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Abstract
Strawberry micropropagation is generally based on Murashige and Skoog mineral salts, and many cultivars grow well on this 
medium. However, the diverse species found in germplasm collections often do not thrive, which indicates a need to opti-
mize the mineral nutrients. In this study, Multivariate Adaptive Regression Splines (MARS), was employed to predict shoot 
quality, multiplication, and leaf color responses of three strawberry species in response to the major tissue culture nutrients 
by generating functional associations. MARS is a non-parametric approach that can be used to deal with continuous and 
categorical data without requiring the strict distributional assumptions of the basic linear models. The MARS algorithm is 
capable of capturing non-linear patterns between the input and target variables.  NH4NO3,  CaCl2·2H2O,  MgSO4·7H2O,  KNO3 
and  KH2PO4 were tested in a range of 0.5 × to 3 × MS medium, within a computer-generated optimal design that consisted 
of 32 treatment combinations. The plant responses were affected by all of the major salts tested and the genotype factor. 
Multivariate Adaptive Regression Splines captured the significant factors and their interactions to predict optimal major 
salts suitable for all three strawberry species: 3300 mg  L−1  NH4NO3, 862.4 mg  L−1  CaCl2, 1110 mg  L−1  MgSO4, 3439 mg 
 L−1  KNO3, and 329.8 mg  L−1  KH2PO4. This study identified the major nutrient needs of the three strawberry species and 
provides an alternative statistical technique for tissue culture data analyses.

Key Message 
The MARS statistical approach was used to predict macro nutrient related growth responses of three strawberry species. 
The objective of the study was to make a gentle introduction to the MARS algorithm and show its potential application to 
tissue culture research.

Keywords Fragaria · In vitro culture · MARS · Mineral nutrition · Statistical analysis

Introduction

While strawberries were first grown on a variety of media 
in the early days of micropropagation, they are currently 
most commonly grown on MS medium (Murashige and 
Skoog 1962), or variations such as half-strength MS mineral 
nutrients. Simpson and Bell (1989) noted that most Fra-
garia × ananassa cultivars grew well on MS medium, but 
proliferation varied greatly by genotype. They concluded 
that strawberries do not have a uniform response to any sin-
gle growth medium recipe due to the differences in response 
to  N6 benzyladenine (BA) concentrations. A study of Fra-
garia chiloensis cultivars from Chile found that MS was 
suitable for the two cultivars studied (Quiroz et al. 2017). 
Most diverse germplasm or breeding collections can use 
MS medium for the majority of accessions, but often there 
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are genotypes or species that do not thrive despite changes 
in plant growth regulators. The cultivated strawberry, Fra-
garia × ananassa Duchesne ex Rozier has a very narrow 
genetic background, but the 20 or more other species are 
more genetically diverse and include a wide range of ploidy 
levels (Darrow 1966).

The lack of study on the mineral nutrition of strawberry 
combined with the genetic diversity present in germplasm 
collections and breeding programs, provides incentives to 
improve the mineral nutrition in the medium for micropro-
pagated strawberries. Developing a mineral nutrition model 
can provide the basis for an improved medium for diverse 
groups of plants.

The performance of a good statistical model depends on 
the experimental design, clear understanding of the vari-
able structure, and application of the right statistical method. 
Understanding the data type is of primary importance to 
determine the appropriate statistical technique (Mertler and 
Vannatta 2002; Niedz and Evens 2016). Variables are classi-
fied as qualitative (subgrouped as nominal and ordinal), and 
quantitative (labeled as discrete and continuous). Nominal 
variables are ‘names’ with two or more categories without 
hierarchical order. Ordinal data are similar to nominal except 
that the categories have distinct order (level A is more severe 
than level B). Discrete variables are counts that include inte-
gers, and continuous variables are measurements along a 
continuum, which could be divided into smaller fractions 
(Dettori and Norvell 2018). In vitro data structure could 
be classified as nominal (genotype), ordinal (shoot qual-
ity rated as poor, moderate, and good), discrete (counts of 
shoot number: 1, 2, 3…), and continuous (measurements of 
shoot length). Conventional linear models such as ANOVA 
and regression, should only be used with continuous data 
that shows a linear relationship between the dependent and 
explanatory variables (Quinn and Keough 2002). However, 
plant tissue culture is a complicated biological process that 
involves multiple design inputs that typically interact in non-
linear ways to affect the tested plant responses. Therefore, 
the basic linear methods are generally not suitable for ana-
lyzing in vitro data.

