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Abstract
PHYTOCHROME INTERACTING FACTORs (PIFs) are a subset of helix-loop-helix (bHLH) transcription factors, which 
play critical roles in plant growth and development, as well as in adaption to ambient environments. However, PIF members 
have not been completely identified in apple (Malus domestica), a widely distributed fruit crop with significant economical 
importance. Here, we characterized MdPIF3, the homolog of AtPIF3, and determined its role in response to abiotic stresses 
in apple. We first analyzed its gene and protein structure, and found that it contained bHLH domain, active phytochrome B 
binding (APB) motif, as well as active phytochrome A binding (APA) motif. Yeast-two-hybrid assays indicated that MdPIF3 
formed a homodimer by itself and heterodimers with other MdPIFs. Moreover, MdPIF3 was responsive to light and cold 
treatment at both transcriptional and post-translational levels. Overexpression of MdPIF3 reduced cold tolerance but enhanced 
drought resistance in both apple callus and Arabidopsis.

Key message 
The bHLH-type protein, MdPIF3, plays a key role in cold and drought tolerance in plants.

Keywords Apple · bHLH transcription factor · MdPIF3 · Cold stress · Drought stress

Introduction

Plant growth requires suitable conditions, however, they 
always encounter adverse factors, such as drought, low 
temperature, and high salinity, that restrain the growth of 

most plants in natural environments (Knight and Knight 
2012; Zhu 2002). Drought stress induces a series of adverse 
effects on plants, including inhibited germination, wilting, 
decreased chlorophyll content and photosynthesis rate, and 
results in repressed plant growth, as well as crop yields 
(Jaleel et al. 2009; Kaya et al. 2006; Li et al. 2015; Manick-
avelu et al. 2006; Manivannan et al. 2007). Similarly, cold 
stress affects a series of physiological processes of plants, 
such as cell membrane permeability, and accumulation of 
reactive oxygen species (ROS), thus, severely affects the spa-
tial distribution and agricultural productivity of crop plants 
(Chinnusamy et al. 2007; Gill and Tuteja 2010; Kratsch and 
Wise 2000).

Apple (Malus domestica) is a perennial woody plant that 
widely distributed worldwide, and its growth and develop-
ment are suffering from multiple environmental factors after 
years of cultivation, such as light, temperature, water, and 
pathogens. Apple trees are usually cultured in the mountain 
area where water is a limiting factor for plant growth, espe-
cially in the Loess Plateau region, which is one of the major 
area for apple production in China. In addition, apple is vul-
nerable to low temperatures, especially in the spring when 
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floral is in the process of development (Feng et al. 2012; Xie 
et al. 2018). Therefore, research on how apple plants react 
to the environmental factors will facilitate to improve their 
adaptability to ambient complex stress conditions.

Generally, transcription factors (TFs) participate in the 
regulation of plant gene expression by activating or inhibit-
ing the transcription of downstream genes (Agarwal et al. 
2006; Feller et al. 2011; Rehman and Mahmood 2015). As 
the second largest TFs family, the bHLH TFs play important 
roles in plant response to multiple biotic and abiotic stresses 
(Feller et al. 2011; Joshi et al. 2016). For instance, expres-
sion of bHLH122 was induced by drought and salt stresses, 
and overexpressed bHLH122 enhanced drought and osmotic 
tolerances in Arabidopsis (Liu et al. 2014). Overexpression 
of EcbHLH57 from Eleusine coracana L. promoted resist-
ance to salt and drought in tobacco (Babitha et al. 2015). 
PubHLH1 was proved to enhance cold tolerance by regu-
lating stress-related gene expression in tobacco (Jin et al. 
2016). However, in the past few decades, only few bHLH 
TFs have been identified to be involved in stress response in 
apple (Mao et al. 2017). To date, MdCIbHLH1 (also named 
MdbHLH143) was reported to enhance the cold tolerance in 
transgenic Arabidopsis and apple callus (Feng et al. 2012). 
MdbHLH104 was shown to enhance iron deficiency toler-
ance of apple tree (Zhao et al. 2016).

As members of the 15th subfamily of the bHLH TF fam-
ily, PIFs (PIF1-PIF8) have been identified and deeply inves-
tigated in Arabidopsis (Pham et al. 2018; Toledo-Ortiz et al. 
2003). In addition to the conserved bHLH domain, all of 
these PIFs contain an APB motif at the N-terminal, which 
is necessary for specific binding to phytochrome B (phyB) 
(Khanna et al. 2004; Shen et al. 2008). Moreover, an APA 
motif was found in PIF1 and PIF3, which is responsible for 
binding to phytochrome A (phyA) (Al-Sady et al. 2006; Lei-
var and Monte 2014; Leivar and Quail 2011).

