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Abstract
Despite having the ability to bioaccumulate trace elements such as cadmium (Cd), many species also present morphophysi-
ological disorders that can hamper their use as phytoremediation plants. Since it can lead to alterations in biomass accumula-
tion, the employment of elements that mitigate stress, such as silicon (Si), can diminish the deleterious effects caused by trace 
elements. The objective of this study was to analyze the anatomical and physiological modulations induced by the synergy 
between Cd and Si in Alternanthera tenella Colla plants, as well as to elucidate whether Si can mitigate the harmful effects 
caused by Cd under in vitro conditions. Nodal segments were cultured in MS medium containing a concentration gradient 
of Cd (0, 50, 100, or 200 μM) combined with two levels of Si (0 or 40 μM) for a total of eight treatments. After 34 days, the 
plants' anatomy, physiology, and tolerance index were analyzed. The plants presented anatomical adjustments such as lower 
stomatal index and number of vessel elements, suggesting lower translocation of Cd to the aerial part. When cultured with 
200 μM Cd, the plants presented the lowest Chl a/b ratio (5.55). In the presence of Si, the decline of this ratio was smaller 
(6.66). Plants exposed to Cd concentrations of 50 μM without Si presented a significant decrease in the performance of the 
photosynthetic apparatus and tolerance index. The presence of Si in the medium reduced the damages caused by cadmium 
to the plants' physiology, resulting in greater growth and higher tolerance to this element.

Key Message 
Alterations in the leaf anatomy played a fundamental role in plants' adjustment to stress Cd-induced. Si can mitigate the 
deleterious effects of Cd in A. tenella plants.
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Abbreviations
ABS/RC  Absorption flux per reaction center (RC)
Chl a  Chlorophyll a
Chl b  Chlorophyll b
Chl total  Total chlorophyll
DI0/RC  Dissipated energy flux per RC
F0  Initial fluorescence
Fm  Maximal fluorescence intensity
Ft  Fluorescence at time t after start of actinic 

illumination
FV/F0  Ratio of the de-excitation rate constants for 

photochemical and nonphotochemical events
PI(ABS)  Performance index based on absorption
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PI(Total)  Total performance index, which measures the 
performance up until the final electron accep-
tors of PSI

RC/ABS  Total number of active reaction center
VL  Relative variable fluorescence at 0.15 ms (step 

L)
VI  Relative variable fluorescence at 30 ms (step I)
VJ  Relative variable fluorescence at 2 ms (step J)
VK  Relative variable fluorescence at 0.3 ms (step 

K)
WK  Represents the damage to oxygen-evolving 

complex
WL  Indicates disturbance in the thylakoid mem-

branes, reducing the energetic connectivity 
between the PSII units

φP0  Maximum quantum yield of primary photo-
chemistry (at t = 0)

φE0  Quantum yield of electron transport (at t = 0)
φD0  Quantum yield of energy dissipation (at t = 0)
δR0  Efficiency/probability with which an electron 

from the intersystem electron carriers moves to 
reduce end electron acceptors at the PSI accep-
tor side (RE)

Introduction

There is a growing concern about pollution of ecosystems 
with wastes from anthropogenic actions, especially residues 
that contain high levels of trace elements such as cadmium 
(Cd), copper (Cu), chrome (Cr), lead (Pb), zinc (Zn), alu-
minum (Al), manganese (Mn) and mercury (Hg). These ele-
ments, even in small quantities, are highly bioaccumulative 
at all levels of the trophic chain (Suman et al. 2018; Hu 
et al. 2020).

Among these trace elements, Cd stands out for its easy 
uptake and high mobility and accumulation in the structures 
of plants, where it can cause an imbalance in the system 
for uptake of water and nutrients by competing for bonding 
sites, as well as damaging the photosynthetic apparatus and 
modifying the leaf morphology and anatomy (Rodrigues 
et al. 2017; Dobrikova et al. 2021).

Various methods have been employed to minimize the 
effects of Cd contamination of ecosystems, ranging from the 
use of physical–chemical methods to the use of living organ-
isms, such as plants, bacteria, and fungi that can extract and 
store high concentrations of this metal in their structure (Liu 
et al. 2018; Roychowdhury et al. 2018; Haider et al. 2021). 
Besides this, studies have shown that the cultivation of 
plants with the presence of stress-mitigating elements such 
as selenium (Se) and silicon (Si) is promising to diminish 
the deleterious effects of trace elements on the plants' sys-
tems (Ding et al. 2017; Martins et al. 2020a; Haider et al. 

2021; Huang et al. 2021). However, more comprehensive 
studies are necessary to understand better the relationship 
among plants, heavy metals, and stress-mitigating elements 
to ascertain whether this mitigation is really feasible as part 
of a strategy for the recovery of ecosystems.