A number of advanced statistical techniques are pro-
moted in tissue culture research as robust alternatives to 
basic modeling methods. These include Response Surface 
Methodology (RSM), Decision trees, and Artificial Neural 
Networks (ANNs) (Akin et al. 2017; Nezami-Alanagh et al. 
2018; Poothong and Reed 2014). The RSM is a parametric 
approach that is able to model non-linear data by showing 
polynomial relationships between the tested variables. How-
ever, RSM can analyze only continuous variables, and there-
fore it generates genotype (nominal variable) specific mod-
els (which means a separate optimal growth area for each 
genotype) (Akin et al. 2016). Classification and Regression 
Tree (CART), Chi-square Automatic Interaction Detector 

(CHAID), and Exhaustive Chi-square Automatic Interaction 
Detector (Exhaustive CHAID), are non-parametric data min-
ing methods that are able to evaluate both continuous and 
categorical data, without requiring the restrictive normality 
and heteroscedasticity assumptions of the parametric meth-
ods (Olden et al. 2008). These techniques generate visual, 
easy to interpret decision trees and can include nominal vari-
ables as factors, and thus provide common optimal factor 
ranges for the tested genotypes (Akin et al. 2017). Artificial 
Neural Networks are non-parametric tools that are powerful 
in detecting non-linear associations, and capable of dealing 
with continuous and categorical data. However, ANNs do 
not provide a neat mathematical equation that shows the 
relative contribution of each independent variable in the 
neural model. Therefore, ANNs are considered as a “black 
box” (Olden et al. 2008).

Another promising statistical approach not previously uti-
lized in tissue culture data analyses is Multivariate Adaptive 
Regression Splines (MARS). The MARS approach is a non-
parametric regression technique that reveals complex non-
linear relationships and interactions by a sequence of spline 
functions of the independent variables, without requiring the 
restrictive distributional assumptions of the general linear 
models. The MARS algorithm can handle both categorical 
and numerical variables. It shows the contribution of each 
predictor to the response using subsets of piecewise linear 
regression splines (Everingham and Sexton 2011; Friedman 
1991). A spline is a flexible curve (polynomial) that is fixed 
at various points or knots and shows the association between 
the target and explanatory variable. The knots are randomly 
distributed within the range of each explanatory variable 
and detect the regions of relationship change between the 
input and output variables. The linear functions that form 
the MARS model combine additively or interactively, and 
the relative importance of the inputs on the target variable 
are illustrated clearly in a mathematical equation (Eyduran 
et al. 2019; Zhang and Goh 2014).

This study investigated the potential of the MARS algo-
rithm to reveal the intrinsic non-linear and multidimensional 
relationships of some responses of tissue culture grown 
strawberries. This process aims to provide a basic introduc-
tion to the MARS algorithm and to encourage future appli-
cation of this promising approach for tissue culture research, 
and to improve the in vitro culture of strawberries.

Materials and methods

Plant material and culture conditions

Shoots of Fragaria bucharica Losinsk. (Local no. CFRA 
1906.001; PI 657844), Fragaria chiloensis (L.) Mill. 
subsp. chiloensis patagonica Staudt (CFRA 1084.002; PI 
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616535), and Fragaria x ananassa (Duchesne ex Weston) 
Duchesne ex Rozier ‘Jucunda’ (CFRA 256.002; PI 551623) 
strawberry species from the U.S. Department of Agricul-
ture, National Clonal Germplasm Repository (NCGR), 
Corvallis, Oregon, were micropropagated on MS medium 
(Murashige and Skoog 1962), with LS vitamins (Linsmaier 
and Skoog 1965), and with the following per liter: 80 mg 
adenine sulfate, 170 mg  NaH2PO4, 30 g sucrose, 4.44 ∝ M 
BA, 4.92 ∝ M indole-3-butyric acid (IBA), 0.03 ∝ M gib-
berellic acid (GA) and 6 g  L−1 agar (A1111; PhytoTechnol-
ogy  Laboratories→, Lenexa, KS) at pH 5.7. The medium 
pH was adjusted using  H3PO4 and KOH, and all medium 
ingredients were added before autoclaving. The plant growth 
regulators and vitamins were obtained from PhytoTechnol-
ogy LaboratoriesⓇ, and all stock solutions were prepared 
in house. Each Magenta™ box (Magenta™ GA7, Magenta, 

Chicago, IL) contained 40 mL medium, and was autoclaved 
for 20 min at 121 °C (118 kPa). Growth room conditions 
were 80 µmol  m2s−1 light intensity with a 16-h photoperiod 
of half warm-white and half cool-white fluorescent lamps 
(Ecolux Starcoat, 32 watts; GE, Fairfield, CT) at 25 ± 2 °C.

