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Abstract
Plant secondary metabolites are produced naturally in the plant system as a defense mechanism to combat environmental 
stress factors. These metabolites are extensively used in food, cosmetics, agrochemicals and pharmaceutical sectors. With 
the applications of plant tissue culture, any particular organ which is the major site for secondary metabolite production 
can be targeted and cultured. Recently, a new strategy to increase the metabolite production in plants has been employed 
with the use of elicitors. These elicitors are the chemical substances that trigger the biosynthetic pathways by activating 
certain transcriptional factors and upregulating the genes. Hence the secondary metabolite production increases in the plant 
system due to the stress developed by the introduction of the elicitors. Generally, elicitors may be abiotically derived from 
non-living sources or biotically derived from the living sources. In the present review, the mechanism of biotic elicitation 
and the applications of biotic elicitors like bacterial, fungal, algal elicitors and other polysaccharides extracted from them 
has been discussed extensively. It has been noted that the addition of bacterial elicitors like Rhizobium rhizogenes showed a 
94% increase in genistein production while Escherichia coli showed a 9.1-fold increase in diosgenin production. Similarly, 
fungal elicitors like Aspergillus niger increased thiophene production by 85% and a 26-fold increase in sanguinarine pro-
duction was seen when the cultures were treated with Botrytis sps. Algal extracts like Haematococcus pluvialis increased 
the betalain production by 2.28 folds while Botryococcus braunii elicited Vanillin, Vanillylamine and Capsaicin by 3-fold, 
6-fold and 2.3-fold respectively.
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Introduction

From centuries plants are playing a major role in fulfilling 
the needs of all living organisms especially human beings 
for their food, shelter and medicine due to the presence of 
various compounds in plants which are referred as metabo-
lites or phytochemicals. Metabolites like carbohydrates, 
amino acids and lipids are produced in high quantity and 
make up the ultrastructure of the plant hence referred to as 
primary metabolites. Apart from these, plants also synthe-
size a wide range of chemical compounds in trace amounts 

known as secondary metabolites to fulfill their physiologi-
cal roles by facilitating the plants to withstand and interact 
with the environment. These secondary metabolites possess 
biological activity against pathogens and play a major role 
in the defense and signaling of the plant system (Bourgaud 
et al. 2001; Guerriero et al. 2018). The concept of second-
ary metabolites was first described by Albrecht Kossel who 
won the noble prize for physiology or medicine in 1910. The 
secondary metabolites are produced in plants as a defense 
response and the metabolites are often induced due to stress 
signals, such as pathogen invasion, environmental factors 
and nutrient deficits. Some of these metabolites are impor-
tant as they are used as preventive or curative drugs for cer-
tain diseases (Ramachandra Rao and Ravishankar 2002).

The secondary metabolites of the plants are broadly clas-
sified based on their structure as phenolics, alkaloids, sapo-
nins and terpenes (Hussein and El-Anssary 2019). Some 
of the major pathways in biosynthesis of these metabolites 
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are shikimic acid pathway (tannins, phenols and aromatic 
alkaloids), malonic acid pathway (terpenes, alkaloids and 
steroids), acetate-malonate pathway (alkaloids, fatty acids 
and phenols) and pentose phosphate pathway (glycosides) 
(Kabera et al. 2014). General representation of the biosyn-
thetic pathway of secondary metabolite production is illus-
trated in Fig. 1.

These wide ranges of secondary metabolites are used in 
biopesticides, agrochemicals, flavouring agents, essential 
oils, food additives and most importantly in pharmaceuti-
cal industries for medicine and cosmetics (Ramakrishna 
and Ravishankar 2011). In the global market, many biotic 
compounds like quinine, vincristine, papervine, ephedrine, 
caffeine etc. are in high demand and these compounds are 
often restricted to a particular genus or species of plant 
(Verpoorte et al. 2002). Naturally, plants produce less than 
1% dry weight of secondary metabolites and the production 
depends on the developmental and physiological stage of the 
plant along with the environmental conditions (Dixon 2001; 
Oksman-Caldentey and Inzé 2004). The production of sec-
ondary metabolite by plants do not satisfy the need of man-
kind and the entire plant is utilized for the phytochemical 
extraction, therefore, the shortage and overuse of the plants 
are a major limitation. To meet the existing demand, the 
plants are grown in-vitro using biotechnological techniques 
as they eliminate the climatic, geographical and edaphic bar-
riers and also promote the plant growth in all seasons and 
provide a favorable environment for the continuous supply of 
phytochemicals (Yukimune et al. 1996; Karuppusamy 2009). 
Depending on the metabolite and its source, different plant 
tissue culture techniques such as cell suspension, cellular 
extracts and their culture filtrates (Biswas et al. 2016, 2018), 

root and shoot multiplication, callus cultures (Awad et al. 
2014), adventitious root, hairy root cultures, autoclaved cells 
etc. are developed for production of useful secondary metab-
olites (Buitelaar et al. 1992). Production of pure compounds 
like taxol, morphine, L-DOPA, capsaicin, vinblastine, vin-
cristine and berberine by tissue culture showed only limited 
success (Vanisree et al. 2004; Vijaya Sree N et al. 2010). To 
overcome the limitation of the quantity of the bioactive com-
pounds several biotechnological strategies like optimization 
of the medium, providing suitable culture environments, per-
meabilization, immobilization, elicitation, precursor feed-
ing, metabolic engineering, biotransformation methods, use 
of bioreactors, and micropropagation are employed (Naik 
and Al-Khayri 2016). This review article presents most 
recent developments in the field of biotic elicitation with 
equal importance to all the types of biotic elicitors used till 
date. Apart from this, a simplified tabular column with the 
plant used, target metabolite, type of biotic elicitor used and 
results has been tabulated for a quick review for the readers.

Elicitors and their classification

Elicitation is one of the important strategies of biotechnol-
ogy to enhance the production of secondary metabolites by 
the addition of certain substances called elicitors (Ram-
akrishna and Ravishankar 2011; Halder et al. 2019). Elici-
tor is defined as a substance that is applied in small quantity 
to a living system to trigger the biosynthesis of a specific 
compound which plays an important role in the adaptation 
of plant system and to overcome their stressful conditions 
(Thakur et al. 2019). Elicitors are considered as signaling 
molecules that activate transcriptional factors which regulate 

Fig. 1   Schematic representation 
showing various biosynthetic 
pathways for secondary metabo-
lite production (Reproduced 
from Ghasemzadeh and Jaafar, 
2011)
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the expression of genes that are concerned with secondary 
metabolite production (Yamaner et al. 2013; Zhao 2015). 
For the enhanced activity of elicitors and maximum produc-
tion of secondary metabolites in-vitro, elicitor specificity, 
their concentration, the time course of elicitation with host 
growth stage and nutrient stage of culture should be opti-
mized (Patel and Krishnamurthy 2013). Elicitors are clas-
sified based on their nature as abiotic (non-biological) and 
biotic (biological) (Radman et al. 2003). Abiotic elicitors 
are further grouped under three categories such as physi-
cal, chemical and hormonal (Naik and Al-Khayri 2016). 
Biotic elicitors are substances derived from the biological 
origin and they are further divided into polysaccharides and 
microorganism based. Polysaccharide elicitors are extracted, 
isolated and purified from the cell wall of biological organ-
isms like plant-derived or animal-derived which are chitin, 
lignin, pectin and cellulose. Microorganism-based elicitor 
includes cell extracts of yeast, bacteria and fungi (Namdeo 
A. G. 2007).