Among the stress-mitigating elements, Si stands out as 
the second most abundant element in the Earth's crust and 
has a high affinity for alkaline and alkaline-earth metals 
(Menegale et al. 2015). Plants' need for Si has been dis-
cussed by various researchers (Menegale et al. 2015; Klotz-
bücher et al. 2018; Bari et al. 2020; Chung et al. 2020). 
The results of these studies have shown the participation of 
Si in the regulation of morphological, physiological, and 
genetic responses of various plants, aiming at the reduction 
of abiotic and biotic stress. Among these are an increased 
uptake and assimilation of mineral nutrients; modulation 
of the antioxidant system; increases of the photosynthetic 
rate, stomatal conductance, and concentration of  CO2; and 
reduction of the transpiration rate (Etesami and Jeong 2018; 
Malhotra and Kapoor 2019).

Several studies have reported the effects of Si to increase 
the tolerance and/or reduce the impact of toxicity caused 
by trace elements in many plant species (Gu et al. 2011; 
Pereira et al. 2018; Vaculík et al. 2020; Ur-Rahman et al. 
2021). These effects include reduction of the uptake of these 
elements by the plant, alteration of the content of photosyn-
thetic pigments, compartmentation in metabolically inactive 
parts, co-precipitation of metals with Si, chelation, and mod-
ification of the genetic expression in some species (Adrees 
et al. 2015; Emamverdian et al. 2018; Etesami and Jeong 
2018; Bhat et al. 2019; Cai et al. 2020). Therefore, a better 
understanding of how Si can mitigate stress in plants with 
phytoremediation potential is important to optimize their 
performance in this respect.

The joint application of techniques to observe plant 
anatomy, quantify the content of photosynthetic pigments, 
and analyze the chlorophyll a fluorescence transients on 
in vitro culture conditions allows comparing the alterations 
promoted by the presence of a trace element and/or supple-
mentation with other elements precisely, without the inter-
ference of external factors (Martins et al. 2020b; Guo et al. 
2020), besides elucidating the effects caused in photosystem 
II and I (PSII and PSI), among other morphophysiological 
responses of plants (Pereira et al. 2017; Guo et al. 2020; 
Martins et al. 2021).

Previous studies have already reported the potential of 
Alternanthera tenella Colla (Amaranthaceae) for bioaccu-
mulation of Cd and Cu (Rodrigues et al. 2017; Martins et al. 
2020b). This species is herbaceous, with rapid growth and 
high biomass production. However, Rodrigues et al. (2017) 
found that when cultured in vitro, the growth of plants of 
this species declined when submitted to high Cd concen-
trations, which can negatively influence its employment 
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for phytoremediation. Thus, the objective of this work was 
to analyze the anatomical and physiological modulations 
induced by the synergy of Cd and Si in A. tenella plants 
under in vitro conditions, as well as to elucidate whether Si 
can mitigate the deleterious effects caused by Cd.

Material and methods

Exposure to cadmium and silicon during in vitro 
culture

Alternanthera tenella plants were previously established 
and multiplied in vitro according to the method proposed 
by Rodrigues et al. (2017). Plants with similar morphology 
(after the multiplication phase without plant growth regula-
tors) were used as the source of explants. Nodal segments 
with an approximate length of 2 cm were individualized 
with the aim of a scalpel and tweezers and used as explants. 
These segments were transferred to 500 mL flasks contain-
ing 30 mL MS medium (Murashige and Skoog 1962) sup-
plemented with 20 g  L−1 sucrose (Dinâmica®, Brazil) and 
6 g  L−1 agar (Dinâmica®, Brazil). Cadmium (Cd) was added 
to the culture medium in a concentration gradient of 0, 50, 
100 or 200 μM, in the form of Cd(NO3)2.4H2O, combined 
with two levels of silicon (0 or 40 μM Si—CaSiO3), for a 
total of 8 treatments. The Si levels were determined through 
a previous experiment in which the morphophysiological 
responses (fresh weight and  PI(Total) values) of the plants 
were analyzed in function of Si levels. The media's pH was 
adjusted to 5.8 before autoclaving at 120 °C for 20 min. All 
the procedures for inoculation of the plants were performed 
in aseptic conditions in a laminar flow cabinet. The plants 
were subsequently maintained in a growth room at 26 ± 2 °C 
with 16:8 h photoperiod under Slim LED lamps (Blume-
nau® 36 W/6500 K), supplying 70 μmol  m−2  s−1 of photo-
synthetically active radiation, for a period of 34 days.

Leaf anatomy

For anatomical characterization, after cultivation for 34 days, 
four plants from each treatment were collected at random 
and fixed in FAA (formaldehyde, acetic acid, and 50% etha-
nol at 0.5/0.5/9.0 v/v) for 72 h, after which the material was 
preserved in 50% (v/v) ethanol until analysis (Johansen, 
1940). Cross- and paradermal sections were obtained from 
the first pair of fully expanded leaves. The slides were pre-
pared according to Martins et al. (2020b) and were photo-
graphed with a digital camera (Leica ICC50 HD®, Wetzlar, 
Germany) coupled to a light microscope (Bioval, L-2000A-
Flur®). The anatomical measurements (n = 4) were car-
ried out with the Imagetool® software, calibrated with a 
microscopic ruler. The anatomical traits analyzed were: the 

thickness of the palisade (μm) and spongy parenchyma (μm), 
stomatal density (0.1  mm−2), stomatal index (%), epidermal 
cell density (0.1  mm−2), and the number of vessel elements.

