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Abstract
Lippia alba (Miller) N.E. Brown is an aromatic plant species of great economic importance due to the medicinal properties 
of its essential oils, which provide stress relief, respiratory and gastrointestinal disease control, and anti-inflammatory and 
natural sedative effects. The plant is also effective in biological control against various pathogens and in food preservation. 
Water deficit is the most critical abiotic factor limiting plant growth and morpho-physiological development, as well as pro-
duction of secondary metabolism compounds. The objective of this work was to evaluate the effect of water deficit on growth, 
photosynthesis, essential oil profile, and the expression of genes related to the biosynthesis of these compounds in L. alba 
grown in vitro. Nodal segments were cultured on medium supplemented with 0, 1, 2, and 3% (w/v) polyethylene glycol for 
45 days. Water stress had a negative effect on primary metabolism indicators, such as growth, leaf area, and photosynthetic 
rate; but a positive effect on amino acid and total protein content. Similarly, secondary metabolism exhibited an increase 
in linalool but a reduction in germacrene levels under water deficit. These findings provide a deeper understanding of how 
water deficit affects primary and secondary metabolism in L. alba, showing the potential of this medicinal species to adapt 
to soils with low water availability, while still being able to grow and synthesize essential oils.

Key message 
Water deficit significantly alters the percentage of the essential oil components linalool and germacrene in Lippia alba plants 
grown in vitro.

Keywords Abiotic stress · Germacrene · Linalool · Polyethylene glycol

Introduction

Due to their sessile nature, plants are constantly subjected 
to various abiotic factors. Hence, recognizing these sources 
of stress and deploying mechanisms to counteract them is 
essential for their survival (Barkla et al. 2013).

Water deficit is the most critical abiotic factor limiting 
plant growth, their morphology, as well as physiological 
and biochemical processes (Bosabalidis and Kofidis 2002; 
Wu et al. 2008; Cairns et al. 2012; Ghotbi‐Ravandi et al. 
2014; Maatallah et al. 2016; Allahverdiyev 2016; Kumar 
et al. 2017). Growth is particularly compromised as low 
water availability causes loss of turgidity, thus reducing cell 
division and elongation (Lawlor and Cornic 2002; Jaleel 
et al. 2008; Ge et al. 2012). Water scarcity promotes also 
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the formation of reactive oxygen species, such as superox-
ide radicals, singlet oxygen, hydroxyl radicals, and hydro-
gen peroxide, which impair protein, nucleic acid, and lipid 
synthesis (Mittler et al. 2004; Ozkur et al. 2009; Xie et al. 
2016). Furthermore, plants respond to water deficit by induc-
ing stomatal closure, restricting water loss by transpiration, 
reducing  CO2 diffusion from intercellular spaces to the 
chloroplast and, ultimately, decreasing photosynthetic rates 
(Flexas et al. 2004; Chaves et al. 2009; Li et al. 2017).

Cellular and physiological responses to water limitation 
allow plants to mitigate cell damage while adapting to this 
condition. Responses include biosynthesis and accumulation 
of organic solutes such as proline, which plays an important 
role in osmotic adjustment (Hasegawa et al. 2000; Mer-
wad et al. 2018), and synthesis of free radical scavenging 
enzymes, such as peroxidase, catalase, peroxide dismutase, 
and ascorbate peroxidase (Sofo et al. 2015). In addition, 
hormonal regulation determines changes in phytohormones, 
such as abscisic acid, cytokinins, gibberellic acid, auxins, 
and ethylene (Sharp 2002; Du et al. 2010; Wilkinson and 
Davies 2010; Peleg et al. 2011; Xuemei et al. 2011; Wilkin-
son et al. 2012).

Secondary plant metabolism is also modulated by water 
deficit, as manifested by variations in the quality and quan-
tity of essential oils produced by aromatic plants (Petropou-
los et al. 2008; Yadav et al. 2014; Mandoulakani et al. 2017; 
Morshedloo et al. 2017).

