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Abstract
Many tree species are an excellent source of a wide range of bioactive compounds of pharmaceutical importance. However, 
overexploitation of medicinal trees to fulfil the demand for plant-based herbal drugs puts pressure on its natural population. 
Therefore, many tree species are declining continuously, particularly those used in pharmaceutical industries. In addition, 
limited production of secondary metabolites from a specific part and only at a particular developmental stage and sometimes 
very-low yield are some major bottlenecks when secondary metabolites are isolated directly from a tree species. Tissue 
culture-based biotechnological interventions for propagation, in vitro conservation and secondary metabolite production in 
medicinally important tree species have been practiced during the last two–three decades. Many medicinally important trees 
successfully propagated in vitro through different modes of regeneration i.e., axillary shoot proliferation, adventitious organo-
genesis and somatic embryogenesis. Success in in vitro propagation of most of the medicinal trees has been achieved through 
axillary shoot proliferation. Recent studies on medicinal trees showed that ex vitro rooting is an ideal method of rooting of 
microshoots. Gene targeted molecular markers have now been preferred for genetic fidelity of tissue culture-raised plants of 
medicinal trees. In recent years, newly developed droplet-vitrification and cryo-plate methods increased the applicability of 
cryopreservation for the long-term conservation of many medicinal trees. Several bioactive compounds of pharmaceutical 
importance are produced from trees via in vitro culture technique. There are a few success stories of producing secondary 
metabolites at a commercial scale from medicinal trees i.e., taxol, camptothecin and azadirachtin. This review paper presents 
the recent progress on plant tissue culture-mediated biotechnological advances in medicinal trees, emphasizing different 
aspects of in vitro propagation, conservation, and production of bioactive compounds of pharmaceutical importance.

Keywords  Cryopreservation · Ex vitro rooting · Genetic fidelity · In vitro conservation · Micropropagation · Secondary 
metabolites

Key message

•	 This review provides a comprehensive overview on the 
recent biotechnological progress in medicinal trees, 
emphasizing in vitro propagation, conservation, and 
secondary metabolites production.

Introduction

According to World Health Organization, more than three-
fourth population of the world, mostly in poor and devel-
oping countries, depends mainly on plant-based traditional 
ethnomedicine for primary health care (Ekor 2014). The 
ingredients and phytoconstituents found in such medicinal 

Communicated by Ali R. Alan.

 *	 Manoj K. Rai 
	 mkraibhu@gmail.com; manoj.rai@igntu.ac.in

	 Kavita Arora 
	 drkarora17@gmail.com

	 A. K. Sharma 
	 ashok_nbri@hotmail.com

1	 Department of Botany, National PG College, Lucknow, 
U.P. 226001, India

2	 Department of Environmental Science, Indira Gandhi 
National Tribal University, Amarkantak, M.P. 484887, India

3	 Tissue Culture Laboratory, CSIR-National Botanical 
Research Institute, Lucknow 226001, India

4	 Present Address: ‘Hari Kunj’, C 19, Sector K, Aliganj, 
Lucknow 226024, India

http://orcid.org/0000-0002-2385-6325
http://crossmark.crossref.org/dialog/?doi=10.1007/s11240-022-02298-1&domain=pdf


268	 Plant Cell, Tissue and Organ Culture (PCTOC) (2022) 150:267–287

1 3

plants are the base of many traditional systems of medi-
cine, like Ayurveda, Unani, Siddha, and Homoeopathy. 
Variations in the qualitative and quantitative contents of 
active principles highly depend on the genetic make-up of 
the plants, climate, soil quality and developmental stage of 
the plant itself (Isah 2019). The medicinal plants constitute 
many plant groups, including herbs, shrubs, trees, climb-
ers, woody climbers, etc., providing raw material for drug 
formulation. Many prescribed phytomedicines used today 
are usually derived from herbs. However, trees are also a 
powerful source of many phytoconstituents and beneficial 
because they are perennial and available throughout the 
year. Despite the worldwide importance, many tree spe-
cies are under threat in the wild. The habitat loss due to 
anthropogenic activities, overexploitation for the timber or 
medicinal values, deforestation, urbanization and industriali-
zation, exotic species, pest and diseases and global climate 
changes are significant threats to the tree species (Shekha-
wat et al. 2014). These factors posed a danger and have led 
to the extinction of many economically important tree spe-
cies. Recent data of the IUCN Red List indicated that out of 
58,343 plant species described and evaluated by IUCN Red 
List version 2021-2, 23,335 species are listed as threatened 
(IUCN 2021). The increasing demand for raw drugs from 
medicinal trees puts pressure on its natural population. The 
wild populations of threatened tree species are declining at 
an alarming rate, particularly those used in pharmaceutical 
industries. Therefore, these species need more attention for 
conservation and management.

Conservation and management of many threatened tree 
species are sometimes difficult in their natural habitat due 
to several factors, like, inefficient natural propagation sys-
tem, pollination regime, seed dormancy, shift in the seed 
set, biotic and abiotic stresses etc. (Oldfield 2009; Rai et al. 
2021a). The conventional methods of vegetative propagation 
of trees are slow and inefficient in many cases because they 
lose the ability to root at maturity and make their regen-
eration under in vivo conditions difficult (Pena and Seguin 
2001; Giri et al. 2004). Conventionally, ex-situ conserva-
tion of many tree species in seed bank or field gene bank 
is inhibited mainly due to seed dormancy and poor germi-
nation of seeds after storage, high risk of disease transfer 
and loss of genetic resources (Potter et al. 2017; Wyse et al. 
2018). Recent advances in biotechnological technique, i.e., 
plant tissue culture, have facilitated a new way to propagate 
and conserve several commercially important plant species, 
including medicinal trees, and have been extensively studied 
in recent three-four decades. The main application of plant 
tissue culture technique in medicinal trees includes micro-
propagation and production of genetically pure plants, pro-
duction of bioactive compounds and in vitro conservation for 
short- to medium-term or long-term. This paper discusses a 
brief insight into the status of plant tissue culture-mediated 

biotechnological advances in medicinal tree species, empha-
sizing recent progress.

In vitro propagation of medicinal trees

Plant tissue culture technique provides a novel approach for 
the large-scale propagation and germplasm preservation of 
commercially and economically important plants, includ-
ing medicinal trees. The most applicable aspect of plant tis-
sue culture technique is micropropagation, which is highly 
acclaimed for its practicability and commercial use. It offers 
an excellent system for the maintenance and multiplication 
of pathogen-free plants and for the safe exchange of their 
germplasm across the world (Bhojwani and Dantu 2013). 
Micropropagation of trees has great relevance to overcoming 
the overexploitation of trees. However, very little progress 
has been made with medicinal trees compared to herbaceous 
medicinal plant species. The slow-growing nature, the prob-
lem of juvenility versus maturity and long and complex life 
cycles of trees are some main hurdles associated with the 
micropropagation of trees (Pena and Seguin 2001; Giri et al. 
2004; Rai et al. 2021b).

