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FCM  Flow cytometry
MC  Mercuric chloride
IBA  Indole-3-butyric acid
MS  Murashige and Skoog
SH  Sodium hypochlorite
NAA  1-Naphthaleneacetic acid
PGRs  Plant growth regulators
SSR  Simple sequence repetition

Introduction

Atractylodes chinensis (DC.) Koidz. is a perennial herb 
that belongs to Asteraceae family. This plant and Atracty-
lodes Lancea are the main sources of Atractylodis Rhizoma 
(AR), which is a traditional Chinese medicine (TCM) that is 
mainly distributed in China and widely used in East Asian 
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Abstract
Triploid Atractylodes chinensis (DC.) Koidz. is a valuable genetic resource for medicinal plant breeding, and there is 
a demand to develop an efficient in vitro regeneration protocol to resolve triploid sterility in production. In this study, 
the effects of sterilization, bud type, 6-benzyladenine (6-BA) combined with 1-naphthaleneacetic acid (NAA) or indole-
3-butyric acid (IBA) and transplanting materials on shoot regeneration, rooting and growth were explored. The genetic 
stability of regenerated plants was verified using flow cytometry (FCM) and simple sequence repetition (SSR) molecular 
markers. When axillary buds were sterilized with sodium hypochlorite for 30 min and cultured on Murashige and Skoog 
(MS) + 1.5 mg·L-1 6-BA + 0.4 mg·L-1 NAA medium, the regeneration rate was 61.33%. Strong roots occurred on 1/2 
MS medium combined with 3% sucrose and 0.6 mg·L-1 IBA. Rooting plantlets transplanted into a mixture of peat soil: 
perlite (1:1, v:v), the survival rate up to 90.00%. Histological analysis revealed that shoot meristematic cells derived from 
cambium cells developed into the apical meristem and formed shoots. FCM analysis determined that the ploidy levels of 
20 random regenerated plants were coincident with explants, the number and size of bands obtained by 6 pairs of SSR 
polymorphic primers were consistent. The results of this study show that our in vitro adventitious regeneration and plantlet 
transplantation protocol of triploid A. chinensis was efficient and produced strong genetic stability.

Key message
In this study, an efficient and genetically stable adventitious regeneration of triploid A. chinensis was established for the 
first time.
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countries (Hiraoka 1993). According to the theory of TCM, 
AR is explained by its properties in eliminating dampness, 
invigorating spleen, and expelling wind for the treatment 
of rheumatic diseases, digestive disorders, night blind-
ness, and influenza (Zhang et al. 2021; Xiao et al. 2002). 
Especially in China, A. chinensis has played a critical role 
in the fight against COVID-19 as an important component 
of the Lung Cleansing and Detoxifying Decoction formula 
(Xu et al. 2021). Up to now, more than 200 chemical com-
pounds, notably sesquiterpenoids and alkynes have been 
isolated from AR, and many pharmacological activity stud-
ies strongly supported their remarkable clinical efficacy 
(Zhang et al. 2021; Kimura and Sumiyoshi 2012; Plengsuri-
yakarn et al. 2012). However, it has been demonstrated that 
the contents of the main components have big difference in 
ARs and mainly influenced by genetic factors (Tsusaka et al. 
2019), therefore, the collection and reproduction of genetic 
resources of A. chinensis have significant practical signifi-
cance to the development of AR industry.

Atractylodes plants are usually diploid with 24 chromo-
somes (Hiraoka 1998), and a triploid mutant plant which 
has high yield was found when we did the fourth National 
Survey of TCM resources in China. Genome duplication of 
plants are always accompanied by quality improvement and 
yield increase compared to closely related diploids (Renny-
Byfield and Wendel 2014).Chromosome doubling also 
affects the yield of secondary metabolites, e.g. increased 
content of terpene in Cannabis sativa L. (Parsons et al. 
2019), of total flavonoid and gastrodin in Anoectochilus for-
mosanus Hayata (Chung et al. 2017), as well as an increased 
content of organic acid, carotenoids in the Citrus unshiu 
Marcow (Sudo et al. 2021).Considering these, polyploid 
breeding has great advantages to the production of medici-
nal plants which are used as crude drugs. However, triploid 
sterility limited its application in A. chinensis breeding.

