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Abstract
S-nitrosylation, the addition of nitric oxide (NO) moiety to a reactive cysteine thiol, to form an S-nitrosothiol (SNO), is 
emerging as a prototypic redox-based post-translational modification. S-nitrosoglutathione reductase (GSNOR) is thought 
to be the major regulator of total cellular SNO levels in plants. However, its role in excess nitrate stress has not been investi-
gated in spinach. In this study, a spinach GSNOR gene (GenBank Accession No. KR381778) was amplified and designated 
as SoGSNOR. The transcript and protein level of SoGSNOR were reduced after excess nitrate treatment for 24 h. Addition 
of NO donor to the nitrate solution decreased the SoGSNOR expression, while supplementation inhibitor of nitrate reduc-
tase and nitric oxide synthase increased its expression. Overexpression of SoGSNOR in tobacco increased the germination 
rate of transgenic seeds, compared to the wild type (WT) under nitrate stress. Higher photosynthetic rate, transpiration rate, 
stomatal conductance, water use efficiency and expression level of some stress-related genes were detected in the transgenic 
seedlings than the WT under nitrate stress. The transgenic tobacco seedlings have lower malondialdehyde content, reactive 
oxygen species (ROS) fluorescence, and higher activities and transcript level of superoxide dismutase, catalase, peroxidase 
under nitrate stress. SoGSNOR transgenic tobacco plants have lower NR activity and protein level, higher GSNOR and 
non-symbiotic class 1 hemoglobin (nsHb) protein level than the WT plants, leading to lower NO accumulation and SNOs 
contents under nitrate stress. These results suggested that overexpression of SoGSNOR increased nitrate stress tolerance of 
tobacco by regulating ROS and RNS metabolism.

Key message 
A spinach S-nitrosoglutathione reductase (SoGSNOR) gene was isolated from spinach root. The expression level and activi-
ties of SoGSNOR were reduced by excess nitrate treatment. Overexpression of SoGSNOR in tobacco increased nitrate stress 
tolerance by regulating ROS and RNS metabolism.
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Introduction

Nitric oxide (NO) is an important free radical that is con-
sidered to be a general plant signal. NO regulates both nor-
mal developmental processes and biotic and abiotic stress 
responses (Jasid et al. 2008; Lobb et al. 2015; Qiao and Fan 
2008; Zhao et al. 2007; Zheng et al. 2009). In plants, NO 
is produced mainly through two different enzymatic path-
way, namely, nitrite reduction by nitrate reductase (NR) or 
by the action of NO synthase (NOS)-like activity (del Rio 
et al. 2004). Although NOS-like activities that are sensi-
tive to mammalian NOS inhibitors have been detected in 
plant extracts, few bona fide NOS enzymes in plants have 
been identified. NOSes are present in a few algal species but 
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appear to not be conserved in land plants (Jeandroz et al. 
2016). In some cases, NO is also produced by a nonenzy-
matic mechanism from  NO2

− under an acidic condition in 
the plant apoplast (Sahay and Gupta 2017). At least three 
distinct NO degradation or inactivation mechanisms of 
plants have already been described, involving non-symbi-
otic hemoglobins (nsHbs), reactive oxygen species (ROS) or 
the formation and subsequent catabolism of S-nitrosothiols 
(SNOs) (Zuccarelli et al. 2017).

NO belongs to a family of NO-derived molecules desig-
nated reactive nitrogen species (RNS)(Chaki et al. 2011). 
NO regulates post-translational protein modifications, 
including S-nitrosylation of thiol groups, nitration of tyros-
ine and binding to metal center of proteins (Gow et al. 2004). 
S-nitrosylation with the formation of SNOs is an important 
feature of NO signaling regulating protein function. Glu-
tathione (GSH), S-nitrosoglutathione reductase (GSNOR), 
and thioredoxin (Trx) have been identified as the major 
protein denitrosylases in mammalian cells (Sengupta and 
Holmgren 2013). NO is known to readily react with reduced 
GSH by reversibly binding to its thiol group, giving rise to 
S-nitrosoglutathione (GSNO). GSNOR is so far the most 
worked out and an established enzyme known to control 
nitrosylation by catalyzing the reduction of GSNO to oxi-
dized GSH (GSSG) and ammonia in the presence of GSH 
(Kubienova et al. 2013).