In tree species, mainly fruit and medicinal trees with 
great commercial values, explants derived from mature 
tissue facilitate direct tree improvement. Usually, plants 
propagated in vitro directly from mature tissue can cap-
ture the genetic make-up of an elite genotype resulting in 
the development of plants with desired characteristics (Rai 
et al. 2010). The response of explants obtained from mature 
trees is significantly influenced by the source and types of 
explants, physiological state of tissue and collection sea-
son. The performance of different types of explants of trees 
in different seasons is highly associated with endogenous 
hormone status, which is impacted by environmental fac-
tors. Earlier, nodal segments or other explants obtained from 
mature trees have been used for the micropropagation of 
many medicinal trees. However, the success rate of micro-
propagation of trees is comparatively low when using mature 
explants rather than seedling explants (Bonga 1987). Axil-
lary bud proliferation through nodal explants obtained from 
mature plants is one of the best methods of micropropaga-
tion of medicinal trees. In most plant species, this method 
assures the production of true-to-type plants and maintains 
the genetic fidelity in tissue culture-raised plants (Rani and 
Raina 2000). However, leaching of phenols and browning of 
explants after wounding, exogenous and endogenous micro-
bial contamination, in vitro recalcitrance of explants and 
low shoot proliferation are major obstacles in establishing 
culture when using explants from mature trees (Giri et al. 
2004; Rai et al. 2010).

Most of the tree species produce phenolic compounds 
after wounding during culture establishment. Leaching of 
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phenolics from the explants hampers the in vitro regenera-
tion and has proven to be lethal to explants (Ahmad et al. 
2013). The major cause of the browning of explants is the 
oxidation of phenols within the tissue. This problem is more 
evident in tissue culture of tree species, which makes tis-
sue culture of woody plants difficult. Many workers combat 
this problem using different compounds as antioxidants and 
adsorbents (Singh 2018). To overcome the problem of phe-
nolic exudation, the pre-treatment of explants with antioxi-
dant solutions, like, ascorbic acid and citric acid was found 
effective in the tissue culture of many tree species (Harry 
and Thrope 1994; Giri et al. 2004). In some cases, explants 
were pre-treated with polyvinylpolypyrrolidone (PVPP), 
a polyamide, to control browning. Activated charcoal also 
plays an important role in reducing browning and preventing 
the leaching of phenol during the establishment of culture in 
many tree species (Thomas 2008).

Culture contamination caused by exogenous and endog-
enous fungi and bacteria is one of the most serious prob-
lems for culture establishment of many tree species when 
using explants from mature tissues (Harry and Thrope 1994; 
Giri et al. 2004; Singh 2018). The major consequence of 
microbial contamination is growth retardation, necrosis and 
finally the demise/loss of cultures. In addition, it can cause a 
substantial economic loss, particularly in commercial tissue 
culture laboratories and the loss of time and efforts spent 
in developing cultures. The major microbial contamination 
in culture is associated with plants, but sometimes it may 
be due to error in the surface sterilization processes or by 
transfer of microbes from human body hair and clothing 
into the sterile area. The contamination of some latent and 
slow-growing bacteria, which appears at a very late stage, 
can cause reduced shoot and root growth, tissue necrosis, 
and finally, loss of culture (Bhojwani and Dantu 2013). To 
overcome the problem of culture contamination, explants 
can be surface sterilized using various sterilizing agents like 
mercuric chloride, sodium hypochlorite, hydrogen peroxide, 
ethanol, etc., and treated with antibacterial and antifungal 
agents. However, types of sterilizing agents, their concen-
tration and the duration of treatment may vary with tree 
species, the juvenility and maturity of plant tissue and the 
infestation rate.

The success of plant tissue culture technique can largely 
depend upon the ability to regenerate complete plants 
in vitro from explants either derived from mature trees or 
juvenile tissue. However, in vitro recalcitrance is one of the 
main bottlenecks of tissue culture of trees. In many tree spe-
cies, explants obtained from mature trees are not amenable 
to in vitro culture procedures (Benson 2000). In vitro recal-
citrance highly depends on the physiology of donor plants 
and the requirement of specific nutrients and plant growth 
regulators (PGRs) for in vitro manipulations. Therefore, 
selection of donor plants, explants at a specific responsive 

stage, nutritional and PGRs requirements are of great impor-
tance to overcome recalcitrance (Arya and Shekhawat 1986; 
Bonga 2017). In most of the tree species, successful plant 
regeneration was observed from explants obtained from 
seedlings. Other than seedlings, the procurement of juve-
nile explants mostly shoot tips and nodal segments that 
arise from the base of the main stem, i.e., offshoots, are an 
alternative and efficient way to establish cultures in many 
recalcitrant woody plants (Benson 2000; Rai et al. 2010). 
In general, three modes of in vitro propagation system, i.e., 
axillary bud proliferation, adventitious organogenesis, and 
somatic embryogenesis, have been practiced through tissue 
culture techniques.

Axillary bud proliferation

Propagation of plants in vitro through shoot tips, shoot 
segments with single or multiple nodes, or axillary buds 
from mature plants has proved to be the most common and 
reliable clonal propagation method. In this method, newly 
formed apical shoots, lateral buds, or a piece of shoots hav-
ing one or multiple nodes bearing shoot meristems serve as 
explants for shoot proliferation and multiplication by the 
repeated formation of axillary branches (George et al. 2008). 
Although, establishing cultures from shoots or nodal seg-
ments acquired from a mature tree is difficult in some tree 
species. In such cases, nodes or cotyledonary nodes excised 
from in vitro grown seedlings may be used as suitable alter-
natives to shoot tips and nodal segments of a mature plant. 
Most of the in vitro propagation studies in medicinal trees 
were carried out using nodal segments explants obtained 
from mature plants or seedlings (Table 1). In plant tissue 
culture of any plant species, media compositions play a vital 
role in the morphogenesis. Different basal media have been 
tested for the micropropagation of medicinal trees. However, 
MS (Murashige and Skoog 1962) and WPM (woody plant 
medium, i.e., Lloyd and McCown 1980) media were found 
most suitable for the tissue culture of tree species.

Usually, the incorporation of cytokinins in the growth 
medium promotes the proliferation of axillary shoots by 
eliminating the dominance of apical meristems. However, 
a permissible balance of cytokinin with endogenous hor-
mones is required. So, the desirable cytokinin concentra-
tion may vary from species to species, and it has become 
necessary to standardize for a specific species. The types 
and concentrations of cytokinins are the two most criti-
cal factors for shoot multiplication in tissue culture stud-
ies. N6-benzylaminopurine (BAP) was the most common 
cytokinin used for many medicinal tree species. Other cyto-
kinins, like, kinetin (Kin), zeatin, thidiazuron (TDZ) and 
meta topolin (mT) were also reported to be effective for 
axillary shoot proliferation in some medicinal tree species. 
There are also several reports in which single cytokinin was 
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Table 1   Tissue culture studies in some selected medicinal tree species

Plant name Explant Mode of regeneration and morpho-
genic responses

References

Acacia auriculiformis Shoot segments Micropropagation and assessment of 
genetic fidelity analysis

Yadav et al. (2016)

Acacia catechu Seedling nodal explants Shoot multiplication, in vitro rooting 
and plant regeneration

Sahini and Gupta (2002)

Acacia nilotica Nodal segments Shoot multiplication, ex vitro rooting 
and plant regeneration

Rathore et al. (2014, 2015)

Acacia senegal Immature cotyledon Induction of somatic embryogenesis Rathore et al. (2012)
Aegle marmelos Cotyledonary node Shoot multiplication, in vitro rooting 

and plant regeneration
Nayak et al. (2007)

Nodal segment Direct shoot multiplication, plant 
regeneration and genetic fidelity 
analysis using molecular marker

Pati et al. (2008)

Nodal segment and root suckers Axillary bud proliferation and plantlet 
regeneration

Parveen et al. (2015)

Alangium salviifolium Seedling nodal segments and shoot 
apices

Shoot multiplication, in vitro rooting 
and plant regeneration

Pandey et al. (2022)