The biosynthesis of essential oil components occurs via 
two distinct pathways: the mevalonate pathway (MEV) and 
the methylerythritol phosphate pathway (MEP). The MEV 
pathway occurs in the cytosol, where sesquiterpenes are syn-
thesized from the precursors pyruvate and acetylcoenzyme-
A. The MEP pathway occurs in the plastids, where pyruvate 
and glyceraldehyde-3-phosphate are used as the precursors 
for the synthesis of monoterpenes (Chemat et al. 2013; Pérez 
Zamora et al. 2018). Examples of sesqui- and monoterpene 
synthesis genes are, respectively, nerolidol synthase and 
geraniol synthase (Castro et al. 2019).

The genus Lippia is distributed throughout Latin America 
and Africa, where it has adapted to various environments. 
Lippia alba (Verbenaceae) has great economic and social 
importance due to its essential oil rich in bioactive com-
pounds (Vieira et al. 2016). The oil can prevent and treat car-
diovascular disease, bronchitis, cough, asthma, stomach, and 
intestinal disorders (Pascual et al. 2001; Lorenzi and Matos 
2008; Raut and Karuppayil 2014; Amin and Hosseinzadeh 
2016; Saljoughian et al. 2018); it can be used as a food pre-
servative (Peng and Li 2014; Szczepanski and Lipski 2014; 
Otoni et al. 2016; Pola et al. 2016); and it can serve as a pest 
control product in the agrochemical industry (Pavela and 
Govindarajan 2017; Benelli et al. 2018). Thus, the species is 
of interest for various applications, from traditional medicine 
to modern pharmacological and agrochemical industries.

The tissue culture techniques is an important tool to 
access the effects of abiotic stress on plants, as it creates 
conditions to better isolate these effects, allowing to develop 
resistant or tolerant lines for abiotic stresses (Pérez-Clem-
ente and Gómez-Cadenas 2012). Given the wide applicabil-
ity of essential oils, it is important to understand how dif-
ferent environments alter their production and biosynthesis 
routes. In spite of its relevance as a medicinal species, there 
is limited knowledge of how abiotic factors such as water 
deficit modulate primary and secondary metabolism in L. 
alba. The objective of this study was to evaluate the effect 
of water deficit on in vitro growth, photosynthesis, essential 
oil profile, and the expression of genes related to the biosyn-
thesis of these compounds in L. alba.

Materials and methods

Plant material

Lippia alba plants (chemotype BGEN-04) were obtained 
from the Germplasm Bank of the Department of Biology, 
Federal University of Juiz de Fora (UFJF, Juiz de Fora, MG, 
Brazil), they were micropropagated from original plants 
granted by Embrapa Genetic Resources and Biotechnology 
(Cenargen, Brasília, DF, Brazil). The specimens were depos-
ited at the Leopold Krieger Herbarium (Herbarium CESJ 
48,372, UFJF). The plants were propagated in vitro in MS 
medium (Murashige and Skoog 1962) supplemented with 
30 g L−1 sucrose, 100 mg L−1 myo-inositol, and 6.5 g L−1 
Merck agar (Merck Millipore Corp., Darmstadt, Germany). 
The pH of the medium was adjusted to 5.7 ± 0.01. The 
medium was autoclaved at 120 °C and 108 kPa for 20 min.

Effect of water deficit

Eight nodal segments (~ 2 cm in length) were inoculated 
into glass flasks (600 mL capacity) containing 80 mL MS 
medium supplemented with 30 g L−1 sucrose, 100 mg L−1 
myo-inositol, and 6.5 g L−1 Merck agar. The pH of the 
medium was adjusted to 5.7 ± 0.01. The medium was auto-
claved at 120 °C and 108 kPa for 20 min. To induce an 
increasingly severe water deficit, polyethylene glycol (PEG) 
was added to the culture medium at three concentrations: 0, 
1, 2, and 3% (w/v). Cultures were maintained in a growth 
room at 25 ± 1 °C, at a 16-h light photoperiod (from 6 to 
22 h), and constant irradiance of 41 μmol m−2 s−1 provided 
by two white LED bulbs (SMD 100, 18 W;  Vilux®, Vitória, 
ES, Brazil). The flasks were sealed with rigid polypropylene 
lids with two vents (10 mm diameter) covered with 0.45-
μm membranes  (MilliSeal® AVS-045 Air Vent, Millipore 
Merck, Billerica, MA, USA), allowing a  CO2 exchange rate 
of 25 µL L−1 s−1 (Batista et al. 2017b).
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After 40 days of culture (Fig. 1), the following param-
eters were analyzed: primary metabolites, growth, profile of 
essential oils, and expression of the genes nerolidol/linalool 
synthase and geraniol synthase. All samples were collected 
at 17 h.