Mechanism of biotic elicitors

The mechanism is based on elicitor-receptor interaction 
which leads to a cascade of biochemical events. Though all 
elicitors start with receptor interaction on the plasma mem-
brane, inside the cell, elicitors trigger various pathways 
altering biochemical and physiological processes and this 
leads to the production of different secondary metabolites 
or defense responsive compounds (Ferrari 2010; Shasmita 
et al. 2018). The mechanism starts with the binding of the 
elicitor to the receptor present on the plasma membrane. 
Elicitor-receptor interaction leads to alteration of ions pre-
sent across the cell membrane such as the influx of calcium 
ions (Ca2+) and efflux of the cation (K+) and anions (Cl−) 
(Jabs et al. 1997; Shabala and Pottosin 2014). In plants, as 
a response to the environmental variations and pathogen 
signals, calcium acts as a secondary messenger and it is 
found that calcium channels are activated within few min-
utes of elicitor addition into the system. This ion flux leads 
to cytoplasmic acidification and increases extracellular pH 
leading to depolarization of plasma membrane (Mathieu 
et al. 1996; Sakano 2001; Zhao et al. 2005). Few elicitors 
induce alkalization of apoplast which leads to an influx of 
protons and some elicitors induce acidification of apoplast 
which leads to efflux of vacuolar protons (Bolwell et al. 
2002; Angelova et al. 2006). As a result of elicitor interac-
tion, there is increased activity of the plant phospholipases 
and protein phosphorylation (Zhao 2015). This leads to the 
synthesis of secondary messengers such as D-myo-inositol 
1,4,5-triphosphate (InsP3) Diacylglycerol (DAG) and activa-
tion of ca2+ mediated secondary messengers (Gillaspy 2011; 
Aldon et al. 2018). This is followed by activation of the 
mitogenic protein kinase (MAPK) pathway which leads to 

a series of events like phosphorylation of MAP kinase etc. 
These molecules are transported to the nucleus through a 
nuclear pore complex leading to phosphorylation of specific 
transcriptional factors (Pitzschke et al. 2009; Sinha et al. 
2011; Colcombet et al. 2016). In some plants, as a response 
to elicitor and G -protein-coupled receptor (GPCR) interac-
tion, NADPH oxidase is activated which is responsible for 
the generation of Active Oxygen Species (AOS) (Mishra 
et al. 2012), which leads to acidification of cytoplasm and 
activation of proteins like chitinases, glucanases, hydroxy 
proline-rich glycoproteins and protease inhibitors and this 
leads to activation of transcriptional factors leading to the 
expression of corresponding defense genes like jasmonates, 
ethylene, salicylates and later as a defense response plant 
produces phytoalexins which are secondary metabolites 
(Zhao et al. 2005; Angelova et al. 2006). The overall mecha-
nism of biotic eliciatation is illustrated in Fig. 2.

Bacterial elicitation

Bacteria are single-celled microorganisms found in the envi-
ronment (Dzhavakhiya and Shcherbakova 2007). The use 
of bacterial cells, bacterial cellular components and bacte-
rial cellular extracts to elicit a response in plants is called 
bacterial elicitation. They are also used to induce second-
ary metabolite production from plants in the in-vitro condi-
tions. Each bacterial species can elicit different secondary 
metabolites in different quantities. The difference is because 
of the elicitor-membrane receptor binding, G protein activa-
tion, cytoplasmic acidification and reactive oxygen species 
generation (Zhao et al. 2005; Biswas et al. 2016). Different 
types of bacterial components such as live cells (Park et al. 
2006; Awad et al. 2014), cell homogenate (Buitelaar et al. 
1992; Jung et al. 2003), cellular extracts (Gandi et al. 2012; 
Chodisetti et al. 2013) and culture filtrates (Biswas et al. 
2016, 2018) are used to elicit secondary metabolite produc-
tion. In the environment, plants face huge challenges due to 
the presence of bacteria in the soil, this stimulates the pro-
duction of secondary metabolites as a defense mechanism 
in plants. Similarly, live bacterial cultures can also induce 
secondary metabolite production in the in-vitro conditions, 
but very few studies have reported using live bacteria as 
elicitors (Mañero et al. 2012).

The bacterial cultures of Bacillus aminovorans, Bacillus 
cereus, Agrobacterium rhizogenes, Agrobacterium tume-
faciens and Rhizobium leguminosarum (0.5 ml of culture) 
were used to elicit glycyrrhizic acid in the root cultures of 
Taverniera cuneifolia (Roth) Arn. The bacterium R. legu-
minosarum has shown the highest elicitation (6.37 mg/g) 
when compared to untreated root cultures (1.48 mg/g). Other 
bacteria have shown a significant increase in the production 
whereas A. tumefaciens has shown no significant increase in 
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the production (1.46 mg/g) (Awad et al. 2014). The bacte-
rial cultures of Rhizobium radiobacter and Rhizobium rhizo-
genes are co-cultured with adventitious root culture of Albi-
zzia kalkora (Roxb.) to elicit the production of isoflavone 
(daidzein and genistein) in them. Addition of R. rhizogenes 
showed a 35% increase in daidzein and a 94% increase in 
genistein production while R. radiobacter showed a 12% 
increase in daidzein and 89% increase in genistein produc-
tion on the 6th day of treatment (Park et al. 2006). Atropine 
production has been significantly reduced to 0.017% from 
0.116% (control) and 0.095% from 0.116% when B. cereus 
and Staphylococcus aureus cultures were used respectively 
in the hairy root culture of Datura metel L. (Shakeran et al. 
2015). Co-culturing of B. cereus with hairy root culture of 
D. metel L. showed a 13.5-fold increase, the addition of 
cellular extract showed a 2-fold increase and addition of 
culture supernatant showed a 4-fold increase of tanshinone 
production respectively (Wu et al. 2007). Pseudomonas sp. 
has shown to enhance the production of rosmarinic acid in 
the shoot-culture of Rosmarinus officinalis L. (Yang et al. 
1997). Cell homogenization is a process by which the 
cell membranes are ruptured and the cellular components 
are released into the solution which is referred to as cell 
homogenate. This cell homogenate contains the pathogenic 
metabolite which triggers the plant defense responses and 
as a result, the secondary metabolites are produced in the 
plants. The cell homogenates of Bacillus subtilis, E. coli, 
Pseudomonas aeruginosa and S. aureus showed a 50, 35, 35 
and 20% increase in thiophene production in the hairy root 
cultures of Tagetes patula L. (Buitelaar et al. 1992). Raw 
and autoclaved homogenates of P. aeruginosa, B. cereus 
and S. aureus were used to elicit scopolamine production in 
the hairy root cultures of Scopolia parviflora (Dunn) Nakai. 

