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Abstract
Argan (Argania spinosa (L.) Skeels) is an endangered and endemic agroforestry species of Morocco highly appreciated for 
its nutraceutical properties. Herein, the antioxidant activity, total phenolic content and fatty acids were evaluated in different 
extracts obtained from callus culture, seeds and leaves of four argan genotypes: G25, G36, G41 and G84. Callus induction, 
proliferation and morphology varied depending on genotype and explant type. The highest callus induction rate (97.5%) was 
observed in the cotyledon explants of genotype G84. The radical scavenging activity values ranged from 76.5 to 98.1%. The 
essential oils extracted from calli induced from seedling-derived leaves exhibited a slightly higher radical scavenging activ-
ity (91.7%) than those extracted from field-grown leaves (90–91.1%). The total phenolic content ranged from 0.72 mg/g dry 
weight gallic acid equivalent in the methanolic extracts of G84 callus obtained from seedling-derived leaves to 198.26 mg/g 
dry weight gallic acid equivalent in the essential oils of G84 seeds. The fatty acid composition varied significantly among 
the different samples. The essential oils extracted from seeds and callus obtained from cotyledon explants have high contents 
in oleic and linoleic acids (26–37.9% and 25–36.8%, respectively), while the major fatty acid found in the essential oils of 
leaves and callus obtained from seedling-derived leaves was eicosenoic acid (18.8–45.4%). The present study showed that 
argan callus culture could be envisaged for sustainable and continuous production of bioactive compounds, and that each 
extract analyzed had unique and distinct characteristics.

Key message 
The essential oils and other extracts obtained from argan callus induced in vitro were characterized and were compared with 
those obtained from seeds and field-grown leaves
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Introduction

Argan (Argania spinosa (L.) Skeels) is an endangered and 
endemic tree of Morocco (Koufan et al. 2018). It is an agro-
forestry species that belongs to the Sapotaceae family (Guil-
laume et al. 2019; Koufan et al. 2018). The argan tree is 
natively grown in a limited Atlantic coastal area of Morocco 
characterized by specific microclimatic conditions that allow 
its survival (Guillaume et al. 2019). Today, this species can 
be found in other countries such as Algeria, Spain, Kuwait 
and Mexico (Falasca et al. 2018).

Argan plays important ecological roles such as prevent-
ing desertification, preserving biodiversity and improving 
soil and water quality (Moukrim et al. 2019). However, its 
most important attribute is its socioeconomic impact. In fact, 
in Morocco, argan oil extraction and processing activities 
contribute to the income of around one-fifth of the local 
population of its cultivation area (Metougui et al. 2017). 
Besides, argan oil is highly appreciated for its nutraceutical 
properties. Indeed, this oil is rich in bioactive compounds 
that have protective effects against many diseases (Charrouf 
and Guillaume 2008; Khallouki et al. 2003). These attrib-
utes, along with the limited geographical area of cultivation, 
make argan oil one of the most expensive edible oils in the 
market (Lybbert et al. 2011).

While many studies have been previously carried out to 
characterize the edible oil of argan (e.g. Charrouf and Guil-
laume 2008; El Kharrassi et al. 2018), there is a lack of 
information concerning the characterization of its essential 
oils and other extracts. For example, the methanolic and eth-
anolic ones. Essential oils are a group of secondary metabo-
lites known for their antimicrobial and antioxidant activities 
since they contain phenolic functional groups (Swamy et al. 
2016; Vergis et al. 2013). They have been widely used in 
pharmaceutic, cosmetic and food industries, and recently, 
their use was suggested in plant micropropagation since 
they exhibited remarkable activities against tissue browning 
and endophytic bacteria of date palm (Meziani et al. 2019). 
Essential oils can be extracted from different parts and 
organs of plants, including callus induced in vitro (Flamini 
et al. 2002; Jawdat et al. 2016). Interestingly, extracting 
essential oils from callus was suggested as an efficient and 
renewable approach to produce bioactive compounds from 
plants (Razavizadeh and Komatsu 2018). Similarly to essen-
tial oils, the methanolic and ethanolic extracts of plants also 
contain bioactive compounds that have interesting biological 
activities and can be used in pharmaceutical and food indus-
tries (Lin et al. 2018; Mayouf et al. 2019). Some of these 
compounds are polyphenols and fatty acids. Polyphenols are 

bioactive molecules and a class of plant secondary metabo-
lites known for their antioxidant activity and their role in 
preventing many degenerative diseases (Abbas et al. 2017; 
Hättenschwiler and Vitousek 2000; Scalbert et al. 2005). 
Fatty acids are also bioactive molecules that play impor-
tant roles in promoting human health (Fauser et al. 2011; 
Wang et al. 2012). They are known for mediating important 
biological functions such as cell signaling regulation, and 
gene activation and expression. Fatty acids are also essential 
for normal growth and development, and were reported to 
reduce the risk of coronary heart disease, to decrease the 
incidence of hypertension and to improve cognitive func-
tions in old age (Ibarguren et al. 2014).