GSNOR is involved in plant growth and development 
(Rodriguez-Ruiz et al. 2017). In Arabidopsis, allelic muta-
tions in GSNOR1/HOT TEMPERATURES5 (HOT5)/
PARAQUAT RESISTANT2 (PAR2) cause a dramatic 
increase in intracellular GSNO and SNOs, altered stress 
responses, and various developmental defects (Chen et al. 
2009; Feechan et al. 2005; Kwon et al. 2012; Lee et al. 
2008). GSNOR activity is down regulated during pepper 
fruit ripening (Rodriguez-Ruiz et al. 2017). GSNOR is also 
involved in plant responses to biotic and abiotic stresses 
(Ticha et al. 2017). Biotic stress stimuli activates GSNOR 
expression, e.g. in Lactuca spp. genotypes with fungal mil-
dews (Ticha et al. 2018), in plant–herbivore interactions 
with jasmonate-inducible responses (Wunsche et al. 2011). 
Abiotic stresses such as mechanical damage (Chaki et al. 
2011), heat stress (Lee et al. 2008), salt stress (Jain et al. 
2018), Al treatment (Sun et al. 2017), sodic alkaline stress 
(Gong et al. 2015), cadmium (Barroso et al. 2006), arsenic 
(Leterrier et al. 2012), injury or darkness (Kubienova et al. 
2014), iron toxicity (Li et al. 2019), decreased or increased 
GSNOR expression.

Nitrogen (N) is one of the important nutrients for plant 
growth and development. Plants mainly fulfill their N 
requirements by absorbing inorganic nitrate  (NO3

−) and 
ammonium  (NH4

+) from the soil (Kronzucker et al. 2000). 
It is essential to input N fertilizer to attain high crop yields, 
but excessive inputs lead to a waste of fertilizer, which is 

reflected by a decline in nutrient use efficiency and soil 
acidification in China (Zhu et al. 2018). It was reported that 
 NO3

− accounts for approximately 67–76% of the total anions 
in soil of the greenhouse (Ju et al. 2007; Yang et al. 2010). In 
Arabidopsis thaliana, 50 mM nitrate inhibited the primary 
root growth (Signora et al. 2001). Excess nitrate caused oxi-
dative stress and increased the lipid peroxidation level in 
spinach (Xu et al. 2012). 80 mM Ca(NO3)2 stress signifi-
cantly induced changes in the components of cell wall, ana-
tomical structure, and expression profiles of several lignin 
biosynthetic genes (An et al. 2018) and inhibited the growth 
and photosynthetic capacity significantly in cucumber seed-
lings (Du et al. 2016). The tonoplast  H+-ATPase,  H+-PPase 
activities, malondialdehyde (MDA) and proline contents 
were all increased after iso-osmotic stress of Ca(NO3)2 
(80 mM) and NaCl (120 mM) treatment in tomato seed-
lings (Shi et al. 2004), suggesting that excess nitrate stress to 
plants shares the similar defense pathways with NaCl stress.

Spinach (Spinacia oleracea L.) is an excellent source 
of dietary vitamins and minerals and has a tendency to 
absorb nitrogen fertilizer, especially nitrate. In our previ-
ous study, we found SoGSNOR expression decreased under 
nitrate stress and exogenous NO donor sodium nitroprus-
siate (SNP) enhances the nitrate stress tolerance of spin-
ach (Zheng et al. 2016). To further investigate the role of 
SoGSNOR in response to excess nitrate and its regulation 
of the ROS and RNS metabolism, we cloned the full length 
of SoGSNOR sequence from spinach root, analyzed the 
expression and activities of SoGSNOR. Transgenic tobacco 
is easy to obtain to study gene function. So we investigated 
the function of SoGSNOR in the transgenic tobacco plants 
under nitrate stress. The main goal of the present work was 
to further unravel mechanism of SoGSNOR in response to 
nitrate stress.

Materials and methods

Plant materials, growth conditions and stress 
treatment

The seeds of spinach (Spinacia oleracea L., cv. ‘chaoji’) 
were obtained from Hongkong Cai Xingli agriculture Co., 
Ltd.. The experiment was carried out under natural condi-
tions in greenhouse with the air temperature of 20–28 °C 
during the day and 13–18 °C during the night. The spinach 
seedlings were cultured hydroponically according to Xu 
et al. (2012) as control (CK). The spinach seedlings were 
treated with 100 mM nitrate  (KNO3 50 mM, Ca(NO3)2 
25 mM), or supplemented with 100 µM sodium nitroprusside 
(SNP, NO donor), NR inhibitor tungstate, or NOS inhibitor 
N′-Nitro-l-arginine methyl ester hydrochloride (L-NAME) 
for 24 h under the same conditions. Tobacco seedlings were 
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treated with 100 mM nitrate or without 100 mM nitrate 
as control (CK) for 24 h hydroponically. Then, the photo-
synthetic measurements, ROS and NO accumulation were 
assessed with fresh seedlings. Roots of spinach and tobacco 
seedlings were taken after different treatments, immediately 
frozen in liquid nitrogen and stored at − 80 °C until use.