Quantification of the content of photosynthetic 
pigments

The quantification of the contents of chlorophyll a and b 
(Chl a and Chl b) was performed at the end of the experi-
ment, according to the method proposed by Arnon (1949). 
For this purpose, 0.02 ± 0.005 g of fresh weight from the 
second pair of fully expanded leaves was weighed, and the 
pigments were extracted with 5 mL of 80% (v/v) acetone 
for 72 h in the dark at a constant temperature of 4 °C. The 
absorbance levels were read with a Genesys™ 10S UV–Vis 
spectrophotometer (Thermo Fisher Scientific, West Palm 
Beach, FL, USA), with wavelengths of λ = 645 and 665 nm 
(nm) for Chl b and Chl a, respectively. The calculations were 
performed as described by Wellburn (1994), and the results 
(n = 8) are expressed in micrograms of pigment per gram of 
fresh weight (μg  g−1 FW).

Analysis of chlorophyll a fluorescence transients

The chlorophyll a fluorescence transients (OJIP) were deter-
mined with a portable fluorometer (Handy PEA®/ Hansat-
ech Instruments Ltd., King's Lynn, Norfolk, UK). For this 
purpose, the second pair of fully expanded leaves (from the 
tips and not detached) of 18 different plants (n = 18) from 
each treatment were previously adapted to the dark for 
30 min with leaf clips (Hansatech®). The fluorescence emis-
sion was induced in a circular area with a diameter of 4 mm 
by exposure of the sample to a saturating red-light pulse 
(peak 650 nm), and the intensity of 3,000 μmol  m−2  s−1 
was recorded and used to calculate the parameters of the 
JIP test and the relative variable fluorescence between the 
steps O and P  (VOP), steps O and K  (VOK), and steps O and 
J  (VOJ) (Strasser et al. 2004; Stirbet and Govindjee 2011; 
Guo et al. 2020) using the Biolyzer software (Bioenergetics 
Laboratory, University of Geneva, Switzerland). According 
to Zhang et al. (2018), the  WL and  WK were calculated.

Growth traits and tolerance index

To evaluate the in vitro growth, 25 plants from each treat-
ment were collected at random, divided into 5 replicates 
(n = 5), and weighed on an analytical balance (ATY 224, 
Shimadzu). The aerial parts and roots were weighed sepa-
rately to determine grams per plant (g  plant−1). After deter-
mining the fresh weight, the samples were dried in a forced-
air oven (AC-035/480, Acblabor) for 72 h at 70 °C, and the 
aerial parts and roots were weighed again.



226 Plant Cell, Tissue and Organ Culture (PCTOC) (2022) 150:223–236

1 3

The tolerance index (TI) was calculated as proposed by 
Wilkins (1957), with modifications, by dividing the total 
dry weight of the plant from each treatment by the total dry 
weight of the control plant (0 μM Si + 0 μM Cd). The values 
obtained (n = 5) were multiplied by 100 to express the TI in 
percentage (%).

Statistical analysis

The experimental design was completely randomized in a 
2 × 4 factorial scheme (presence or absence of Si × Cd con-
centrations of 0, 50, 100, or 200 μM). The data were submit-
ted to analysis of variance (ANOVA), and the means were 
compared by the Tukey test at 5% significance using the 
ExpDes package of R (Ferreira et al. 2018).

Results

Characterization of leaf anatomy

Alterations of the leaf anatomy of the A. tenella plants 
were observed in the function of the treatments. The 

stomatal density was influenced by both variation fac-
tors (Cd and Si), but the influence was independent. The 
number of stomata per area declined with increasing con-
centrations of Cd. Between the two Si levels, the plants 
cultured with 40 µM Si presented greater stomatal density 
than those cultivated without this element (Figs. 1 and 
2A).

There was a significant interaction between Cd and Si for 
stomatal index and epidermal cell density. In the absence 
of Si, the stomatal index declined with rising Cd concen-
tration. When Si was added to the culture medium, both 
characteristics presented similar values irrespective of the 
Cd concentrations. The plants exposed to 200 µM Cd but 
without Si had greater epidermal cell density (57.7 cells per 
0.1  mm−2) and the lowest stomatal index (16.6%) among the 
treatments (Fig. 1 and Table 1).