Studies on the characterization of essential oils, metha-
nolic and ethanolic extracts of argan and their biological 
activities are very scarce. El Kabouss et al. (2002) analyzed 
the composition of the essential oil of argan leaves and found 
that it contains mainly sesquiterpene alcohols and hydrocar-
bons. In addition, the antibacterial activity of this oil was 
demonstrated. Harhar et al. (2010) reported that the main 
component of the essential oil of argan fruit pulp is camphor, 
suggesting its use as insecticide, whereas Haloui and Meniai 
(2017) determined the fatty acid composition of the essen-
tial oil from argan seeds. On the other hand, Dakiche et al. 
(2016) evaluated the total polyphenol and flavonoid contents 
in the methanolic extracts of argan leaves and reported their 
antioxidant and antibacterial activities as well as their cyto-
toxic properties against PC3 human prostate cancer cells. 
Samane et al. (2006) indicated that the methanolic extracts 
of the almonds and cake of argan could be used against 
some serious chronic diseases while Guinda et al. (2011) 
determined the composition in triterpenic compounds of the 
ethanolic extracts of argan leaves and fruits.

With all these favorable characteristics of essential oils 
and other extracts derived from argan that confer to them 
a high economic value, callus culture can be envisaged for 
sustainable and continuous production of bioactive com-
pounds from this endangered species. Accordingly, the 
establishment of efficient systems for callus induction and 
multiplication in argan could be of great benefit for cos-
metic and pharmaceutical industries. However, studies on 
in vitro callogenesis of Argania spinosa, and the evaluation 
of the biological activity of calli as well as their use as a 
potential source for metabolite production are very scarce. 
Lamaoui et al. (2019) evaluated the effects of various plant 
growth regulator (PGR) combinations on callus induction 
from different explants of argan and found that 1 mg  l−1 
1-naphthaleneacetic acid (NAA) and 1 mg  l−1 2,4-dichloro-
phenoxyacetic acid (2,4-D) is the most efficient combination 
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for callogenesis. Besides, it was found that the antioxidant 
activity of callus is affected by water and salt stresses 
(Lamaoui et al. 2015, 2019).

The purpose of the present work was to determine and 
compare the total phenolic content, fatty acids and the anti-
oxidant activity in the ethanolic and methanolic extracts as 
well as the essential oils of field-grown leaves, seeds, and 
calli induced in vitro from four selected genotypes of Arga-
nia spinosa (L.) Skeels.

Materials and methods

Chemicals

Folin-Ciocalteu’s reagent was purchased from Sigma 
Aldrich (Lyon, France). Sodium carbonate was purchased 
from Labkem (Barcelona, Spain). Gallic acid and 2,2-diphe-
nyl-1-picrylhydrazyl (DPPH) were purchased from Loba 
Chemie (Mumbai, India). Boron trifluoride (BF3), 2,4-
D, NAA, potassium hydroxide (KOH), sodium hydroxide 
(NaOH), hexane, and ethanol were purchased from Fisher 
Scientific (Illkirsh, France). Sucrose, indole-3-acetic acid 
(IAA) and 6-benzyladenine (BA) were purchased from 
Sigma (Steinheim, Germany). Agar was purchased from 
Sigma (St. Louis, MO, USA).

Plant material

Leaf and mature fruit samples of argan (Argania spinosa L.) 
were collected from four genotypes: G25 (G-A2L5), G36 
(G-A3L6), G41 (G-A4L1) and G84 (G-A8L4), all grown in 
the experimental station Melk Zhar (30° 02′ 33.0″ N 9° 33′ 
04.0″ W) of the National Institute of Agronomic Research 
of Morocco (INRA), Regional Center of Agadir (CRRA-
Agadir). These genotypes (10 years old) were selected based 
on their superior agronomic and ecological characteristics. 
All the leaves and fruits used in the present study were col-
lected in June 2018. The seeds were extracted from the 
fruits immediately after harvest. All samples (leaves and 
seeds) were thoroughly washed with sterile distilled water 
(SDW), dried by lyophilization (Christ Alpha 1–4 LD plus, 
Germany) for 48 h at − 60 °C, ground to fine powder then 
stored at 4 °C for later use.

In vitro culture conditions

All culture media were supplemented with 30 g  l−1 sucrose 
and 6 g  l−1 agar. The pH of all media was adjusted to 5.7 
before autoclaving at 121 °C for 20 min. The cultures were 
kept at 25 °C and transferred to fresh medium at monthly 
intervals.

For seed germination and seedling development, a pho-
toperiod of 16 h was applied. For callus induction and mul-
tiplication, the cultures were kept under dark conditions. 
Before utilization, calli were lyophilized for 48 h at − 60 °C, 
ground to fine powder then stored at 4 °C.