Micropropagation is a good method for the reproduc-
tion of clones and has been widely used with triploid Ber-
muda grass and triploid Populus (Lu et al. 2006; Zeng et 
al. 2019). To the best of our knowledge, there is no report 
on the micropropagation and genetic analysis of A. chinen-
sis. In the present study, we use stem segments with buds 
to establish the triploid A. chinensis adventitious regenera-
tion protocol and evaluate its genetic stability using simple 
sequence repetition (SSR) molecular markers and flow 
cytometry (FCM), respectively. To explore the regeneration 
processes, the histological changes of the shoot during in 
vitro culture were observed using optical microscopy. This 
study can provide an effective method for the biotechno-
logical breeding and genetic transformation of A. chinensis, 
and has great practical significance for the protection and 
utilization of the resources of this species.

Materials and methods

Plant material

The experiments were carried out with explants obtained 
from 2-year-old triploid A. chinensis plants (Fig. 1a), located 
by the scientific researchers during breeding and grown in 
the Medicinal Botanical Garden of Jilin Agricultural Uni-
versity, China. Fresh and tender stem explants with axillary 
or terminal buds were collected in early May.

Sterilization of explants and initiation of in vitro 
culture

The explants were cut to a length of approximately 1 cm. 
A three-stage sterilization protocol was then applied to the 
explants: 75% alcohol solution for 30 s, followed by three 
different concentrations of sterilants for varying time periods 
[0.1% mercuric chloride (MC) for 5 min, 10 min, 15 min; 
2% sodium hypochlorite (SH) and 0.05% chlorine dioxide 
(CD) for 20 min, 25 min, 30 min], and finally sterile water 
with 5 rinses. The surface water of explants was dried with 
sterile filter paper, and the explants with different buds (axil-
lary or terminal) were cultured separately on Murashige and 
Skoog (1962) (MS) medium containing 3% sucrose, 0.55% 
agar and different concentrations of 6-benzyladenine (6-BA 
1.0 mg·L− 1, 1.5 mg·L− 1, 2.0 mg·L− 1) and 1-Naphthale-
neacetic acid (NAA 0.2 mg·L− 1, 0.4 mg L− 1, 0.6 mg·L− 1). 
Three explants were placed in each bottle and ten bottles 
were used per experiment, each experiment was repeated 3 
times. The cultures were incubated at 22 ± 1℃ under a 16 h 
photoperiod at a light intensity of 30 µmol m− 2 s− 1 provided 
by white fluorescent tubes. After 2 weeks, the sterilization 
effects were investigated. The adventitious shoot and callus 
induction rates were calculated after 4 weeks. The survival 
rate was calculated as the number of viable explants/total 
number of explants. The regeneration rate was calculated 
as the number of induced explants/total number of explants. 
When the number of regenerated adventitious shoots 
reaches 8–10 per explant, and the height was 3–4 cm, they 
were harvested and prepared to proliferation, which takes 
about 5 weeks.

Proliferation of shoots and rooting

The adventitious shoots were cut to a single or 2–3 shoots 
with a small clump after 5 weeks, transferred to prolifera-
tion medium (MS medium with 3% sucrose, 0.55% agar, 
1.5 mg·L− 1 6-BA and 0.4 mg·L− 1 NAA), and placed in a 
growth chamber with a 16-h photoperiod (50 µmol m− 2 s− 1 
from cool white fluorescent tubes) at 22 ± 1℃. When the 
shoots grew to 3–5 cm, they were transferred to 1/2MS 
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rooting media containing different concentrations of sucrose 
(1%, 2% and 3%), NAA (0.5 mg·L− 1, 1.0 mg·L− 1), and 
indole-3-butyric acid (IBA 0.3 mg·L− 1, 0.6 mg·L− 1) and 
placed in a growth chamber with a 16-h photoperiod (50 
µmol m− 2 s− 1 from cool white fluorescent tubes) at 22 ± 1℃. 
The rooting time of each treatment was then recorded. After 
4 weeks, the number of roots and root length were measured 
and the rooting rate was calculated.

Acclimatization and transplanting

Plantlets with root lengths of 3–5 cm, 5–7 cm, and 7–9 cm 
were selected and transferred to the greenhouse. Following 
1 week of acclimatization after opening the bottle cap, the 
plantlets were extracted and the culture medium attached to 
the roots was removed by rinsing with water. The plantlets 
were transplanted to a sterile mixture of culture substrates 
with different volume ratios [peat soil: perlite (2:1, v:v), 
peat soil: perlite (1:1, v:v), peat soil: perlite: vermiculite 
(2:1:1, v:v:v), peat soil: perlite: vermiculite (1:1:1, v:v:v) 
] at room temperature for 4 weeks, during which time they 
were watered every 2 days to keep the leaf surfaces moist. 
The survival rate, root length, and growth situation were 
investigated after 8 weeks.