Raw homogenates enhanced scopolamine production though 
no significant difference was seen between each of the elici-
tor used. However, browning of roots was observed after 
24 hour of incubation while autoclaved homogenate showed 
similar scopolamine production as the control (Jung et al. 
2003).

In the bacterial cultures, bacteria produce various com-
pounds which are released to the culture media and they are 
also capable of eliciting defense responses in plants. So, the 
bacterial cultures are centrifuged and the cells are pelleted, 
the supernatant is filter sterilized and it is considered as the 
culture filtrates. The culture filtrates of Pseudomonas mon-
teilii and Bacillus circulans were used to elicit ginsenoside 
production in cell suspension culture of Panax quinquefolius 
L., P. monteilii showed a 2.5-fold increase while B. circu-
lans showed a slight decline in total ginsenoside production 
after five days of treatment. Prolonged exposure of elicitors 
has shown a 20–30% decline in total ginsenoside production 
(Biswas et al. 2016). Similarly, Serratia marcescens at 1.25 
and 2.5% concentration showed a 1.6 and 2.5-fold increase 
respectively while B. subtilis at 2.5% concentration showed 
a 1.8-fold increase in ginsenoside production in cell suspen-
sion cultures of Panax sikkimensis R. N. Banerjee., (Biswas 
et al. 2018). The culture filtrates of gram-negative bacteria 
like Mesorhizobium huakuii, Mesorhizobium amorphae, 
Bradyrhizobium ganzhouense, Azotobacter beijerinckii and 
gram-positive bacteria like Lactobacillus plantarum, Leu-
conostoc sp., and Bacillus sp. have been used for ginsenoside 
production in root cultures of Panax ginseng C.A. Meyer. 
All gram-positive and gram-negative bacteria showed an 
increase in ginsenoside production but the highest produc-
tion was seen in gram-negative bacteria (Le et al. 2018). 
B.  subtilis and E. coli culture filtrates were used to elicit 

Fig. 2   Schematic representa-
tion of the general mechanism 
of biotic elicitors ( Reproduced 
from Zhao et al. 2005)
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diosgenin production in the cell suspension culture of the 
Helicteres isora L., E. coli (1.5%) showed a 9.1-fold increase 
while B. subtilis (2%) showed a 6.1-fold increase in dios-
genin production (Shaikh et al. 2020). The culture filtrate 
of E. coli, S. aureus, B. cereus and P. aeruginosa enhanced 
anthocyanin by 22% in the callus culture of Daucus carota 
L. (Suvarnalatha et al. 1994). The culture filtrate of Steno-
trophomonas maltophilia has shown a 3-fold increase in 
hypericin production in the shoot culture of Hypericum 
perforatum L. (Mañero et al. 2012). The cellular extracts of 
A. rhizogenes resulted in high accumulation (66.12 mg/g) of 
gymnemic acid and the cellular extracts of non-pathogenic 
bacteria B. subtilis and E. coli resulted in low accumulation 
(47.97 mg/g and 33.25 mg/g respectively) of gymnemic acid 
in the cell suspension cultures of Gymnema sylvestre (Retz.) 
schult. (Chodisetti et al. 2013). The cell-free cellular extracts 
of E. coli, B. subtilis, A. rhizogenes and A. tumefaciens 
have been used to elicit andrographolide production in cell 
suspension cultures of Andrographis paniculata (Burm.f.) 
Nees. Out of which E. coli elicited highest (8.3 mg/g) andro-
grapholide production whereas A. tumefaciens showed no 
significant increase in the production (Gandi et al. 2012). 
The cellular extracts of Pseudomonas sp. and Enterobacter 
sp. are used to elicit the alkaloids production in the proto-
corm-like body cultures of Pinellia ternate (Thumb) breit., 
Pseudomonas sp. showed 69–166% increase in guanosine, 
45–1143% increase in trigonelline and 26% increase in ino-
sine production. While Enterobacter sp. showed 371–1143% 
increase in guanosine, 114–500% increase in trigonelline 
and 5–17% increase in inosine production when compared 
to control (Liu et al. 2010). The cellular extract of Crono-
bacter sakazakii were used to elicit antioxidants and bacte-
ricidal phenolic compounds in the plant tissues of Dionaea 
muscipula (Makowski et al. 2020). The cellular extract of 
P. aeruginosa was studied as the elicitor to produce ros-
marinic acid, caffeic acid, carnosic acid, carnosol, and ros-
manol in the callus culture of R. officinalis. Rosmarinic acid 
accumulation increased from 3.7 to 3.9 μg/mL, caffeic acid 
from 0.5 to 2.3 μg/mL, carnosic acid from 2.6 to 3.1 μg/mL 
and carnosol from 1.7 to 2.4 μg/mL (Rashid et al. 2011). In 
the callus culture of Ammi majus, Enterobacter sakazakii 
cellular extract showed a 12% increase in scopoletin, in cell 
suspension culture, a 9.6% increase in umbelliferone produc-
tion and in the hairy root culture 2.3 and 0.3% increase in 
umbelliferone and bergapten production respectively (Stan-
iszewska et al. 2003). The A. tumefaciens and A. rhizogenes 
cellular extracts significantly increased the production of 
xanthone to 6.95 and 5.04 mg/g respectively from 3.7 mg/g 
(untreated) in the cell suspension cultures of H. perforatum 
L. (Tusevski et al. 2015). Celluar extracts of A. rhizogenes, 
Pectobacterium carotovorum and E. sakazakii has enhanced 
the production of acteoside, baicalin, wogonin, scutel-
larin, and wogonoside while C. sakazakii and Klebsiella 

pneumonia enhanced wogonin and K. pneumoniae alone 
enhanced chrysin production in the hairy root cultures of 
Scutellaria lateriflora L. (Wilczańska-Barska et al. 2012). 
Common bacterial elicitors used for the production of sec-
ondary metabolites have been listed in Table1.

Fungal elicitation

Among the biotic elicitors, fungal elicitors (both free-living 
and endophytic) are the most important and widely used 
for the synthesis of commercial compounds. The interaction 
between the fungi and the plant results in the induction of 
hypersensitive responses which activates defence pathways 
in the plant thereby increasing the phytoalexins (Baldi et al. 
2009) and inducing secondary metabolite production more 
effectively (Zhai et al. 2017). The pure fungal cultures are 
usually obtained from the hyphal tip culture (Salehi et al. 
2019).