Experimental design

An I-optimal experimental design (DOE) was built by Design-
Expert software (Design-Expert 2010) using  NH4NO3, 
 CaCl2·2H2O,  MgSO4·7H2O,  KNO3, and  KH2PO4 as inputs 
within 32 treatment combinations. The factors were varied 
from 0.5 × to 3 × MS medium salts. Treatment 32 was the 
control NCGR Fragaria medium consisting of MS salts (1×) 
with adenine sulfate and  NaH2PO4 (Table 1). All treatment 

Table 1  I-optimal design 
consisting of MS (Murashige 
and Skoog 1962) major salts

The concentration ranges of the treatment combinations are expressed as × MS levels

Treatments NH4NO3 CaCl2·2H2O MgSO4·7H2O KNO3 KH2PO4

1 1.75 1.66 0.50 1.75 0.50
2 3.00 3.00 0.50 0.50 3.00
3 2.23 2.36 1.17 0.50 1.50
4 3.00 0.50 0.50 0.50 0.50
5 0.50 3.00 3.00 0.50 3.00
6 0.50 0.50 3.00 3.00 3.00
7 0.50 3.00 0.50 1.93 1.94
8 0.50 0.50 0.50 0.50 3.00
9 0.50 0.50 3.00 0.50 0.50
10 0.50 3.00 0.50 0.50 0.50
11 1.27 1.43 2.25 2.50 1.42
12 1.27 1.43 2.25 2.50 1.42
13 1.58 3.00 1.59 3.00 3.00
14 0.50 3.00 3.00 3.00 0.50
15 3.00 3.00 3.00 3.00 3.00
16 2.00 1.45 0.84 1.50 3.00
17 1.58 3.00 1.59 3.00 3.00
18 3.00 0.50 1.69 1.81 1.65
19 3.00 3.00 0.50 3.00 0.50
20 0.85 0.50 3.00 0.85 3.00
21 3.00 0.50 3.00 3.00 0.50
22 0.50 1.96 0.50 3.00 3.00
23 2.00 1.45 0.84 1.50 3.00
24 0.50 3.00 0.50 1.93 1.94
25 1.27 1.43 2.25 2.50 1.42
26 3.00 0.50 0.50 3.00 3.00
27 3.00 0.50 3.00 0.50 3.00
28 2.13 3.00 3.00 0.50 1.38
29 0.50 0.50 0.50 3.00 0.50
30 3.00 3.00 2.14 1.38 0.50
31 0.50 1.65 1.75 0.50 1.75
32 1.00 1.00 1.00 1.00 1.00
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combinations contained the same type and concentration of 
plant growth regulators, vitamins and sucrose as noted above. 
For each treatment, two boxes with five plantlets for each geno-
type were used (n = 10). Boxes were randomized on the growth 
room shelf. Cultures were grown on each treatment for 9 week, 
with transfers to fresh medium every 3 week.

Data structure

Three plantlets selected on a diagonal, from each Magenta™ 
box (n = 6) were evaluated, and the remaining four shoots were 
photographed for additional documentation. Shoot quality, 
which is a subjective visual assessment of shoot growth was 
evaluated as 1 = poor (no growth or bad appearance), 2 = mod-
erate (some growth and moderate appearance), and 3 = good 
(well-developed shoot culture with expanded leaves and good 
color). Multiplication was also quantified with the same scale 
of quality depending on the proliferation rate of the plant, with 
1 = no shoot production, 2 = 2 to 4 shoots, and 3 = > 4 shoots. 
Leaf color was estimated as > 50% of leaves on the shoot as 
follows: 1 = yellow or red, 2 = light green, 3 = green (Niedz 
et al. 2007; Reed et al. 2013).

Statistical analyses

Although shoot quality, multiplication, and leaf color 
responses are ordinal-type data, these inputs were treated as 
continuous by taking the mean response of six shoots per treat-
ment for each strawberry species. The outputs were converted 
to continuous variables to balance the within group variation. 
The genotype as a nominal variable was also included within 
the analyses. A multiple-response model was built by the 
MARS approach (Table 2), using STATISTICA 7.1 software 
(StatSoft 2005).