Azadirachta indica Nodal, root and leaf Direct somatic embryogenesis from 
nodal and root explant and indirect 
from leaf explant, plant regeneration 
and in vitro azadirachtin production

Akula et al. (2003)

Anther culture Production of haploid plants Chaturvedi et al. (2003a)
Immature endosperm Triploid plant regeneration from 

callus
Chaturvedi et al. (2003b)

Nodal explants from 50 years old 
mature tree

Axillary shoot proliferation, multipli-
cation and in vitro rooting

Chaturvedi et al. (2004)

Buds from basal sprouts of mature 
and juvenile plant

Shoot multiplication, in vitro rooting 
and plant regeneration

Quraishi et al. (2004)

Leaflet segments Adventitious shoot induction, prolif-
eration and plantlet production

Arora et al. (2009)

Unpollinated ovary Organogenesis and plant regeneration Srivastava et al. (2009)
Nodal segment Axillary bud proliferation and plantlet 

production
Arora et al. (2010)

Root explants Shoot induction, plant regeneration 
and genetic fidelity analysis using 
RAPD

Arora et al. (2011)

Anther culture Haploid plant production from cal-
lus and increased production of 
azadirachtin

Srivastava and Chaturvedi (2011)

Nodal segment from 8-month-old 
grown in green house conditions

Shoot multiplication in flasks with 
caps containing PTFE membranes

Rodrigues et al. (2012)

Balanites aegyptiaca Seedling nodal explants Shoot multiplication, in vitro rooting 
and plant regeneration

Siddique and Anis (2009)

Bauhinia racemosa Nodal segments Shoot multiplication, ex vitro rooting 
and plant regeneration and genetic 
fidelity analysis using CBDP and 
SCoT marker

Sharma et al. (2017, 2019a)

Calophyllum apetalum Young shoots from mature trees Shoot multiplication, in vitro rooting 
and plant regeneration

Nair and Seeni (2003)

Campomanesia xanthocarpa Seedling nodal explants Shoot multiplication, in vitro rooting 
and plant regeneration

Machado et al. (2020)

Camptotheca acuminata Seedling nodal explants Shoot multiplication, in vitro rooting 
and plant regeneration

Nacheva et al. (2020)

Cassia angustifolia Seedling nodal explants Shoot multiplication, in vitro rooting 
and plant regeneration

Siddique and Anis (2007)
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Table 1   (continued)

Plant name Explant Mode of regeneration and morpho-
genic responses

References

Cinnamomum camphora Immature zygotic embryos Somatic embryogenesis from callus 
and plant regeneration

Shi et al. (2009)

Couroupita guianensis Nodal segment Shoot multiplication, ex vitro rooting 
and plant regeneration

Shekhawat and Manokari (2016)

Crataeva adansonii Nodal segments Induction of axillary buds, shoot 
multiplication, in vitro rooting and 
plant regeneration

Sharma et al. (2003)

Crataeva magna Nodal segment Shoot multiplication, plant regenera-
tion and genetic fidelity analysis 
using ISSR marker

Bopana and Saxena (2009)

Elaeocarpus serratus Nodal segments Shoot multiplication, plant regenera-
tion and genetic fidelity analysis 
using RAPD and ISSR markers

Raji and Siril (2021)

Elaeocarpus sphaericus Nodal segments Shoot multiplication, in vitro rooting 
and plant regeneration

Saklani et al. (2015)

Ficus religiosa Nodal segments Shoot multiplication, in vitro rooting 
and plant regeneration

Siwach and Gill (2011)

Garcinia indica Seed segments Induction of multiple adventitious 
shoot buds, in vitro rooting and 
plant regeneration

Malik et al. (2005)

Gymnocladus assamicus Cotyledonary node and node from 
seedlings

Direct induction of adventitious 
shoots, in vitro rooting and plant 
regeneration

Gupta et al. (2020)

Hildegardia populifolia Nodal segments Shoot multiplication, ex vitro rooting 
and plant regeneration and genetic 
uniformity analysis using ISSR and 
RAPD marker

Upadhyay et al. (2020)

Hovenia dulcis Leaf from seedlings Callus induction and shoot regenera-
tion and in vitro rooting

Jeong et al. (2009)

Kalopanax pictus Immature zygotic embryos Embryogenic callus, somatic embryo-
genesis and plant regeneration

Moon et al. (2005)

Maytenus emarginata Nodal segments Shoot multiplication, in vitro rooting 
and plant regeneration

Shekhawat et al. (2021)

Melaleuca alternifolia Apical shoots from one-year-old 
greenhouse stem cutting-derived 
plants

Shoot proliferation, in vitro rooting 
and plant regeneration

Iiyama and Cardoso (2021)

Melia azedarach Immature zygotic embryos Direct somatic embryogenesis and 
plant regeneration

Vila et al. (2003)

Nodal segments Shoot multiplication, ex vitro rooting 
and plant regeneration

Husain and Anis (2009)

Immature endosperm Triploid plant regeneration from 
callus

Thang et al. (2018)

Millettia pinnata Hypocotyls Direct adventitious shoot bud forma-
tion, in vitro rooting and plant 
regeneration

Nagar et al. (2015)

Mitragyna parvifolia Nodal segments Shoot multiplication and concurrent 
ex vitro rooting and acclimatization

Patel et al. (2020)

Morinda coreia Nodal segments Shoot multiplication, in vitro and ex 
vitro rooting and plant regeneration

Shekhawat et al. (2015a)

Morinda citrifolia Nodal segments Shoot multiplication, in vitro and ex 
vitro rooting and plant regeneration

Shekhawat et al. (2015b)

Moringa oleifera Nodal segments and shoot-apices Somatic embryogenesis and organo-
genesis

Chand et al. (2019)

Seedling nodal explants Shoot proliferation, in vitro rooting 
and plant regeneration

Gupta et al. (2020)
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Table 1   (continued)

Plant name Explant Mode of regeneration and morpho-
genic responses

References

Murraya koenigii Cotyledon and zygotic embryonic axis Direct and indirect somatic embryo-
genesis and plant regeneration

Paul et al. (2011)

Neolamarkia cadamba Cotyledon Direct adventitious shoot organogen-
esis and plant regeneration

Huang et al. (2014)

Cotyledon and hypocotyl Callus induction and shoot regenera-
tion and in vitro rooting

Huang et al. (2020)

Nothapodytes foetida Hypocotyl segments Shoot multiplication, in vitro rooting 
and plant regeneration

Rai (2002)

Oplopanax elatus Immature zygotic embryos Embryogenic callus, somatic embryo-
genesis and plantlet conversion

Moon et al. (2006)

Oroxylum indicum Apical and axillary bud Shoot multiplication, in vitro rooting 
and plant regeneration

Gokhale and Bansal (2009)

Phellodendron amurense Hypocotyl explants Induction of embryogenic calluses, 
somatic embryogenesis and plant 
regeneration

Azad et al. (2009)

Pittosporum eriocarpum Nodal explants Shoot multiplication, plant regenera-
tion and genetic fidelity analysis 
using SCoT, ISSR and RAPD 
markers

Thakur et al. (2016)

Pterocarpus marsupium Seedling nodal explants Shoot proliferation, in vitro rooting 
and plant regeneration

Tiwari et al. (2004)

Hypocotyl segments Induction of callus, somatic embryo-
genesis and plant regeneration

Husain et al. (2010)

Shoot tips from seedling Direct shoot organogenesis and plant 
regeneration

Ahmad et al. (2021)

Salvadora persica Nodal segments Shoot multiplication, ex vitro rooting 
and plant regeneration

Phulwaria et al. (2011)