The aqueous extract of Aspergillus niger, A. flavus, Peni-
cillium notatum and Fusarium oxysporum were used to elicit 
anthocyanin production in D. carota L. mycelial extracts of 
A. flavus gave maximum elicitation with a two-fold increase 
in the anthocyanin production whereas P. notatum and F. 
oxysporum treatments were not much effective (Rajendran 
et al. 1994). Similarly, in another study A. niger increased 
thiophene production by 85% when compared to control in 
T. patula L. (Buitelaar et al. 1992). A. niger, when used 
as an elicitor in Mentha piperita L. cell cultures showed 
enhanced production of menthol (140.8 mg/L) which was 
higher when compared to other non-biological elicitation 
(Chakraborty and Chattopadhyay 2008). A. niger showed a 
9-fold increase in gymnemic acid production in the cultures 
of G. sylvestre (Retz.) schult. (Devi and Srinivasan 2011). 
A. niger and Rhizopus stolonifera showed a 4.9 and 3.8-
fold increase respectively in glycyrrhizin production in the 
cultures of Abrus precatorius L. (Karwasara et al. 2011). 
Oldenlandia umbellate L. is a commercially important dye 
yielding plant. Elicitors like A. niger, Mucor prayagensis 
and Trichoderma viride were used to enhance its growth. 
Maximum response were observed in A. niger treated cul-
tures which showed 79 shoots and 47 roots (Saranya and 
Velayutham 2019). The culture filtrates of Trichoderma 
atroviride and T. harzianum were used to elicit ginsenoside 
from P. quinquefolius L. cell suspension cultures. T. atro-
viride produced the highest ginsenoside (3.2 times higher 
than control) after 5-day treatment (Biswas et al. 2016). 
They were also used to elicit dual metabolite ginsenoside 
and anthocyanin in cell suspension cultures of P. sikkimen-
sis R. N. Banerjee (Biswas et al. 2018). The effect of three 
fungal elicitors was tested on Centella asiatica L. cultures, 
the addition of T. harzianum filtrate showed a 2.53-fold 
increase in asiaticoside production while Colletotrichum 
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Table 1   Bacterial elicitors used in the in-vitro secondary metabolite production

Sl. no Bacterial Elicitor used Target plant Target Metabolite Type of culture References

01 Agrobacterium rhizo-
genes

Gymnema sylvestre 
(Retz.) schult

Gymnemic acid Cell suspension culture Chodisetti et al. (2013)

02 Andrographis paniculata 
(Burm.f.) Nees

Andrographolide Gandi et al. (2012)

03 Hypericum perforatum L Xanthone Tusevski et al. (2015)
04 Scutellaria lateriflora L Acteoside, Baicalin, 

Wogonin, Scutellarin, 
& Wogonoside

Hairy Root Culture Wilczańska-Barska et al. 
(2012)

05 Taverniera cuneifolia 
(Roth) Arn

Glycyrrhizic acid Root Culture Awad et al. (2015)

06 Agrobacterium tumefa-
ciens

Andrographis paniculata 
(Burm.f.) Nees

Andrographolide Cell suspension culture Gandi et al. (2012)

07 Hypericum perforatum L Xanthone Tusevski et al. (2015)
08 Taverniera cuneifolia 

(Roth) Arn
Glycyrrhizic acid Root Culture Awad et al. (2016)

09 Bacillus aminovorans Taverniera cuneifolia 
(Roth) Arn

Glycyrrhizic acid Root Culture Awad et al. (2014)

10 Bacillus cereus Scopolia parviflora 
(Dunn) Nakai

Scopolamine Hairy Root Culture Jung et al. (2003)

11 Salvia miltiorrhiza Bunge Tanshinone Hairy Root Culture Wu et al. (2007)
12 Salvia miltiorrhiza Bunge Tanshinone Hairy Root Culture Wu et al. (2007)
13 Daucus carota L Anthocyanin Callus Culture Suvarnalatha et al. (1994)
14 Taverniera cuneifolia 

(Roth) Arn
Glycyrrhizic acid Root Culture Awad et al. (2016)

15 Datura metel L Atropine Hairy Root Culture Shakeran et al. (2015)
16 Salvia miltiorrhiza Bunge Tanshinone Wu et al. (2007)
17 Bacillus circulans Panax quinquefolius L Ginsenoside Cell suspension culture Biswas et al. (2016)
18 Bacillus sp. CWJ-1 Panax ginseng C.A. 

Meyer
Ginsenoside Adventious Root Culture Le et al. (2018)

19 Bacillus sp. LHW-1
20 Bacillus subtilis Tagetes patula L Thiophene Hairy Root Culture Buitelaar et al. (1992)
21 Gymnema sylvestre 

(Retz.) schult
Gymnemic acid Cell suspension culture Chodisetti et al. (2013)

22 Andrographis paniculata 
(Burm.f.) Nees

Andrographolide Gandi et al. (2012)

23 Panax quinquefolius L Ginsenoside Biswas et al. (2018)
24 Helicteres isora L Diosgenin Shaikh et al. (2020)
25 Bradyrhizobium gan-

zhouense
Panax ginseng C.A. 

Meyer
Ginsenoside Adventious Root Culture Le et al. (2018)

26 Cronobacter sakazakii Dionaea muscipula J. 
Ellis

Phenolic Compounds Shoot culture Makowski et al. (2020)

27 Scutellaria lateriflora L Wogonin Hairy Root Culture Wilczańska-Barska et al. 
(2012)

28 Enterobacter sakazakii Ammi majus L Umbelliferone, Scopole-
tin, Bergapten, and 
Dehydrogeijerin

Callus, Cell suspension 
culture and Hairy Root 
Culture

Staniszewska et al. (2003)

29 Scutellaria lateriflora
L

Acteoside, Baicalin, 
Wogonin, Scutellarin, 
& Wogonoside

Hairy Root Culture Wilczańska-Barska et al. 
(2012)

30 Enterobacter sp. Pinellia ternate (Thunb.) 
Makino

Alkaloids (Guanosine, 
Inosine &Trigoneline)

Protocorm-like Body 
culture

Liu et al. (2010)
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lindemuthianum decreased asiaticoside production but 
showed higher biomass and F. oxysporum had an inhibi-
tory effect on shoot growth and poor yield of asiaticosides 
(Prasad et al. 2013). The H. perforatum L. cultures were 
treated with the extracts of F. oxysporum, Phomaexigua 
and Botrytis cinerea resulting in reduced biomass and 

rapid increase of phenylpropanoid and naptho-dianthrones. 
Hypericin and pseudohypericin were significantly increased 
in the early growth phase and later gradually declined (Gad-
zovska et al. 2015). The culture filtrates of Micromucoris 
abellina in Catharanthus roseus (L.) G. Don caused a drastic 
and rapid increase of indole alkaloid biosynthesis leading 

Table 1   (continued)

Sl. no Bacterial Elicitor used Target plant Target Metabolite Type of culture References

31 Escherichia coli Tagetes patula L Thiophene Hairy Root Culture Buitelaar et al. (1992)
32 Gymnema sylvestre 

(Retz.) schult
Gymnemic acid Cell suspension culture Chodisetti et al. (2013)

33 Andrographis paniculata 
(Burm.f.) Nees

Andrographolide Gandi et al. (2012)

34 Helicteres isora L Diosgenin Shaikh et al. (2020)
35 Daucus carota L Anthocyanin Callus Culture Suvarnalatha et al. (1994)
36 Klebsiella pneumoniae Scutellaria lateriflora

(Dunn) Nakai
Wogonin & Chrysin Hairy Root Culture Wilczańska-Barska et al. 