Callus induction

Mature argan fruits were harvested from the previously men-
tioned genotypes. The fruits were thoroughly washed with 
tap water then the seeds were extracted and disinfected as 
follows: they were first thoroughly washed with SDW, then 
they were disinfected for 10 min in a solution consisting 
of 50% commercial bleach (5% sodium hypochlorite, ACE, 
Mohammedia, Morocco) and 50% SDW, followed by three 
rinses (10 min each) in SDW. Afterwards, two different types 
of explants were used to induce callogenesis. In the first 
case, seeds were cultured for one month on agar medium, 
which consists of 0.6% agar dissolved in distilled water. 
After germination, the seedlings (Fig. 1a) were transferred 
to half-strength Murashige and Skoog medium (1/2MS; 
Murashige and Skoog 1962) supplemented with 1 mg  l−1 
IAA and 1 mg  l−1 BA for two months. The developed young 
leaves (Fig. 1b) were used as explants. In the second case, 
zygotic embryos (Fig. 1c) were aseptically excised from the 
seeds and their cotyledons were used as explants.

For callus induction and multiplication, the explants were 
cultured on 1/2MS medium supplemented with 1 mg  l−1 
NAA and 1 mg  l−1 2,4-D as suggested by Lamaoui et al. 
(2019).

Methanolic extract preparation

Methanolic extracts were prepared according to Yesil-Celik-
tas et al. (2007). Briefly, 1 g of fine powder of seeds, leaves 
and calli were mixed with 20 ml methanol in a sonication 
bath (SB-3200DTDN, Ningbo Hinotek Instrument, Ningbo, 
China) for 45 min at 20 kHz and 50 °C. The solvent was 
then evaporated using a rotatory vacuum evaporator (Büchi 
R-205 with a V-800 vacuum control, Flawil, Switzerland) 
then the recovered product was stored at − 20 °C for further 
use.

Ethanolic extract preparation

Ethanolic extracts were prepared according to Robles-Mar-
tínez et al. (2016). Briefly, 50 mg of fine powder of seeds, 
leaves and calli were macerated in 5 ml of absolute ethanol 
for 2 h at 4 °C and then filtered using Whatman No. 42 filter 
paper. The samples were adjusted to 5 ml using absolute 
ethanol then stored at − 20 °C for later use.
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Essential oil extraction

Essential oil extraction was performed according to Bern-
abé-Antonio et al. (2015) with slight modifications. Briefly, 
1.5 g of fine powder of seeds, leaves and calli were soxhleted 
using 250 ml of hexane. The extraction was performed in 
three cycles of 24 h each at room temperature. The extracts 
were then dried using rotatory vacuum evaporator then 
stored at 4 °C until use.

Total phenolic content

For methanolic extracts, the total phenols were determined 
according to Yesil-Celiktas et al. (2007) with some modifi-
cations. Briefly, 14 mg of the methanolic extract was mixed 
with 2 ml methanol. Afterwards, a 10-µl aliquot was mixed 
with ultrapure water and 0.5 ml of Folin–Ciocalteu reagent. 
The solution was shaken vigorously by vortex then left to 
stand for 5 min. The mixture was neutralized with a solu-
tion of 1.5 ml saturated sodium carbonate, shaken vigor-
ously then left to stand again for 1 h at ambient temperature. 
Absorbance was spectrophotometrically determined at 760 
nm.

For ethanolic extracts, 20 µl of each solution was mixed 
with 1.6 ml of ultrapure water and 0.1 ml of Folin–Ciocalteu 
reagent. The mixture was left to stand for 8 min at ambi-
ent temperature then 0.3 ml of a solution of 20% sodium 
carbonate was added to it (Robles-Martínez et al. 2016). 
The reaction mixture was left to stand for 2 h in the dark 
at ambient temperature and then the absorbance was read 
spectrophotometrically at 760 nm.

For essential oils, chemical extraction was car-
ried out following the protocol of Seiquer et al. (2015). 

Subsequently, 10 µl of each sample was mixed with 10 µl 
of Folin–Ciocalteu reagent. The mixture was left to stand 
for 3 min then 200 µl of a solution of sodium carbonate 
(75 g  l−1) was added to it. Afterwards, the mixture was 
adjusted to 250 µl with Milli-Q water, shaken then left to 
stand for 60 min. The absorbance was read spectrophoto-
metrically at 750 nm (Seiquer et al. 2015).

The total phenolic content was expressed as gallic acid 
(GAE) equivalents (mg per gram of dry extract) using 
the following equation, based on the calibration curve: 
y = 0.0144 x + 0.034, where y is the absorbance.

Fatty acid composition

The fatty acid composition was determined according to 
Hernandez et al. (2015) with slight modifications. Briefly, 
100 µl of the essential oil of each sample (seed, leaf and 
callus) was mixed with 1 ml of NaOH (2M) in metha-
nol. The mixture was heated in water bath at 80 °C for 20 
min with constant stirring, cooled and a solution of 1 ml 
BF3 (14% in methanol) was added to it. The mixture was 
warmed again to a temperature of 80 °C for 20 min with 
constant stirring. The methyl esters were extracted with 1 
ml of hexane. The samples were analyzed using GC (YL 
Instrument, 6500 GC System, Gyeonggi-do, South Korea) 
equipped with a flame ionization detector (FID) and an 
HP-Innowax column (30 m * 0.32 mm * 0.25 µm). The 
chromatographic analysis conditions were as follows: the 
injector temperature was 220 °C, the oven temperature was 
175 °C and the FID temperature was 220 °C.