PIF3, the first identified PIF protein in plant, was ini-
tially isolated using the yeast-two-hybrid (Y2H) assay using 
the C-terminal of phyB as bait (Ni et al. 1998). In the past 
two decades, extensive researches have been conducted on 
the functions of PIFs in plant growth and development. In 
Arabidopsis, PIF1, PIF3, PIF4, and PIF5 act as negative 
regulators to inhibit hypocotyl elongation and cotyledon 
expansion (Fujimori et al. 2004; Huq and Quail 2002; Kim 
et al. 2003; Monte et al. 2004; Oh et al. 2004). Moreover, 
PIF3 positively regulates anthocyanin biosynthesis by 
directly binding to the promoter region of anthocyanin bio-
synthetic genes (Shin et al. 2007). However, PIF4 and PIF5 
act as negative regulators of anthocyanin biosynthesis (Liu 
et al. 2015). In addition to be involved in light-mediated 
plant growth, PIFs are also reported to be functional in 
response to abiotic stresses. For example, ectopic expres-
sion of ZmPIF1 and ZmPIF3 enhanced drought tolerance 
in rice (Gao et al. 2015; Gao et al. 2018). PIF4 and PIF7 is 

essential for Arabidopsis to resist high temperature stress 
(Fiorucci et al. 2020; Kim et al. 2020; Koini et al. 2009; Sun 
et al. 2019b). Recent studies show that PIF1, PIF3, PIF4, 
and PIF5 play a negative role in plant freezing tolerance in 
Arabidopsis (Jiang et al. 2020; Jiang et al. 2017).

Although PIFs has been extensively studied in several 
plants, its function responding to abiotic stress in apple have 
not been explored. In this study, we identified a bHLH TF, 
MdPIF3, in apple, and found that it reduced the cold toler-
ance and enhanced the resistance to drought stress in both 
apple callus and Arabidopsis.

Materials and methods

Plant materials and growth conditions

The materials used in this study were apple seedlings 
(Royal Gala), apple callus (Orin), and Arabidopsis thaliana 
(Columbia). Tissue-cultured apple seedlings (Royal Gala) 
were maintained on a Murashige and Skoog (MS) medium 
with 0.5 mg/L 6-benzylaminopurine (6-BA) and 0.5 mg/L 
1-naphthylacetic acid (NAA) during a 16-h-light/8-h-dark 
condition (photon flux density of approximately 60 μmol s−1 
 m−2) at 25 °C for about 3 weeks, then treated with 4 °C and 
10% polyethylene glycol 6000 (PEG6000) for the simulation 
of cold and drought stresses (An et al. 2018a; Zhong et al. 
2020). For light treatment, apple seedlings grown in dark-
ness for 72 h were transferred to white light condition for 
different times. The above apple seedlings set at least three 
biological replicates. These seedlings (cold-treated, drought-
treated, and light-treated apple seedlings) were sampled at 
0, 1, 2, 3, 6, and 9 h, immediately cryopreserved by liquid 
nitrogen, and stored at − 80 °C for gene expression analysis 
(An et al. 2017b; Zhang et al. 2018).

The apple callus of the ‘Orin’ cultivar were cultured on 
MS medium containing 0.8% agar, 0.4 mg/L 6-BA, and 
1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) at 24 °C in 
the dark (An et al. 2019). Arabidopsis thaliana (Columbia) 
at 22 °C were grown on MS medium under a 16-h-light/8-
h-dark photoperiod (photon flux density of approximately 
60 μmol s−1  m−2).

Multiple sequence alignments and phylogenetic 
tree construction

The Protein BLAST tool from NCBI database (http://www.
ncbi.nlm.nih.gov/BLAST /) was used to obtain homologs of 
Arabidopsis PIF3. Protein sequence of AtPIF3 was obtained 
from the Arabidopsis database base (https ://www.arabi dopsi 
s.org/index .jsp). The protein sequences alignment was con-
ducted using the DNAMAN software. The phylogenetic tree 
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was constructed with MEGA5.1 software using the neigh-
bor-joining method (Sun et al. 2019a).

RNA extraction and quantitative real‑time 
(qRT)‑PCR analysis

The total RNAs of plant materials, including apple seedlings, 
apple callus, and Arabidopsis seedlings, were extracted 
using the RNA plant plus Reagent (Tiangen, Beijing, China) 
(Yang et al. 2019). Take 50–100 mg plant tissues and grind 
them into powder in liquid nitrogen, with at least three rep-
licates for all sample. Reverse transcription was performed 
using the PrimeScript™ RT Reagent Kit (TaKaRa, Dalian, 
China). The qRT-PCR reaction profile was performed under 
the following procedure: pre-denaturation at 94 °C for 3 min, 
denaturation at 94 °C for 20 s, annealing at 56 °C for 30 s, 
and elongation at 72 °C for 30 s for 35 cycles (Li et al. 2012). 
The primers in this study are listed in Table S1. Apple 18S 
ribosomal RNA was used as control (Ma et al. 2017).