Histological observations

After the regenerated adventitious shoots were transferred 
to the proliferation medium, the regeneration sites were 
removed every 5 days and fixed with 50% FAA [formalin: 
glacial acetic acid: 50% ethanol = 5:5:90 (v/v/v)] for 48 h, 
and then embedded in paraffin. Paraffin Section (10 μm, 
thickness) were obtained with a Fully Automated Rotary 
Microtome Leica RM2265. The samples were dyed using 
the Safranin-Fast Green stain (1% safranin O and 0.1% Fast 
Green FCF) method reffers to Abdelbar (2017), observed 
with a LEICA DFC7000 T light microscope after sealing, 
and photographs were retrieved using LAS X software. The 
histological changes of the shoot tissue cells were analyzed.

Flow cytometry analysis of ploidy level

Fresh leaves collected from the transplants and diploid A. 
chinensis plants were washed with distilled water and wiped 
dry with filter paper. The leaves were cut to approximately 
0.5 cm2 and immersed for 60 s in 200 µL nuclei extraction 
buffer of the ploidy analysis kit (CyStain UV Precise P, 
Sysmex Corporation, Chuo-ku, Kobe, Hyogo, Japan) then 
chopped with a sharp razor blade. After incubating the 
obtained nuclear suspension for 3 min, the solution was fil-
tered through 50 μm CellTrics filters (Sysmex Corporation) 
into sample tubes. Staining buffer (800 µL) from the ploidy 

analysis kit was added to the nuclear suspension, mixed 
well, and used for analysis after dyeing for 60 s. The fil-
trate was analyzed using a CytoFLEX flow cytometer with 
a detection wavelength of 355 nm, and the number of nuclei 
collected was 5 × 103. The data were collected and analyzed 
using the CytExpert software of the flow cytometer.

Genetic analysis with SSR molecular markers

Fresh leaves (100 mg each) of 20 transplanted plants were 
randomly collected, and total DNA was extracted using the 
plant genome DNA extraction kit (DP350-03, Beijing Tian-
gen Biochemical Technology Co., Ltd., Beijing, China). 
DNA integrity was detected using 1% agarose gel electro-
phoresis, and the purity and concentration of DNA were 
determined using the Implen NanoPhotometer N50-Touch 
(Implen GmbH, Schatzbogen, München, Germany). DNA 
was diluted to a final concentration of 50 ng·µL− 1 and stored 
at − 20℃ for future use. The primers used in the experiment 
were developed by Shakeel et al. (2016) based on A. lan-
cea transcriptome sequencing. Thirty pairs of primers were 
randomly selected and synthesized by Shanghai Sangon 
Bioengineering Co., Ltd (Shanghai, China). PCR reactions 
were performed in 20 µL reaction volumes, containing 1 
µL genomic DNA, 1 µL of each primer (10 pmole), 10 µL 
of 2×PCR Master Mix (Shanghai Beyotime Biotechnology 
Co., Ltd., Shanghai, China), and 7 µL ddH2O. The PCR pro-
cedure was performed at 94 °C for 5 min, followed by 35 
cycles each at 94 °C for 45 s, 60 °C for 45 s, and 72 °C for 
45 s, with a final extension at 72 °C for 5 min. The PCR 
amplification products were subjected to electrophoresis 
with 6% polyacrylamide at 180 V for 3 h, dyed with silver 
nitrate, and photographed.

Data analysis

All experiments were repeated three times. The data were 
reported as means ± standard errors (SE). Means were ana-
lyzed by analysis of variance and significant differences 
between means were compared using the least significant 
difference (LSD) test with SPSS v.26.0. For all compari-
sons, statistical significance was considered at P < 0.05.

Results

Sterilization of explants

Surface sterilization of explants is the basis for successful 
cultures in vitro. In this study, sterilant type and steriliza-
tion time were analyzed to find a suitable sterilization pro-
tocol for the explants. The results showed that the survival 
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higher than that with axillary buds, except for a few treat-
ments in which no callus regeneration occurred (Table 2).