In the cross-sections, the parenchyma thickness was 
also influenced by the Si and Cd. The supplementation of 
Si, as well as Cd, induced thinner palisade parenchyma, 
especially when the plants were exposed to 100 and 
200 μM Cd. In the spongy parenchyma, the addition of 
50 and 100 μM of Cd to the medium caused a reduction 
of its thickness, regardless of the level of Si. In turn, the 

Fig. 1  Paradermal sections (A–D and M–P) and cross-sections (E–L 
and Q–X) of leaves of Alternanthera tenella in the function of dif-
ferent concentrations of cadmium (Cd) in the absence and presence 

of silicon (Si) during in vitro culture. st stomata, pp palisade paren-
chyma, sp spongy parenchyma, and vl vessel elements. Bars = 100 μm
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results of the treatments with 0 and 200 μM of Cd were 
statistically similar between each other regarding these 
two conditions (Fig. 1 and Table 1).

The number of vessel elements was only altered by 
the concentrations of Cd. The exposure to this trace ele-
ment induced leaves with fewer vessel elements (Figs. 1 
and 2B).

Photosynthetic pigment content

The variation factors (Si and Cd) influenced the content of 
photosynthetic pigments. The plants cultivated with Si had 
larger values for all the pigment contents when exposed to 
Cd concentrations up to 50 µM. While at higher Cd concen-
trations, the plants presented a 50% decline in the contents 
of all the pigments, irrespective of the presence or absence 
of Si in the culture medium (Fig. 3A, B, D). Also, in the 
absence of Si, the plants exposed to 200 µM Cd had the 
smallest Chl a/b ratios among the treatments (26% lower) 
(Fig. 3C).

Chlorophyll a fluorescence transients

Independent of the treatment, the plants remained photosyn-
thetically active. The relative fluorescence values revealed 
large increases (2.27 times higher) as of step L in the plants 
cultured with 200 µM Cd, regardless of the level of Si 
(Fig. 4A, B). These responses were confirmed by the sig-
nificant increases in  VL,  VK,  VJ, and  VI values. The values 
of  VJ and  VI presented an interaction between the variation 
factors. Exposure to Cd led to significant increases of  VJ and 
 VI, mainly at the highest concentrations of this trace element 
(1.66 and 1.25 times higher, respectively). When comparing 
the Si levels at each Cd concentration, the plants cultivated 
with 0 and 100 of Cd presented lower values of  VI in the 
presence of Si than those grown without Si (Figs. 4A-F).

Analysis of the differences between steps O and K 
(L-band) revealed the formation of a positive L-band in the 
plants exposed to 200 μM Cd and under Si absence. In the 
presence of Si, the amplitudes of the curves were very slight, 
and there was no clear L-band formation. In the plants cul-
tivated with 200 μM Cd, the formation of positive K-bands 
(between steps O and J) was verified, irrespective of the Si 
concentration (Figs. 5A-D). These responses were confirmed 
by the increased values of  WL and  WK in these treatments 
(Figs. 5E-F).

Fig. 2  Stomatal density and number of vessel elements of Alternan-
thera tenella leaves in the function of different concentrations of cad-
mium (Cd) in the absence and presence of silicon (Si) during in vitro 
culture. Means (± SE) followed by the same letter do not differ sig-
nificantly between each other by the Tukey test at 5% probability

Table 1  Characteristics of the anatomical structures of leaves of A. tenella plants cultivated with different cadmium (Cd) concentrations in the 
absence and presence of silicon (Si) during in vitro culture

Means (± SE) followed by the same letter (lowercase for the absence of Si and uppercase for the presence of Si, comparing the concentrations of 
Cd) do not differ significantly between each other by the Tukey test at 5% probability. An asterisk (*) denotes a significant difference between the 
absence and presence of Si at each Cd level according to the Tukey test at 5% probability

Anatomical traits 0 μM Si 40 μM Si

0 50 100 200 0 50 100 200

Cd (μM) Cd (μM)

Stomatal index (%) 18.8 ± 0.6a 15.5 ± 0.8ab 11.9 ± 0.9b 8.2 ± 0.7c 16.6 ± 1.0A 15.8 ± 1.5A 14.7 ± 0.9A 13.2 ± 1.7A*
Epidermal cell density (0.1  mm−2) 51.4 ± 0.3b 54.4 ± 1.8b 57.5 ± 3.9b 83.4 ± 3.3a* 57.7 ± 7.6A 59.5 ± 1.9A 63.6 ± 5.4A 69.0 ± 6.3A

Palisade parenchyma (µm) 80.1 ± 1.0a* 55.9 ± 4.0b 51.9 ± 2.4b 58.2 ± 1.9b* 67.8 ± 5.2A 64.9 ± 2.1A* 52.5 ± 1.7B 53.1 ± 2.9B

Spongy parenchyma (µm) 122 ±  6a 85 ±  5b 89 ±  5b 116 ±  5a 127 ±  5A 107 ±  3B* 80 ±  3C 109 ±  5AB
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For all the parameters of the JIP test analyzed, there was 
an interaction between the factors studied. Cadmium, mainly 
at the highest concentration, induced a reduction of the val-
ues of  FV/F0, φP0, φE0, δR0, RC/ABS,  PI(ABS), and  PI(Total). 
In these same conditions, the values of φD0 increased. 
Comparison of the values of these parameters in each Si 
level, plants cultured under Si absence had more pronounced 
reductions of  FV/F0, φP0, φE0, δR0, RC/ABS,  PI(ABS), and 
 PI(Total) than those cultivated with 40 µM Si. The increases 
of the values of φD0 were also more substantial in the plants 
exposed to Cd without co-exposure to Si (Fig. 6).