(2012)
37 Lactobacillus plantarum Panax ginseng C.A. 

Meyer
Ginsenoside Adventious Root Culture Le et al. (2018)

38 Leuconostoc sp.
39 Mesorhizobium amor-

phae GS3037
40 Mesorhizobium amor-

phae GS336
41 Mesorhizobium huakuii
42 Pectobacterium caroto-

vorum
Scutellaria lateriflora L Acteoside, Baicalin, 

Wogonin, Scutellarin, 
& Wogonoside

Hairy Root Culture Wilczańska-Barska et al. 
(2012)

43 Pseudomonas aeruginosa Tagetes patula L Thiophene Hairy Root Culture Buitelaar et al. (1992)
44 Scopolia parviflora 

(Dunn) Nakai
Scopolamine Jung et al. (2003)

45 Rosmarinus officinalis L Rosmarinic acid, Caf-
feic acid, Carnosic 
acid, Carnosol, and 
Rosmanol

Callus Culture Rashid et al. (2011)

46 Daucus carota L Anthocyanin Suvarnalatha et al. (1994)
47 Pseudomonas fluorescens Hypericum perforatum L Hypericin and Pseudohy-

pericin
Shoot culture Mañero et al. (2012)

48 Pseudomonas monteilii Panax quinquefolius L Ginsenoside Cell suspension culture Biswas et al. (2016)
49 Pseudomonas sp. Pinellia ternate (thunb.) 

Makino
Alkaloids (Guanosine, 

Inosine &Trigoneline)
Protocorm-like Body 

culture
Liu et al. (2010)

50 Rosmarinus officinalis L Rosmarinic acid Shoot culture Yang et al. (1997)
51 Rhizobium legumino-

sarum
Taverniera cuneifolia 

(Roth) Arn
Glycyrrhizic acid Root Culture Awad et al. (2017)

52 Rhizobium radiobacter Albizia kalkora (Roxb.) 
Prain

Isoflavone Adventious Root Culture Park et al. (2006)
53 Rhizobium rhizogenes
54 Serratia marcescens Panax quinquefolius L Ginsenoside Cell suspension culture Biswas et al. (2018)
55 Staphylococcus aureus Tagetes patula L Thiophene Hairy Root Culture Buitelaar et al. (1992)
56 Scopolia parviflora 

(Dunn) Nakai
Scopolamine Jung et al. (2003)

57 Daucus carota L Anthocyanin Callus Culture Suvarnalatha et al. (1994)
58 Datura metel L Atropine Hairy Root Culture Shakeran et al. (2015)
59 Stenotrophomonas malt-

ophilia
Hypericum perforatum L Hypericin and Pseudohy-

pericin
Shoot culture Mañero et al. (2012)
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to the production of 400 µg/L ajmalicine and 600 µg/L 
catharanthine while only trace amounts of ajmalicine and 
5.8 µg/L catharanthine were detected in control (Dicosmo 
et al. 1987). The cultures of Papaver somniferum L. were 
incubated with 1 ml of Botrytis sps. which showed a 26-fold 
increase in sanguinarine production when compared to con-
trol while 5 ml of Colletotrichum gloeosporoides elicited 
43% of total sanguinarine produced. Other elicitors like Rho-
dotorula rubra, Helminthosporium gramineum and Sclero-
tinia sclerotiorum showed a relatively weaker response in 
sanguinarine production (Eilert et al. 1985). The cell sus-
pension cultures of Corylus avellane L. were treated with 
endophytic fungi like Chaetomium globosum and Paraco-
niothyrium brasiliense isolated from Taxus baccata L. and 

C. avellane L. respectively. Maximum elicitation was seen 
when 10% (v/v) C. globosum was added which showed 4.1 
times higher production of paclitaxel on 17th day (Salehi 
et al. 2019). Common fungal elicitors used to trigger the 
metabolite production is shown in Table 2.

Algal Elicitation

Algae and cyanobacteria constitute the major phytoplank-
ton over the earth. The entire plant body or its components 
can be utilized in various fields of research. One of their 
most promising applications is in the elicitation studies. 
Marine algae is an under-utilized bioresource, out of which 

Table 2   Fungal elicitors used in the in-vitro secondary metabolite production

SI. No Fungal elicitor used Target plant Target secondary 
metabolite/pigment

Type of culture References

1 Aspergillus niger and Rhizo-
pus stolonifer

Abrus precatorius L Glycyrrhizin Cell Suspension Culture Karwasara et al. (2011)

2 Penicillium oxalicum Artemisia annua L Artemisinin Callus Culture  Zheng et al. (2016)
3 Chrysosporium palmorum, 

Eurotium rubrum, Micromu-
corisabellina

Catharanthus roseus 
(L.) G. Don

Ajmalicine and 
Catharanthine

Cell Suspension Culture Dicosmo et al. (1987)

4 Colletotrichum lindemuthi-
anum

Centella asiatica (L.) 
Urb

Asiaticoside Axillary Shoot Culture  Prasad et al. (2013)

5 Chaetomium globosum and 
Paraconiothyrium brasil-
iense

Corylus avellana L Paclitaxel Cell Suspension Culture  Salehi et al. (2019)

6 Aspergillus niger, A. flavus, 
Penicillium notatum, 
Fusarium oxysporum

Daucus carota L Anthocyanin Callus Culture  Rajendran et al. (1994)

7 Aspergillus niger Gymnema sylvestre 
(Retz.) schult

Gymnemic acids Cell Suspension Culture  Devi et al. (2011)

8 Fusarium oxysporum, 
Phoma exigua and Botrytis 
cinerea

Hypericum perfora-
tum L

Phenylpropanoid and 
Naphtodianthrone

Cell Suspension Culture  Gadzovska et al. (2015)

9 Aspergillus niger Mentha piperita L Methanol Cell Suspension Culture Chakraborty et al. (2008)
10 Rhizophagus irregularis Ocimum basilicum L Rosmarinic acid Hairy Root Culture  Srivastava et al. (2016)
111 Alternaria panax Panax ginseng C.A. 

Meyer
Ginsenoside Adventitious Root 

Culture
Hao et al. (2020)

112 Trichoderma atroviride and 
Trichoderma harzianum

Panax quinquefolius L Ginsenoside Cell Suspension Culture  Biswas et al. (2016)
113 Panax sikkimensis R. N. 