Shoots proliferation and rooting culture

Plantlets grew rapidly in the proliferation medium (Fig. 1d). 
After 2 weeks, new adventitious shoots emerged and grew 
to a cluster of shoots. In 4 weeks, an increased number of 
shoots occurred and juvenile leaves spread (Fig. 1e). The 
continuous extension of the shoots caused greater luxuri-
ance in the plantlets. After rooting culture for 1 month, sig-
nificant differences were observed in rooting time, rooting 
rate, root number, and root length of plantlets under differ-
ent rooting culture media (Table 3). The effect of different 
concentrations of sucrose, NAA and IBA on rooting culture 
was shown in Table 3. When the concentration of IBA or 
NAA was constant in the rooting culture medium, with the 
increased sucrose concentrations, the rooting time advanced 
and the rooting rate decreased. Although both IBA and NAA 
could induce rooting, NAA has a more pronounced root-
ing response. When 3% sucrose and 1.0 mg·L− 1 NAA were 
applied, plantlets rooted earlier than those of other combina-
tions, with an average of 7.7 days. After the addition of 1% 
sucrose and 1.0 mg·L − 1 NAA, the rooting rate increased 
to the 94.33%, which was significantly higher than other 
combinations. With the same sucrose concentration, higher 
concentrations of IBA and NAA correlated to a greater root 
number and length. The root number and root length of 
plantlets cultured in 1/2MS + 3% sucrose + 0.6 mg·L− 1 IBA 
medium were higher than those of other combinations, aver-
aging 7.7 roots and 9.2 cm, respectively. The root morphol-
ogy of different rooting media was significantly different. 
In the 1/2MS + 3% sucrose + 0.6 mg·L− 1 IBA medium, the 
number of roots was high, and the roots were thin and long 
(Fig. 1f). In contrast, only a lower number of roots occurred 
in the 1/2MS + 1% sucrose + 0.6 mg·L− 1 IBA medium, and 
these roots were short and severely lignified. (Fig. 1g).

Acclimatization and transplanting

Plantlets with a height of 3–5 cm and a root length of 3–9 cm 
were acclimatized and transplanted (Fig. 1h). In the 2–3 
weeks after transplanting, old leaves withered and juvenile 
leaves grew. After 4 weeks, the leaves expanded and thick-
ened, their color deepened, and the outer edge spikes hard-
ened (Fig. 1i). The effects of different cultivation mixtures 
on the survival rate of transplanted plantlets significantly 
differed (Table 4), and the effect on the root morphology 
of regenerated plantlets also varied. In the same mixture, 
plants with longer initial root lengths showed higher sur-
vival rates. When the initial root length was 7–9 cm and 
the transplanting mixture consisted of peat soil: perlite (1:1, 

and regeneration rates of explants treated with 2% SH for 
30 min were 64.33% and 56.67% respectively, which were 
higher than those of the other treatments (Table 1). Although 
the contamination rate of explants after 0.1% MC treatment 
for 15 min was only 11.00%, the survival and regeneration 
rates were lower than those of the other treatments. More-
over, the regeneration effect of explants after 0.05% CD 
treatment was similar to that of the 2% SH treatment group, 
although contamination was considerable. After 30 min of 
sterilization, the contamination rate was still as high as 31%. 
The sterilization protocol we selected for the explants of A. 
chinensis was 75% alcohol treatment for 30 s, 2% SH for 
30 min, and sterile water rinse with 5 replications.

Shoot induction

After 1 week of incubation, the stem segments enlarged and 
adventitious shoots were observed on the surface of some 
explants. After 3 weeks, an increasing number of adventi-
tious shoots had appeared and elongated (Fig. 1b), while 
after 5 weeks, cluster shoots and juvenile leaves were vis-
ible on the explants (Fig. 1c). At different concentrations of 
6-BA and NAA, the adventitious shoot induction rates of 
explants whether with terminal or axillary buds in the 5th 
group (6-BA 1.5 mg·L− 1, NAA 0.4 mg·L− 1) were signifi-
cantly higher than those of the other groups, with 52.33% 
and 61.33%, respectively (Table 2). In general, when the 
concentration of 6-BA is in the range of 1.0–2.0 mg·L− 1, the 
induction of adventitious shoots initially increased and then 
decreased, as the NAA concentration increased. Further 
study on the induction rates of different parts of explants 
suggested that the adventitious shoot induction rate of stem 
segments with axillary buds was higher than that with termi-
nal buds for the majority of the treatments (Table 2). How-
ever, the callus induction rate of that with terminal buds was 