Santalum album Nodal shoot segments Shoot multiplication, ex vitro rooting 
and genetic fidelity analysis using 
SCoT marker

Manokari et al. (2021)

Sapindus mukorossi Leaf explant Indirect somatic embryogenesis and 
plant regeneration

Singh et al. (2015)

Sapindus trifoliatus Seedling nodal explants Shoot multiplication, plant regenera-
tion and genetic fidelity analysis 
using RAPD

Asthana et al. (2011)

Sepal explants Indirect somatic embryogenesis and 
plant regeneration

Asthana et al. (2017)

Shorea tumbuggaia Shoot apex from seedlings Shoot multiplication, plant regenera-
tion and genetic fidelity analysis 
using ISSR marker

Shukla and Sharma (2017)

Spondias mangifera Seedling nodal explants Shoot multiplication, in vitro rooting 
and plant regeneration

Tripathi and Kumari (2010)

Spondias pinnata Leaf from in vitro derived shoots Callus induction, shoot proliferation, 
in vitro rooting and assessment 
of genetic fidelity using ISSR and 
SCoT markers

Jaiswal et al. (2021)

Stereospermum personatum Shoots excised from seedlings Shoot multiplication, in vitro rooting 
and plant regeneration

Shukla et al. (2009)

Syzygium cumini Cotyledonary node Callus induction, shoot proliferation 
and ex vitro rooting

Naaz et al. (2019)

Taxus wallichiana Zygotic embryos Indirect somatic embryogenesis and 
plant regeneration

Datta and Jha (2008)

Tecomella undulata Nodal segments Micropropagation and assessment 
of genetic fidelity using ISSR and 
SCoT markers

Chhajer and Kalia (2017)
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found ineffective for shoot proliferation but showed promis-
ing results when used in combination with two cytokinins or 
cytokinin with low concentrations of auxins (George et al. 
2008; Bhojwani and Dantu 2013). The synergistic effect of 
two cytokinins with auxin has also been studied in some 
species (Phulwaria et al. 2012a; Patel et al. 2020). In a recent 
study, Shekhawat et al. (2021) reported the synergistic effect 
of two cytokinins (mT and Kin) and one auxin indole-3-ace-
tic acid (IAA) on shoot multiplication in Maytenus emargin-
ata. They observed that mT or BAP alone or in combination 
with IAA did not respond reasonably, but the synergism of 
mT with Kin and IAA greatly enhanced shoot multiplication 
with more than 80 shoots per culture. In most medicinal tree 
species, an agar solidified medium has been used for in vitro 
propagation. However, few studies also reported the use of 
liquid medium for shoot proliferation and growth (Rathore 
et al. 2014, 2015; De Carlo et al. 2021). Some growth addi-
tives and additional nitrogen and carbon sources like glu-
tamine, proline, arginine and citric acid also enhanced the 
shoot proliferation in some medicinal trees (Phulwaria et al. 
2011, 2012a, b; Gupta et al. 2014; Rathore et al. 2014, 2015; 
Chhajer and Kalia 2017; Shekhawat et al. 2021).

Adventitious organogenesis

In certain plant species, including medicinal trees, the for-
mation of adventitious shoots or roots from the cultured cells 
or tissues may provide a reliable in vitro propagation sys-
tem. Adventitious shoot or root formation is accompanied 
either directly from explants (direct organogenesis) or from 
an intermediate callus, i.e., an unorganized mass of cells 
(indirect organogenesis) (George et al. 2008). Induction of 
direct organogenesis highly depends on the explant types, 
the source of explants and the requirement for exogenous 
PGRs in the process. Although this method is particularly 
suitable for herbaceous species, several papers have also 
been published on direct adventitious shoot organogenesis 
in medicinal tree species (Table 1). In medicinal tree spe-
cies, the formation of adventitious shoots in vitro has been 
reported from the tissues derived from leaves, stems, roots, 
or seedling explants. In Neolamarkia cadamba, Huang et al. 
(2014) reported direct adventitious shoot organogenesis 
from cotyledon explants, and they found that shoots were 
raised directly at the cut edges of the cotyledonary petioles. 
In another study, direct adventitious shoot organogenesis 
was observed in Millettia pinnata using hypocotyl explant 
(Nagar et al. 2015).

Indirect organogenesis involves the induction of cal-
lus from explants and further shoot bud differentiation. 

Table 1   (continued)

Plant name Explant Mode of regeneration and morpho-
genic responses

References

Terminalia arjuna Cotyledonary node Shoot multiplication, in vitro rooting 
and plant regeneration

Pandey and Jaiswal (2002)

Nodal segments Shoot multiplication, in vitro rooting 
and plant regeneration

Pandey et al. (2006)

Shoot segments In vitro propagation, synthetic seed 
production and genetic fidelity 
analysis

Gupta et al. (2014)

Terminalia bellirica Seedling nodal explants Axillary bud proliferation and plantlet 
production

Ramesh et al. (2005)

Nodal segments Shoot multiplication, in vitro and ex 
vitro rooting and plant regeneration

Phulwaria et al. (2012a)

Nodal segments Micropropagation and assessment 
of genetic fidelity using ISSR and 
RAPD markers

Dangi et al. (2014)

Terminalia catappa Nodal segments Shoot multiplication, ex vitro rooting 
and plant regeneration

Phulwaria et al. (2012b)

Terminalia chebula Cotyledons and mature zygotic 
embryo

Induction of callus, somatic embryo-
genesis and plant regeneration

Anjaneyulu et al. (2004)

Uncaria rhynchophylla Stem segments Shoot proliferation, in vitro rooting 
and plant regeneration

Ishii et al. (2013)

Zanthoxylum armatum Nodal segments Micropropagation and assessment of 
genetic fidelity using RAPD and 
ISSR markers

Purohit et al. (2017)

Table included only the references of 2000 to 2022
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Although, the explants from mature or immature plants 
can form callus, explants with mitotically active cells are 
usually most suitable for callus induction and further plant 
regeneration (George et al. 2008). Mostly explants derived 
from seedlings have been used for callus-mediated organo-
genesis in medicinal tree species (Table 1). For instance, 
Jeong et al. (2009) reported callus-mediated organogen-
esis in Hovenia dulcis from leaf explants obtained from 
seedlings. More recently, Jaiswal et al. (2021) used leaf 
explants excised from in vitro derived shoots for callus 
induction, shoot proliferation and plant regeneration in 
Spondias pinnata. In some cases, cotyledon, hypocotyl 
or cotyledonary nodes have also been used for indirect 
organogenesis (Naaz et al. 2019; Huang et al. 2020).

In adventitious organogenesis, somatic cells of explants 
form new meristems and meristematic tissues in the pres-
ence of exogenous PGRs (De Klerk 2009). The involvement 
of exogenous PGRs is very crucial in the induction of adven-
titious shoot buds either directly from explants or via callus 
(George et al. 2008). In most tree species, medium contain-
ing BAP alone or in combination with Kin or IAA was most 
effective for direct adventitious shoot organogenesis. TDZ 
or mT also reported to have beneficial for direct adventitious 
shoot organogenesis in some species (Gupta et al. 2020a; 
Ahmad et al. 2021). While medium supplemented with 
2,4-D either alone or in combination with low concentra-
tions of cytokinin, preferably Kin or BAP, was advantageous 
for callus induction. Further, cytokinin in medium leads to 
the formation of shoot buds from callus (Giri et al. 2004; 
Bhojwani and Dantu 2013).