Fig. 1  Plant material used for callus induction. a Seedlings after 1 
month of culture on agar medium. b Shoots of argan seedlings after 
2 months of culture on 1/2MS medium supplemented with 1 mg  l−1 

IAA and 1 mg  l−1 BA: leaves were taken from these shoots and used 
as explants for callus induction. c Argan zygotic embryos from which 
cotyledon explants were taken
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Antioxidant activity

The antioxidant activity was determined using the free rad-
ical scavenging activity DPPH. For methanolic extracts, 
500 µg of the stored extract was adjusted to 4 ml using 
methanol, then a volume of 0.5 ml of methanolic DPPH 
(1 mM) was added to it (Yesil-Celiktas et al. 2007). The 
mixture was vortexed for 30 s then left to stand for 30 min 
at ambient temperature. For ethanolic extracts, 0.5 ml of 
the extract was mixed with 0.5 ml of absolute ethanol and 
1 ml of DPPH ethanol solution (0.1 mM) as described by 
Robles-Martínez et al. (2016). The mixture was then left 
to stand at ambient temperature for 30 min. For essential 
oils, chemical extraction was carried out following the pro-
tocol of Seiquer et al. (2015). Subsequently, 50 µl of each 
sample was mixed with 250 µl of DPPH solution (74 mg 
 l−1 in methanol). The mixture was then incubated for 60 
min (Morales and Jiménez-Pérez 2001).

In all cases, the absorbance was spectrophotometrically 
determined using an Optizen 3220 UV–Visible spectro-
photometer (Daejeon, South Korea) at 517 nm. The abil-
ity to scavenge DPPH radical was calculated using the 
following equation: %Radical Scavenging Activity (RSA) 
= ((ADPPH−ASAMPLE)/ADPPH)*100, where  ADPPH is the 
absorbance of the DPPH solution and  ASAMPLE is the 
absorbance of the sample solution.

Statistical analysis

For callus induction, eight explants (from each plant tissue 
type) were cultured per petri dish, which was considered as 
one replicate, and ten replicates were performed. For plant 
extract and essential oil characterization, three replicates 
were performed. All results are reported as means ± stand-
ard deviation.

All data were subjected to one-way analysis of vari-
ance (ANOVA) in a completely randomized design using 
SPSS v. 21 (IBM-SPSS Inc., Chicago, IL, USA). The 
means were compared using Student–Newman–Keuls test 
(P < 0.05), and percentage data were subjected to arcsine 
transformation before analysis.

Results

Callus induction

Few days after placing seeds on agar medium, the radicle 
began to emerge, which was the criterion for successful 
germination. At the end of the first month of culture, large 
cotyledons and a single leafy shoot were also observed. 
The germination frequency was 100% in the four genotypes 
evaluated. After transferring the seedlings to 1/2MS medium 
supplemented with 1 mg  l−1 IAA and 1 mg  l−1 BA, shoot 
elongation and development of new leaves were observed. 
After 2 months of culture, young leaves were collected 
from the growing shoots and transferred to callus induction 
medium.

After 2 months of culture on callus induction medium, the 
callus induction rate and callus morphology varied depend-
ing on genotype and explant type (seedling-derived leaves 
and cotyledons of zygotic embryos). The highest callus 
induction rate (97.5%) was observed in the cotyledons of 
G84, with significant differences with the other genotypes, 
which showed 68.7% (G36), 41.2% (G25) and 30% (G41) 
callus induction rates from cotyledon explants. Regarding 
seedling-derived leaves, here again, the callus induction rate 
was higher (75%) in G84 when compared to G36 (63.7%), 
G25 (30%) and G41 (7.5%; Table 1). On the other hand, 
callus morphology varied depending on the explant. In fact, 
calli derived from cotyledon explants (CC) were white and 
friable (Fig. 2a) while those induced from seedling-derived 
leaves (CL) had a yellow to brown color and were compact 
(Fig. 2b).

While our results clearly demonstrate the effect of argan 
genotype and explant on callus induction, it is worth noting 
that callus proliferation also depends on the genotype. In 
fact, only calli derived from G84 continued to grow after 
transfer to fresh medium (Fig. 2c, d), while those derived 
from genotypes G36, G25 and G41 did not show any prolif-
erative potential. Instead, they gradually withered and died. 
Besides, the G84 calli that were initially white later became 
yellow (Fig. 2c). Based on these results, only calli obtained 
from seedling-derived leaf and cotyledon explants of geno-
type G84 were used for essential oil and extract preparation, 
and subsequent analyses.

