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Abstract
In plants, somatic embryo development is regulated by a complex group or network of transcription factors (TFs). The 
LEAFY COTYLEDON (LEC) TFs are significant key regulators that promote the initiation of somatic embryo formation 
and biological processes of the embryo maturation phase. The LEC gene has been implicated to act as unique regulators 
in plant embryogenesis, growth and development via diverse signaling pathways. In the present review, we summarize the 
current advances in our understanding of the LEC TFs in plant biology including embryogenesis. Recent discoveries would 
be advantageous to unlock the mysteries of LEC TF genes of different molecular mechanisms in plant cells.
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Abbreviations
ABI3  ABSCISIC ACID INSENSITIVE3
BBM  BABY BOOM
FUS3  FUSCA3
AGL15  Agamous-Like 15
IAA30  Indole acetic acid inducible 30
LEC  LEAFY COTYLEDON
PGRs  Plant growth regulators
PKL  PICKLE
SD  Seed development
SE  Somatic embryogenesis
SERK  SOMATIC EMBRYOGENESIS RECEPTOR 

LIKE KINASE
TCL  TRICHOMELESS
TFs  Transcription factors
WUS  WUSCHEL

Introduction

Embryogenesis is an essential stage which represents 
developmental plasticity in higher plant species (Yang and 
Zhang 2010). Somatic embryogenesis (SE) is an important 
in vitro regeneration method in modern crop breeding which 
describes the single cell differentiation into a mature embryo 
through different development periods (Kumar and Van 
Staden 2017). In the SE pathway, haploid or diploid somatic 
cells develop into differentiated plants through different 
embryological stages (globular, heart, torpedo and cotyle-
donary-shaped) without fusion of gametes (Williams and 
Maheswaran 1986; Kumar and Van Staden 2017). In general, 
two distinct phases are involved in the whole process of plant 
embryogenesis; early morphogenesis phase which includes 
the formation of embryogenic cells and tissues, and matura-
tion phase that permit the embryo to enter into a desiccated 
state (West and Harada 1993; Goldberg et al. 1994; Méndez-
Hernández et al. 2019). Studies on the genetic mechanisms 
confirmed that a number of transcription factors (TFs) have 
been identified which are responsible for inducing somatic 
embryogenesis when ectopically expressed. A predomi-
nant number of SE-inducing genes encode TFs including 
SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 
(SERK) (Schmidt et al. 1997; Kumar and Van Staden 2019), 
BABY BOOM (BBM) (Boutilier et al. 2002; Jha and Kumar 
2018), LEAFY COTYLEDON (LEC) (Stone et al. 2001; Gaj 
et al. 2005), AGAMOUS-LIKE 15 (AGL15) (Harding et al. 
2003), WUSCHEL (WUS) (Zuo et al. 2002), and EMBRYO 
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MAKER (Tsuwamoto et  al. 2010) have been identified, 
which are responsible for the induction of differentiated 
somatic cells and somatic embryo formation. Among the 
TF genes, the LEC genes are reported to have an important 
role in controlling several aspects of embryogenesis includ-
ing embryo development (Gaj et al. 2005; Braybrook and 
Harada 2008 (Table 1)). The LEC TFs (LEC1, LEC2 and 
FUSCA3 (FUS3)) are unique regulators of embryogenesis 
in that they are required to explain the molecular mecha-
nisms for controlling embryo development, morphogenesis 
and embryo maturation (Harada 2001). The LEC TFs estab-
lish environments that encourage the initiation of somatic 
embryo formation and cellular processes of the maturation 
phase. The cessation of embryo morphogenesis, synthesis 
and storage of accumulated macromolecules, acquirement 
of desiccation tolerance and desiccation of the seed are 
the major features of the maturation phase (Harada 1997; 
Vicente-Carbajosa and Carbonaro 2005; Braybrook and 
Harada 2008). In early embryogenesis, LEC TFs are needed 
to specify suspensor cell fate and cotyledon identity (Lotan 
et al. 1998; Meinke et al. 1994; Keith et al. 1994; West 
et al. 1994; Stone et al. 2001), whereas during late embryo-
genesis LEC TFs are required for maturation phase for the 
expression of maturation-specific genes (West et al. 1994; 
Baumlein et al. 1994). Thus, LEC TFs are candidate gene 
regulators, which play a key role in controlling many aspects 
of embryogenesis including morphogenesis and maturation. 
The LEC1, LEC2 and FUS3 encode two distinct classes of 
TFs. The LEC1 gene encodes an extensive sequence similar-
ity to the HEMEACTIVATED PROTEIN 3 (HAP3) subunit 
of the CCAAT-binding TF, an isoform found in seed plants 
(Lotan et al. 1998; Stone et al. 2001; Kwong et al. 2003; 
Braybrook and Harada 2008). In Arabidopsis thaliana, based 
on sequence similarity HAP3 subunits can be divided into 
two different classes such as LEC1-type and the non-LEC1-
type (Lee et al. 2003). Both the LEC1 types are essential 
for embryogenesis and embryo development (Kwong et al. 
2003). The LEC2 and FUS3 genes encodes B3 domain 
TFs, a DNA-binding motif, which acts in developing seeds 
(Luerssen et al. 1998; Stone et al. 2001). Ectopic expression 
of the LEC genes, LEC1 and LEC2 activate SE in vegetative 
cells and were found to be adequate in embryo development 
(Lotan et al. 1998; Stone et al. 2001). It was hypothesized 
that Arabidopsis PICKLE (PKL), which encodes a CHD3-
chromatin-remodeling factor, is responsible for repression of 
the LEC genes during seed germination (Ogas et al. 1999; 
Rider et al. 2003). Consistent with expression of the LEC 
genes, PKL mutants accumulate storage products and pro-
mote embryonic identity in culture. These embryonic fea-
tures are repressed by exogenous GA and enhanced by GA 
synthesis inhibitors (Ogas et al. 1997). The LEC2 and FUS3 
TFs activates the genes involved in the accumulation of stor-
age macromolecules in the embryo during maturation. In 