Isolation of total RNA, synthesis of first strand cDNA, 
gene cloning and sequence analysis of SoGSNOR

Isolation of total RNA was done using RNAiso reagent 
(Takara, Dalian, China) according to the manufacturer’s 
instructions. The first strand cDNA was synthesized with the 
PrimeScript TM RT-PCR (Takara, Dalian, China) according 
to the manufacturer’s instructions.

To clone the coding sequence of GSNOR of spinach, 
three degenerate primers were designed according to the 
comparison of known plant’s GSNOR sequences in the 
NCBI. The amplification of the 5′ region sequence was done 
by a nested PCR. The first cycle was done with F1 and R1 
and the second PCR was done using F1 and R2. Accord-
ing to the 5′ product, F2, F3, B26 primers were designed 
and 3′ RACE-PCR was done to amplify the 3′ region of the 
SoGSNOR gene. The open reading frame (ORF) sequence 
was amplified via PCR using a pair of primers SoGSNOR-
F-BamHI and SoGSNOR-R-XhoI. Primers used in gene 
clone were listed in supplemental Table S1.Then the DNA 
sequence data was analyzed according to Xu et al. (2016).

qRT‑PCR and western blot analysis

The mRNA expression level analysis was done using the 
EvaGreen 2 × qPCR Master Mix kit (Abm, Canada). The 
qRT-PCR was performed with the BioRad CFX 96 TM 
Real-time System. The gene- specific primers were shown 
in Supplemental Table S2.

Western blot analyses were done according to the method 
of Zheng et al. (2016). Proteins were transferred onto a 
PVDF membrane (Bio-Rad, Hercules, CA, USA). The 
antibody against nsHb1, GSNOR was previously made by 
our lab (Guo et al. 2015, 2018). For detection of NR, NR 
peptides were used to immunize white mice to obtain anti-
serum (Xu et al. 2016). After incubation with the antibody, 
proteins were detected using a goat peroxidase-conjugated 
anti-mouse antibody (1:4000; Sigma) and visualised using 
ECL chemiluminescence (Bio-Rad, Hercules, CA).

Plasmid construction and agrobacterium mediated 
transformation of tobacco plants

The coding sequence of SoGSNOR in the pMD18-T (Takara, 
Dalian, China) vectors was digested with BamHI and XhoI, 
and inserted into the vector pRI101-GFP (Takara, China). 

The construct was introduced into agrobacterium tume-
faciens strain LBA4404 by electroporation. The agrobac-
terium-mediated transformation into tobacco (Nicotiana 
tabacum cv. NC89) and regeneration procedures were as 
previously described (Kano-Murakami et al. 1993). The 
transgenic plants were detected using genomic DNA PCR 
and qRT-PCR analysis.

Seed germination analysis of SoGSNOR transgenic 
tobacco

Tobacco seeds were germinated on Murashige and Skoog 
(MS) medium with 0 (MS as control, CK) or 100 mM excess 
nitrate according to Xu et al. (2016). The seeds were culti-
vated in a growth chambers (22 °C, 16/8 h photoperiod with 
an irradiance of 300 µmol photons  m−2  s−1, relative humidity 
of 60%). Pictures were taken at the 10th day.

Photosynthetic measurements

Net photosynthetic rate (Pn), stomatal conductance (Gs), 
transpiration rate (E), in the leaves of the transgenic and WT 
plants were measured with an open photosynthesis system 
(Ciras-1, PP Systems, Hitchin, UK) in the morning after 
24 h of nitrate treatment. Water-use efficiency (WUE) of 
the leaf was calculated as the ratio of net photosynthesis to 
transpiration.

Lipid peroxidation, ROS accumulation, antioxidant 
enzyme activities and protein concentration assay

The lipid peroxidation product of malondialdehyde (MDA) 
was assayed by the thiobarbituric acid-based colorimetric 
method (Madhava Rao and Sresty 2000). Each 0.2 g of roots 
was homogenised in 2 ml of 10% (w/v) trichloroacetic acid 
(TCA) containing 0.25% (w/v) TBA. The mixture was incu-
bated in a water bath at 95 °C for 30 min and the reaction 
was terminated in an ice bath. The mixture was centrifuged 
at 10,000×g for 20 min, and the absorbance of the superna-
tant was measured.

