antibiotic ampicillin were used as negative and 
positive controls, respectively. The antibacterial effect was 
analysed by measuring the ZOI as displayed in Fig. 7.

Based on the results of this experiment, the activity 
of antibiotic ampicillin was maximum for the EU_UPM2 
strain (8.8  mm), followed by the EU_UPM3 strain 
(7.6 mm) and H4 strain 22 (7.1 mm). The green AgNPs 
showed antibacterial activity against all bacterial strains. 
Table 4 presents the ZOI of AgNPs ranging from 8.9 mm 
to 12.1 mm. The ZOI of AgNPs against strain EU_UPM3 
was 12.1 mm, which was shown with the most suscepti-
bility to the green AgNPs compared to the other bacterial 
strains. Meanwhile, strains EU_UPM1 and EU_UPM2 
exhibited 8.9 mm and 11.5 mm ZOI, respectively. The 
best indication of the susceptibility of the tested bacterial 
strains to green AgNPs may be related to the plasmolysis 
or the detachment of cytoplasm from their outer mem-
brane (Song et al. 2006). The antibacterial actions of green 
AgNPs may vary depending on the bacterial species and 
the size of the NPs (Nanda and Saravanan 2009).

Table 3   MIC, turbidity for 
various concentrations of 
AgNPs after 24 h

* Positive ( +): Confirming bacterial growth; Negative (–): Confirming absence of bacterial growth. Repli-
cate represented a (rep)

Bacterial strain / Con-
centration of AgNPs

20 ppm 40 ppm 60 ppm 80 ppm 85 ppm 90 ppm 95 ppm 100 ppm

EU_UPM1
  rep 1  +   +   +   +   +   +   +  -
  rep 2  +   +   +   +   +   +   +  -
  rep3  +   +   +   +   +   +   +  -

EU_UPM2
  rep 1  +   +   +   +   +   +   +  -
  rep 2  +   +   +   +   +   +   +  -
  rep3  +   +   +   +   +   +   +  -

EU_UPM3
  rep 1  +   +   +   +   +   +   +  -
  rep 2  +   +   +   +   +   +   +  -
  rep3  +   +   +   +   +   +   +  -
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Effect of in vitro inoculation of green AgNP on E. 
pellita plantlets

The application of engineered NPs has emerged owing to 
their great advantages in many fields, including agricul-
ture. AgNPs are already employed to enhance plant growth, 
seed germination and control of plant diseases. This study 

represents the influence of green AgNPs on the in vitro bac-
terial-infected E. pellita plantlets. By applying green AgNPs, 
E. pellita plantlets could enhance their antibacterial toler-
ance, thus extending their survivability (Fig. 8). This mecha-
nism also supports plant growth and development. Figure 9 
shows the mean number of leaves before and after apply-
ing green AgNPs. The mean number of leaves after apply-
ing the bacterial culture of strains EU_UPM1, EU_UPM2 
and EU_UPM3 were 9.6, 10.6 and 8.8 leaves, respectively. 
Meanwhile, the mean number of leaves were 13.6 for control 
(without green AgNPs). After applying bacterial culture and 
green AgNPs, the mean number of leaves increased to reach 
16.4 for strain EU_UPM1 + AgNPs, 20.8 for strain EU_
UPM2 + AgNPs and 17.2 for strain EU_UPM3 + AgNPs.

The mean of shoot length of E. pellita plants was also 
recorded before and after applying green AgNPs. Figure 10 
depicts that the mean length of shoots after applying the 
bacterial culture of strains EU_UPM1, EU_UPM2 and 

Fig. 7   Antibacterial activity of 
green AgNPs against three plant 
pathogenic bacterial strains. a 
strain EU_UPM1, b strain EU_
UPM2 and c strain EU_UPM3 
indicated by the disc diffusion 
method

a) b) c)

Table 4   ZOI of green AgNPs against various plant pathogenic bac-
teria

ZOI diameter (mm)

Bacterial strain Distilled 
water

Ampicillin 
25%

Green AgNPs

EU_UPM1 0 7.1 8.9
EU_UPM2 0 8.8 11.5
EU_UPM3 0 7.6 12.1

a) b) c) d)