Table 1  Callus formation rate 
after 2 months of culture on 
1/2MS medium supplemented 
with 1 mg  l−1 NAA and 1 mg 
 l−1 2,4-D

Data are means ± standard deviation (n = 10). Data followed by the same letter are not significantly differ-
ent at the 5% level (Student-Newman-Keuls)

Explant Genotype

G36 G25 G84 G41

Seedling-derived leaf 63.7 ± 7 c 30 ± 12 b 75 ± 13.1 c 7.5 ± 6.4 a
Cotyledon 68.7 ± 8.8 c 41.2 ± 25.7 b 97.5 ± 5.2 d 30 ± 17.5 b
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Yield of essential oils

The yield of essential oils varied considerably depending on 
the plant material used (Table 2). Generally, seeds showed 
significantly higher yield than leaves and calli. The yield of 
essential oils from seeds ranged from 737.5 to 774.5 mg/1.5 
g dry matter (DM), with no significant difference among the 
four genotypes. The yield of essential oils from field leaves 
ranged from 30 mg/1.5 g DM (in G84) to 109.5 mg/1.5 
g DM (in G36). Regarding the induced calli, the yield of 
essential oils was 61.5 mg/1.5 g DM in those induced from 
seedling-derived leaves and 112.5 mg/1.5 g DM in those 
induced from cotyledon explants.

Total phenolic content

The total phenolic content varied depending on genotype, 
plant material and the extract used (Table 3). Regarding the 
methanolic and ethanolic extracts, leaves exhibited higher 

Fig. 2  Callus induction in argan 
(Argania spinosa L. Skeels): a 
white and friable calli obtained 
from cotyledon explants after 
2 months of culture on 1/2MS 
medium supplemented with 
1 mg  l−1 NAA and 1 mg  l−1 
2,4-D. b Yellow to brown and 
compact callus obtained from 
seedling-derived leaves after 
2 months of culture on 1/2MS 
medium supplemented with 1 
mg  l−1 NAA and 1 mg  l−1 2,4-
D. c Cotyledon callus prolifera-
tion. d Seedling-derived leaf 
callus proliferation

Table 2  Yield of essential oils (mg EO/1.5 g DM) depending on gen-
otype and plant material

Data are means ± standard deviation (n = 3). Data followed by the 
same letter are not significantly different at the 5% level (Student-
Newman-Keuls). DM dry matter, EO essential oils. Origin of plant 
material: CC callus obtained from cotyledon explants, CL callus 
obtained from seedling-derived leaf, S seed, L leaf

Sample Yield (mg EO/1.5 g DM)

CC-G84 112.5 ± 12.9 a
CL-G84 61.5 ± 57.7 a
S-G36 740.0 ± 37.9 b
S-G25 737.5 ± 23.7 b
S-G84 774.5 ± 57.3 b
S-G41 770.0 ± 46.4 b
L-G36 109.5 ± 9.1 a
L-G25 79.5 ± 12.8 a
L-G84 30.0 ± 3.9 a
L-G41 45.0 ± 7.5 a
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total phenolic values than seeds and calli. The highest total 
phenolic content was observed in the ethanolic extracts of 
leaves of G84 (37.34 mg/g DW GAE). This was followed 
by the methanolic extracts of G25 leaves with 31.97 mg/g 
DW GAE. The methanolic and ethanolic extracts of seeds 
and calli showed lower values, ranging from 0.72 mg/g DW 
GAE in the methanolic extracts of CL-G84 to 9.14 mg/g DW 
GAE in the ethanolic extracts of CC-G84. On the other hand, 
when the total phenolic content was evaluated in essential 
oils, very high values were observed, ranging from 34.38 
mg/g DW GAE in CC-G84 to 198.26 mg/g DW GAE in 

S-G84. Here again, there was a significant effect of genotype 
on the phenolic content.

Fatty acid composition

The fatty acid composition varied significantly among the 
different samples (Table 4). The essential oils extracted from 
seeds have high contents in oleic and linoleic acids, ranging 
from 26 (G41) to 34.4% (G25) and from 25 (G84) to 36.8% 
(G41), respectively. Surprisingly, our findings revealed that 
the major fatty acid in leaf essential oils is eicosenoic acid, 
with a content ranging from 18.8 (G36) to 45% (G41 and 
G84). Moreover, it was found that the essential oils obtained 
from the leaves of G25 and G41 do not contain oleic acid. 
Regarding callus essential oils, it was found that those 
obtained from cotyledon explants are rich in oleic (37.9%) 
and linoleic (36.5%) acids, whereas those obtained from 
seedling-derived leaves are rich in eicosenoic acid (45.4%) 
and do not contain linoleic acid. All these results show that 
the fatty acid composition in argan essential oils is unique to 
each genotype, plant material and extract type. Accordingly, 
each sample may have a specific nutraceutical application.