Significant differences between the treatments were also 
observed in the specific flows of energy for each PSII reac-
tion center. Plants cultivated with 200 µM Cd had higher 
ABS/RC and  DI0/RC values, and these increases were 1.7 
and 3.1 times greater in the absence of Si, respectively 
(Fig. 7). Among the treatments with Cd and the absence 
of Si, the values of  TR0/RC were 1.4 times greater in the 
plants exposed to 200 µM Cd. In contrast, when Si was 
added to the culture medium, there was a decrease of  TR0/
RC in the plants co-exposed to Cd. Further regarding the 
 TR0/RC, under Cd absence, its values were higher in the 
plants cultured with 40 µM Si than in those grown without 

Si. The opposite effect was observed in the treatments with 
200 µM Cd since the plants without Si had higher values 
of  TR0/RC than those grown with 40 µM Si (Fig. 7). In 
general, the plants cultivated without Si had lower values 
of  ET0/RC than those grown with 40 µM Si at each Cd 
level (Fig. 7).

Growth traits and tolerance index

All the growth traits presented significant interactions 
between the variation factors. Furthermore, from a mor-
phological standpoint, the plants exposed to high Cd con-
centrations had reduced stem length and leaf size, prin-
cipally at the highest Cd concentration (data not shown). 
Irrespective of the addition of Si in the medium, there 
was a gradual reduction of plants' fresh and dry weights 
in the function of rising Cd concentration. However, this 
weight reduction was less pronounced in the treatments 
with Si supplementation (Table 2). The exposure to high 
Cd concentrations reduced the tolerance index (TI) values, 
but this decrease was smaller for the plants cultivated with 
the presence of Si (Table 2).

Fig. 3  Content of photosynthetic pigments of Alternanthera tenella 
plants in the function of different concentrations of cadmium (Cd) 
in the absence and presence of silicon (Si) during in  vitro culture. 
Means (± SE) followed by the same letter (lowercase for the absence 
of Si and uppercase for the presence of Si, comparing the concen-

trations of Cd) do not differ significantly between each other by the 
Tukey test at 5% probability. The asterisk (*) denotes a significant 
difference between the absence and presence of Si at each Cd level 
according to the Tukey test at 5% probability
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Discussion

In this study, we investigated the interaction between Si and 
Cd during the in vitro culture of A. tenella. The addition of 
Si to the culture medium resulted in plants that were more 
tolerant of the stress caused by Cd.

Alterations in the leaf anatomy play a fundamental role 
in plants' adjustment to environmental conditions. In this 
study, the first stress-regulation mechanisms were related to 
the investment in the number of stomata (stomatal density 
and stomatal index) in the function of Cd concentrations. 
These adjustments in anatomy were reflected in a decrease 
of the transpiration rate and mass flow, diminishing the 
uptake and translocation of mineral elements present in the 
soil or culture medium to the aerial part (Pereira et al. 2017; 
Martins et al. 2019, 2020a, b; Pires-Lira et al. 2020). These 
alterations were in line with the number of vessel elements 
(xylem). A smaller number of vessels tends to reduce the 
translocation of water and nutrients, as well as of Cd, to the 
aerial part of the A. tenella plants. This observation is in 

accordance with the Hagen-Poiseuille law, which indicates 
that reducing the vessel elements' number and/or diameter 
has a negative exponential effect on the water conductivity 
(Scholz et al. 2013). Therefore, these combined alterations 
of the stomatal architecture and vessel elements might have 
been preponderant in controlling the translocation of Cd in 
the A. tenella plants.

The smaller flow of nutrients and water from the culture 
medium influenced the morphogenesis of the parenchyma 
tissues. The palisade parenchyma thickness declined, mainly 
in the plants grown with 100 and 200 μM of Cd. The reduced 
thickness of this tissue can be related to the smaller translo-
cation of water, which interferes with cell expansion (Silva-
Cunha et al. 2021). This process is fundamental for the 
growth of cell size and thus of the tissue as a whole. Like-
wise, the exposure to Cd led to thinner spongy parenchyma, 
correlated with the reduced size of the cells. Reducing this 
size is a mechanism to maintain functionality under stressful 
conditions because smaller cells tend to have a greater abil-
ity to maintain their turgor when exposed to water shortage 