Rooting of in vitro regenerated shoots

The successful rooting of microshoots is a necessary pre-
requisite for developing an in vitro propagation system for 
any plant species either through axillary shoot proliferation 
or via adventitious shoot organogenesis. Cytokinin added in 
growth medium to promote axillary shoot proliferation or 
adventitious shoot organogenesis usually inhibits root forma-
tion. Therefore, it is necessary to excise a single shoot from 
shoot clusters and transfer it to a different medium contain-
ing auxins for in vitro rooting (George et al. 2008; Bhojwani 
and Dantu 2013). In vitro rooting in microshoots has been 
encouraged in many plant species, including medicinal trees, 
by incorporating auxin indole-3-butyric acid (IBA) in root-
inducing medium. In the last two decades, many workers 
emphasized on ex vitro rooting over in vitro rooting. The 
ex-vitro rooted plants perform well during acclimatization 
because they have root hairs and well-developed vascular 
connections in ex vitro root and shoot, which make them 
more efficient in adaptation during acclimatization. In addi-
tion, unlike in vitro rooting, ex vitro rooted plants usually 
lack callus formation at the root-shoot junction, one of the 

main reasons for the survival of plants with low frequency 
when rooted through in vitro rooting technique. Moreover, 
the ex-vitro rooting technique does not require additional 
acclimatization as rooting and acclimatization occur simul-
taneously, reducing the cost and time of micropropagation 
(Bhojwani and Dantu 2013; Patel et al. 2020). Ex vitro root-
ing technique could be advantageous, particularly in those 
tree species where rooting and acclimatization are major 
constraints during micropropagation. In recent years, ex 
vitro rooting technique has been applied in many medici-
nal trees, including Acacia nilotica (Rathore et al. 2014), 
Bauhinia racemosa (Sharma et al. 2017), Couroupita guia-
nensis (Shekhawat and Manokari 2016), Hildegardia pop-
ulifolia (Upadhyay et al. 2020), Melia azedarach (Husain 
and Anis 2009), Mitragyna parvifolia (Patel et al. 2020), 
Morinda citrifolia Shekhawat et al. (2015b), Salvadora per-
sica (Phulwaria et al. 2011) and Terminalia bellirica (Phul-
waria et al. 2012a).

Somatic embryogenesis

The main applied goal of tissue culture of trees is mass 
multiplication and large-scale clonal propagation. Owing to 
bipolar nature having both root and shoot meristem, high 
multiplication rate, scale-up by bioreactor technology, the 
potential for in vitro storage and suitable target for gene 
transfer, somatic embryogenesis is recognized as a powerful 
tool for propagation, conservation and genetic improvement 
of forest and medicinally important trees (Guan et al. 2016; 
Isah 2016).

Several factors affect the process of somatic embryogen-
esis in medicinal tree species, like, types of explants, physi-
ological status of explant, PGRs, and genotypes. In general, 
a routine practice for inducing somatic embryogenesis in a 
particular plant species is the selection of suitable explant 
and culturing them in a nutrient medium containing PGRs, 
most preferably auxin for the induction of somatic embryo-
genesis either directly from explant or indirectly via callus 
(Arnold et al. 2002; Jiménez 2005). In most woody plant 
species, mature or immature zygotic embryos have been 
used as a primary explant for somatic embryogenesis. How-
ever, other less differentiated tissues, like, hypocotyl, leaf 
segments, cotyledons, floral parts or shoot apex, etc. have 
also been proved to be effective for induction of somatic 
embryogenesis in some medicinal trees (Table 1). The high 
responsiveness of zygotic embryos towards somatic embryo-
genesis is mainly due to the presence of pre-embryogenic 
determined cells (PEDCs) in zygotic embryos, which pos-
sess embryogenic competence (Bhojwani and Dantu 2013). 
Depending on the types, concentrations and treatment 
duration of auxin or other PGRs, zygotic embryo follows 
the direct or indirect embryogenic pathways. For instance, 
zygotic embryos of Melia azedarach cultured on medium 
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supplemented with TDZ exhibit direct somatic embryo-
genesis (Vila et al. 2003), while in some medicinal trees, 
somatic embryos induced indirectly from zygotic embryo 
explant through callus (Anjaneyulu et al. 2004; Moon et al. 
2005, 2006; Datta and Jha 2008; Shi et al. 2009). The cal-
lus mediated indirect formation of somatic embryos is also 
observed from other explants, like, hypocotyl, leaf, cotyle-
don, or young floral parts (Azad et al. 2009; Husain et al. 
2010; Singh et al. 2015; Asthana et al. 2017).

In general, auxin, mainly 2, 4-D, is required only for the 
induction of somatic embryogenesis as cells of plant tissues 
initially became competent for embryogenic induction. Con-
tinuous auxin treatment is usually inhibitory for the develop-
ment of somatic embryos. Therefore, somatic embryos will 
only develop when auxin-treated explants or auxin-induced 
callus are transferred to a medium devoid of auxin or very 
low auxin concentration (Arnold et al. 2002; Rai et al. 2007; 
George et al. 2008; Bhojwani and Dantu 2013). In some 
cases, a combination of high concentration of auxin with low 
concentrations of cytokinin is necessary for the induction 
of somatic embryogenesis. In Sapindus trifoliatus, embryo-
genic callus was induced from sepal explants on medium 
containing 5.0 mg l−1 2, 4-D and 0.1 mg l−1 Kin, which fur-
ther induced nodular embryogenic structures. Later, somatic 
embryos of different developmental stages were formed from 
these nodular embryogenic structures when transferred to a 
medium devoid of PGRs and containing glutamine (Asthana 
et al. 2017). The use of cytokinin in the induction and devel-
opment of somatic embryos has also been reported in a few 
medicinal trees (Vila et al. 2003; Singh et al. 2015). For 
instance, leaf explants of Sapindus mukorossi cultured on 
medium supplemented with BAP exhibit the induction of 
callus and further development of somatic embryos (Singh 
et al. 2015). Improper maturation and development of poor-
quality somatic embryos are the main hurdles that limit the 
plantlet conversion rate of somatic embryos. Incorporation 
of some additional adjuvants in medium helps in the matu-
ration of somatic embryos. Some such adjuvants include 
abscisic acid (ABA), l-glutamine, proline, polyethylene 
glycol (PEG) and, high sucrose concentrations (Rai et al. 
2011; Bhojwani and Dantu 2013). For example, inclusion 
of ABA and l-glutamine in the medium promoted matura-
tion of somatic embryos of Taxus wallichiana and Sapindus 
trifoliatus, respectively (Datta and Jha 2008; Asthana et al. 
2017).