The MARS algorithm is constructed by piecewise linear 
basis functions ( BFs ) of the following form:

 where x is the variable range and t is the knot.
The MARS model is a linear combination of basis 

functions:

 where  Yi is the dependent variable, a0 is the intercept, and 
a1 and a2 are the coefficients of the related basis functions 
(Emamgolizadeh et al. 2015; Everingham and Sexton 2011). 
For better understanding of the model, a simple MARS 

(1a)BF1 = max(0, x − t)

{

x − t, x > t

0, x ≤ t

(1b)BF2 = max(0, t − x)

{

t − x, t > x

0, t ≤ x

(2)Yi = a0 + a1BF1i + a2BF2i +…

example consisting of three piecewise linear functions or 
splines ( BF1 , BF2, and BF3 ), connected at two points or 
knots generated by RStudio software (R Core Team 2017) 
is illustrated in Fig. 1. The MARS mathematical equation 
is expressed as:

in which BF1 = max(0, x -3), and BF2 = max(0, 3-x ), and 
BF3 = max(0, x -6). In this case the knot points are t = 3 and 
6. These two knots delimit the x input range in three regions, 
in which different linear relationships between the response 
and the x explanatory variable are detected (Fig. 1).

The MARS model building process consists of forward 
and backward stepwise selections to define the knots and 
splines. First, the model is overfitted by forward selection of 
more basis functions than required to express the response 
variable, and subsequently backward pruning is performed 
by deleting the least significant splines one at a time until an 
optimal model is obtained. The model is refitted after each 
basis function removal, and each reduced sub-optimal model 
is tested with the Generalized Cross-Validation (GCV) 
method to prevent overfitting. (Everingham and Sexton 
2011). The model with the lowest GCV score is considered 
to be the best (Zakeri et al. 2010). An optimal MARS model 
is also expected to have a Pearson correlation coefficient 
value close to one, as the coefficient approaches zero the 
predictive ability of the model decreases. The MARS algo-
rithm is sensitive to multicollinearity, which refers to corre-
lation between inputs. When polynomial terms are included 
to model curvature multicollinearity problem could occur 
in regression type methods (Friedman 1991). Pearson cor-
relation coefficients between pairs of the salt inputs were 
estimated to test for multicollinearity.

MARS is an adaptive procedure that allows users to spec-
ify many options within the model, including a maximum 
number of basis functions, the level of interactions between 
variables, and a minimum number of terms to leave between 
each knot depending on the data. A four-way interaction was 
specified, and the algorithm was assigned a maximum of 74 
basis functions and a minimum of 32 terms. These values 
were selected to generate the best model with the highest 
Pearson correlation and lowest GCV score.

Results

The design of the experiment provided a diversity of 
responses for the tested strawberries which varied with the 
mineral nutrients (Fig. 2). The MARS model was able to 
reveal the complex relationships between the tested salt 
inputs and the responses by showing the relevance of each 
predictor on the target variable in a mathematical equation 

(3)Yi = a0 + a1BF1i + a2BF2i + a3BF3i



665Plant Cell, Tissue and Organ Culture (PCTOC) (2020) 140:661–670 

1 3

(Table 2). The algorithm successfully incorporated the gen-
otype-nominal variable within the analysis, and therefore 
was able to detect the common nutrient requirements for all 
three strawberry species. The predictive ability of the model 
for the tested outcomes was also high, with a Pearson cor-
relation coefficient about 0.90 (p < 0.01). The GCV value 
was approximately 0.49. The estimated Pearson correlation 
coefficients between the pairs of nutrient salt factors were 
found to be insignificant, which indicates that no multicol-
linearity problem was present. Plant quality, multiplication, 

and leaf color were affected by all of the tested salt inputs 
and the genotype factor (Table 2).