Banerjee
Ginsenoside and Antho-

cyanin
Cell Suspension Culture  Biswas et al. (2018)

114 Rhodotorula rubra, Alter-
naria zinnae, Hel-
minthosporium gramineum, 
Sclerotinia sclerotiorum, 
Verticillium dahliae

Papaver somniferum L Sanguinarine Cell Suspension Culture  Eilert et al. (1985)

115 Phytophthora megasperma Soybeans Glyceollin Cell Suspension Culture  Ebel et al. (1976)
116 Fusarium conglutinans, Tagetes patula L Thiophene Hairy-Root Culture  Mukundan and Hjortso 

(1990)
17 Aspergillus niger, Fusarium 

oxysporum, Penicillium 
expansum

Tagetes patula L Thiophene Hairy Root culture  Buitelaar et al. (1992)
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only a few are used as a source of food, for therapeutic and 
other biological applications (Vinoth et al. 2012). Seaweed 
extracts and their cell wall components can also act as a 
prominent elicitor providing enormous beneficial aspects 
such as plant protectants, improved yield and increased tol-
erance to various stresses (Sbaihat et al. 2015). Seaweeds 
majorly comprises of carbohydrates made up of oligosaccha-
rides and polysaccharides (Arman and Qader 2012). Intro-
duction of these algal polysaccharides such as carrageenans, 
fucans, laminarans and ulvans into the plant system activates 
a series of defense cascade leading to the resistance against 
pathogens and triggers the secondary metabolite production 
(Stadnik and de Freitas 2014). Chemical analysis of algal 
extracts reveals the presence of various active compounds, 
macro and micronutrients, growth regulators which also sup-
port the in-vitro growth of the plants apart from acting as an 
elicitor (Satish et al. 2015). Hence the entire algal mass or 
their individual components help in in-vitro growth, mass 
propagation, callus culture etc.

Hot water extracts of 25 strains of cyanobacterium mem-
bers like Nostoc sp., Anabaena sp., Synechococcus sp. 
and Xenococcus sp. along with their dialysates and non-
dialysates were added to the cell suspension cultures of D. 
carota L. to study its effect on the embryogenesis. It was 
observed that the plantlet formation increased on an average 
by 3.7-fold when these marine cyanobacterial extracts were 
added. A 4.2 and 3.0-fold increase was seen when dialysates 
and non-dialysates of the filamentous form were added 
respectively whereas a 3.2 and 5.2-fold increase was seen 
when dialysates and non-dialysates of unicellular strains 
were added respectively. Overall, the maximum number of 
plantlets was seen when non-dialysate of Synechococcus 
sp. (240) and Anabaena sp. (211) were added while mini-
mum (32) was seen in control (Wake et al. 1991). Torpedo 
shaped somatic embryos obtained from the cell suspension 
cultures of D. carota L. was encapsulated to form artificial 
seeds with the addition of hot water extract of Synechococ-
cus sp. (50, 200, 400 and 800 mg/L) and their non-dialysates 
(10, 50, 100, 200 mg/L). High frequency of germination 
(94%) was seen each in 100 and 200 mg/L of non-dialysate 
when added followed by 91, 90 and 81% in 400, 800 and 
200 mg/L of extract respectively. While 50 and 10 mg/L of 
non-dialysate showed 77 and 58% respectively. The least 
of 57 and 35% seed germination were observed in 50 mg/L 
of extract and control respectively (Wake et al. 1992). Pure 
cultures of Anabaena sps. and Nostoc carneum belonging to 
Nostocaceae members cultured in Bold’s Basal medium was 
used as an elicitor treatment for the neem cell suspension 
cultures. Two concentrations of Anabaena sps. were taken 
(265 cells/mL and 530 cells/mL), of which higher concen-
tration of algal cells resulted in a 5-fold increase in biomass 
in callus line-1 and decreased the biomass in callus line-2 
and vice versa was seen in lower concentration. Similarly, 

addition of N. carneum (1670 cells/mL) initially increased 
the biomass by 2-fold later its efficiency decreased. N. car-
neum and Anabaena sp. increased the protein content by a 
twofold and threefold respectively. Addition of Anabaena sp. 
(265 cells/mL) in the cell suspension triggered the synthesis 
of a triterpenoid, azadirachtin (0.32 g/μL) detected through 
HPLC. Other concentrations of elicitors failed to induce the 
production of azadirachtin (Poornasri. et al. 2008). Various 
microalgae were used to elicit the red pigment formation in 
the cultures of Carthamus tinctorius L. out of which Nos-
toc linckia, Anabaena cylindrica and A. variabilis showed 
8-fold increase in the red pigment formation (5.21 mg/L) 
while the least was seen in Chlorococcum sp., Chlorella sp. 
and Scenedesmus sp. (0.61 mg/L) (Hanagata et al. 1994). 
Phycocyanin, a biliprotein present in Spirulina platensis, a 
blue-green alga was extracted and introduced into Capsicum 
frutescens L. and D. carota L. cell cultures in five different 
concentrations (1.5, 3.0, 6.0, 12 and 24 μg/ml). The addi-
tion of phycocyanin in C. frutescens L. cultures showed no 
significant growth but capsaicin production increased in all 
the concentrations of phycocyanin, but the highest produc-
tion was seen in 3.0 – 6.0 μg/ml (190 μg capsaicin/g of fresh 
weight). There was a 2-fold increase in capsaicin on 3rd 
day later it reduced to 1.5-fold on the 6th day when com-
pared to control. While the application of phycocyanin in 
D. carota L. in lower concentrations (3.0 and 6.0 μg/ml) 
slightly increased the callus growth but at higher concentra-
tions callus growth decreased. Initially, all concentrations of 
phycocyanin elicited anthocyanin production and the high-
est was seen in 3.0 μg/ml (24.8 mg anthocyanin /0.1 g of 
fresh weight) on 3rd day but later on 12th day they declined. 
Thus, phycocyanin shows early elicitation in both cultures 
(Ramachandra Rao et al. 1996). Similarly, three-week-old 
callus of C. frutescens L. developed from leaf and hypocotyl 
were transferred to the media containing the filter-sterilized 
acetone extracts of Botryococcus braunii, a colonial Chloro-
phyceae microalga was taken in four different concentrations 
(1, 2, 4 and 8 mg/L). 8 mg/L showed a threefold increase 
in total chlorophyll content, a 2-fold increase in the seed 
germination rate, a 1.5-fold increase in shoot and leaf length 
and a one-fold increase in root length. After 15 days maxi-
mum carotenoid content (0.18 mg/g) was seen in 8 mg/L 
followed by 4 mg/L (0.156 mg/g) and 2 mg/L (0.134 mg/g). 
Also, 8 mg/L showed a 3-fold, 6-fold and 2.3-fold increase 
while 4 mg/L showed 2-fold, 3-fold and a fold increase in 
vanillin, vanillylamine and capsaicin respectively (Sharma 
et al. 2010). Aqueous extracts of Haematococcus pluvialis 
and Spirulina platensis were used to elicit food color, beta-
lain production from Beta vulgaris L. and an insecticide, 
thiophene from T. patula L. Addition of H. pluvialis extract 
to the hairy root cultures of B. vulgaris L. increased the bio-
mass by 1.25-fold and the betalain production by 2.28-fold 
initially and later its content decreased after 15th day while 
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S. platensis extract showed a 1.13-fold increase in biomass 
and 1.16-fold increase in betalain synthesis. When the hairy 
root cultures of T. patula L. were treated with H. pluvialis 
extract it showed a 1.40-fold increase in the biomass and 1.2 
times increase in thiophenes while extract of S. platensis 
neither showed any significant effect on biomass nor thio-
phene accumulation (Ramachandra Rao et al. 2001). Aque-
ous extracts of a red seaweed Kappaphycus alvarezii were 
added to the cultures of Picrorhiza kurroa Royle ex Benth, 
an endangered medicinal plant in four different concentra-
tions (0.1, 1.0, 2.0 and 3.0 g/L) to elicit the picroside-I pro-
duction. Out of which 2.0 g/L was found to be best for the 
in-vitro growth as there were 3.23, 1.55, 2.41 and 2.42-fold 
increase in biomass, plant length, number of roots and shoots 
respectively on 30th day. Hence this concentration remains 
best for shoot multiplication and root induction. Also, it was 
noted that with the addition of seaweed extracts picroside-I 
content increased 3–4 folds at 25 °C and 2–3 folds at 15 °C 
respectively (Sharma et al. 2015). The various algal elicitors 
used for the biotic elicitation of secondary metabolites is 
summarized in Table 3.