In vitro protein degradation assay of the MdPIF3 
protein

Protein degradation assays were conducted as previously 
described (An et al. 2017c) to test the post-translational 
regulation of MdPIF3 protein in response to light or cold 
treatments in vitro. The incubations of the extraction solu-
tion from the apple callus and the purified MdPIF3-HIS pro-
tein were conducted up to the specific times. For MG132 
treatment, the untreated apple callus extract was treated with 
100 μMMG132 for 0.5 h before co-incubation with purified 
MdPIF3-HIS protein. The relative MdPIF3 protein contents 
were detected by using western blot with anti-HIS monoclo-
nal antibody.

Genetic transformation of apple callus 
and Arabidopsis

The open reading frame (ORF) and antisense fragment 
of MdPIF3 was cloned into pRI 101-AN vector (Takara, 
Dalian, China) driven by cauliflower mosaic virus 35S pro-
moter to construct overexpression and antisense suppression 
vectors. For the acquisition of transgenic callus, 14-day-old 
wild-type apple callus were co-incubation for 20 min with 
Agrobacterium carrying recombinant constructs of MdPIF3, 
and the apple callus were plated on medium supplemented 
with antibiotics (Zhang et al. 2019). qRT-PCR analysis was 
used to identify the successfully transgenic apple callus 
(MdPIF3-OE and MdPIF3-Anti) (Fig. S2).

Transgenic Arabidopsis were obtained using the floral 
dip transformation method (Clough and Bent 1998). And 
qRT-PCR analysis was used to determine the successfully 

transformed Arabidopsis plants (MdPIF3-L1, MdPIF3-L2, 
and MdPIF3-L3) (Fig. S2).

Transcription activation of MdPIF3 protein 
experiments

To determine if MdPIF3 is of autonomous activation and 
which region is responsible for autonomous activation, tran-
scriptional activity assays were conducted. The MdPIF3 
protein contains conserved bHLH domain. Sequence analy-
sis showed that the bHLH domain is located at in 450–510 
aa. Thus, amino acids 443 and 515 were used as breakpoints 
during segmentation. The full-length MdPIF3 and five trun-
cated fragments (MdPIF31−515, MdPIF31−443, MdPIF444−515, 
MdPIF3444−708, and MdPIF3516−708) were amplified and 
inserted into the pGBKT7 vector (Clontech, USA), forming 
multiple fusion proteins with GAL4 DNA-bindind domains. 
Then the fusion constructs were transferred into the yeast 
strain AH109 (An et al. 2018b). Yeast cells were grown on 
medium lacking tryptophan (SD/-Trp) at 28 °C for 2 days. For 
further screening, the colonies were grown on the medium 
lacking tryptophan, histidine and adenine (SD/-Trp/-His/-Ade) 
with or without x-α-gal.

Drought and cold stress assays

The 10-day-old apple callus (3 biological replicates, at least 
20 samples for each replicate) were treated with 0, 4%, and 
6% PEG6000 in the dark for the simulation of drought stress. 
After 20 days of treatment, the fresh weight was measured. 
The malondialdehyde (MDA) is a biomarker used to meas-
ure damage caused by oxidative stress, and its content was 
measured by using the methods previously reported (Li and 
Chow 1994).

For cold stress treatment, the 10-day-old apple callus were 
transferred to 4 °C in the dark. After 20 days of treatment, the 
fresh weight of WT and transgenic apple callus were meas-
ured using electronic balance (one thousandth). The 5-day-old 
Arabidopsis seedlings cultured on MS medium were trans-
ferred to 4 °C during a 16-h-light/8-h-dark condition (pho-
ton flux density of approximately 60 μmol s−1  m−2). The root 
length and electrolyte leakage were measured after 2 weeks.

ROS staining

Nitro blue tetrazolium (NBT) was utilized to determine 
 O2

− accumulation by using the histochemical staining.

Drought tolerance assay and chlorophyll extraction 
of Arabidopsis seedlings

Arabidopsis plants are grown in a normal substrate (a 
mixture of 30% nutrient soil and 70% vermiculite). After 
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3 weeks of normal growth, the plants were not watered until 
the leaves began to wilt and turned yellow (Qi et al. 2019). 
Chlorophyll content was measured following the method 
(An et al. 2017a). In short, after 3–4 weeks of drought 
treatment, the transgenic and wild-type Arabidopsis leaves 
were washed and cut into thin slices. Weigh 0.1 g leaves 
and immerse them in 95% ethanol for 24 h to extract. The 
absorbance of extracting solution was measured at 649 nm 
and 665 nm. All samples are set at least three biological 
repetitions.