Shoot quality model

The MARS model prediction equation for shoot quality is 
presented in Supplement 1. To further optimize the target 
responses and provide common nutrient concentrations 
for the tested strawberry species, ranges for the multiple-
response MARS model were selected as 2 × NH4NO3, 

Table 2  Basis functions and corresponding coefficients of the Multivariate Adaptive Regression Splines (MARS) model for plant quality, multi-
plication, and leaf color prediction in Fragaria bucharica, Fragaria chiloensis and Fragaria x ananassa ‘Jucunda’

The model consists of 32 terms leaved between each knot and 74 basis functions with four-way interactions. Four cut-offs, 2.0, 1.96, 1.81, and 
1.94 are the most frequent in the multi-response MARS model equation, which constituted the basis functions with the corresponding MS salts. 
These cut-offs were selected to make the multi-response MARS model simpler by deleting the related basis functions. Consequently, the simpli-
fied MARS model consisted of the marked coefficients and basis functions

Terms Coefficients 
(

a
i

)

Basis functions

Quality Multiplication Leaf color

1 2.68 3.06 2.74 Intercept
2 − 0.75 − 1.13 − 0.73 max(0,  NH4NO3-2)
3 − 0.89 − 1.37 − 0.87 max(0, 2-NH4NO3)
4 0.28 0.46 0.26 max(0,  KNO3-1.81)
5 − 0.35 − 0.4 − 0.34 max(0, 2-NH4NO3) × max(0, Jucunda)
6 0.52 0.74 0.55 max(0, 2-NH4NO3) × max(0,  MgSO4-1.75)
7 0.42 0.73 0.49 max(0, 2-NH4NO3) × max(0, 1.75-MgSO4)
8 0.6 0.78 0.54 max(0,  NH4NO3-2) × max(0, 1.81-KNO3)
9 0.41 0.45 0.33 max(0, 2-NH4NO3) × max(0, 1.81-KNO3)
10 − 0.61 − 0.87 − 0.56 max(0, 2-NH4NO3) × max(0,  MgSO4-1.75) × max(0, F. bucharica)
11 − 0.2 − 0.25 − 0.27 max(0,  CaCl2-1.96)
12 0.15 0.22 0.2 max(0, 1.81-KNO3) × max(0,  KH2PO4-0.5) × max(0, Jucunda)
13 − 1.11 − 1.35 − 1.1 max(0,  NH4NO3-2) × max(0, 1.81-KNO3) × max(0, F. bucharica)
14 − 0.26 − 0.18 − 0.35 max(0, F. bucharica)
15 − 0.46 − 0.71 − 0.46 max(0,  KNO3-1.81) × max(0, F. bucharica)
16 − 0.47 − 0.64 − 0.44 max(0, 1.81-KNO3) × max(0, F.chiloensis)
17 0.21 0.25 0.19 max(0,  MgSO4-0.5) × max(0,  KH2PO4-0.5) × max(0, F.chiloensis)
18 − 0.23 − 0.31 − 0.27 max(0, 1.96-CaCl2) × max(0,  KNO3-1.81)
19 0.24 0.41 0.26 max(0,  KNO3-1.81) × max(0,  KH2PO4-1.94)
20 − 0.98 − 1.39 − 1 max(0,  KH2PO4-1.94)
21 − 1.34 − 1.67 − 1.28 max(0,  CaCl2-1.96) × max(0, F. bucharica)
22 − 0.39 − 0.4 − 0.36 max(0, 1.94-KH2PO4) × max(0, Jucunda)
23 1.08 1.49 1.04 max(0,  CaCl2-1.96) × max(0,  KNO3-0.5) × max(0, F. bucharica)
24 − 0.61 − 0.78 − 0.56 max(0,  NH4NO3-0.5) × max(0,  CaCl2-1.96) × max(0,  KNO3-0.5) × max(0, F. bucharica)
25 0.87 1.01 0.83 max(0,  NH4NO3-0.5) × max(0,  CaCl2-1.96) × max(0, F. bucharica)
26 0.53 0.76 0.51 max(0, 2-NH4NO3) × max(0,  MgSO4-1.75) × max(0,  KH2PO4-0.5) × max(0, F. bucharica)
27 0.42 0.56 0.47 max(0,  NH4NO3-0.5) × max(0,  KH2PO4-1.94) × max(0, F. bucharica)
28 0.15 0.28 0.2 max(0, 1.81-KNO3) × max(0,  KH2PO4-0.5) × max(0, F. chiloensis)
29 − 0.03 − 0.05 − 0.03 max(0,  CaCl2-0.5) × max(0,  MgSO4-0.5) × max(0,  KH2PO4-0.5) × max(0, F. chiloensis)
30 − 0.27 − 0.28 − 0.3 max(0, 2-NH4NO3) × max(0,  MgSO4-1.75) × max(0, F. chiloensis)
31 − 0.09 − 0.09 − 0.07 max(0,  NH4NO3-0.5) × max(0,  MgSO4-0.5) × max(0,  KH2PO4-0.5) × max(0, F. chiloensis)
32 0.12 0.11 0.1 max(0,  NH4NO3-0.5) × max(0,  KH2PO4-0.5) × max(0, F. chiloensis)
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1.96 × CaCl2, 3 × MgSO4, 1.81 × KNO3, and 1.94 × KH2PO4. 
These values were defined by looking at the MARS equation 
(Table 2). Four cut-offs, 2.0, 1.96, 1.81, and 1.94, were the 
most frequent in the equation, which constituted the basis 
functions with the corresponding salts [max (0,  NH4NO3-2), 
max (0,  CaCl2-1.96), max (0,  KNO3-1.81), and max (0, 
 KH2PO4-1.94)]. These cut-offs were selected to make 
the model simpler by deleting the related basis functions. 