The ROS accumulation was analyzed with 20  μM 
 H2DCFDA visualised in a fluorescence microscope and 
photographed (Mazel et al. 2004)

To analyze the antioxidant enzyme activities of SOD, 
CAT, POD, 0.2 g root sample was homogenised in 2 ml of 
0.05 M sodium phosphate buffer (pH 7.8, 1.0 mM EDTA 
and 2% (w/v) PVP). The homogenate was centrifuged at 
10,000×g for 20 min at 4 °C and the supernatant was used 
for all antioxidant enzyme activity assays. Superoxide dis-
mutase (SOD) activity was analyzed by measuring its ability 
to inhibit the photochemical reduction of nitroblue tetra-
zolium (NBT) spectrophotometrically at 560 nm (Madhava 
Rao and Sresty 2000). One unit of SOD activity was defined 
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as the amount of enzyme required to cause 50% inhibition 
of the rate of NBT reduction. Catalase (CAT) activity was 
assayed as the decline in absorbance at 240 nm due to the 
decline of extinction of  H2O2 (Cakmak and Marschner 
1992). Peroxidase (POD) activity was measured by the 
increase in absorbance at 470 nm using guaiacol as sub-
strate (Zaharieva et al. 1999). The unit was expressed as 
nmol min−1  mg−1 protein. Protein concentration was deter-
mined with the Bio-Rad Protein Assay (Bio-Rad Laborato-
ries, Hercules, CA) using BSA as standard.

The NO accumulation, NR and NOS‑Like activity, 
SNOs contents, and GSNOR activity analysis

The NO accumulation was measured using the fluorescent 
dye diaminofluorescein-FM diacetate (DAF-FM DA, Sigma-
Aldrich, USA) and then visualised in a fluorescence micro-
scope and photographed (Zhao et al. 2009). NR activity was 
measured as described by Zheng et al. (2016). The nitrite 
formed was determined spectrophotometrically by meas-
uring absorbance at 540 nm. The NOS-Like activity was 
assayed with a commercial reagent kit (Jiancheng Biotech 
Inc., Nanjing, China) according to the manufacture’s instruc-
tions. NOS catalyzes the reaction of L-Arg and molecular 
oxygen to generate NO. NO and nucleophilic substances 
produce colored compounds. The absorbance is determined 
spectrophotometrically by measuring absorbance at 530 nm.

The SNOs contents were assayed using the previous 
method (Frungillo et  al. 2013; Gong et  al. 2015). The 
extracts of the roots were passed through Sephadex G-25 
gel filtration column according to Barroso et al.(2006) and 
then the GSNOR activities were analyzed by detecting the 
oxidation of NADH at 340 nm after addition of GSNO to the 
reaction mixture at a final concentration of 400 μM (Zheng 
et al. 2016).

Statistical analysis

All data are the mean ± SD from at least three independent 
experiments. Data were statistically analyzed using the DPS 
software. Differences between the means were compared by 
the Duncan test (p < 0.05).

Results

Cloning and characterization of the spinach 
SoGSNOR gene

The full length of spinach GSNOR gene was amplified using 
RT-PCR and RACE technique and designated as SoGSNOR 
(GenBank Accession No. KR381778). The full-length cDNA 
of SoGSNOR was 1378 bp, with a 1140 bp open reading frame 

(ORF), which encoded a 379 amino acid polypeptide with a 
calculated molecular weight of 40.8 kDa and pI of 6.82. Com-
paring the predicted protein sequence with Beta vulgaris BvG-
SNOR, Oryza sativa OsGSNOR, Brassica napus BnGSNOR, 
Ricinus communis RcGSNOR, Gossypium arboretum GaG-
SNOR, Arabidopsis thaliana AtGSNOR, Medicago truncatula 
MtGSNOR, Solanum lycopersicum SlGSNOR showed that 
SoGSNOR has more than 90% sequence identity with these 
proteins (Fig. S1).

Excess nitrate inhibited GSNOR expression 
in spinach roots

qRT-PCR analysis showed that the SoGSNOR expression 
level decreased significantly after nitrate treatment for 24 h 
(Fig. 1a). Compared to the nitrate treatment, SNP addition to 
nitrate solution decreased the SoGSNOR expression. Addition 
of the NR and NOS inhibitor to the nitrate solution increased 
SoGSNOR expression, compared with the nitrate treatment. 
As shown by the western blot analysis, the SoGSNOR protein 
level showed the similar pattern with the SoGSNOR transcript 
level (Fig. 1b).

SoGSNOR confers enhanced nitrate stress tolerance 
in transgenic tobacco seeds

To reveal the biological function of SoGSNOR, the coding 
region was inserted into pRI101 under the control of 35S pro-
moter. 20 kanamycin-resistant tobacco plants were obtained 
by PCR detection. The expected fragment was detected in the 
transgenic plants, while this gene was not detected in the WT 
plants (Fig. 2a). Then qRT-PCR was carried out to further 
confirm the transgenic tobacco lines. The kanamycin-resistant 
plants had significantly higher expression level of mRNA than 
the WT plants (Fig. 2b). Three lines (#3, #4, #12) with differ-
ent SoGSNOR transcript level were selected for seeds germi-
nation analysis.