Yeast two‑hybrid (Y2H) assays

Y2H assays were performed to investigate whether MdPIF3 
can form homodimers and/or heterodimers, and experimen-
tal methods were conducted according to the manufacturer’s 
instructions (Clontech, USA). Full-length MdPIF3, five trun-
cated segments (MdPIF31−515, MdPIF31−443, MdPIF444−515, 
MdPIF3444−708, and MdPIF3516−708), and MdPIF1/4/8 were 
cloned into the pGAD (pGAD424) vector. pGBD (pGBT9)- 
 MdPIF3444−708 was used as a bait. The mixed plasmids were 
co-transformed in yeast strain Y2H Gold. The cells were 
grown on medium lacking tryptophan and leucine (SD/-Trp/-
Leu) at 28 °C for 2 days. The cells were then transferred 
to medium that lacked tryptophan, leucine, histidine, and 
adenine (SD/-Trp/-Leu/-His/-Ade) with or without x-α-gal 
for the interactive screening (Xie et al. 2012).

Data analysis

Three biological replicates were conducted for all samples, 
and the data expressed as the mean ± standard deviation 
unless noted otherwise. Significant differences were deter-
mined using Student’s t test from DPS software (Enfield, 
UK) (Hu et al. 2019).

Results

Molecular cloning and phylogenetic relationship 
analysis of MdPIF3

The Arabidopsis PIF3 (AT1G09530) coding sequence was 
used as bait to screen out MdPIF3 by mining the NCBI 
database. Using synthesized first-strand cDNA from the 
tissue-cultured apple (Malus domestica ‘Royal Gala’) seed-
lings as template, MdPIF3 specific primers were used for 
PCR amplification (Table S1), and a 2127 bp fragment was 
obtained and named MdPIF3 (LOC103450807). Sequence 
analysis showed that MdPIF3 gene contains six introns and 
seven exons (Fig. S1A). The fragment encodes a protein of 
708 amino acids with a molecular mass of 75.7 kDa.

We next analyzed the phylogenetic relationship between 
MdPIF3 and homologs from other plant species by con-
structing a neighbor-joining phylogenetic tree of 31 plant 
PIF3 proteins using the MEGA 7 software (Fig. 1). The 
result showed that MdPIF3 was most closely related to 
PbPIF3 (XP_009366016.1) from Pyrus bretschneideri, and 
they were categorized as a single clade (Fig. 1). Moreo-
ver, sequence alignment showed that MdPIF3 and PbPIF3 
shared high similarity (86.25%) in amino acid level (Fig. 
S1B), which further confirmed the high homology between 
them.

Fig. 1  Phylogenetic relationship analysis of MdPIF3 and 30 other 
plant PIF3 proteins obtained from the NCBI database. MdPIF3 is 
denoted by the asterisk. GmPIF3: Glycine max, XP_003553685.1; 
BrPIF3: Brassica rapa, XP_009148249.1; RsPIF3: Raphanus 
sativus, XP_018443444.1; ThPIF3: Tarenaya hassleriana, 
XP_010522859.1; PePIF3: Populus euphratica, XP_011039053.1; 
AtPIF3: Arabidopsis thaliana, AT1G09530; PbPIF3: Pyrus 
bretschneideri, XP_009366016.1; TcPIF3: Theobroma cacao, 
XP_017982981.1; MdPIF3: Malus domestica, LOC103450807; 
FvPIF3: Fragaria vesca, XP_011466209.1; ZjPIF3: Ziziphus jujube, 
XP_015874809.1; PmPIF3: Prunus mume, XP_008246329.1; 
CcPIF3: Citrus clementina, XP_006423962.1; EgPIF3: Euca-
lyptus grandis, XP_010070103.1; JcPIF3: Jatropha curcas, 
XP_012088811.1; PtPIF3: Populus trichocarpa, XP_024438997.1; 
CmPIF3: Cucumis melo, XP_008453043.1; RcPIF3: Ricinus com-
munis, XP_015570501.1; VvPIF3: Vitis vinifera, XP_010652329.1; 
MnPIF3: Morus notabilis, XP_024020429.1; SiPIF3: Sesa-
mum indicum, XP_020552005.1; NnPIF3: Nelumbo nucifera, 
XP_010240809.1; EsPIF3: Eutrema salsugineum, XP_006417565.1; 
MtPIF3: Medicago truncatula, XP_024638901.1; SlPIF3: Sola-
num lycopersicum, XP_025888784.1; AcPIF3: Ananas comosus, 
XP_020086869.1; NaPIF3: Nicotiana attenuate, XP_019255455.1; 
DcPIF3: Daucus carota, XP_017226282.1; CsPIF3: Camelina sativa, 
XP_010475789.1; OsPIF3: Oryza sativa, XP_015631806.1; ZmPIF3: 
Zea mays, PWZ58728.1
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Analysis of MdPIF3 amino acid sequence 
and regulatory elements in the promoter of its 
encoding gene