Biometric analysis

The following biometric analysis were performed: fresh 
mass (g), dry mass (g) by oven-dried at 60 ºC until constant 
weight, total shoot length (cm), total length of the largest 
root (cm), and leaf area  (cm2). The latter was measured using 
ImageJ software (Schneider et al. 2012).

Quantification of photosynthetic pigments, 
carbohydrates, proteins, and amino acids

Samples from the shoots were collected, frozen in liquid 
nitrogen, ground, and lyophilized. To determine the con-
centration of photosynthetic pigments, approximately 10 mg 
of lyophilized tissues were used for extraction with acetone 
as described by Welburn (1994). For the determination of 
carbohydrates (sucrose, glucose, and fructose), 25 mg of 
lyophilized tissues were used in the extraction with methanol 
and evaluated as described by Fernie et al. (2001). Quanti-
fication of protein and total amino acids was conducted as 
suggested by Cross et al. (2006).

In vitro photosynthetic rate

Gas exchange and quantification of in vitro photosynthetic 
rate were performed as proposed by Costa et al. (2014) with 
modifications. An AQ-S151 infrared  CO2 analyzer (Qubit 
Systems, Kingston, ON, Canada) was used for measure-
ments and data collection was performed using LoggerLite 
1.8.1 software (Vernier Software & Technology, Beaverton, 

OR, USA). Reference  CO2 was calculated by inflowing air 
into an empty flask, pumped from the external environment 
at a constant air flow rate of 300 mL min−1, located within 
an illuminated chamber (white LED bulbs). The plants were 
maintained in the dark for a period of 8 h prior to analysis. 
Soon after measuring the reference  CO2, the flasks contain-
ing the plants were coupled to the system and the  CO2 was 
calculated at the stabilization point. Gas exchanges were cal-
culated by computing the difference between the reference 
 CO2 and the  CO2 of the plants exposed to atmospheric air. 
Air temperature and humidity in the flask were measured by 
a Spec sensor (Thermo Recorder RS-11, Takai Spec Corp., 
Aichi, Japan).

The in vitro photosynthetic rate (A) was calculated by the 
following formula:

where, ΔCO2(ppm) = Reference CO2 − Analysis CO2

Microextraction of essential oils

For microextraction of essential oils, 300 mg of leaves were 
collected and stored at − 18 °C in test tubes with screw 
caps. After freezing, 1 mL hexane and 0.5 mL methanol 
were added to each sample. The samples were kept in an 
ultrasonic bath (Thornton-INPEC, Vinhedo, SP, Brazil) at 
70 kHz and room temperature for 1 h. Subsequently, the 
supernatant was filtered through a sterile cotton wick. The 
resulting samples consisting of a 1-μL clear solution contain-
ing the extracted oils were analyzed by gas chromatography.

Qualitative analysis of essential oils

Qualitative analysis of essential oils was carried out using 
a gas chromatographer coupled to a mass spectrometer 
(GCMS-QP2010 Plus; Shimadzu, Suzhou, China) and 
Rtx-5MS® column (Restek, Bellefonte, PA, USA) of 
30 m × 0.25 mm. The oven temperature was set to 70 °C 
for 3 min and then increased by 6 °C min−1 to 300 °C. The 
injector was operated in split mode (1:10) at 240 °C. The 
interface and mass detector were operated at 300 °C. Helium 
was used as the carrier gas, with a flow of 1.53 mL min−1. A 
standard mixture of linear hydrocarbons  (C9H20,  C10H22…, 
 C25H52, and  C26H54) was injected under the same conditions 
as the samples. Identification of the constituents was per-
formed by comparing the obtained mass spectra with those 
in the NIST 9.0 database (correlation > 97%) and confirmed 

A
(

μmol m−2s−1
)

=
ΔCO2

Mol Flow

Mol Flow =
Air flow rate

(

L min−1
)

(

( Constant for perfect gases(22.4)× Temperature (K)
6,00,000

(Leaf dry weight per plant (g))

) .