Fig. 4  Relative variable fluorescence between steps O and P  [VOP] 
(A); normalized variable fluorescence at step L  [VL] (B), at step K 
 [VK] (C), at step J  [VJ] (D), and at step I  [VI] of Alternanthera tenella 
plants cultivated in  vitro with different concentrations of cadmium 
(Cd) in the absence and presence of silicon. Means (± SE) followed 
by the same letter (lowercase for the absence of Si and uppercase for 

the presence of Si, comparing the concentrations of Cd) do not differ 
significantly between each other by the Tukey test at 5% probability. 
The asterisk (*) denotes a significant difference between the absence 
and presence of Si at each Cd level according to the Tukey test at 5% 
probability



230 Plant Cell, Tissue and Organ Culture (PCTOC) (2022) 150:223–236

1 3

than larger cells (Corso et al. 2020). Nevertheless, the plants 
cultivated with 200 µM Cd, regardless of the presence of Si, 
had thicker but statistically similar spongy parenchyma than 
the plants cultivated without Cd. This increase in the spongy 
parenchyma thickness of the plants exposed to 200 µM Cd 
was correlated with an increase in the intercellular spaces 
but not with the size of the cells. It makes sense because 
the intercellular spaces of the spongy parenchyma have the 
function of maximizing the surface area available for light 
capture and gas exchange for photosynthesis (Zhang et al. 

2021). Besides this, the formation of larger intercellular 
spaces in spongy parenchyma can optimize the accumulation 
of  CO2 and the accessibility of carboxylation sites on the 
chloroplasts inside the leaf cells (Acosta-Motos et al. 2015; 
Paradiso et al. 2017), in turn requiring less frequent stoma-
tal opening for gas exchange. This morphological response 
of the spongy parenchyma is often related to water deficit 
(Acosta-Motos et al. 2015; Rouphael et al. 2017; Mott and 
Peak 2018). In this study, the A. tenella plants cultivated 
with 200 µM Cd presented an accentuated reduction in leaf 

Fig. 5  Kinetic differences between steps O and K [0.2 to 0.3  ms], 
steps O and J [0.2 μs to 2 ms] in the absence of silicon (A, B) and 
presence of silicon (C, D); variable fluorescence between steps K 
and J  [WL] (E) and between steps L and K  [WK] (F) of Alternanthera 
tenella plants cultivated in vitro with different concentrations of cad-
mium (Cd) in the absence and presence of silicon. Means (± SE) fol-

lowed by the same letter (lowercase for the absence of Si and upper-
case for the presence of Si, comparing the concentrations of Cd) do 
not differ significantly between each other by the Tukey test at 5% 
probability. The asterisk (*) denotes a significant difference between 
the absence and presence of Si at each Cd level according to the 
Tukey test at 5% probability
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Fig. 6  Parameters of the JIP test of Alternanthera tenella plants in the 
function of different concentrations of cadmium (Cd) in the absence 
and presence of silicon (Si) during in vitro culture. Means followed 
by an asterisk (*) denote significant differences between the presence 

and absence of Si, while two asterisks (⁑) denote significant differ-
ences between the concentrations of Cd at each level of Si according 
to the Tukey test at 5% probability. All the parameters of the JIP test 
are normalized in relation to the control (0 μM Si + 0 μM Cd = 1)

Fig. 7  Models of energy flux per reaction center (RC) in Alternan-
thera tenella leaves in the function of different concentrations of cad-
mium (Cd) in the absence and presence of silicon (Si) during in vitro 
culture. The level of green color of the leaf model indicates Chl a 
content (normalized from control treatment). Means (± SE) followed 
by the same letter (lowercase for the absence of Si and uppercase for 

the presence of Si, comparing the concentrations of Cd) do not differ 
significantly between each other by the Tukey test at 5% probability. 
An asterisk (*) denotes a significant difference between the absence 
and presence of Si at each Cd level according to the Tukey test at 5% 
probability
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size (leaf area) besides thicker spongy parenchyma. This 
suggests a compensatory mechanism (tradeoff) to maximize 
the accumulation of  CO2 and minimize the evapotranspira-
tion, preventing an increase in the mass flow and transloca-
tion of Cd.

One of the ways to determine physiological alterations 
and damages to the photosynthetic apparatus is by quanti-
fying the contents of photosynthetic pigments in the leaves 
since plants under stress tend to have lower contents and 
modifications of their proportions to balance the levels and/
or reduce the damages to the photosystem (Janečková et al. 
2019). In the present study, we observed reductions in the 
contents of Chl a, Chl b, Car, and Chl total with rising con-
centrations of Cd in the culture medium, independently of 
the presence or absence of Si. Cd can cause modifications 
in the structure of the photosynthetic pigments due to com-
petition for the binding sites of  Mg2+ in the pheophytin ring 
and/or inhibition of the synthesis of the enzyme 5-aminole-
vulinic acid, which plays an important role in the biosynthe-
sis of chlorophylls (Grajek et al. 2020); besides overloading 
of the antioxidant system, causing misshapen chloroplasts, 
dilation of thylakoid membranes and instability of chloro-
phyll (Pereira et al. 2017; Rodrigues et al. 2017). However, 
in the presence of Si, this decrease was less severe. That 
response might have been associated with improving the 
antioxidant system and, therefore, lesser oxidative damages 
of the structure and function of the thylakoid membranes 
(Yanhui et al. 2020). That hypothesis is corroborated by the 
values of  WL obtained.