Protein sequence analysis indicated that MdPIF3 contained 
a highly conserved bHLH domain, just as AtPIF3 (Fig. 2a). 
Through amino acid sequence alignment with other PIF3, 
we found that MdPIF3 proteins also contained conserved 
APB and APA motifs, which were also presented in other 
PIF proteins (Fig. 2b–c). Moreover, four conserved amino 
acid residues (ELxxxxGQ), that were reported to be key to 
the role of APB (Khanna et al. 2004), were found to be pre-
sent in APB motif of MdPIF3. These results indicated that 
MdPIF3 had highly conserved functional domains similar 
to other PIF3 proteins, and may also possess similarly con-
servative functions.

Using the PlantCARE tool, the regulator elements in 
the promoter region of MdPIF3 were predicted (Table 1). 
Among them, typical light-responsive element (G-box) were 
found. In addition, several stress-responsive elements were 
also identified, such as the ARE regulatory element that 
is essential for the anaerobic induction, the MBS regula-
tory element that is involved in drought-inducibility, and 
the wound-responsive regulator element (WUN-motif) 
(Table 1). What’s more, some elements that were involved 
in response to plant hormones, including the ABRE absci-
sic acid responsive element and gibberellin responsive ele-
ment (P-box), were also found in the promoter of MdPIF3 
(Table 1).

Transcriptional activation activity of MdPIF3

TFs always bind to the promoter region of their target genes 
to regulate gene expression, and transcription activity is one 
the common features of TFs. Here, full-length MdPIF3 and 
several truncated fragments were inserted into the pGBKT7 
vector. As shown in Fig. 3, all of the transformants grew nor-
mally on the SD/-Trp medium. After transferred to SD/-Trp/-
His/-Ade medium with or without X-α-gal, the yeast strains 
containing full-length MdPIF3, the N-terminal fragments 
 MdPIF31−515, and  MdPIF31−443 grew normally and turned 
blue, while the other were unable to grow. These results 
indicate that MdPIF3 possessed the transcription activating 
activity and that the N-terminus without bHLH domain is 
responsible for autonomous activation in yeast cells.

MdPIF3 interacted with itself and other MdPIFs 
to form homo‑ and heterodimers

A Y2H assay was performed to investigate if MdPIF3 could 
form homodimers. The results showed that  MdPIF3444−708 
could interact with the complete MdPIF3 amino acid 
sequence (Fig. 4a). Moreover, the  MdPIF3444−708 fragment 

also interacted with  MdPIF3444−708. However,  MdPIF31−515, 
 MdPIF31−443,  MdPIF444−515, and  MdPIF3516−708 did not 
interact with  MdPIF3444−708. These data indicate that 
MdPIF3 can interact with itself and form homodimers.

In addition, we also conducted a Y2H assay to determine 
whether MdPIF3 could form heterodimers with other MdPIF 
family members. MdPIF1 (MDP0000289642), MdPIF4 
(MDP0000198404), and MdPIF8 (MDP0000439540) were 
inserted into pGAD vector as prey, whereas C-terminal 
fragment of  MdPIF3444−708 was fused to pGBD as bait. The 
results showed that  MdPIF3444−708 could interact with the 
MdPIF1, MdPIF4, and MdPIF8 (Fig. 4b). These data indi-
cate that MdPIF3 can interact with other MdPIFs to form 
heterodimers, and the bHLH domain is responsible for dimer 
formation.

MdPIF3 is responsive to light and low‑temperature

In this study, the expression of MdPIF3 was examined using 
cDNA isolated from Royal Gala apple seedlings treated with 
light or cold conditions. These results indicated that the 
expression levels of MdPIF3 was affected by light and cold 
treatments. Specifically, MdPIF3 expression was downregu-
lated in response to light and upregulated by cold treatment 
(Fig. 5a and d).

In addition, as shown in Fig. 5b–c, the MdPIF3-HIS 
fusion protein was unstable and rapidly degraded to a lower 
level within 4 h. Furthermore, the degradation process was 
significantly repressed when the samples were treated with 
MG132, confirming that the protein stability of MdPIF3 was 
regulated by the 26S proteasome. However, the degradation 
rate of MdPIF3-HIS protein accelerated in response to light 
treatment (Fig. 5b–c). Unlike the result of light treatment, 
the degradation rate of MdPIF3-HIS protein slowed down 
in response to cold stress (Fig. 5e–f). These results suggest 
that light and cold temperature are involved in the regulation 
of transcription and post-transcriptional levels of MdPIF3, 
suggesting that MdPIF3 may play an important role in light 
signal and cold stress response.