Sterilized seeds of #3, #4, #12 and WT plants of the T2 
generation were plated on MS medium with or without excess 
nitrate. Without excess nitrate treatment, the germination rate 
of WT and the transgenic seeds were similar (Fig. 3a). When 
seeds were planted on medium containing excess nitrate, the 
germination rate was inhibited and the transgenic plants have 
higher germination rate than the WT. The germination rate 
of WT, #3, #4 and #12 were 48.1%, 93.3%, 80.5%, 93.6% 
on 9th day, respectively (Fig. 3d). The results suggested that 
overexpression of SoGSNOR enhanced nitrate stress tolerance.

Response of SoGSNOR transgenic seedlings 
to excess nitrate treatment

To further reveal the response of SoGSNOR overexpression 
transgenic seedling to nitrate stress, 4-week-old transgenic 
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and WT plant seedlings were treated with 100 mM nitrate 
hydroponically for 24 h. Photosynthetic gas exchange param-
eters were then analyzed. There was no significant difference 
of the net photosynthesis rate (Pn) between the transgenic 

and WT plants under normal conditions (Fig. 4). The Pn 
decreased significantly after nitrate stress treatment in both 
WT and transgenic plants, while the transgenic plants have 
higher Pn than the WT plants. Similar results were observed 
in transpiration rate (E), stomatal conductance (Gs) and 
WUE between the transgenic and WT plants.

The transcript level of 6 genes expressed under salt and 
osmotic stress was evaluated with qRT-PCR, including 
NtDREB2 (Dehydration-Responsive Element-Binding Fac-
tor 2), NtDREB4, NtLEA5, NtERD10c (LEA-protein 10c), 
NtERD10D, NtP5CS1 (delta1-Pyrroline-5-Carboxylate 
Synthetase 1). Under normal conditions, there was no dif-
ference of the expression levels of these stress-responsive 
genes between WT and transgenic plants. After nitrate treat-
ment, the expression of NtERD10D, NtERD10c, NtDREB2, 
NtDREB4, NtP5CS1, NtLEA5 increased, and their expres-
sion in transgenic tobacco was higher than the WT (Fig. 5). 
The above results suggested that the SoGSNOR overexpres-
sion transgenic plants have higher nitrate stress tolerance 
than the WT plants.

Overexpression of SoGSNOR alleviated excess 
nitrate‑induced oxidative stress in transgenic 
tobacco seedlings

To elucidate the mechanism of higher tolerance of SoG-
SNOR-overexpressing transgenic plants after nitrate treat-
ment, the MDA contents and ROS accumulation were ana-
lyzed. There were no difference of MDA contents between 
WT and transgenic plants under normal condition. The MDA 

Fig. 1  Analysis of the transcript 
and protein level of SoGSNOR 
under control (CK) and nitrate 
stress supplemented with NO 
donor (SNP), NR inhibitor 
(tungstate) and NOS inhibitor 
(L-NAME) in spinach roots. a 
qRT-PCR analysis of SoG-
SNOR. b Western blot analysis 
of the SoGSNOR protein level. 
Data are mean values ± SD of 
three independent experiments. 
Error bars with different letters 
indicate significant differences 
(p  < 0.05). For western blot, 
protein was stained with pon-
ceau as loading control
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contents were significantly lower in the transgenic plants 
than that of the WT plants after nitrate treatment (Fig. 6a) 
(P < 0.05). Overexpression of SoGSNOR did not affect ROS 
accumulation in the control. An obviously increase in ROS 
accumulation was observed in the roots under excess nitrate 
stress, especially in WT plants (Fig. 6b, c).

Then, the SOD, CAT and POD activities were analyzed 
in the WT and transgenic plants after nitrate treatment. The 
SOD, CAT and POD activities have no difference between 
the transgenic and WT plants under control (Fig. 7). After 
nitrate treatment, the activities of SOD, CAT and POD were 
significantly higher in the transgenic than the WT plants, 
especially in the transgenic line #4 (p < 0.05). The SOD, 
CAT and POD activities in #4 line were 6.63-, 2.18-, 2.41-
fold (respectively) above the control after nitrate treat-
ment. The transcript level of NtSOD (Mn SOD), NtCAT  
and NtPOD were then analyzed by qRT-PCR assay. Before 
the nitrate stress, there has no significant difference of the 
transcript levels of NtSOD, NtCAT  and NtPOD between 
the transgenic and WT plants. After nitrate treatment, the 

NtSOD, NtCAT  and NtPOD expression level were all sig-
nificantly higher than the WT plants, especially the #4 line 
(p  < 0.05) (Fig. 7).