Table 1 Effect of different sterilization protocols on explants
Sterilant steril-

ization 
time 
(min)

Contamination 
rate* (%)

Survival rate* 
(%)

Regen-
eration rate* 
(%)

0.1%MC 5 24.33 ± 2.31d 37.67 ± 4.04d 35.33 ± 4.04c

10 15.67 ± 2.31e 28.00 ± 1.73e 25.67 ± 2.31d

15 11.00 ± 1.73e 21.00 ± 1.73f 17.00 ± 0.00e

2%SH 20 44.33 ± 5.13ab 49.00 ± 3.46c 45.67 ± 2.31b

25 25.67 ± 2.31d 54.33 ± 2.31b 49.00 ± 1.73b

30 15.67 ± 2.31e 64.33 ± 2.31a 56.67 ± 3.51a

0.05%CD 20 47.67 ± 4.04a 49.00 ± 1.73c 45.67 ± 2.31b

25 40.00 ± 3.00b 52.00 ± 4.04bc 48.00 ± 1.73b

30 31.00 ± 1.73c 48.00 ± 1.73c 44.67 ± 4.04b

MC mercuric chloride; SH sodium hypochlorite; CD chlorine dioxide
*Values represent mean ± SE. Different letters in the same column 
indicate significant differences according to the LSD test (P ≤ 0.05) 
following ANOVA
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Histological observations

The histological regeneration process of adventitious 
shoots was observed using the paraffin sections. During 
adventitious shoot proliferation, observations on the 5th 
day suggested that the cambium cells began to undergo 
periclinal division, after which they continued to divide to 
form smaller meristematic cells (Fig. 2a). As cells division 
become more active, meristematic cells undergo anticlinal 

v:v), the transplanting survival rate was 90.00%, which was 
the highest observed rate. Eight weeks later, the mixture of 
peat soil: perlite (1:1, v:v) revealed a higher survival rate 
than those of other mixtures, with robust stems and leaves, 
deep green leaves, and thick roots (Fig. 1j). In contrast, 
the mixture of peat soil: perlite: vermiculite (1:1:1, v:v:v) 
showed relatively long and thin roots. The aboveground 
parts of the plantlets were soft and the leaves were light in 
color (Fig. 1k).

Fig. 1 In vitro regeneration and plantlet transplantation of triploid 
A. chinensis.a Plant morphology of triploid A. chinensis explants. b 
Shoots morphology induced by explants for 3 weeks. c Shoots mor-
phology induced by explants for 5 weeks. d Morphology of shoots 
before proliferation. e Morphology of shoots after proliferation. f-g 

Different status of roots after rooting culture for 30 days h Overall 
morphology of plantlet before transplantation. i Plant morphology 
after 4 weeks of transplanting. j-k Different status of roots after 8 
weeks of transplanting

 

1 3

213



Plant Cell, Tissue and Organ Culture (PCTOC) (2023) 155:209–220

Table 2 Effects of different concentrations of 6-BA and NAA on shoot and callus induction
Treatment Plant hormone (mg·L− 1) Stem segments with terminal bud Stem segments with axillary bud

6-BA NAA Shoot induction rate* 
(%)

Callus induction 
rate* (%)

Shoot induction rate* 
(%)

Callus induction rate* 
(%)

1 1.0 0.2 15.67 ± 2.31f 0d 19.00 ± 1.73e 0d

2 0.4 24.33 ± 2.31de 29.00 ± 1.73b 27.67 ± 4.04d 21.00 ± 3.46b

3 0.6 13.33 ± 3.51f 42.33 ± 5.03a 18.00 ± 1.73e 35.67 ± 2.31a

4 1.5 0.2 29.00 ± 1.73d 0d 35.67 ± 2.31c 0d

5 0.4 52.33 ± 5.03a 19.00 ± 1.73c 61.33 ± 5.13a 13.00 ± 0.00c

6 0.6 38.67 ± 5.13c 27.00 ± 0.00b 40.00 ± 3.00bc 19.00 ± 1.73b

7 2.0 0.2 22.00 ± 1.73e 0d 28.00 ± 1.73d 0d

8 0.4 43.00 ± 0.00bc 0d 44.67 ± 4.04b 0d

9 0.6 44.67 ± 4.04b 15.67 ± 2.31c 39.00 ± 1.73c 11.00 ± 1.73c

6-BA 6-Benzyladenine; NAA 1-Naphthaleneacetic acid
*Values represent mean ± SE. Different letters in the same column indicate significant differences according to the LSD test (P ≤ 0.05) follow-
ing ANOVA