MdPIF3 negatively regulates cold tolerance

In normal conditions, the wild type (WT) callus grew simi-
lar with the transgenic lines, and they had similar fresh 
weight (Fig. 6a–b). When 10-day-old WT and transgenic 
apple callus were transferred and kept in 4 °C condition 
for 20 days, the growth of all the three kinds of apple cal-
lus were repressed. However, the growth of MdPIF3-OE 
apple callus was worse than that of WT, while the MdPIF3-
Anti grew better than that of WT; and the fresh weight of 
the three under cold condition showed consistent results 
(Fig. 6a–b). The accumulation of ROS in MdPIF3-OE apple 
callus increased significantly, indicating that MdPIF3-OE 
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Fig. 2  The sequence analysis of MdPIF3 protein. a Conserved bHLH 
domain in MdPIF3 and AtPIF3 proteins. b Alignment of amino acid 
sequences of MdPIF3 and other PIF3 proteins. Locations of the three 
conserved motifs are marked with black lines. c Conservation of resi-

dues across MdPIF3 and other PIF3 proteins by the height of each 
letter. The most conserved amino acid residues in bHLH domain are 
indicated by yellow asterisks. The bit scores show the information for 
each conserved motif in the sequence
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apple callus was damaged heavier than the WT by cold 
stress (Fig. 6c). Consistent with the results in apple callus, 
ectopic expression of MdPIF3 in Arabidopsis significantly 
inhibited the root length under cold condition (Fig. 6d–e). 

Furthermore, we tested the relative electrolyte leakage in 
wild type (col) and transgenic Arabidopsis. The relative 
electrolyte leakage of MdPIF3 transgenic Arabidopsis lines 
were higher than col, indicating that the membrane lipids 

Table 1  Cis-element analysis in the MdPIF3 promoter regions

Regulatory sequence Sequence Function of site Location

ABBE ACGTG Cis-acting element involved in the ahscisic acid responsiveness − 917
ARE AAA CCA Cis-acting regulatory element essential for the anaerobic induction + 14
G-box CAC GTT Cis-acting regulatory element involved in light responsiveness + 917
MBS CAA CTG MYB binding site involved in drought-inducibility + 53
P-box CCT TTT G Gibberellin-responsive element + 932
TC-rich repeats GTT TTC TTAC Cis-acting element involved in defense and stress responsiveness − 313
WUN-motif AAA TTT CCT Wound-responsive element − 1015

Fig. 3  Analysis of transcrip-
tional activation activity of 
MdPIF3 in yeast. The bHLH 
domain is indicated in red. 
Yeast cells were screened on 
SD/-Trp, SD/-Trp/-His/-Ade, 
and SD/-Trp/-His/-Ade/X-α-gal 
medium

Fig. 4  Y2H assay to test the 
interaction among the MdPIF 
proteins. a MdPIF3 formed 
homodimers by interacting 
with itself. b MdPIF3 formed 
heterodimers by interacting with 
MdPIF1, MdPIF4, and MdPIF8. 
The bHLH domain is indicated 
in red. Yeast cells were screened 
on SD/-Trp/-Leu, SD/-Trp/-
Leu/-His/-Ade, and SD/-Trp/-
Leu/-His/-Ade/X-α-gal medium
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showed a higher degree of damage in MdPIF3 transgenic 
Arabidopsis lines (Fig. 6f). Thus, we conclude from these 
data that MdPIF3 functions as a negative regulator in resist-
ance to cold tolerance in both apple callus and Arabidopsis.

MdPIF3 positively regulates drought tolerance

When analyzing the regulatory elements, a potential drought 
responsive sequence (MBS regulatory element) was found 

to be present in the promoter of MdPIF3 (Table 1 and Fig. 
S3). We then performed RT-qPCR to determine the expres-
sion pattern of MdPIF3 under drought stress, and the result 
showed that drought significantly induced the expression of 
MdPIF3 (Fig. 7a).

To further explore the function of MdPIF3 in drought 
response, the WT and transgenic apple callus (MdPIF3-
OE and MdPIF3-Anti) were treated with different concen-
trations of PEG 6000 to mimic the drought stress. No clear 

Fig. 5  Effects of light and cold treatments on the transcript level and 
protein stability of MdPIF3. a Expression analysis of MdPIF3 gene 
in response to light. b Degradation of the MdPIF3-HIS protein and 
its stabilization by light or MG132. c Relative protein level of (b) 

is shown. d Expression analysis of MdPIF3 gene in response to low 
temperature. e Degradation of the MdPIF3-HIS protein and its stabi-
lization by low temperature or MG132. f Relative protein level of (e) 
is shown