Genetic stability of tissue culture raised plants

The maintenance of clonal uniformity of micropropagated 
plants is one of the important requirements for holding cer-
tain desirable traits, particularly when using elite genotypes 
of medicinal trees for pharmaceutical industries. However, 
the regeneration mode, mainly through callus phase, culture 

medium, PGRs, and culture conditions, sometimes causes 
genetic instability in in vitro propagated plants (Rani and 
Raina 2000; Rai et al. 2012). Hence, genetic fidelity analy-
sis of micropropagated plants is essential before exploiting 
in vitro regeneration protocol of any plant species. In recent 
years, polymerase chain reaction (PCR) based molecular 
techniques have widely been used to analyze genetic fidel-
ity of in vitro regenerated plantlets in many medicinal tree 
species (Table 1). Random amplified polymorphic DNA 
(RAPD) and inter simple sequence repeat (ISSR) markers 
have been reported as useful molecular markers for the anal-
ysis of genetic fidelity of in vitro regenerated plants of many 
medicinal trees such as Aegle marmelos (Pati et al. 2008), 
Azadirachta indica (Arora et al. 2011), Crataeva magna 
(Bopana and Saxena 2009), Elaeocarpus serratus (Raji 
and Siril 2021), Hildegardia populifolia (Upadhyay et al. 
2020), Sapindus trifoliatus (Asthana et al. 2011), Shorea 
tumbuggaia (Shukla and Sharma 2017), Terminalia bellirica 
(Dangi et al. 2014) and Zanthoxylum armatum (Purohit et al. 
2017). Nowadays RAPD and/or ISSR markers are replaced 
by highly reproducible and gene-targeted i.e., start codon 
targeted (SCoT) polymorphism marker for genetic fidelity 
analysis. During the last decade, many workers assessed 
clonal fidelity of tissue culture raised plants using SCoT 
marker in some medicinal trees like Bauhinia racemosa 
(Sharma et al. 2019a), Pittosporum eriocarpum (Thakur 
et al. 2016), Santalum album (Manokari et al. 2021), Spon-
dias pinnata (Jaiswal et al. 2021) and Tecomella undulata 
(Chhajer and Kalia 2017). In Bauhinia racemosa, Sharma 
et al. (2019a) used another gene-targeted CAAT box-derived 
polymorphism (CBDP) marker and SCoT marker to ana-
lyze the genetic stability of in vitro propagated plants. Both 
CBDP and SCoT markers can detect somaclonal variations 
in tissue culture-raised plantlets, particularly the genetic 
variations in a specific genomic region that is linked with a 
useful trait (Shekhawat et al. 2018; Rai 2021).

Production of haploid, triploid and polyploid plants

In the last few decades, the production of haploid plants 
using in vitro culture technique has gained immense impor-
tance because it allows the generation of double haploids 
(DH) homozygous lines from heterozygous parents. Haploid 
and double haploid plants have remarkable applications in 
the field of plant breeding and genetics (Germana 2011). The 
main strategies for obtaining haploid plants under in vitro 
conditions are androgenesis and gynogenesis. Anther or 
microspore culture is a technically efficient and straight-
forward approach for obtaining haploids. Ovary or ovule 
culture can also prove to be an alternative technique in those 
species where anther culture is not successful (Bhojwani and 
Dantu 2013).
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Considerable progress has been made on haploids and 
double haploid plant production in many agricultural 
crops but restricted to a few tree species (Srivastava and 
Chaturvedi 2008). In Azadirachta indica, Chaturvedi et al. 
(2003a) successfully achieved haploid plant production by 
anther culture. Callus was induced on medium containing 
2,4-D + NAA + BAP and high sucrose (9%) concentration 
and proliferated on medium supplemented with 2,4-D and 
Kin. Further, shoots were differentiated from calli when 
transferred to a medium containing BAP. They also deter-
mined the ploidy level of plants derived from anther culture 
and found that 60% plants were haploid. In another study, 
Srivastava et al. (2009) cultured an unpollinated ovary of 
A. indica to obtain haploid plants. However, they could not 
get haploid plants, and all the regenerated plants from ovary 
culture in this study were diploid.

Traditionally, triploid plants are produced by crossing a 
diploid and an induced tetraploid. However, endosperm, a 
naturally occurring triploid tissue, offers an efficient method 
of triploid plant production when culturing in vitro. Since, 
triploids are seed sterile, the induction of triploid plants 
would be beneficial in those plant species where seed 
lessness is applied for commercial importance. In addi-
tion, triploids have more vigorous growth than diploids. 
Moreover, triploid plants represent a significant resource 
for plant breeding of many commercially important plants 
(Thomas and Chaturvedi 2008). There are a few examples 
of triploid plant production in medicinal trees. Chatur-
vedi et al. (2003b) have reported triploid plant production 
in Azadirachta indica by immature endosperm culture. A 
total of 66% plants regenerated from endosperm callus in 
A. indica were found triploid. In another study, Thang et al. 
(2018) reported callus induction from immature endosperm 
culture and triploid plant production in Melia azedarach. 
They also found that all the plantlets (100%) regenerated 
from endosperms were triploid.

Artificial induction of polyploidization using in vitro 
culture technique is considered a significant plant breeding 
asset for crop improvement. Polyploids are usually supe-
rior to diploids in terms of productivity, adaptability against 
biotic and abiotic stresses and higher content of secondary 
metabolites (Bennici et al. 2006; Niazian and Nalousi 2020). 
Applying colchicine for artificial chromosome doubling 
(ACD) has been successfully adopted to generate polyploids 
in many agricultural, horticultural, medicinal and ornamen-
tal plants (Eng and Ho 2019; Niazian and Nalousi 2020). 
However, only a few reports are available on the induction 
of polyploidy in medicinal trees using in vitro culture tech-
nique. For instance, Zhang et al. (2020) reported tetraploidy 
induction in Moringa oleifera by treating leaf segments with 
colchicine. They also found that the colchicine-induced 
tetraploid plants exhibited superior agronomical traits when 
compared to diploid plants. Recently, Eng et al. (2021) 

obtained octoploid plants of Neolamarckia cadamba from 
colchicine-treated nodal explants. In comparison to natural 
tetraploid plants of N. cadamba, colchicine-induced octop-
loid plants showed superior morphological characteristics 
with thicker leaf blades, thicker midrib, lower stomata den-
sity and bigger stomata size.

In vitro conservation of medicinal trees

During the last two to three decades, in vitro culture tech-
nique played a vital role in plant germplasm conservation 
by reducing the growth rate of in vitro cultures for short- 
to medium-term storage and through cryopreservation for 
the storage in long-term (Lambardi and De Carlo 2003; 
Engelmann 2011). The application of tissue culture-based 
ex-situ conservation of genetic resources of medicinal 
trees has widely progressed in recent years.

Short‑ to‑ medium term conservation by slow 
growth storage

Slow growth storage is a tissue culture-based in vitro con-
servation technique in which plant tissues or germplasm 
can be stored under growth-limiting conditions (Chauhan 
et al. 2019). The main idea of this approach is to extend 
the subculture durations up to a few months to 1–2 years 
without affecting their survival and regeneration potential 
after storage. The strategies adopted under slow growth stor-
age include low-temperature storage, use of minimal growth 
medium, applying growth retardants or osmoticum for limit-
ing the growth of cultures (Engelmann 2011; Rajasekharan 
and Sahijram 2015; Chauhan et al. 2019; Rai 2022). In 
the case of medicinal trees, most reports are available on 
the short-term storage of germplasm at low temperatures, 
mostly at 4 °C (Table 2). For example, Scocchi and Mrogin-
ski (2004) successfully stored the apical meristem of Melia 
azedarach for 12 months at a low temperature (4 °C). In 
another study, shoot tips of Pistacia lentiscus could be stored 
at 4 °C for 12 months only in dark conditions (Koc et al. 
2014). In recent years, synthetic seeds have been employed 
successfully for short- to medium-term conservation of 
germplasms of several medicinal, fruit and many other com-
mercially important plant species by adopting different slow 
growth storage strategies. (Ara et al. 2000; Rai et al. 2009, 
2021a; Sharma et al. 2013; Gantait et al. 2015; Faisal and 
Alatar 2019). More recently, Padilla et al. (2021) success-
fully stored encapsulated nodal segments of Azadirachta 
indica for four weeks at 12 °C when explants were pre-
treated with acetylsalicylic acid (ASA). They observed that 
recovery of cold-stored synthetic seeds was higher in ASA 
treated explants than the non-treated explants.
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Long‑term conservation by cryopreservation

Cryopreservation is one of the most viable and most accept-
able techniques for conserving plant genetic resources for the 
long-term (Engelmann 2011; Reed et al. 2011; Rai 2022). 
In this technique, biological materials are stored at −196 
°C, usually in liquid nitrogen. The ultra-low temperature 
suspends the plant cells’ metabolic activities and cellular 
divisions, assuring the viability of germplasm for a longer 
duration (Engelmann, 2011; Sharma et al. 2019b).