Finally,  MgSO4 was assigned a value of 3 to maximize the 
responses. After assigning these values, most of the basis 
functions were deleted according to the rules in Eq. (1a) and 
(1b) (max (0,  NH4NO3-2) was equal to 0 when  NH4NO3 < 2), 
and the model for plant quality was simplified to:

Quality = 2.68 − 0.26 × max (0, F. bucharica) + 0.21 × max 
(0,  MgSO4-0.5) × max (0,  KH2PO4-0.5) × max (0, 
F.chiloensis) − 0.03 × max (0,  CaCl2-0.5) × max (0, 

Fig. 1  Graphical representa-
tion of a simple Multivariate 
Adaptive Regression Splines 
(MARS) model represented 
by three piecewise linear basis 
functions (BF1, BF2, and 
BF3) connected to each other 
with knots (indicated in blue). 
The knots show the regions of 
association change between the 
explanatory and target variable. 
These two knots delimit the x 
input range in three regions, in 
which different linear relation-
ships between the response and 
the x explanatory variable are 
detected

Fig. 2  Growth response of shoots of Fragaria bucharica, Fragaria 
chiloensis and Fragaria x ananassa ‘Jucunda’ grown on treatments 
with variations in MS major salt concentrations (Table 1). Treatments 

were chosen to show the range of plant quality, multiplication, and 
leaf color produced by changes in mineral nutrition.
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 MgSO4-0.5) × max (0,  KH2PO4-0.5) × max (0, F. chiloensis) 
− 0.09 × max (0,  NH4NO3-0.5) × max (0,  MgSO4-0.5) × max 
(0,  KH2PO4-0.5) × max (0, F. chiloensis) + 0.12 × max 
(0,  NH4NO3-0.5) × max (0,  KH2PO4-0.5) × max (0, F. 
chiloensis)

The model was further reduced based on the rules of Eq. 
(1a) and (1b), by subtracting the assigned salt values and the 
knot points (e.g., max (0,  MgSO4-0.5) was 3-0.5 = 2.5 when 
 MgSO4 > 0.5).

The final model for shoot quality was:
Quality = 2.68 − 0.26 × max(0, F. bucharica) + 0.76 × max 

(0, F. chiloensis) − 0.16 × max(0, F. chiloensis) − 0.49 × max 
(0, F. chiloensis) + 0.26 × max (0, F. chiloensis)

The mean quality of F. bucharica was predicted to be:
2.68 − 0.26 × 1 + 0.76 × 0–0.16 × 0–0.49 × 0 + 0.26 × 0 = 

2.68 − 0.26 = 2.42
Genotype was treated as a nominal categorical variable, 

thus 1 was used for max (0, F. bucharica) and 0 otherwise 
[in this case for max (0, F. chiloensis)].

Using the same approach, the average shoot quality of F. 
chiloensis was:

2 . 6 8  −  0 . 2 6  ×  0  +  0 . 7 6  ×  1 – 0 . 1 6 
× 1– 0.49 × 1 + 0.26 × 1 = 3.05

The predicted mean quality of ‘Jucunda’ was
2.68 − 0.26×0 + 0.76×0 − 0.16×0 − 0.49×0 + 0.26 × 0 = 

2.68

Shoot multiplication model

The MARS model for predicting multiplication (Table 2), 
after inserting 2 = NH4NO3, 1.96 = CaCl2, 3 = MgSO4, 
1.81 = KNO3 and 1.94 = KH2PO4 values, was reduced to:

Multiplication  = 3.06–0.18 × max (0, F. bucha-
rica) + 0.9 × max (0, F. chiloensis) − 0.26 × max (0, F. 
chiloensis) − 0.49 × max (0, F. chiloensis) + 0.24 × max (0, 
F. chiloensis)

The predicted mean multiplication of F. bucharica was:
3.06–0.18 × 1 + 0.9 × 0–0.26 × 0- 0.49 × 0 + 0.24 × 0 = 3.