Antioxidant activity

The RSA varied significantly depending on genotype, plant 
material and the extract used (Table 5). The highest RSA 
value (98.1%) was observed in the methanolic extracts from 
the leaves of G36, with no significant difference with the 
values obtained with the methanolic extracts of the leaves of 
G25 (98%), G84 (97.5%) and G41 (97.1%). The methanolic 
extracts of seeds exhibited lower RSA values, ranging from 

Table 3  Total phenolic content in different argan extracts expressed 
as milligram per gram gallic acid equivalent (mg/g DW GAE)

Data are means ± standard deviation (n = 3). Data followed by the 
same letter are not significantly different at the 5% level (Student-
Newman-Keuls). Origin of plant material: CC callus obtained from 
cotyledon explants, CL callus obtained from seedling-derived leaf, S 
seed, L leaf

Sample Methanolic extracts Ethanolic extracts Essential oils

CC-G84 1.55 ± 0.60 a 9.14 ± 0.89 ab 34.38 ± 0.24 f
CL-G84 0.72 ± 0.28 a 5.76 ± 0.56 a 48.06 ± 0.25 g
S-G36 1.18 ± 0.53 a 5.90 ± 2.38 a 159.43 ± 2.86 l
S-G25 0.86 ± 0.69 a 8.53 ± 2.29 ab 151.14 ± 1.03 k
S-G84 1.51 ± 0.32 a 6.22 ± 1.31 a 198.26 ± 3.23 m
S-G41 2.43 ± 0.68 a 6.69 ± 1.36 a 91.73 ± 0.39 h
L-G36 24.39 ± 7.02 de 24.72 ± 1.21 de 133.26 ± 0.85 j
L-G25 31.97 ± 2.70 ef 29.34 ± 16.12 def 136.26 ± 0.22 j
L-G84 22.34 ± 1.29 cd 37.34 ± 0.73 f 194.64 ± 2.93 m
L-G41 20.60 ± 2.44 cd 15.93 ± 8.51 bc 123.70 ± 0.81 i

Table 4  Fatty acid composition (%) of different argan extracts

Data are means ± standard deviation (n = 3). Data in the same column followed by the same letter are not significantly different at the 5% level 
(Student–Newman–Keuls). Origin of plant material: CC callus obtained from cotyledon explants, CL callus obtained from seedling-derived leaf, 
S seed, L leaf

Sample Fatty acids

Palmitic acid 
(C16:0)

Stearic acid 
(C18:0)

Oleic acid 
(C18:1)

Linoleic acid 
(C18:2)

Linolenic acid 
(C18:3)

Arachidic 
acid 
(C20:0)

Eicosenoic acid 
(C20:1)

Behenic acid 
(C22:0)

CC-G84 12.5 ± 0.4 d 0 a 37.9 ± 0.9 i 36.5 ± 0.9 g 1.3 ± 0.2 b 0 a 4.4 ± 0.6 a 2.9 ± 0.2 a
CL-G84 2.7 ± 0.2 a 0 a 3.3 ± 0.1 b 0 a 13.9 ± 1.3 g 8.6 ± 0.4 f 45.4 ± 1.1 g 14.1 ± 0.6 d
S-G36 12.4 ± 0.4 d 0 a 30.3 ± 0.2 g 29.7 ± 0.3 f 4 ± 1 c 2 ± 0 b 13.7 ± 0.3 d 7.8 ± 1 c
S-G25 11.7 ± 0.1 d 0 a 34.4 ± 0.4 h 27.8 ± 0.2 f 3.2 ± 0.2 c 1.6 ± 0.1 b 10.3 ± 0.1 b 4.8 ± 0.7 b
S-G84 12 ± 0.5 d 3.9 ± 0.6 b 28 ± 1.5 f 25 ± 2 e 3.1 ± 0.4 c 2.1 ± 0.1 b 11.6 ± 0.6 bc 4.3 ± 1.4 b
S-G41 15.3 ± 0.3 e 0 a 26 ± 0.9 e 36.8 ± 1.8 g 0 a 1.9 ± 0.2 b 12.3 ± 0.7 cd 5.1 ± 1.9 b
L-G36 12.6 ± 0.1 d 4.7 ± 0.3 c 16.9 ± 0.9 d 13.7 ± 0.3 d 6.9 ± 0.4 e 3.3 ± 0.3 c 18.8 ± 0.3 e 8 ± 0.4 c
L-G25 16.8 ± 0.8 f 0 a 0 a 6.9 ± 0.4 c 6.6 ± 0.4 e 5 ± 0.5 d 32.5 ± 0.5 f 9.4 ± 0.1 c
L-G84 9.3 ± 0.2 c 0 a 7 ± 1 c 4.3 ± 1 b 5.5 ± 0.5 d 7 ± 1 e 45 ± 3 g 16.2 ± 1.4 d
L-G41 5 ± 0.5 b 0 a 0 a 0 a 11.8 ± 0.6 f 6.5 ± 0.5 e 45 ± 2 g 24.5 ± 0.5 e
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76.5% (in G25) to 83.4% (in G84). Regarding the ethanolic 
extracts prepared from seeds and leaves, the RSA varied 
from 85.6% in the seeds of G41 to 92.5% in the leaves of 
G25.

The RSA values of essential oils also varied depending on 
both the genotype and plant material used. Indeed, the essen-
tial oils obtained from leaves showed values between 90 (in 
G36) and 91.1% (G84), while in those derived from seeds, 
the RSA ranged from 78.6% (in G36) to 88.1% (in G41).