During 1990s, cryopreservation primarily relied on slow 
cooling method. However, ice crystal formation in the cells 
of explants was a major hurdle in applying this technique. 

With the advancement in techniques, mainly based on 
encapsulation of explants, dehydration and vitrifying solu-
tions, many cryopreservation techniques evolved and were 
used to conserve various plant species. The most applica-
ble cryopreservation techniques in medicinal trees include 
vitrification, encapsulation-vitrification, and encapsulation-
dehydration (Table 2). These techniques have been applied 
for the cryopreservation of several medicinal tree species, 
like, Aesculus hippocastanum (Lambardi et  al. 2005), 
Crateva nurvala (Sanayaima et al. 2006), Lepisanthes fru-
ticosa (Suryanti et al. 2021), Melia azedarach (Scocchi 
et al. 2004, 2007), Nothapodytes nimmoniana (Radha et al. 
2010) and Parkia speciosa (Nadarajan et al. 2008; Sinniah 

Table 2   In vitro conservation of some selected medicinal trees

Plant name In vitro conservation 
method

Explants Strategies adopted for 
in vitro conservation

References

Aesculus hippocastanum Cryopreservation Embryogenic callus Vitrification Lambardi et al. (2005)
Azadirachta indica Synthetic seed and slow 

growth method
Nodal segments Storage of encapsulated 

nodal segments at 
12 °C with medium 
containing acetylsalicylic 
acid

Padilla et al. (2021)

Crateva nurvala Cryopreservation Axillary shoot tips Vitrification Sanayaima et al. (2006)
Garcinia indica Normal growth In vitro raised shoots Storage under normal 

growth conditions at 
reduced BAP concentra-
tions

Malik et al. (2005)

Hancornia speciosa Cryopreservation Shoot tips Vitrification and droplet 
vitrification

Santos et al. (2015)

Hovenia dulcis Cryopreservation Shoot tips V Cryo-plate technique Saavedra et al. (2021)
Kalopanax septemlobus Cryopreservation Embryogenic callus Vitrification and droplet-

vitrification techniques
Shin et al. (2012)

Lepisanthes fruticosa Cryopreservation Embryonic axes Vitrification and encapsula-
tion vitrification

Suryanti et al. (2021)

Melia azedarach Slow growth method Apical meristem-tips Low temperature storage at 
4 °C on minimal growth 
medium

Scocchi and Mroginski 
(2004)

Cryopreservation Apical meristem-tips Encapsulation-dehydration 
method

Scocchi et al. (2004)

Cryopreservation Somatic embryos Encapsulation-dehydration 
and pregrowth-dehydra-
tion method

Scocchi et al. (2007)

Mimusops elengi Cryopreservation Embryonic axes Desiccation of seeds fol-
lowed by cryopreserva-
tion

Wen et al. (2013)

Nothapodytes nimmoniana Cryopreservation Embryonic axes with 
cotyledons

Dehydration under laminar 
airflow for 120 min 
before freezing in liquid 
nitrogen

Radha et al. (2010)

Parkia speciosa Cryopreservation Shoot tips Encapsulation-vitrification 
in combination with 
trehalose preculture

Nadarajan et al. (2008)

Cryopreservation Zygotic embryonic axes desiccation or vitrification Sinniah and Gantait (2013)
Pistacia lentiscus Slow growth method Shoot tips Low temperature storage at 

4 °C in dark
Koc et al. (2014)
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and Gantait 2013). Two new cryopreservation techniques, 
namely droplet vitrification and cryo-plate methods, have 
been evolved during the last two decades (Panis et al. 2005; 
Yamamoto et al. 2011; Niino et al. 2013). Both the methods 
are advanced and are now preferred due to ease in handlings, 
high regrowth rate and reduced risk of damage of explants 
during cryo-procedure (Wang et al. 2021). Droplet vitrifica-
tion and cryo-plate methods developed in some medicinal 
tree species include Hancornia speciosa (Santos et al. 2015), 
Hovenia dulcis (Saavedra et al. 2021) and Kalopanax sep-
temlobus (Shin et al. 2012).

Production of secondary metabolites 
from medicinal trees through in vitro culture 
technique

Many tree species are an excellent source of a wide range 
of secondary metabolites. These secondary metabolites, 
i.e., bioactive compounds, are pharmaceutically important 
and can be extracted directly from plants. Some secondary 
metabolites have high commercial values in pharmaceutical 
industries (Rao and Ravishankar 2002). However, low yield 
and production of secondary metabolites only at a specific 
developmental stage of specific parts are some major bot-
tlenecks when isolated directly from a plant (Murthy et al. 
2014). For example, taxol, an important secondary metabo-
lite, produced from a tree, Taxus sp., can be harvested only 
from a mature tree. Its high yield can only be achieved from 
a tree that reaches about 60 years of age (Isah et al. 2018). In 
such a condition, in vitro culture technique plays an alterna-
tive and promising role in producing pharmaceutical bio-
active compounds commercially and alleviating the over-
exploitation of plant sources (Chandran et al. 2020). This 
technique offers an opportunity to exploit cells, tissues and 
organs for the controlled production of numerous secondary 
metabolites. In addition, the secondary metabolites produced 
by in vitro culture technique are similar to those produced 
by whole plants. Moreover, the production of secondary 
metabolites by tissue culture technique is not affected by 
seasons or any environmental fluctuations (Rao and Ravis-
hankar 2002; Murthy et al. 2014; Isah et al. 2018; Shasmita 
et al. 2018; Silpa et al. 2018; Chandran et al. 2020).

Different types of culture system have been adopted for 
the production of secondary metabolites in medicinal trees. 
In many cases, cell suspension and callus culture have been 
established for the production of secondary metabolites 
(Table 3). In a few medicinal trees, secondary metabolites 
are produced by hairy root culture or organ culture (Hus-
sain et al. 2022). Several reports on medicinal trees indicate 
that the production of secondary metabolites through in vitro 
culture technique highly depends on the source of explants, 
types of medium, alteration in nutritional composition of 

medium, types and concentrations of PGRs or use of biotic 
and abiotic elicitors (Table 3).

Production of some valuable bioactive compounds 
from medicinal trees: case studies

Azadirachtin

Azadirachtin is tetraterpenoid and one of the most prominent 
bioactive compounds of neem tree (Azadirachta indica). 
Azadirachtin is well known for its antimalarial and insec-
ticidal activity and many pharmacological applications. 
In recent years, the potential of azadirachtin as an effec-
tive insecticide has gained attention, especially due to its 
insecticidal activity against more than 500 insect species 
(Thakore and Srivastava 2017). The potentiality of in vitro 
culture technology in the production of azadirachtin is much 
explored as several papers published on the production of 
azadirachtin using callus, cell suspension or hairy root cul-
ture in recent two decades. A wide range of bioreactors have 
also been designed for scale up of cell suspension or hairy 
root culture for the production of azadirachtin (Prakash and 
Srivastava 2007; Srivastava and Srivastava 2013). Different 
factors affecting azadirachtin production in vitro using cal-
lus and cell suspension culture were studied by many work-
ers. Sujanya et al. (2008) selected an elite variety of neem 
crida-8 for azadirachtin production using cell suspensions 
culture. They demonstrated the effect of nutritional altera-
tion, i.e., altered medium with different nitrate: ammonium 
ratio on azadirachtin production. Srivastava and Chaturvedi 
(2011) quantified high levels of azadirachtin from leaves of 
in vitro grown haploid plantlets derived from anther cal-
lus. In another study, Singh and Chaturvedi (2013) exam-
ined the azadirachtin accumulation in callus induced from 
different explants i.e., zygotic embryo, leaf, and ovary. 
They found that zygotic embryos accumulated the highest 
amount of azadirachtin. Rodrigues et al. (2014) studied the 
effect of different factors on the production of azadirachtin 
in calli induced from cotyledons and observed the high-
est azadirachtin production on agitated liquid woody plant 
medium (WPM) medium supplemented with glucose, 
hydrolysed casein and an elicitor, methyl jasmonate. More 
recently, Ashokhan et al. (2020) demonstrated the effect of 
two PGRs TDZ and 2,4-D on azadirachtin production in 
callus induced from leaf and petiole.