Overexpression of SoGSNOR resulted in lower 
NO and SNOs contents in the tobacco seedlings

As shown in Fig. 8a, b, the NO accumulation in the trans-
genic plants was lower than the WT plants under the control. 
After nitrate treatment, the NO accumulation increased dra-
matically, and the NO contents in the transgenic plants were 
lower than the WT plants. Then, we analyzed the activities 
of the main NO production enzymes of NR and NOS. The 
NR activity in the transgenic lines was lower than the WT 
plants in the control. After nitrate treatment, compared to the 
control, the NR activity in the transgenic plants increased, 
but was lower than the WT. The NOS-Like activity showed 
no difference between the transgenic plant and WT under 
control and nitrate stress. Western blot analysis showed that 
the NR protein level in the transgenic plants was lower than 

Fig. 3  Overexpression SoGSNOR enhances the germination rate 
of transgenic tobacco seeds under nitrate stress. a, b Pictures of the 
WT and transgenic seeds after sowing on MS or MS added 100 mM 

nitrate for 10 days. c, d Germination rates of WT and transgenic lines 
under normal and nitrate stress treatment from 1 to 9th day
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the WT plants in the control and after nitrate stress treat-
ment. After nitrate stress treatment, the NR protein level 
increased, especially the WT and #4 line.

The GSNOR activities were significantly higher in 
the overexpressing transgenic plants than the WT plants 
(p < 0.05). After nitrate treatment, the SoGSNOR activities 
increased in the transgenic and WT plants, especially in the 
transgenic plants. Western blot analysis also showed that the 
GSNOR protein level in the transgenic plants was higher 
than the WT plants (Fig. 9a, c).

In the normal conditions, the SNOs contents in the trans-
genic plants were lower than the WT plants. After nitrate 
treatment, the SNOs contents increased in the transgenic 
and WT plants, and the SoGSNOR overexpressing transgenic 
plants have lower SNOs contents than the WT plants. The 
SNOs contents increased by 33.22%, 23.76%, 28.78% in the 
WT, #4 and #12, respectively, after nitrate treatment, com-
pared with the control (Fig. 9b).

Plant non-symbiotic class 1 hemoglobin (nsHb1) plays 
role as a modulator of NO levels in plants by a dioxygenase 

mechanism (Hebelstrup et al. 2014). As shown in Fig. 9c, 
western blot analysis showed that nsHb1 protein level in the 
transgenic plants was higher than the WT plants. The protein 
level increased after nitrate stress treatment, especially in the 
transgenic plants, indicated the better function of scavenging 
NO in the SoGSNOR transgenic plants.

Discussion

GSNOR plays important roles in plants development, 
biotic and abiotic stresses. In this study, we cloned the 
SoGSNOR gene by RT-PCR and RACE-PCR. SoGSNOR 
showed high similarity with GSNOR of other plants (Fig. 
S1). A significant reduction in GSNOR activity is evident 
in response to salt stress in sunflower seedlings (Jain et al. 
2018). In our previous study, SlGSNOR expression was 
decreased under nitrate stress in tomato (Guo et al. 2018). 
Similar results were reported in Arabidopsis exposed 
to paraquat-induced oxidative stress, in which GSNOR 
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activity was inhibited with a concomitant increase in cel-
lular SNOs (Guerra et al. 2016). In this study, we found 
the SoGSNOR transcript and protein level were decreased 
after nitrate treatment for 24 h (Fig. 1), suggesting that 
SoGSNOR was related to excess nitrate stress tolerance. 
GSNOR enzymatic activity was significantly increased by 
NO treatment in rice plants grown under aluminum stress 
(Yang et al. 2013). While, the protein level of GSNOR was 
decreased by NO donors (Chen et al. 2009) in Arabidop-
sis. In this experiment, exogenous NO decreased the SoG-
SNOR expression under nitrate stress, but NR and NOS 
inhibitor enhanced its expression. These results suggested 

that the activity of GSNOR in plant defense might differ 
with NO accumulation (Salgado et al. 2013).