Table 3 Effect of different concentrations of sucrose, NAA and IBA on rooting culture
1/2MS + Rooting time* (day) Rooting rate* (%) Roots no.* Root length*
Sucrose (%) IBA (mg·L− 1) NAA (mg·L− 1)
1 - 0.5 20.3 ± 1.0a 80.00 ± 0.00bc 2.6 ± 0.50j 3.5 ± 0.15j

- 1.0 17.2 ± 0.9b 94.33 ± 5.13a 3.3 ± 0.46i 4.0 ± 0.06i

0.3 - 19.6 ± 0.9c 78.00 ± 1.73c 3.8 ± 0.44 h 4.0 ± 0.12i

0.6 - 15.2 ± 1.0e 83.33 ± 3.51b 4.4 ± 0.50f 5.2 ± 0.22 h

2 - 0.5 14.8 ± 1.1e 70.00 ± 3.00d 4.1 ± 0.31 g 5.5 ± 0.17 g

- 1.0 13.3 ± 0.9f 81.00 ± 3.46bc 4.9 ± 0.39e 5.7 ± 0.14f

0.3 - 16.0 ± 0.7d 65.67 ± 2.31d 5.4 ± 0.51d 6.0 ± 0.12e

0.6 - 13.5 ± 0.8f 78.00 ± 1.73c 5.8 ± 0.37c 7.1 ± 0.11c

3 - 0.5 11.9 ± 0.9 g 54.33 ± 2.31ef 5.6 ± 0.49 cd 6.2 ± 0.32d

- 1.0 7.7 ± 1.2 h 67.67 ± 4.04d 6.7 ± 0.46b 7.2 ± 0.23b

0.3 - 11.9 ± 0.7 g 50.00 ± 0.00f 6.7 ± 0.42b 8.0 ± 0.45b

0.6 - 8.3 ± 1.0 h 58.00 ± 1.73e 7.7 ± 0.47a 9.2 ± 0.39a

IBA Indole-3-butyric acid; NAA 1-Naphthaleneacetic acid
*Values represent mean ± SE. Different letters in the same column indicate significant differences according to the LSD test (P ≤ 0.05) follow-
ing ANOVA

Table 4 Effect of different mixtures on plantlets transplanting of A. chinensis
Cultivation mixture (v:v) Initial root 

length(cm)
Transplanting 
number

Transplanting 
survival number

Transplanting sur-
vival rate* (%)

Root length*(cm) Growth 
situation

peat soil: perlite (2:1) 3 ~ 5 20 13 54.33 ± 2.31 fg 6.8 ± 0.33 h Short taproot 
and thin 
lateral roots

5 ~ 7 20 14 61.00 ± 1.73e 8.6 ± 0.40 g

7 ~ 9 30 22 64.33 ± 2.31e 10.7 ± 0.22d

peat soil: perlite (1:1) 3 ~ 5 20 15 72.00 ± 1.73d 9.1 ± 0.28f Strong taproot 
and a few 
lateral roots

5 ~ 7 30 26 82.33 ± 4.04b 10.0 ± 0.66e

7 ~ 9 30 27 90.00 ± 3.00a 14.1 ± 0.36b

peat soil: perlite: ver-
miculite (2:1:1)

3 ~ 5 30 22 71.00 ± 1.73d 8.5 ± 0.21 g Strong taproot 
and a few 
lateral roots

5 ~ 7 20 16 77.00 ± 0.00c 9.9 ± 0.24e

7 ~ 9 30 26 81.00 ± 1.73b 14.4 ± 0.40b

peat soil: perlite: ver-
miculite (1:1:1)

3 ~ 5 20 12 51.00 ± 1.73 g 8.6 ± 0.22 g Long taproot 
and few 
lateral roots

5 ~ 7 30 20 54.33 ± 2.31 fg 11.7 ± 0.58c

7 ~ 9 20 14 57.00 ± 0.00f 15.4 ± 0.37a

*Values represent mean ± SE. Different letters in the same column indicate significant differences according to the LSD test (P ≤ 0.05) follow-
ing ANOVA
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ploidy analysis of the plantlets. According to the relative 
proportion of DNA content, the position of the peak value 
abscissa of transplanting plantlets is 2.7 × 106 (Fig. 3c, d), 
and the ratio to the reference is 1.5, which indicates triploid 
status.