The Chl a/b ratio is a good indicator of how plants 
respond to the influence of trace elements on their photo-
synthetic apparatus (Ranjbarfordoei et al. 2006; Martins 
et al. 2020a, b; Houri et al. 2020). In this study, we observed 
a coordinated reduction of Chl a and b, but no significant 

change in the ratio, particularly in the treatments with 50 and 
100 μM of Cd, indicating the efficacy of the plants' metabo-
lism in minimizing the harmful effect of the excess of this 
metal. In contrast, the reduction of the Chl a/b ratio in the 
treatment with 200 μM Cd indicated an imbalance between 
the contents of Chl a and Chl b, besides a high degrada-
tion rate of Chl a. In the presence of Si, the Chl a/b ratio 
of plants exposed to 200 μM Cd did not decline as much as 
in the plant cultivated with the same concentration of Cd 
but without Si. This response denotes lesser degradation of 
Chl a, indicating less damage to the active reaction centers 
(RCs) and hence in the performance of photosystem II (PSII) 
(Martins et al. 2021).

Alterations in the performance of the photosynthetic 
apparatus also demonstrated the effects of co-exposure to Si 
and Cd. A point-by-point analysis of the OJIP curve revealed 
the influence of this co-exposure and the response in the 
apparatus. At points  VL and  VK, we observed an increase in 
the plants grown with 200 μM Cd, irrespective of the pres-
ence of Si. This alteration at the highest Cd concentration 
indicated less energy connectivity of the PSII units and less 
efficiency of the oxygen-evolving complex (OEC) (Bres-
tic et al. 2012; Begovic et al. 2020; Martins et al. 2020b). 
According to Zhang et al. (2018), an increased value of  VK 
can be considered a specific marker of damage to the activ-
ity of the OEC from the electron donor side of PSII. In turn, 
alterations of the values of  VJ and  VI indicate the function-
ing of electron transport between the quinones  (QA and  QB) 
on the receptor side of PSII and changes in the efficiency/
probability of movement of electrons between the photosys-
tems, respectively (Santos et al. 2020; Martins et al. 2021). 
In this study, we observed that the presence of Si was associ-
ated with better electron transfer between the quinones and 
between PSII and PSI.

Table 2  Fresh and dry weight of the roots and aerial parts and tolerance index of A. tenella plants in the function of different concentrations of 
cadmium (Cd) in the absence and presence of silicon (Si) during in vitro culture

Means (± SE) followed by the same letter (lowercase for the absence of Si and uppercase for the presence of Si, comparing the concentrations of 
Cd) do not differ significantly between each other by the Tukey test at 5% probability. An asterisk (*) denotes a significant difference between the 
absence and presence of Si at each Cd level according to the Tukey test at 5% probability

Growth traits 0 μM de Si 40 μM de Si

0 50 100 200 0 50 100 200

Cd (μM) Cd (μM)

Fresh weight of roots 
(g  plant−1)

0.30 ± 0.04a 0.27 ± 0.03a 0.26 ± 0.07ab 0.11 ± 0.07b 0.36 ± 0.04A 0.26 ± 0.03A 0.22 ± 0.02A 0.16 ± 0.04B*

Fresh weight of aerial 
part (g  plant−1)

0.81 ± 0.11a 0.69 ± 0.13a* 0.34 ± 0.07b 0.20 ± 0.04b 0.70 ± 0.,12A 0.55 ± 0.04B 0.43 ± 0.08BC* 0.37 ± 0.04C*

Dry weight of roots (g 
 plant−1)

0.14 ± 0.02a 0.12 ± 0.01a 0.12 ± 0.3a 0.05 ± 0.03b 0.21 ± 0.02A* 0.15 ± 0.01B 0.13 ± 0.01BC 0.10 ± 0.02C*

Dry weight of aerial 
part (g  plant−1)

0.37 ± 0.05a 0.32 ± 0.06a 0.15 ± 0.04b 0.09 ± 0.02b 0.41 ± 0.02A 0.32 ± 0.07B 0.25 ± 0.05BC* 0.22 ± 0.02C*