To further investigate the function of GSNOR in spin-
ach under nitrate stress, overexpression transgenic tobacco 
lines were obtained (Fig. 2). The SoGSNOR- overexpress-
ing transgenic lines have higher germination rate than the 
WT plants under excess nitrate stress (Fig. 3), suggesting 
that SoGSNOR-overexpressing transgenic tobacco plants 
showed improvement in nitrate stress tolerance. The ability 
to maintain an optimal rate of photosynthesis is essen-
tial to salt acclimation. Overexpression of the tomato 
GSNOR can degrade the maintained redox homeostasis, 
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resulting in a greater photosynthetic capacity in Fe-defi-
ciency condition (Wen et al. 2019) and protect the pho-
tosynthetic apparatus under alkaline stress (Gong et al. 
2015). In this study, the SoGSNOR transgenic tobacco 
plants have higher photosynthetic rate than the WT plants 
(Fig. 4), suggesting that overexpression of SoGSNOR can 
protect the photosynthetic system under nitrate stress. In 
our previous study, photosynthetic oxygen-evolving pro-
tein (OEC), and ribulose-1,5-bisphosphate carboxylase 
oxygenase (rubisco) were found to be S-nitrosylated in 
the spinach root under nitrate stress (Zheng et al. 2016). 
Gong et al. (2015) provided evidence that overexpression 
of tomato GSNOR can degrade the intracellular RNS to 
reduce the photosynthetic proteins S-nitrosylation level, 

and then protects the photosynthetic apparatus under alka-
line stress(Gong et al. 2015).

The expression of stress-responsive genes often 
increased under salinity conditions. P5CS1 encodes a key 
enzyme in the biosynthesis of proline, which is important 
for stress tolerance (Mattioli et al. 2009; Yoshiba et al. 
1999). Late embryogenesis abundant (LEA) proteins 
are large groups of hydrophilic proteins with major role 
in drought and other abiotic stresses tolerance in plants 
(Magwanga et al. 2018). Overexpression of a group I LEA 
protein increases ABA sensitivity and enhances osmotic 
tolerance in rice (Yu et al. 2016). ERD10 (C/D) are group 
2 late embryogenesis abundant (LEA) proteins, which can 
partially bind water, stabilize labile enzymes, and protect 

Fig. 6  Effect of excess nitrate stress on MDA contents and ROS accu-
mulation in WT and SoGSNOR-transgenic tobacco seedlings. a MDA 
contents. b ROS accumulation. The ROS accumulation was analyzed 
with 20 μM  H2DCFDA and visualised in a fluorescence microscope 
and photographed. c ROS production expressed as relative fluo-

rescence. Data are mean values ± SD of three independent experi-
ments. Error bars with different letters indicate significant differences 
(p   < 0.05). Signal intensities of green fluorescence in the images 
were quantified using Image J software (http://rsb.info.nih.gov/ij/)

http://rsb.info.nih.gov/ij/
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cellular and macromolecular structures, reduce extensive 
membrane damage. In our study, the transcript level of 
NtERD10D, NtERD10c, NtDREB2, NtDREB4, NtP5CS1, 
NtLEA5 increased under excess nitrate treatment in the 
transgenic plants, compared to the WT plants (Fig. 5), 
suggesting that SoGSNOR- overexpressing tobacco plants 
might enhance nitrate stress tolerance by increasing the 
transcript levels of these stress related genes.

GSNOR-mediated RNS levels are cross-linked with 
ROS homeostasis in plants (Rusterucci et al. 2007). Exces-
sive accumulation of ROS is potentially harmful to cells 
and causes oxidative damage to proteins, DNA, and lipids 
(Apel and Hirt 2004). MDA, an important intermediate in 
ROS scavenging, is toxic to plant cells if it accumulates 
excessively, so it is often used as an indicator of oxidative 
attack on membrane lipids (Apel and Hirt 2004; Mittler et al. 
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2004). The MDA content and ROS fluorescence increased 
significantly in WT plants compared with the transgenic 
after nitrate stress (Fig. 6), which meant that nitrate stress 
produced more oxidative damage in WT tobacco plants. 
Increased oxidative stress were observed in wild Solanum 
habrochaites, together with increased GSNOR activity and 
reduced S-nitrosothiols under salinity stress (Jedelska et al. 
2019). Plants have evolved efficient enzymatic and nonenzy-
matic detoxification mechanisms to scavenge ROS (Xu et al. 
2013). Enzymatic ROS scavenging mechanisms in plants 
include SOD, CAT, glutathione peroxidase, ascorbate perox-
idase, and peroxiredoxin (Apel and Hirt 2004; Mittler et al. 
2004). The SoGSNOR transgenic plants have significantly 
higher transcript level and activities of SOD, CAT and POD 
than the WT plants after nitrate stress treatment (Fig. 7), 

indicating that SoGSNOR overexpression tobacco plants 
can enhance nitrate stress tolerance by removing the excess 
ROS through higher antioxidant enzyme activities. Previous 
studies showed that some ROS scavenging enzymes, includ-
ing SOD, CAT, ascorbate peroxidase were S-nitrosylated to 
modulate its enzyme activities (Gong and Shi 2019). These 
results suggested the interactions between RNS- and ROS- 
mediated signaling pathways in stress tolerance.