SSR analysis of genetic stability

SSR primers (30 pairs) and the genomic DNA of A. chinen-
sis from four regions were used to identify primer sets with 
polymorphic bands and a clear banding pattern, and 6 pairs 
of SSR primers were selected (Table 5). The genomic DNA 
of 20 regenerated plantlets was amplified by PCR with the 
chosen primers. The results revealed that 20 stable and clear 
bands were amplified by the 6 primer pairs, with an aver-
age of 3.83 amplified bands per primer. The size of ampli-
fied products ranged from 100 to 500 base pairs. However, 
further analysis of the electrophoretogram identified that 

division to form adventitious bud primordia (Fig. 2b). On 
the 10th day, polar growth of the meristematic cells formed 
the apical meristem through cortex direction. The continu-
ous division and proliferation of the apical meristem pro-
moted the lateral protrusion of the leaf primordium, thereby 
enhancing this feature (Fig. 2c). Observations on the 15th 
day showed that differentiation occurred from the apical 
meristem into shoots, and the leaf primordium into juvenile 
leaves. In addition, new undifferentiated leaf and axillary 
bud primordia developed which would further differentiate 
into shoots and juvenile leaves (Fig. 2d).

Ploidy level determination

The chromosome ploidy of transplanted plantlets of A. chi-
nensis was identified by FCM. The position of the peak value 
of diploid A. chinensis in the abscissa is 1.8 × 106 (Fig. 3a, 
b), and this was used as the control during the chromosome 

Fig. 2 Histological observation of shoot regeneration of A. chinensis.a 
Meristematic cells formation stage (Cross section, 200×). b The dif-
ferentiation of meristem cells into adventitious bud primordia stage 
(Cross section, 50×). c Apical meristem and leaf primordium forma-

tion stage (Longitudinal section, 100×). d Shoot differentiation stage 
(Longitudinal section, 50×) cc Cambium cell vb Vascular bundle Abp 
Adventitious bud primordium lp Leaf primordium am Apical meri-
stem jl Juvenile leaf abp Axillary bud primordium ba Bud axis
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present study, stem segments with axillary or terminal buds 
were used as explants to rapidly cultivate triploid A. chinen-
sis plantlets using micropropagation and plantlet regenera-
tion technology, to provide conditions for the protection and 
utilization of genetic resources of this species.

Sterilization of explants is the basal in micropropagation. 
MC and SH are commonly used as explant sterilants (Huang 
et al. 2022; Rafiq et al. 2021; Chóez-Guaranda et al. 2021). 
While chlorine dioxide is a new sterilant with a wide range, 
commonly used in the sterilization of air, water, vegetables 
and fruits (Xu et al. 2022a; Shimabukuro et al. 2020; Smith 
et al. 2015), it has also been reported to be used for explant 
sterilization (Maciel et al. 2022). Considering these, we ana-
lyzed the effects of the three sterilants at different time, and 
the results illustrated that although the overall sterilization 
effect of 0.1% MC was superior to that of 2% SH and 0.05% 
CD, the regeneration rate of the explants after inoculation 
was insufficient, indicating that 0.1% MC produced greater 

the number and size of bands obtained by each primer were 
consistent in 20 materials, and that there were no polymor-
phisms in the bands (Fig. 4). No variation was detected with 
the 6 SSR primers in the regenerated plantlets of A. chinen-
sis at the DNA level.

Discussion

Triploid can play a vital role in improving fruit traits, bio-
mass, and abiotic stress tolerance in the future, leading to 
commercial benefits (Xu et al. 2022b; Wang et al. 2022; 
Lourkisti et al. 2020). However, triploid sterility limits its 
application in many plants. Although grafting technology 
can solve triploid culture of partial species (Kaseb et al. 
2023; Gakpetor et al. 2017; Trandel et al. 2021), it cannot 
be applied to all plants. Consequently, establishing an in 
vitro regeneration protocol of A. chinensis is crucial. In the 

Fig. 3 Scatter diagrams and histo-
grams of FCM and the accom-
panying table of DNA content. 
a-b Diploid A. chinensis.c-d 
Regenerated plantlets
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rooting rates, indicating that high concentrations inhib-
ited rooting (Nilanthi and Yang 2014). At equal sucrose 
concentrations, the rooting number and root length of the 
medium supplemented with IBA were higher than those of 
the medium supplemented with NAA, while the rooting rate 
showed the opposite effect, which may relate to adaptations 
of the plantlets to the low concentration of NAA during the 
growth period. Sreekissoon et al. (2021) mentioned this 
possibility in the study of Sceletium tortuosum (L.) N. E. Br.