Fig. 1  Representative images of Lippia alba after 40 days of in vitro 
culture under different concentrations of PEG (0, 1, 2, and 3%). 
Bar = 2 cm
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by their retention indices (Kováts Index), which were calcu-
lated for each constituent and compared to published data 
(Adams 1997).

Extraction of mRNA, cDNA synthesis, and analysis 
by real‑time PCR (RT‑qPCR)

Total RNA was isolated from the leaves with TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) and treated with DNAse 
I (Invitrogen) following the manufacturer’s recommenda-
tions. The quality and quantity of the RNA and cDNA were 
determined by a NanoDrop ND-2000 (NanoDrop Technolo-
gies, Wilmington, DE, USA). cDNA was synthesized using 
reverse transcriptase (Ludwig Biotec, Bela Vista-Alvorada, 
RS, Brazil) and 800 ng of total RNA. RT-qPCR was per-
formed on a CFX96 Touch™ cycler (Bio-Rad, Hercules, 
CA, USA). The total reaction volume was 10  μL:1  μL 
cDNA, 3 μL diethyl pyrocarbonate water, 2 μL of 4 μM for-
ward and reverse primers, and 4 μL SYBR-Green mix/Rox 
(Ludwig Biotec). Primers for nerolidol/linalool synthase 
(LaNES/LIS), geraniol synthase (LaGES), and the reference 
gene alcohol dehydrogenase (LaADH) were designed based 
on the de novo transcriptome sequence of L. alba.

Statistical analysis

Experiments were conducted following a completely ran-
domized design. The experimental unit consisted of a cul-
ture flask containing eight plants. Statistical analyses were 
performed using Genes software version Windows/2004.2.1 
(Cruz 2016). Data were submitted to analysis of variance 
(ANOVA) by the F test and the means were compared by the 
Scott and Knott test (P ≤ 0.05). RT-qPCR expression levels 
were calculated by the  2−ΔΔCt method (Livak and Schmitt-
gen 2001) with three biological replicates and at least three 
technical replicates. Means were compared by Dunnett’s test 
(P ≤ 0.05).

Results

Water deficit slows the growth of Lippia alba plants 
in vitro

Water deficit affected growth and development of Lippia 
alba grown in vitro (Fig. 1). Shoot fresh and dry mass 

were higher in the control than in other treatments (Fig. 2a, 
b); whereas root fresh/dry mass and length (Fig. 2c, d, and 
f), as well as stem length (Fig. 2e) exhibited no significant 
difference. Leaf area was higher in the control and 1% PEG 
condition than in the 2 and 3% PEG treatments, in with 
water deficit induction was more severe (Fig. 2g). Finally, 
total chlorophyll content (Fig. 2h) showed no significant 
difference.

Water deficit augments total protein and amino acid 
contents, but not sugar levels in Lippia alba grown 
in vitro

Glucose, fructose, and sucrose levels were not modulated 
by water deficit treatments (Fig. 3a–c). In contrast, total 
protein levels increased in the treatments with 2 and 3% 
PEG (Fig. 3d). Amino acid levels were higher in plants 
exposed to 2% PEG (Fig. 3e).

Severe water deficit reduces Lippia alba 
photosynthesis in vitro

In vitro photosynthesis of L. alba was reduced in plants 
grown in the presence of 3% PEG, and manifested as a 
significant decrease in photosynthetic rates compared to 
the other treatments (Fig. 4).