Fig. 6  Cold stress assays of MdPIF3 transgenic lines. a Cold stress 
phenotypes of MdPIF3 transgenic apple callus. The wild-type (WT) 
and transgenic apple callus (MdPIF3-OE and MdPIF3-Anti) were 
grown on medium at 24 °C for 10 days and then treated at 4 °C for 
another 20  days. b Fresh weight of wild-type and transgenic apple 
callus after cold treatment. c  O2

− accumulation in wild-type and 
transgenic apple callus by histochemical staining with NBT after cold 

treatment. d Freezing stress phenotypes of MdPIF3-overexpressing 
Arabidopsis under low temperature condition. The wild-type (Col) 
and transgenic Arabidopsis (MdPIF3-L1, MdPIF3-L2, and MdPIF3-
L3) were grown on MS medium at 22 °C for 5 days and then treated 
at 4 °C for 2 weeks. e Root length and f electrolyte leakages of the col 
and MdPIF3-overexpressing Arabidopsis after cold treatment
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differences were observed between WT and transgenic cal-
lus under normal condition, and they all had similar fresh 
weight (Fig. 7b–c). However, when treated with differ-
ent concentration of PEG 6000, MdPIF3-OE apple cal-
lus grew better but MdPIF3-Anti apple callus grew worse 
compared to that of WT (Fig. 7b). The fresh weight was 
consistent with the phenotype (Fig. 7c). This suggested 
that MdPIF3 played a positive role in resistance to drought 
stress. Malondialdehyde (MDA) is the major product of 
lipid peroxidation and its content has been developed to 
be an important tool to measure the degree of damage 
caused by stress (Dey et al. 2019; Yamane et al. 2009). 
Here, the MDA content in MdPIF3-Anti apple callus was 
higher, while that was lower in MdPIF3-OE apple cal-
lus compared to that of WT (Fig. 7d), which further indi-
cated the positive role of MdPIF3 in drought resistance. 
We next performed the drought-resistant experiments in 
Arabidopsis. The three transgenic lines of Arabidopsis 
grew similar with the WT before drought treatment, how-
ever, they showed better growth than that of WT under 
water shortage condition (Fig. 7e), suggesting ectopic 
expression of MdPIF3 enhanced the drought tolerance in 
Arabidopsis. The chlorophyll content was also consistent 
with the phenotype (Fig. 7f). Thus, these data indicate that 
MdPIF3 enhanced drought tolerance in both apple callus 
and Arabidopsis.

Discussion

With the development of genome sequencing technology, 
critical TF families have been identified in more and more 
plant species. Among them, PIF TFs have been isolated and 
investigated in many species, such as Oryza sativa (Naka-
mura et al. 2007), Solanum lycopersicum (Rosado et al. 
2016), Arabidopsis thaliana (Lee and Choi 2017; Pham et al. 
2018), Moss Physcomitrella patens (Possart et al. 2017), 
and Zea mays L (Gao et al. 2019; Wu et al. 2019). However, 
PIFs have not been studied in depth in woody plant apple, 
except for the report of MdPIF1 on light response (Zhou 
et al. 2017). Here, we identified MdPIF3, the apple homolog 
of AtPIF3, and revealed its role in plant cold and drought 
tolerance.

As predicted, MdPIF3 protein is highly conserved with 
PIF3 from other reported species. The MdPIF3 protein has 
a typical bHLH domain (Fig. 2a), a conserved APB motif 
(Fig. 2b–c), as well as APA motif (Fig. 2b–c). Among them, 
the bHLH domain promoted the formation of homo- and/or 
heterodimers, which is necessary for PIFs to perform mul-
tiple functions (Toledo-Ortiz et al. 2003). Previous reports 
showed that PIF1, PIF3, and PIF4 could form homodimers 
with themselves (Leivar et al. 2008). PIF3 forms a heterodi-
mer with PIF1 or PIF4, and then bind the G-box element 
in the promoter of the target genes to regulate their tran-
scription (Bu et al. 2011; Hao et al. 2012; Hornitschek et al. 

Fig. 7  Drought tolerance assays of MdPIF3 transgenic lines. a The 
expression analysis of MdPIF3 under PEG treatment. b Drought 
stress phenotypes of MdPIF3 transgenic apple callus containing 0, 
4% and 6% PEG6000. c Fresh weight of wild-type and transgenic 
apple callus after PEG treatment. d Determination of MDA content 