In the experiment related to plantlet acclimatization, A. 
chinensis plantlets showed an excellent root growth status 
after they were transplanted to any of two mixtures: peat 
soil: perlite (1:1) and peat soil: perlite: vermiculite (2:1:1). 
However, the plantlets transplanted into peat soil: perlite 
(2:1) and peat soil: perlite: vermiculite (1:1:1) showed a 
phenomenon of short or thin taproots and few lateral roots. 
This indicates that in order to ensure a high survival rate 
and good growth status of the transplanted plants, the nutri-
tion and air permeability of the transplant substrate are 
indispensable. The present result is in agreement with the 
previous findings observed in Euryodendron excelsum H. T. 
Chang (Chen et al. 2020) and Argania spinosa (L.) Skeels 
(Amghar et al. 2021).

A number of tissues can be involved in the formation 
of shoots, such as the pericycle, subepidermal cells, and 
epidermal cells, depending on the plant (Atta et al. 2009; 
Wang et al. 2015). This study suggested that the shoots of 
A. chinensis originated from cambium cells and that the 
shoots had obvious morphological characteristics at differ-
ent development stages. The cambium cells first divided and 

damage the explants than that of the other two compounds, 
with 0.05% CD causing little harm to the explants. If the CD 
concentration or sterilization time was properly adjusted, 
this effect could improve.

Shoot regeneration is affected by a variety of factors, of 
which the proportions of plant growth regulators (PGRs) 
and bud type are integral (Kirakosyan et al. 2022; Ven-
katachalam et al. 2015). In our research, it was found that 
under the same 6-BA and NAA concentration, the shoot 
regeneration and callus induction rate of different bud types 
were significantly different. The shoot regeneration rate of 
axillary buds was generally greater than that of terminal 
buds, while callus induction revealed the opposite. This is 
consistent with the research results of Vieitez et al. (2007) 
with chestnut, presumably due to the inhibitory effects of 
apical dominance on the development of shoots. With the 
increased concentrations of 6-BA and NAA, shoot regen-
eration first increased and then decreased, indicating that 
excessive PGRs concentrations inhibited the growth of 
shoots. In the medium with a low concentration of 6-BA 
and high concentration of NAA, the regeneration rate of the 
callus was high. The formation of the callus affects the dif-
ferentiation of shoots and the rooting of plantlets.

IBA and NAA are the commonly used rooting hor-
mones, and it is necessary to provide sucrose for plantlet 
growth (Amiri and Mohammadi 2021; Martin 2003). In 
our research, with the increase of IBA, NAA and sucrose 
concentrations, the rooting time was advanced and the root-
ing number and root length showed upward trends. How-
ever, higher the concentrations of sucrose resulted in lower 

Table 5 sequences of the 6 pairs of SSR primer used in the study
Primer Primer sequence F Primer sequence R
CL2882 GATCTAACTCCCACCAGTTTCCT GATCTAACTCCCACCAGTTTCCT
CL3515 TGAGCAACTAATTCAGGAGAAGG TTGGGATGTTGTACACTCTGTTG
CL5771 TAATACCCGTGTTCATCGTCTCT GTCTGTTTGAGGAACATCGAATC
CL6819 ATGGAGAGGTCTGTATGGATCTG GGCTGACTGTTACATCGTAGGTT
CL7052 TCCCCTCCAATAACTCCTAGAAC GGTTGTTTTCCTGTCTGATTAGG
CL7269 TGAAGAAACTACACCCTCCTCAC GACTTAGAAACTTTGACCCCGTT

Fig. 4 Amplified bands of 20 
regenerated plantlets of A. 
chinensis by primer CL7269. M: 
DL 2000 DNA Marker; 1 ~ 20: 20 
regenerated plants of triploid A. 
chinensis
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