Linalool content increases in Lippia alba plants 
grown in vitro under water deficit

Water deficit changed the profile of essential oils in L. 
alba. Specifically, linalool content was significantly higher 
in plants subjected to water deficit induced by different 
levels of PEG than in control plants (Fig. 5); whereas 
germacrene content exhibited the opposite trend and was 
significantly higher in the control. Eucalyptol content did 
not differ statistically among the treatments.

Water deficit does not alter the expression 
of nerolidol/linalool synthase and geraniol synthase 
in Lippia alba

The relative expression of LaNES/LIS and LaGES was not 
altered by different water deficit levels (Fig. 6).

Fig. 2  Growth variables of Lippia alba after 40 days of in vitro cul-
ture under different concentrations of PEG (0, 1, 2, and 3%). a Shoot 
fresh weight, b shoot dry weight, c root fresh weight, d root dry 
weight, e shoot length, f root length, g leaf area, and h total chloro-
phyll. Data are presented as means (n = 4) and vertical bars denote the 
standard error. Equal letters indicate no difference according to the 
Scott & Knott test at 5% probability

◂
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Discussion

Abiotic factors are constantly modulating the primary and 
secondary metabolism of plants, affecting yield and/or com-
position of essential oils (Bahreininejad et al. 2014; Batista 
et al. 2016, 2017a; Mahmoud et al. 2018). Several studies 

have found a correlation between water deficit and essential 
oils profile (Yadav et al. 2014; Mandoulakani et al. 2017; 
Morshedloo et al. 2017). However, the present study is the 
first to provide a comprehensive picture of the effect of water 
deficit on primary metabolism, growth, photosynthesis, the 

Fig. 3  Sugar, protein, and amino acid contents of Lippia alba after 
40  days of in  vitro culture under different concentrations of PEG 
(0, 1, 2, and 3%). a Glucose, b fructose, c sucrose, d protein, and e 

amino acids. Data are presented as means (n = 4) and vertical bars 
denote the standard error. Equal letters indicate no difference accord-
ing to the Scott and Knott test at 5% probability
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profile of essential oils, and the expression of genes related 
to their biosynthesis in L. alba grown in vitro.

Regarding primary metabolism, this work evidences 
how the more severe water deficit treatments, using 2 and 
3% PEG, promoted a decrease in shoot fresh/dry mass 
and reduced the leaf area. These results confirmed earlier 
observations by Ghotbi-Ravandi et al. (2014) on the nega-
tive effect of water deficit on the dry matter of Hordeum 
vulgare L. genotypes, and by Maatallah et al. (2016) on the 
decrease in relative growth rate, leaf area, and chlorophyll 
content following water deficit in Laurus nobilis L. Simi-
larly, Allahverdiyev (2016) reported a reduction of leaf area 
in wheat cultivars subjected to water deficit. In general, the 
reduction in plant biomass caused by water deficit is related 

to a suppression of cell expansion. Specifically, the decrease 
in turgor pressure caused by lower cell water content results 
in reduced growth (Jaleel et al. 2008). Moreover, reducing 
leaf expansion is one of the strategies employed by plants to 
mitigate low water availability, resulting in decreased leaf 
area, stomatal closure, lower transpiration, and limited pho-
tosynthesis (Ge et al. 2012).

In L. alba plants grown in vitro, the water deficit elic-
ited by treatment with 3% PEG promoted a reduction of 
photosynthetic rate. This response could be caused by lim-
ited  CO2 diffusion from intercellular spaces to the chloro-
plast, which may constrain  CO2 fixation (Flexas et al. 2004; 
Chaves et al. 2009). Water restriction often culminates in 
stomatal closure, an effective mechanism against water loss 
(Cornic 2000; Loreto et al. 2003; Molnar et al. 2005; Chaves 
et al. 2009), this effect was already observed in Lippia alba 
plants in vivo under water stress, where there was a decrease 
in stomatal conductance (Oliveira and Leite 2017) Li et al. 
(2017). observed a decreased photosynthetic rate in potato 
seedlings under severe water deficit, suggesting that this 
reduction was due to stomatal limitation and the damage to 
photosystem II and antioxidant enzymes. Ghotbi-Ravandi 
et al. (2014) reported a reduction in both  CO2 assimilation 
rate and stomatal conductance in barley genotypes under 
severe water stress.