06–0.18 = 2.88
The predicted average multiplication of F. chiloensis was:
3.06–0.18 × 0 + 0.9 × 1–0.26 × 1–0.49 × 1 + 0.24 × 1 = 3.0

6 + 0.9 − 0.26–0.49 + 0.24 = 3.45
The predicted mean multiplication of ‘Jucunda’ was esti-

mated as 3.06.

Leaf color model

The MARS model to predict leaf color (Table 2), after 
replacing 2 = NH4NO3, 1.96 = CaCl2, 3 = MgSO4, 
1.81 = KNO3 and 1.94 = KH2PO4 values, was shortened to:

Leaf color  = 2.74 − 0.35 × max (0, F. buchar-
ica) + 0.68 × max (0, F. chiloensis) − 0.16 × max (0, F. 

chiloensis) − 0.38 × max (0, F. chiloensis) + 0.22 × max (0, 
F. chiloensis)

The mean leaf color of F. bucharica was:
2.74 − 0.35 = 2.39
The average leaf color of F. chiloensis was:
2.74 + 0.68 − 0.16–0.38 + 0.22 = 3.1
The predicted mean leaf color of “Jucunda” was esti-

mated as 2.74. The mean quality, multiplication, and leaf 
color of ‘Jucunda’ depended only on the intercepts of the 
model under 2 ×  NH4NO3, 1.96 × CaCl2, 1.81 × KNO3 and 
1.94 × KH2PO4. Therefore, it can be concluded that the 
responses of “Jucunda” won’t change under any  MgSO4 
concentration. However, the aim was to define a com-
mon medium for the tested strawberry species. Therefore, 
3 × MgSO4 was specified for the final medium.

The software user doesn’t need to make all of those tedi-
ous calculations, because only stating the factor values will 
be enough to obtain the predicted responses. Those equa-
tions have been demonstrated to show how transparent and 
computationally practical the MARS algorithm is for analyz-
ing in vitro culture experiments.

Shoot response to treatment combinations

As expected, none of the treatment combinations (Table 1) 
exactly matched the suggested optimal macronutrient ranges 
predicted by the multiple response MARS algorithm. How-
ever, growth of shoots of F. bucharica, F. chiloensis and 
‘Jucunda’ all showed improvement on some treatments, with 
some of the nutrients in similar ranges compared to the con-
trol NCGR Fragaria medium treatment (Fig. 3). 

Discussion

Developing a growth medium for diverse species of Fra-
garia provides a useful tool for germplasm collections and 
breeding stocks. Many of the commonly grown cultivars 
can be cultured on standard MS medium, however many 
of the wild species are more difficult. This is the first time 
that modeling has been used to determine improved medium 
components for strawberry germplasm.

Modeling using non-parametric machine learning tech-
niques has been utilized in only a few tissue culture stud-
ies (Akin et al. 2017; Kovalchuk et al. 2018; Nezami-Ala-
nagh et al. 2018). This is mainly because the plant science 
researchers are not familiar with this type of statistical mod-
elling. Therefore, this study aimed to introduce the MARS 
algorithm, which is a promising new tool to analyze in vitro 
data. The MARS algorithm is a powerful data mining tech-
nique that is able to reveal high dimensional, non-linear, 
and interactional effects among multiple inputs and output 
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without requiring the restrictive distributional assumptions 
of the traditional linear models (Friedman 1991).

Response Surface Methodology is a parametric method, 
which is able to describe non-linear associations and is 
used in tissue culture research. However, this method can-
not include categorical variables such as genotype within 
the model. Therefore, RSM projects genotype-specific 
input requirements for the corresponding dependent vari-
able (Akin et al. 2016). In a study of raspberry mineral 
nutrition, RSM generated individual models for each rasp-
berry genotype. This resulted in five graphs for plant qual-
ity, one for each genotype, and each with a different result 
rather than a common model. The best treatments were 
with high  NH4NO3 and  KNO3, as well as low minors and 
iron (compared to MS medium) for ‘Canby’; high mesos, 
low minors and iron for ‘Indian Summer’; high mesos and 
low iron for ‘Nootka’ and ‘Trailblazer’; and high mesos 
and minors for ‘Willamette’. Low  KNO3 and high mesos 
were required for higher multiplication, and depend-
ing on genotype  NH4NO3 and iron were also significant 
(Poothong and Reed 2014). In a study of hazelnut shoot 
culture (Akin et al. 2016), analysis using the CHAID deci-
sion tree predicted higher plant quality for three genotypes 
at  NH4NO3 < 1.701 × and  KH2PO4 < 2.012 × DKW medium 
(Driver and Kuniyuki 1984). Multiplication was predicted 