Fig. 8   Morphological alterations appearance of symptomatic effects 
resulted after eight days from the inoculation of bacterial growth of 
three plant pathogen strains. a E. pellita plantlet without bacterial 
inoculation shows no symptomatic effects, b burned leaves edges 

resulted from the inoculation of strain EU_UPM1, c yellow of plant-
let stem due to the effect of strain EU_UPM2, and d) stem canker 
lesions appear due to the effect of strain EU_UPM3. Bars = 1 cm
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EU_UPM3 were 4.12 cm, 4.0 cm, and 4.6 cm, respectively. 
Further, the mean length of shoot in the control treatment 
was 4.46 cm. After applying bacterial culture and green 
AgNPs, the mean length of shoots increased to reach 4.86 cm 
for strain EU_UPM1 + AgNPs, 4.94  cm for strain EU_
UPM2 + AgNPs and 5.28 for strain EU_UPM3 + AgNPs.

Figure 11 demonstrates no morphological effects after 
3-weeks of inoculation of three pathogenic bacterial 
strains and green AgNPs. Compared to the control treat-
ment (without bacteria or green AgNPs), other treatments 
showed healthy and developed plants with longer shoots and 
a greater number of leaves.

Research on the bactericidal effect of NPs is highly desir-
able in light of the alarming rise in the number of resist-
ant strains of bacteria to strong antibiotics (Morones et al. 
2005). Silver has long been recognised to exhibit high tox-
icity towards many types of microorganisms (Liau et al. 
1997), which attracted considerable attention to the well-
known function of silver ions and silver-based compounds, 
namely AgNPs. Nevertheless, the bactericidal mechanism 
of AgNPs is still partially understood. It has been hypoth-
esised that silver ions powerfully interact with thiol groups 
of specific enzymes and block them (Matsumura et al. 2003). 

Experimental studies suggested that the DNA of treated bac-
teria with silver ions is incapable of replicating (Feng et al. 
2000).

Other researchers found morphological changes in the 
cell membrane and emerging tiny aggregates of silver and 
sulphur (Yuan et al. 2013). Although silver ions are benefi-
cial and successful in bactericidal applications, nanotechnol-
ogy offers a feasible alternative for emerging novel bacte-
ricides owing to of its distinctive characteristics (Morones 
et al. 2005). Metallic nanosized particles possess distinct 
physical characteristics dissimilar from their ions and bulk 
materials (Alimunnisa et al. 2017), thus giving them remark-
able properties including high catalytic activity from their 
structure with highly active features (Feng et al. 2015).

Conclusion

The current investigation demonstrates the effect of green 
AgNPs on the pathogen-infected E. pellita plantlets. E. 
pellita was regenerated by in vitro culture of cotyledon-
ary leaf explants excised from the aseptically germinated 
seeds. The explants were able to mass produce shoots in 

Fig. 9   In vitro effect of 50 µL 
bacterial inoculation without 
100 ppm green AgNPs and with 
green AgNPs on the number of 
leaves of regenerated E. pellita 
plantlets. Letters above the bars 
indicate significant difference at 
(P < 0.05) according to Tukeys' 
post-test
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Fig. 10   In vitro effect of bacte-
rial inoculation without 100 
ppm green AgNPs and with 
green AgNPs on the shoot 
length of regenerated E. pellita 
plantlets. Letters above the bars 
indicate significant difference at 
(P < 0.05) according to Tukeys' 
post-test
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the MS medium supplemented with 2.2 µM BAP growth 
regulator after four weeks of culture. The regenerated 
shoots successfully generated roots in the ½ MS medium 
supplemented with 1.5 µM IBA. Inoculation of 50 µL 0.5 
(McFarland standard) of bacterial suspension near the 
roots of the plantlets, was an effective amount to show 
morphological alterations under the in vitro conditions. 
The effective concentration of green AgNPs was 100 ppm, 
controlling bacterial growth. Thereby, the findings of the 
current investigation indicate that the green AgNPs con-
trolled the bacterial infection of E. pellita plantlets under 
in vitro conditions. The new protocol developed in this 
study could be adopted in future for rapid micropropaga-
tion of free pathogen-infected Eucalyptus species.
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