Here, water deficit did not affect the levels of glucose, 
fructose, and sucrose, but the 2% PEG treatment increased 
total amino acids content. In dry conditions, many metabo-
lites accumulate to act as regulatory osmolytes. This is one 
of the mechanisms that plants develop to counteract envi-
ronmental stresses such as drought (Seki et al. 2007). Sugars 
(raffinose family oligosaccharides, sucrose, trehalose, and 
sorbitol), amino acids (proline), sugar alcohols (mannitol), 

Fig. 4  Photosynthetic rate (a) of Lippia alba after 40 days of in vitro 
culture under different concentrations of PEG (0, 1, 2, and 3%). Data 
are presented as means (n = 4) and vertical bars denote the standard 
error. Equal letters indicate no difference according to the Scott and 
Knott test at 5% probability

Fig. 5  Profile of essential oils 
in Lippia alba after 40 days of 
in vitro culture under different 
concentrations of PEG (0, 1, 2, 
and 3%). Data are presented as 
means (n = 4) and vertical bars 
denote the standard error. Equal 
letters indicate no difference 
according to the Scott and Knott 
test at 5% probability
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and amines (glycine, betaine, and polyamines) are consid-
ered compatible solutes that can be concentrated in the cell 
cytoplasm to promote water balance between vacuole and 
cytoplasm (Per et al. 2017; Merwad et al. 2018; Naeem et al. 
2018).

Total protein content increased in plants subjected to 
moderate and severe water deficit conditions. Xie et al. 
(2016) observed that, compared to controls, water deficit 
increased and decreased the content of 260 and 206 proteins, 
respectively. Most of these proteins were involved in pho-
tosynthesis, metabolism, stress, and defense, indicating that 
water stress could modulate protein synthesis and influence 
plant physiology, promoting different stress responses.

Treatments in which water deficit was induced by 1, 2, 
and 3% PEG influenced the profile of essential oils, increas-
ing linalool content but decreasing germacrene content. Sim-
ilar effects under severe water stress have also been reported 
earlier, with increased content of methyl chavicol, methyl 
eugenol, β-myrcene, and α-bergamotene in Ocimum basili-
cum L. (Mandoulakani et al. 2017). Morshedloo et al. (2017) 
also reported that water deficit up- and down-regulated spe-
cific essential oil components in subspecies of Origanum 
vulgare L. resulting in increased content of essential oil. 
Yadav et al. (2014) observed a reduction in the density of 
glandular trichomes in leaves of Artemisia annua L., with a 
consequent decrease in the content of essential oils. On the 
other hand, Cruz et al. (2014), in a study with Lippia gracilis 
plants in the field, found no variation among plants sub-
jected to different irrigation conditions, which highlights the 
importance of in vitro studies that offer more controlled con-
ditions to detect subtle variations in secondary metabolism.

The relative expression of genes involved in the biosyn-
thesis of L. alba essential oil components was not significant 

in the present study. This finding contrasts with that by 
Mandoulakani et al. (2017), who observed that essential 
oil biosynthesis genes in Ocimum basilicum L. were dif-
ferentially expressed under the most severe water stress 
condition (50% field capacity). Specifically, O-methyl trans-
ferase and eugenol O-methyl transferase expression were 
increased by approximately 6.0 and 46.0 fold, respectively, 
which correlated strongly with the content of the essential 
oil compounds methyl chavicol and methyleugenol. At the 
same time, this increase was accompanied by a reduction in 
the expression of 4-coumarate:CoA ligase and cinnamate 
4-hydroxylase, two enzymes involved in the metabolism of 
hydroxycinnamic acid.

In conclusion, our results show that water deficit is capa-
ble of modulating the primary metabolism of Lippia alba, as 
indicated by a reduction in growth, development, and physi-
ological functions. Secondary metabolism was also slightly 
altered, with linalool and germacrene levels modified in 
plants under water deficit. Thus, the medicinal species L. 
alba can adapt to low water availability environments, while 
still being able to grow and produce essential oils.
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