to be optimal at  NH4NO3 < 0.5 × and  CaNO3 < 1.725× (Akin 
et al. 2016). The CHAID algorithm can include nominal 
variables within the analyses and provides common nutri-
ent requirements for the tested genotypes but is not capable 
of performing multiple responses simultaneously such as 
the MARS algorithm. The CHAID algorithm constructs 
separate visual trees for each target variable, and the user 
must determine the common ranges for the tested out-
comes (Akin et al. 2016). Medium improvements for wild 
apricot cultures from Kazakhstan (Kovalchuk et al. 2017) 
using the Classification and Regression Tree (CART) algo-
rithm, mapped  KH2PO4 < 2.41 × and  MgSO4 < 0.75 × for 
plant quality, 0.77 × < KH2PO4 < 0.91 × for multiplication, 
 KH2PO4 < 2.41 × and  K2SO4 < 1.22 × WPM (Lloyd and 
McCown 1980) for leaf color. In addition, the CART regres-
sion tree is not able to generate a multi-response tree but 
forms separate models for each target variable. The neuro-
fuzzy logic technique described the  SO4

2− ×  Cl− interaction 
and the  Fe2+,  K+,  NH4

+ linear independent effects, as signifi-
cant for quality of two pistachio rootstocks.  K+ ×  EDTA− × 
 SO4

2− and  Fe2+ ×  BO3
− interactions played crucial roles 

for multiplication (Nezami-Alanagh et al. 2018). Artificial 
neural networks can utilize both qualitative and quantitative 
variables and reveal complex non-linear effects. However, 
these methods do not provide a transparent mathematical 

Fig. 3  A comn of shoots of Fragaria bucharica, Fragaria chiloen-
sis and Fragaria x ananassa ‘Jucunda’ grown on the modified MS 
(NCGR medium) control (treatment 32) and two improved treatments 

(Table 1). These improved treatments included some, but not all, of 
the suggested optimal macronutrient ranges predicted by the Multi-
variate Adaptive Regression Splines (MARS) algorithm
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equation that shows the relative importance of the inputs on 
the output (Olden et al. 2008). None of these techniques have 
been used to improve strawberry growth medium.

Murashige and Skoog (1962) medium with some modi-
fications was used as the standard for multiplication of a 
wide range of in vitro cultures at the NCGR, however a large 
variation in the response indicated that it is not ideal for 
many species and cultivars (Reed and Hummer 1995). As 
seen in the current study, a medium with increased amounts 
of five major MS nutrients (2 × NH4NO3, 1.96 × CaCl2, 
3 × MgSO4, 1.81 × KNO3 and 1.94 × KH2PO4), is needed to 
provide improved growth for the three species tested without 
changing growth regulator concentrations. The next step in 
this study would be to test this medium on additional acces-
sions to determine the applicability of this medium to large 
germplasm collections.

Conclusions

The MARS algorithm is a promising tool to advance under-
standing and prediction of biological events. This method 
can reveal non-linear and multidimensional relationships, 
and typically outcompete basic linear models, which makes 
it ideal to use for in vitro data. MARS is a non-parametric 
approach that is able to handle continuous and categorical 
data, without the need to satisfy the restrictive distribu-
tional assumptions required by the traditional parametric 
techniques. The MARS model clearly showed the direct 
effect and the complex interactions of the parameters. The 
target variables were affected by all of the tested mineral 
nutrients and the genotype input. This study was able to 
define the common major nutrient requirements of the tested 
strawberry species, due to the inherent characteristic of the 
MARS algorithm to incorporate nominal variables as predic-
tors within the model. Thanks to the ability of MARS to ana-
lyze multiple responses simultaneously, the optimal major 
salts for good shoot quality, multiplication, and greener 
leaves were predicted to be: 3300 mg  L−1  NH4NO3, 862.4 
mg  L−1  CaCl2, 1110 mg  L−1  MgSO4, 3439 mg  L−1NO3 and 
329.8 mg  L−1  KH2PO4.
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