The extracts obtained from callus culture of G84 showed 
intermediate results. The lowest RSA value (82%) was 
observed in the methanolic extracts of cotyledon-derived 
calli, while the highest RSA value (91.7%) was observed 
in the essential oils of calli induced from seedling-derived 
leaves. Based on their antioxidant activity, the essential oils 
obtained from calli of seedling-derived leaves can be recom-
mended for nutraceutical applications.

Discussion

In the present work, the antioxidant activity, total phenols 
and fatty acids of methanolic and ethanolic extracts, as 
well as essential oils derived from calli, leaves and seeds of 
four argan genotypes were determined and compared. Cal-
lus induction was achieved from seedling-derived leaves 
and cotyledons. Studies on argan callogenesis are scarce. 
Lamaoui et al. (2019) found that callus formation strongly 
depends on the explant type and PGRs. These authors 
reported that the combination of 1  mgl−1 NAA and 1  mgl−1 
2,4-D resulted in the highest callus formation rate (95%), and 
that axillary bud explants exhibited higher callogenesis than 
leaf, stem and apical bud explants. The PGR combination 

suggested by Lamaoui et al. (2019) resulted in different cal-
lus induction rates, with up to 97.5%. In addition, the find-
ings of the present investigation are consistent with those of 
Lamaoui et al. (2019). In fact, it was found that callus for-
mation depends on the explant source and was significantly 
higher in cotyledons than in seedling-derived leaves. There 
was also a significant effect of genotype on callogenesis. 
Indeed, G84 showed greater induction and proliferation of 
callus than the other genotypes. These findings may reflect 
differences in endogenous plant hormones among different 
explants and genotypes. In fact, it is well known that the 
requirement of exogenous PGRs for callogenesis and/or 
morphogenesis depends on the concentration of endogenous 
plant hormones, which varies among explants and genotypes 
(Gaj 2004; Jiménez 2001; Mazri et al. 2017). The effect of 
genotype on callogenesis was reported in other plant species, 
including spring barley (Šerhantová et al. 2004), bahiagrass 
(Akashi et al. 1993) and olive (Mazri et al. 2012). Based on 
our results, G84 is recommended for metabolite production 
from callus culture of argan. This genotype has a juvenile 
period of 5 years, an oil yield of 48–52% and is character-
ized by abundant foliage, flowering and fruiting.

The findings of the present study showed that callus 
morphology varies depending on the explant. Indeed, while 
Lamaoui et al. (2019) reported that the calli obtained from 
the different explants were yellowish and friable, our find-
ings showed that those induced from cotyledon explants 
were white and friable, whereas those induced from seed-
ling-derived leaves were yellow to brown and compact. 
The effect of explant type on callus morphology was also 
observed in other plant species such as Italian Ryegrass 
(Takahashi et al. 2004) and Chinese chive (Matsuda and 
Adachi 1996).

Phenols are a group of chemical compounds that have 
important biological functions including antimicrobial, 
antioxidant and neuroprotective activities (De Martino et al. 
2009; Kim 2010). Previous studies showed that polyphenols 
extracted from virgin argan oil have anti-proliferative and 
pro-apoptotic effects on human prostate cancer cell lines 
(Bennani et al. 2007), and prevent cardiovascular diseases 
by protecting low-density lipoprotein from oxidation and 
increasing reverse cholesterol transport from human THP-1 
macrophages (Berrougui et al. 2006). The present study 
revealed that the total phenolic content varies depending 
on the genotype and plant material used, but mostly on the 
extract type, with very high concentrations in essential oils. 
This is in good agreement with results from the literature. 
Indeed, Rojas et al. (2005) reported a total phenolic con-
tent of 3.1 mg gallic acid per kilogram in argan cosmetic 
oil, 13.2 mg gallic acid per kilogram in argan alimentary 
oil and 482.6 mg gallic acid per kilogram in press cake. 
Cayuela et al. (2008) found that the total phenolic con-
tent in argan oils obtained using both semiautomatic and 

Table 5  Radical scavenging activity (%RSA) of different argan 
extracts

Data are means ± standard deviation (n = 3). Data followed by the 
same letter are not significantly different at the 5% level (Student–
Newman–Keuls). Origin of plant material: CC callus obtained from 
cotyledon explants, CL callus obtained from seedling-derived leaf, S 
seed, L leaf