in wild- type and transgenic apple callus. e Drought stress phenotypes 
of MdPIF3-overexpressing Arabidopsis seedlings in the absence of 
water. f Determination of chlorophyll content of the col and MdPIF3-
overexpressing Arabidopsis seedlings
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2009). Moreover, PIFs could form heterodimers with atypi-
cal PIF proteins such as LONG HYPOCOTYL IN FAR-
RED1 (HFR1) and participate in far-red and blue signal 
transductions (Shi et al. 2013; Shin et al. 2009). Therefore, 
we designed Y2H assays to explore whether MdPIF3 inter-
acts with related proteins. Due to transcriptional autonomous 
activation activity of MdPIF3 (Fig. 3), the C-terminal frag-
ment of  MdPIF3444−708 containing the bHLH domain was 
selected to perform the experiment. The results showed that 
MdPIF3 could homodimerize with itself and heterodimer-
ize with MdPIF1 (the homolog of AtPIF1), MdPIF4 (the 
homolog of AtPIF4), and MdPIF8 (the homolog of AtPIF8) 
(Fig. 4). The formation of these homodimer or heterodimer 
types enriched signal transduction pathways and regula-
tory networks, indicating that PIFs also have similar work-
ing mode in apple. In addition to bHLH domain, MdPIF3 
also contained conserved APB and APA motifs, which were 
necessary for the binding to phyB and phyA, respectively, 
and participate in the phy-signaling pathway in Arabidopsis 
(Khanna et al. 2004; Leivar and Quail 2011; Ni et al. 1998; 
Shen et al. 2008). The presence of APB and APA motifs in 
MdPIF3 protein implies its potential binding ability with 
phyA and phyB in apple, and further experiments are needed 
to determine its interactions.

In recent years, more and more researches have focused 
on the post-transcriptional regulation of PIFs. The phyB/
phyA-PIF interaction mentioned above has been proved to 
promote the phosphorylation and degradation of PIF pro-
teins (Al-Sady et al. 2006; Leivar and Quail 2011; Ni et al. 
2013; Park et al. 2004; Shen et al. 2008). In addition, it has 
been identified that other factors are involved in the ubiq-
uitination and degradation of PIFs, such as light-response 
bric-a-brack/tramtrack/broad (LRB), DELLAs, BRASSI-
NOSTEROID-INSENSITIVE 2 (BIN2), and CONSTITU-
TIVELY PHOTOMORPHOGENIC 1 (COP1) (Li et  al. 
2016; Ling et al. 2017; Ni et al. 2014; Oh et al. 2020). To 
investigate the post-translational regulation of MdPIF3 pro-
tein, we performed protein degradation assay in vitro. The 
results revealed that, like PIF3, the MdPIF3 protein was 
unstable and degraded through the 26S proteasome system 
(Fig. 5b–c and e–f). Moreover, the degradation rate acceler-
ates when exposed to light, similar to previous reports of 
PIF3 in Arabidopsis (Al-Sady et al. 2006; Shen et al. 2008). 
Since MdPIF3 contains APB motif, we speculate that the 
photo-activated apple phyB may interact with MdPIF3 to 
degrade it. When exposed to low temperature, the degrada-
tion rate of MdPIF3 protein slows down (Fig. 5e–f). Previous 
studies have showed that EIN3-BINDING F BOX PROTEIN 
1 (EBF1) and EBF2, two F-box proteins, mediate PIF3’s 
ubiquitination degradation via 26S proteasome pathway. At 
the same time, cold stress stabilizes the protein level of PIF3 
by promoting the degradation of EBFs (Jiang et al. 2017). A 
recent study showed that C-REPEAT BINDING FACTOR 

1 (CBF1) interact with PIF3 and stabilize PIF3 and phyB 
protein under cold stress. Intriguingly, PIF1, PIF4, and PIF5 
do not interact with CBFs, and their protein stability were 
down-regulated under cold stress (Jiang et al. 2020). How-
ever, whether the above-mentioned molecular mechanisms 
regulate the protein stability of MdPIF3 under cold stress 
remains unknown, and further research is needed.

Previous studies have indicated that PIF3 plays an impor-
tant role in response to multiple abiotic stresses, such as 
drought, salt, and cold (Gao et al. 2015; Jiang et al. 2020; 
Jiang et al. 2017). Regulatory elements of stress response 
also are present within the promoter of MdPIF3, indicat-
ing that it might participate in the abiotic stress response 
(Table 1). qRT-PCR analysis showed that the expression of 
MdPIF3 was induced by cold and drought to varying degrees 
(Fig. 5d and Fig. 7a). To further explore the function of 
MdPIF3 in apple, we obtained transgenic apple callus and 
Arabidopsis of MdPIF3. Stress tolerance assays revealed 
that MdPIF3 positively regulates plant drought resistance 
but negatively regulates plant cold resistance (Figs. 6 and 
7). These data indicated that MdPIF3 also plays a vital role 
in stress tolerance and has different regulatory functions in 
response to different stresses.

In summary, our work identified a new stress-responsive 
bHLH factor in apple, MdPIF3, which positively regulates 
the drought resistance of plants and negatively regulates the 
cold resistance of plants. This provides a new gene reserve 
for genetic engineering technology to improve apple’s adapt-
ability in different environments in the future.
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