Tolerance index (%) 100.0 ± 16.0a 86.5 ± 15.1a 53.3 ± 20.0b 28.1 ± 14.5c 99.0 ± 17.5A 92.0 ± 15.5B 74.2 ± 9.1C* 61.6 ± 16.2D*
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Another indicator to identify physiological disorders 
before visual manifestations of damage is the appearance of 
L- and K-bands. Positive L-bands indicate disturbances in 
the thylakoid membranes, reducing the connectivity between 
the CRs and PSII and causing less energy clustering among 
the photosystem units (Strasser et al. 2004). In other words, 
the behavior was denoted by an inverse function, in which 
a higher positive amplitude of band-L is associated with 
lesser connectivity. A positive band-K is closely related to 
an inactivation of the OEC (Xiang et al. 2013). We observed 
that the connectivity between CRs was maintained in the 
treatment with the highest concentration of Cd and the 
addition of Si. This maintenance may be attributed to the 
improvement of the antioxidant system, causing the values 
of  WL to decline. According to Zhang et al. (2018), lower 
values of this parameter denote better functional and struc-
tural integrity of the thylakoid membranes. In counterpart, 
we observed an increase of the amplitude of band-K and the 
values of  WK in the treatments with 200 µM Cd regardless 
of the presence of Si. This elevation might have been due to 
water restriction caused by the reduction of hydraulic con-
ductivity (a characteristic determined by the stomatal and 
vessel elements), in turn causing an imbalance between the 
transfer of electrons from the OEC to  P680+ and the electron 
acceptors of  QA, along with possible partial inhibition of the 
water-splitting system.

The association among  FV/F0, φP0, and φE0 allows ana-
lyzing the status of the electron transport system and the effi-
ciency of the trapping, conversion, and transport of energy 
between the two photosystems (Strasser et al. 2004; Guo 
et al. 2020). In this respect, the presence of Cd caused a 
reduction of the values of φP0,  FV/F0, and φE0 in the treat-
ment with 200 µM Cd, resulting in lower photosynthetic 
apparatus efficiency. In contrast, when the plants were co-
exposed to Cd and Si, the decrease in the values of those 
parameters was not as great (in relation to the control treat-
ment), serving as an indicator of maintenance of the system 
for trapping, conversion, and transport of energy. This could 
have caused lesser dissipation of the energy (φD0).

The exposure to Cd also generated an increase in the val-
ues of ABS/RC,  TR0/RC, and  DI0/RC, indicating the suscep-
tibility of the plants to photoinhibition caused by the down-
regulation of the mechanism for dissipation of the energy 
absorbed by the reaction center (RC) (Franić et al. 2018). 
However, the presence of Si generated an adjustment that 
ameliorated the damages caused by the Cd. This improve-
ment triggered an increase of  ET0/RC and reduced energy 
loss by dissipation. At the highest Cd concentration, the Si 
also caused a less pronounced reduction of RC/ABS, cor-
roborating the results found for the Chl a/b ratio.

The performance indices  PI(ABS) and  PI(Total) indicate 
how the stress factors affect the performance and integ-
rity of the photosynthetic apparatus of plants (Kalaji 

et al. 2016). In particular, because  PI(ABS) represents the 
combination of three factors (total number of active reac-
tion centers for absorption of light; trapping of excitation 
energy; and conversion of that energy into the transport 
of electrons in PSII), and this parameter is sensitive to the 
stress caused by the metal (Martins et al. 2020a, b; Guo 
et al. 2020). Therefore, the presence of Si reduced the 
damage to the system for trapping of excitation energy, 
resulting in a better performance of PSII, mainly at the 
highest Cd concentration. The Si also acted to reduce the 
photodamage beyond the intersystem, mainly at the high-
est Cd concentration, confirmed by the increased values 
of  PI(Total). According to Guo et al. (2020), the increase 
of this parameter when plants are facing high stress is an 
indicator of improved ability to achieve photochemical 
reactions, i.e., their efficiency in using the energy absorbed 
by the antennas for conversion into energy in the form of 
ATP and NADPH, resulting in better physiological condi-
tions for development and survival.

In summary, the presence of Si in the culture medium 
caused a reduction of the damages caused by Cd in the phys-
iology of the plants, resulting in greater in vitro growth. 
In plants cultured with 40 µM Si, there was a greater bio-
mass accumulation, mainly at the Cd concentrations of 100 
and 200 µM, compared to those cultivated without Si. That 
response had a direct impact on the tolerance index (TI). 
According to Lux et al. (2004), the TI is classified as low 
when the values are below 35%; intermediate with values 
between 35 and 60%; and high when above 60%. In this 
work, the A. tenella plants exposed to 100 and 200 µM of 
Cd alone showed the lowest tolerance index values (53.31% 
and 28.06%, respectively). However, when the medium was 
supplemented with Si, the plants exposed to Cd were more 
tolerant (≥ 61.65%). Therefore, we can state that Si can miti-
gate the deleterious effects of Cd in A. tenella plants because 
these plants were more physiologically tolerant.

Conclusion

Cadmium and silicon can modulate the physiological and 
anatomical responses of A. tenella plants. The presence of Si 
can mitigate the stress caused by Cd, as shown by the lesser 
presence of deleterious effects in the content of the photo-
synthetic pigments and the greater conservation of energy 
along the electron transport chain. Those responses permit a 
greater accumulation of biomass and higher tolerance to Cd.
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