Elicitation using polysaccharides

Polysaccharides are biotic elicitors as they are found in 
all living organisms like plants, animals and microbes. 
Polysaccharides are biopolymers formed by the bonding 
of monosaccharides (Fukui et al. 1990). The physical and 
chemical properties of polysaccharides are characterized by 
their structural orientation (Nartop 2018). Polysaccharides 
according to their biological functions in living organisms 
are categorized into storage polysaccharides (reservoirs of 
energy like glycogen and starch) and structural polysac-
charides (providing structure and support) (Fukui et al. 
1990). Polysaccharides play an important role in the cellu-
lar communication, shielding the plants from stress condi-
tions etc. Polysaccharide elicitors are categorized into two 
groups: endogenous (cellulose, pectin etc.) and exogenous 
(chitin, chitosan etc.) (Nartop 2018). Polysaccharides can 
be extracted, isolated and purified from living organisms 
or they can be chemically synthesized. Polysaccharides are 
very commonly used to elicit antimicrobial metabolites 
(Paulert et al. 2009; Lu et al. 2019). Yeast extract is one 
of the elicitors majorly used for the secondary metabolite 
synthesis as well as to study the plant defense responses 
(Putalun et al. 2007). Yeast extract stimulated synthesis of 
several important metabolites in various plants (Funk et al. 
1987; Jeong et al. 2005).

Out of all the biotic and abiotic elicitors used in the 
hairy root cultures of Pueraria candollei, wall.ex Benth., 
yeast extract (0.5 mg/ml) efficiently induced isoflavonoid 
4.5-fold higher than the control (60 mg/g) (Udomsuk et al. 

2011). Similar results were also observed in Salvia milti-
orrhiza Bunge cell cultures where yeast extract showed 
10-fold higher tanshinone production (2.3 mg/g) which was 
more efficient compared to other biotic and abiotic elicited 
cell cultures (Zhao et al. 2012). Addition of yeast extract 
(1.5 mg/L) in germinating embryos of C. roseus (L.) G. Don 
showed highest yield of vinblastine (22.74%), vincristine 
(48.49%), and high levels of alkaloids (Maqsood and Abdul 
2017). Yeast, as an elicitor also showed an efficient increase 
on biomass along with metabolite production (Funk et al. 
1987; Putalun et al. 2007).

There are several other elicitors sharing origin with 
yeast extract such as chitosan, chitin, mannan used in the 
in-vitro induction of pharmaceutically useful metabolites 
(Baque et al. 2012). Withaferin-A production was stimu-
lated 4.03-fold higher than the control when chitosan was 
added (100 mg/L) to the hairy root cultures of Withania 
somnifera (L.) Dunal. (Thilip et al. 2019). Similarly, chi-
tosan (150 mg/L) drastically improved an active antimalarial 
compound, artemisinin accumulation in the hairy root cul-
tures of Artemisia annua L. (Putalun et al. 2007). Addition 
of chitosan (200 mg/L) to the immobilized cells of Plum-
bago rosea L. resulted in 8.2-fold higher accumulation of 
plumbagin over control (Komaraiah et al. 2003). Chitosan 
(50 mg/L) along with salicylic acid and jasmonic acid in cell 
suspension cultures of Azadirachta indica A. Juss induced 
a 5-fold increase of azadirachtin, an active natural bio pes-
ticide (Prakash and Srivastava 2008). Chitosan along with 
chitin induces phytoalexin, phenylpropanoid and naphtodi-
anthrone production in plants (Orlita et al. 2008; Gadzovska 
et al. 2015). Chitin (200 mg/L) induced phenylpropanoid and 
naphtodianthrone production in cell suspension cultures of 
H. perforatum L. Pectin and dextran stimulated pseudohy-
pericin 1.7 and 1.5-fold respectively and also increased the 
phenylalanine ammonia lyase activity in H. perforatum L., 
cultures (Gadzovska et al. 2015). While 0.01% chitin and 
0.1% chitosan induced all the phytoalexins and showed a 
higher biomass than control in the shoots of Ruta graveolens 
L. (Orlita et al. 2008).

Certain endophytic fungal derived polysaccharides 
play an important role in the elicitation process (Cheng 
et al. 2006; Wiktorowska et al. 2010). These endogenous 
organisms produce polysaccharides like mannan which 
are highly active (Fukui et al. 1990). Mannan is a primary 
polysaccharide majorly extracted from the yeast cell wall. 
Mannan stimulated pseudohypericin and hypericin 2.8 and 
1.7-fold higher respectively in the cultures of H. adenotri-
chum Spach. This study also reported enhanced production 
of secondary metabolites in the presence of mannan and 
pectin (Yamaner et al. 2013). A 3.83-fold increased produc-
tion of diosgenin was seen when water extracted mycelial 
polysaccharides (20 mg/L) of F. oxysporum isolated from 
the rhizome of Dioscorea zingiberensis C.H Wright. was 
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introduced into the hairy root cultures of D. zingiberensis 
C.H Wright (Li et al. 2011).

Polysaccharides like pectin derived from plants are exten-
sively used for elicitation studies (Veerashree et al. 2012). 
When agro-pectin was introduced into the cell suspension 
culture of Lithospermum erythrorhizon Siebold & Zucc., it 
induced naphthoquinone shikonin metabolite content (Fukui 
et al. 1983). Different elicitors like pectin, sodium alginate, 
gum arabic, chitosan and yeast extract were used to elicit 
anthocyanin and phenolic compounds in cell suspension 
cultures of Vitis vinifera L. Highest anthocyanin production 
(1.8-fold times higher than control) was observed in pectin 
elicited cultures on the 9th day (Cai et al. 2012). An extract 
from yeast cell wall when added to the hairy root cultures of 
P. ginseng C.A. Meyer it remarkably increased the saponin 
content (66.9 mg/g) which was 1.17-fold higher than the 
control (Jeong et al. 2005).

Dextran, a polysaccharide present in the bacterial cells 
obtained from sucrose by the action of an enzyme dextran 
sucrase can be used as an potent elicitor (Nagella and Mur-
thy 2010; Rahpeyma et al. 2015). The wounds on Solanum 
lycopersicum L. caused by B. cinerea infection when treated 
with dextran and laminarin induced high phenylpropanoid 
and flavonoids in them (Lu et al. 2019).