NR and NOS are two key enzymes for NO synthesis in 
plants. In this study, the NR activities and protein levels were 
lower in the transgenic plants than the WT. The NOS-Like 
activities have no difference between WT and SoGSNOR 
transgenic plants under normal and nitrate stress condition 
(Fig. 8). Frungillo et al. (2014) reported that S-nitrosothiols 
regulate NO production and storage in plants through the 

Fig. 8  Effect of excess nitrate stress on NO accumulation, NR and 
NOS-Like activities, NR protein level in SoGSNOR-transgenic and 
WT seedlings. a NO accumulation. The NO accumulation was meas-
ured using the fluorescent dye diaminofluorescein-FM diacetate and 
visualised in a fluorescence microscope and photographed. b NO 
production expressed as relative fluorescence. c NR activities. d 

NOS-Like activities. e NR protein level. Data are mean values ± SD 
of three independent experiments. The scale bar was 126 µm. Signal 
intensities of green fluorescence in the images were quantified using 
Image J software (http://rsb.info.nih.gov/ij/). For western blot, protein 
was stained with ponceau as loading control

http://rsb.info.nih.gov/ij/
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nitrogen assimilation pathway. Our results indicated that NR 
might be the main enzyme of the production of NO, which 
was different from Zhao et al. (2007), who found that inhi-
bition of root elongation in maize by high external nitrate 
is likely to result from a reduction of nitric oxide synthase-
dependent endogenous NO levels in maize root apical cells.

GSNOR is a key enzyme which regulates intracellular 
levels of GSNO and indirectly also of protein SNOs, con-
sequently, regulate cellular NO homeostasis (Ticha et al. 
2017). SNOs play roles in signaling, transport and storage 
of NO. Salt stress has been demonstrated to elevate SNOs 
content in olive and sunflower seedling plants (Jain et al. 
2018; Valderrama et al. 2007). The Arabidopsis mutant 
that is deficient in GSNOR activity is more sensitive to 
high temperature stress, because of high levels of SNOs 
(Lee et al. 2008). In this study, overexpression SoGSNOR 
enhanced the excess nitrate stress tolerance in transgenic 
tobacco with lower NO and SNOs contents than the WT 
plants (Fig. 9). Increased AtGSNOR1 activity reduced 
SNO formation, enhancing protection against ordinarily 
virulent microbial pathogens in Arabidopsis (Feechan 

et al. 2005). These results indicated that GSNOR exerts 
crucial roles in the homeostasis of NO and SNOs in plant 
cells.

Besides impacting NO homeostasis via S-nitrosylation 
reactions, plant Hbs can control developmental and physi-
ological responses by modulating cellular NO levels (Hill 
2012). Arabidopsis AtHb1 functions as a NO-dioxygenase, 
metabolizing NO to nitrate(Perazzolli et al. 2004). The 
control of NO homeostasis by hemoglobin gene expres-
sion has been reported to participate to nitrate sensing 
in maize roots (Trevisan et  al. 2011). In our previous 
study, after nitrate treatment, the spinach nsHb expres-
sion induced and might control the endogenous NO con-
tents (Zheng et al. 2016). Mycorrhizal fungi decrease NO 
content in Al-treated Medicago roots, probably via active 
NO scavenging system of GSNOR and Hb (Sujkowska-
Rybkowska et al. 2018). In this study, the overexpression 
transgenic plants have higher nsHb1 expression, indicating 
that Hb might function in the scavenging of the excess NO 
accumulation.

Fig. 9  Effect of excess nitrate stress on the GSNOR activity (a), 
SNOs contents (b), protein level of GSNOR and nsHb (c) in SoG-
SNOR-transgenic and WT seedlings. Data are mean values ± SD of 

three independent experiments. Error bars with different letters indi-
cate significant differences (p  < 0.05). For western blot, protein was 
stained with ponceau as loading control
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Conclusion

In summary, we amplified the SoGSNOR gene from spin-
ach root. The decreased SoGSNOR expression leads to NO 
accumulation under excess nitrate stress. In the SoGSNOR-
overexpression transgenic plants, the higher expression of 
GSNOR and nsHb1 protein, and lower NR activity lead 
to lower NO and SNOs contents; the higher antioxidant 
enzyme activities lead to lower ROS accumulation. These 
results suggest that GSNOR enzyme appears to have 
an important role in the maintenance of ROS and RNS 
homeostasis.
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