Sample Methanolic extracts Ethanolic extracts Essential oils

CC-G84 82.0 ± 0.79 abc 87.0 ± 0.35 bcde 90.4 ± 0.32 cde
CL-G84 83.6 ± 0.13 abcd 90.8 ± 0.62 cde 91.7 ± 0.16 de
S-G36 82.2 ± 0.14 abc 86.9 ± 1.45 bcde 78.6 ± 0.78 ab
S-G25 76.5 ± 1.58 a 87.8 ± 0.96 bcde 86.2 ± 1.15 bcde
S-G84 83.4 ± 3.11 abcd 87.4 ± 2.46 bcde 85.5 ± 0.09 bcde
S-G41 82.0 ± 0.52 abc 85.6 ± 0.39 bcde 88.1 ± 1.00 cde
L-G36 98.1 ± 0.09 f 87.3 ± 0.56 bcde 90.0 ± 1.32 cde
L-G25 98.0 ± 0.23 f 92.5 ± 0.51 e 90.1 ± 0.01cde
L-G84 97.5 ± 0.68 f 92.1 ± 1.40 e 91.1 ± 0.16 de
L-G41 97.1 ± 0.70 f 88.8 ± 2.81 cde 90.4 ± 0.93 cde
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artisanal extraction methods is lower than 10 ppm. El Adib 
et al. (2015) reported that the total phenolic content varies 
significantly depending on the plant part (pulp, seed, and 
leaf extracts). However, it depends also on the genotype and 
harvesting time.

Fatty acids are a source of metabolic and storage energy, 
and play important roles in early human development and 
in metabolism (Innis 2007; Rustan and Drevon 2005). In 
the present work, it was found that fatty acid composition 
depends considerably on genotype, plant material and the 
extract used. Oleic acid (C18:1) and linoleic acid (C18:2) 
were the major fatty acids in the essential oils extracted from 
seeds and cotyledon calli. Charrouf and Guillaume (1999), 
Öntaş et al. (2016), Dakiche et al. (2017) and Ben Mansour 
et al. (2018) all reported that oleic acid (C18:1) is the major 
fatty acid in argan oils (roasted, unroasted, laboratory pre-
pared, traditionally extracted, solvent extracted and com-
mercial oils). Unexpectedly, eicosenoic acid (C20:1) was 
found to be the predominant fatty acid in leaves and callus 
obtained from seedling-derived leaves. This high level of 
eicosenoic acid is noteworthy. In fact, this fatty acid was 
found in breast milk and was reported to have antioxidant 
and immunomodulatory properties (Henry et al. 2002; Pan-
dey et al. 2017). Based on our results, argan leaves and callus 
obtained from seedling-derived leaves can be considered as a 
good source of eicosenoic acid. The fatty acid compositions 
revealed in this study could be an indicator of which extract 
will be appropriate for specific nutraceutical applications.

The antioxidant activity of plant extracts has a beneficial 
effect on human health and is of particular interest to food 
industry (Amarowicz et al. 1999; Dykes et al. 2003).Gener-
ally, few studies have been carried out to examine the anti-
oxidant activity of essential oils and other extracts of argan 
obtained from field-grown plant material and callus culture. 
The findings of the present investigation showed that the 
RSA of argan extracts varies depending on the genotype and 
plant material. This is in good agreement with the findings 
of El Adib et al. (2015), who reported that DPPH-scavenging 
activity varies significantly depending on argan cultivar, the 
plant part used (leaf, pulp or seed) and harvesting time, with 
seeds exhibiting the lowest DPPH-scavenging activity. El 
Monfalouti et al. (2012) also compared the DPPH radical 
scavenging activity of different argan fruit parts and reported 
that the RSA was higher in argan fruit pulp when compared 
with argan shell, kernels and press-cake. Regarding callus 
induced in vitro, Lamaoui et al. (2019) found that argan 
calli increase their antioxidant activity linked to oxidative 
metabolism under salt stress induced by NaCl. Furthermore, 
it was found that the activity of some important antioxidant 
enzymes increases in argan calli under water stress induced 
by PEG 6000 (Lamaoui et al. 2015).

In the present work, no relationship was revealed between 
the total phenolic content and antioxidant activity. For 

example, in argan leaves, the total phenolic content was sig-
nificantly higher in essential oils than in methanolic extracts. 
However, the methanolic extracts showed higher RSA than 
essential oils. This is most likely due to the difference in the 
phenolic composition of the extracts, as well as the differ-
ence in other antioxidant components (Ismail et al. 2004). 
Such results were reported by other researchers who found 
that, in many plant species, high phenolic content does not 
correlate with high antioxidant activity (Chahardehi et al. 
2009; Chanudom et al. 2014; Ismail et al. 2004; Kähkönen 
et al. 1999).

Conclusions

We evaluated and compared the antioxidant activity, total 
phenolic content and fatty acid composition of different 
extracts from various plant parts of four argan genotypes. 
Callus induction and proliferation varied significantly 
depending on genotype and explant type. The RSA values 
were high in all samples. Besides, it is worth noting that 
the essential oils of calli induced from seedling-derived 
leaves have a higher RSA than those obtained from field-
grown leaves. The total phenolic content varied depending 
on genotype, the plant material and the extract used and 
was very high in essential oils when compared to the other 
extracts. On the other hand, the fatty acid composition varies 
greatly among the different samples analyzed. More studies 
should be carried out on argan callus proliferation and use 
as a renewable source of sustainable metabolite production. 
Determination of the detailed phenolic composition of the 
different argan extracts and evaluation of their biological 
relevance for possible application in nutraceutical industries 
are also recommended.
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