Alginate, a frequently and commonly used elicitor is a 
polysaccharide extracted from the seaweeds (Paulert et al. 
2009). There are several other seaweed polysaccharides 
such as ulvan, carrageenan, laminarin, etc., which are effi-
ciently involved in secondary metabolite pathway activa-
tion (Salah et al. 2018). In recent research, several seaweeds 
are under study due to their significant ability to enhance 
the secondary metabolite production (Thilip et al. 2019). 
Sodium alginate induced a 1.7-fold increase in total pheno-
lics in the cell suspension cultures of V. vinifera L. (Cai et al. 
2012). Ulvan when added (2000 mg/L) to the shoot cultures 
of Olea europae L. stimulated active phenolic compounds 
and declined the wilt disease (Salah et al. 2018). Similarly, 
laminarin when added (0.05 mg/L) to the cell suspension 
cultures of Pueraria candollei Wall.ex Benth induced high 
accumulation of isoflavonoids (Korsangruang et al. 2010). 
Polysaccharides of various origin which are used to trig-
ger the metabolite production in the in-vitro cultures is pre-
sented in Table 4.

Conclusion

From the above discussion it is very much evident that biotic 
elicitors play a major role in elicitation of secondary metab-
olites. The production of secondary metabolites like guano-
sine and trigonelline is found to be increased to a greater 
extent by introducing bacterial elicitors like Pseudomonas 
sp. and Enterobacter sp. Fungal elicitor A. niger has shown 
9-fold increase in gymnemic acid production. An 8-fold 
increase was observed in the formation of red pigment in C. 
tinctorius L. by the use of microalgal elicitors. Yeast extract 
showed a significant increase in production of metabolites 
such as vinblastine and vincristine. From the above works it 
can be noted that when fungal elicitors were used there was 
a higher, significant increase in the metabolite produced in 
certain plants followed by the bacterial elicitation. How-
ever, this is not universal as the elicitation depends primarily 
on the plant species, type of culture, target metabolites and 
the type of elicitor used. From all the studies that has been 
reported it is well understood that any form or type of biotic 
elicitor introduced into the plant system will definitely have 
its effect over the secondary metabolite production. How-
ever, in most cases there has been a positive effect shown. 
There is a significant increase in the phytochemicals pro-
duced due to the introduction of these elicitors which trig-
gers various biochemical pathways.

Though the biotic elicitors enhance the metabolite pro-
duction there are few disadvantages which needs to be 
addressed. All biotic elicitors do not impact the secondary 
metabolite production in a significant manner. Hence, the 
experiment needs to be designed widely to optimize the con-
centration and the type of biotic elicitors to be used. Also, 
the chemical constituents and its concentration in the crude 
extracts are unknown hence it is very much uncertain to con-
clude which component from the extract is actually respon-
sible for the elicitation. Apart from these, the biotic elicitors 
affect the physiological parameters as they induce a stress 
environment for the plant growth. Nevertheless, though 
many studies have been reported we are yet to understand 
the working of biotic elicitors at their molecular level. There 
are many biological organisms with potent role in elicitation 
which has not been explored till date. Hence, when such 
microbes or plant extracts (like weeds) are explored they can 
be used in elicitation studies which will also help us to curb 
their unwanted growth and utilize them in a larger scale in 
an eco-friendly manner. Combination of two or more biotic 
elicitors for the metabolite production has not been reported 
in any studies so far. Owing to this as a major lacuna in the 
field of elicitation, biotic elicitors have opened a plethora 
of gateways to improve the in-vitro secondary metabolite 
production for the upcoming researchers.
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Table 4   Polysaccharides used in the in-vitro secondary metabolite production

SL. No Elicitor used Target plant Target secondary Metabolite/
Pigment

Type of culture References

1 Alginate Vitis vinifera L Anthocyanin, Phenolic acid Cell suspension (Cai et al. 2012)
2 Stevia rebaudiana (Bertoni) 

Bertoni
Steviosides Shoot culture (Bayraktar et al. 2016)

3 Agropectin Lithospermum erythrorhi-
zon Siebold & Zucc

Naphthoquinone (shikonin) Cell suspension (Fukui et al. 1983)

5 Carrageenan Withania somnifera (L.) 
Dunal

Withaferin-A Hairy root culture (Thilip et al. (2019)

7 Chitin Agelica gigas Nakai Decursinol angelate Hairy root culture (Cho et al. 2003)
8 Ruta graveolens L Coumarins Shoot culture (Orlitan et al. 2008)
9 Gymnema sylvestre (Retz.) 

schult
Gymnemic acid Cell suspension (Veerashree et al. 2012)

10 Hypericum perforatum L Phenylpropanoid (pheno-
lics, flavonoids, flavanols 
and anthocyanins) and 
Naphtodianthrones(hypericin, 
pseudohypericin)

Cell suspension (Gadzovska et al. 2015)

11 Stevia rebaudiana (Bertoni) 
Bertoni

Steviosides Shoot culture (Bayraktar et al. 2016)

13 Chitosan Nicotiana tabacum L Phytoalexins Cell suspension (Brodelius et al. 1989)
14 Morinda citrifolia L Anthraquinones Cell suspension (Doernenburg and Dietrich 

1994)
15 Plumbago rosea L Plumbagin Cell suspension (Komaraiah et al. 2003)
16 Tinospora cordifolia 

(Willd.) Miers
Arabinogalactan Callus culture (Roja et al. 2005)

18 Cistanche deserticola Y. 
C. Ma

Phenylethanoid glycosides Cell suspension (Cheng et al. 2006)

20 Artemisia annua L Artemisinin Hairy root culture (Putalun et al. 2007)
21 Azadirachta indica A. Juss Azadirachtin Cell suspension (Prakash and Srivastava 

2008)
22 Pueraria candollei wall.ex 

Benth
Isoflavonoids Cell suspension (Korsangruang et al. 2010)

23 Morinda citrifolia L Phenolics and Flavonoids Leaf culture (Baque et al. 2012)
24 Brassica oleracea L Phenolic compounds Shoot culture (Barrientos et al. 2014)
25 Fagonia indica Burm. F Phenolics and Flavonoids Shoot culture (Khan et al. 2019)
27 Withania somnifera (L.) 

Dunal
Withaferin-A Hairy root (Thilip et al. (2019)

28 Dextran Hypericum perforatum L Phenylpropanoid and Naphtodi-
anthrones

Cell suspension (Gadzovska et al. 2015)

29 Solanum lycopersicum L Phenylpropanoid and Flavonoids Cell suspension (Lu et al. 2019)
30 Laminarin Pueraria candollei wall.ex 

Benth
Isoflavonoids Cell suspension (Korsangruang et al. 2010)

31 Mannan Hypericum adenotrichum 
Spach

Hypericins Shoot culture (Yamaner et al. 2013)

32 Atractylodes lancea 
(Thunb.) DC

Volatile Oils Shoot culture (Chen et al. 2016)
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