Plants produce a wide range of secondary metabolites 
in response to biotic and abiotic stresses. Nowadays, many 
biotic and abiotic elicitors are also used to stimulate sec-
ondary metabolites in cells, callus, or organ cultures (Rao 
and Ravishankar 2002). The addition of a number of biotic 
and abiotic elicitors, i.e., fungal culture filtrate, jasmonic 
acid, salicylic acid, yeast extract and chitosan in medium 
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improved the production of azadirachtin in callus, cell sus-
pension or hairy root culture of A. indica (Satdive et al. 
2007; Srivastava and Srivastava 2014; Vásquez-Rivera 
et al. 2015; Farjaminezhad and Garoosi 2021a, b). In many 
plant species, hairy root culture is a promising technique 
for secondary metabolite production, especially in the case 
of root-specific secondary metabolites (Silpa et al. 2018). 
Some researchers have also reported the enhanced produc-
tion of azadirachtin by hairy root culture (Allan et al. 2002; 
Satdive et al. 2007; Srivastava and Srivastava 2014). Apart 
from azadirachtin, some other bioactive compounds such 
as nimbin, salannin, 3-acetyl-1-tigloylazadirachtinin and 
3-tigloylazadirachtol, etc., have also been produced from A. 
indica using in vitro culture technique (Allan et al. 2002; 
Babu et al. 2006; Vásquez-Rivera et al. 2015; Farjaminezhad 
and Garoosi 2021a, b).

Camptothecin

Camptothecin, a monoterpene indole alkaloid and cytotoxic 
compound, is a potent anticancerous drug and very popular 
in pharmaceutical industries after taxol and vinca alkaloids.

Camptothecin was first isolated in Camptotheca acumi-
nata and later in other tree species, like, Nothapodytes foet-
ida syn N. nimmoniana (Isah et al. 2018). Using in vitro 
culture technique, camptothecin was produced in two tree 
species C. acuminata and N. foetida. Park et al. (2003) opti-
mized light and culture conditions for enhanced production 
of camptothecin in callus culture of C. acuminata. Sankar-
Thomas and Lieberei (2011) determined the camptothecin 
content in different cultures of C. acuminata, i.e., ex situ and 
in vitro seedlings and different stages of somatic embryos 
grown on solid medium or in a temporary immersion system. 
They found highest camptothecin content in shoots grown 
in temporary immersion system. In N. foetida, few stud-
ies have also shown enhanced production of camptothecin 
by the influence of medium composition (Thengane et al. 
2003; Karwasara and Dixit 2013). In another study, Dandin 
and Murthy (2012) compared the camptothecin content in 
acclimatized (ex vitro) plants developed on solid and liq-
uid medium and in vivo plants. This study has shown the 
highest camptothecin content in leaves of ex vitro plants 
developed on solid medium. In order to increase campto-
thecin production in the callus and cell suspension culture 
of N. nimmoniana, several elicitors were employed by Isah 
(2017) and Keshavan et al. (2022). Isah (2017) reported the 
increased production of camptothecin in callus culture of N. 
nimmoniana by yeast extract and vanadyl sulfate elicitors. 
In another study, cell suspension culture of N. nimmoniana 
treated with five different biotic and abiotic elicitors for 
enhanced camptothecin production showed that the biotic 
elicitor chitin treated cell suspension culture produced the 
highest camptothecin (Keshavan et al. 2022).

Taxol

Taxol (generic name—paclitaxel), a tetracyclic diterpene, is 
considered as the most well-known anticancer drug isolated 
from plants. Many species of conifer, Taxus, are the natu-
ral source of taxol. Many pharmacological studies revealed 
that taxol can directly kill the tumour cells (Sabzehzari et al. 
2020). Owing to prominent anticancerous activity, taxol has 
huge commercial value in pharmaceutical industries and its 
demand is increasing day by day. No other plant-based anti-
cancer drug has generated as much public interest as taxol 
(Liu et al. 2016). During the last three decades, considerable 
progress has been made on the taxol production from dif-
ferent Taxus species, including T. cuspidata, T. brevifolia, 
T. baccata, T. chinensis, T. cuspidate, etc. using in vitro cul-
ture technique (Liu et al. 2016). Other than taxol, another 
secondary metabolite ‘taxane’ has also been isolated from 
Taxus sp. using cell culture technique. Fett-Neto et al. (1992) 
extracted taxol first time from callus tissues of T. cuspidata. 
Taxol and taxane production enhanced in callus or cell sus-
pension culture of different Taxus species by selection of 
high-yield cell lines (Wang et al. 2018), optimization of cul-
ture medium and PGRs (Toulabi et al. 2015), carbohydrate 
source (Sarmadi et al. 2018) and use of a number of biotic 
and abiotic elicitors, like, salicylic acid (Wang et al. 2007; 
Sarmadi et al. 2018), chitosan (Zhang et al. 2007), polyeth-
ylene glycol (Sarmadi et al. 2019), squalestatin (Amini et al. 
2014), coronatine and calix[8]arenes (Escrich et al. 2021) 
or by oxidative stress and fungal elicitor (Yu et al. 2002). 
In vitro culture technique is a promising alternative taxol 
production method as taxol can be produced only from the 
bark of the tree and its high yield is achieved only from a 
mature tree (Liu et al. 2016).

Conclusions

During the last three to four decades, considerable progress 
has been made on the propagation, conservation and sec-
ondary metabolite production in several medicinally impor-
tant tree species using in vitro culture approaches. Despite 
significant progress, several factors limit the use of this 
technology for its commercialization. In recent years, many 
problems associated with the tissue culture of tree species 
have been addressed by many modifications and refinements 
in technologies. For example, replacement of in vitro root-
ing technique by ex vitro rooting helps in better acclimati-
zation and higher percent survival of tissue culture raised 
plants. Similarly, more advanced droplet-vitrification and 
cryo-plate methods are now preferred over traditional slow 
cooling or vitrification method of cryopreservation for the 
conservation of many tree species, which eradicate the risk 
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of damage and loss of regeneration potential after storage. 
Instead of optimizing PGRs and medium composition, the 
use of many biotic and abiotic elicitors, hairy root culture, or 
scale-up of bioreactor technologies have now gained interest 
in secondary metabolite production at a commercial scale. 
The production of some secondary metabolites i.e., taxol, 
camptothecin and azadirachtin, from trees at a commercial 
scale through cell and tissue culture is highly appreciated. 
Such success will also encourage exploiting in vitro culture 
technology for large-scale propagation, conservation, and 
secondary metabolite production in other medicinal trees.
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