addition, LEC2 and FUS3 TFs are implicated in repression 
of GA biosynthesis during seed development (Gazzarrini 
et al. 2004; Curaba et al. 2004).

As shown in Fig. 1, LEC1 gene activates YUC10, whereas 
LEC2 induces YUC2 and YUC4, an auxin biosynthesis 
enzyme (Stone et al. 2008). The LEC2 gene also induces the 
IAA30 (negative regulator of auxin signaling) (Braybrook 
et al. 2006; Kumar and Van Staden 2017; Jha and Kumar 
2018). The activation of YUC  genes increase the endoge-
nous auxin levels which obviates the necessity for exogenous 
auxin and provides a critical insight into LEC-mediated SE.

The role of LEC genes in embryogenesis have been 
reported in many plant species such as A. thaliana (Lotan 
et al. 1998; Stone et al. 2001; Gaj et al. 2005; Wójcikowska 
et al. 2013), Zea mays (Zhang et al. 2002), Daucus carota 
hypocotyl (Yazawa et al. 2004), Coffea canephora seedlings 
(Nic-Can et al. 2013), Medicago sativa protoplasts (Domoki 
et al. 2006), Medicago truncatula leaves (Orlowska et al. 
2017), Theobroma cacao leaf tissue (Alemanno et al. 2007; 
Fister et al. 2018) and c axillary buds (Brand et al. 2019). 
Additionally, few studies also revealed diverse biological 
processes of LECs such as regulation of gene sets, involved 
in seed development (Pelletier et al. 2017) and for enhanc-
ing oil yield in Camelina and Arabidopsis seeds (Zhu et al. 
2018). The main purpose of this review is to provide brief 
insights on the recent discoveries and current advances of 
the LEC TFs in the area of plant embryogenesis.

Ectopic expression of LEC genes induces embryogenesis 
without exogenous auxin. Based on the articles reviewed 
we suggest that the endogenous auxin level was increased 
by LEC1-mediated activation of YUC10 gene and LEC2-
mediated activation of YUC2 and YUC4 gene that encodes 
auxin biosynthesis and IAA30 (negative regular of auxin 
signaling), which modulate the auxin-mediated signaling 
during embryogenesis.

LEC TFs genes are crucial during somatic 
embryogenesis

SE developmental pathway comprises complex network of 
cellular processes and expression of several signaling path-
ways. A considerable number of studies related to molecular 
genetics confirmed that induction of spontaneous embry-
ogenesis is due to ectopic expression of TF genes (Salvo 
et al. 2014; Horstman et al. 2017a; Jha and Kumar 2018). 
LECs TFs are central regulators of plant cell totipotency 
(Gaj et al. 2005), are responsible for initiation and control 
of maturation phase during embryogenesis and cause forma-
tion of somatic embryos when expressed ectopically (Bray-
brook and Harada 2008). During embryogenesis the zygote 
undergoes two different developmental stages i.e. morpho-
genesis and maturation. In morphogenesis, the basic plant 



477Plant Cell, Tissue and Organ Culture (PCTOC) (2020) 140:475–487 

1 3

Table 1  Showing LECs TF gene and their biological functions in different plant species

Plant species Eudicot/Monocot Gene type Name of gene Biological function References

A. thaliana Eudicot LEC LEC2 To induce embryo development in vegeta-
tive cells; Induction of direct somatic 
embryogenesis

Lotan et al. (1998)

A. thaliana Eudicot LEC LEC2 To induce embryo development Stone et al. (2001)
A. thaliana Eudicot LEC LEC1/2; FUS3 Induction of somatic embryogenesis Gaj et al. (2005)
A. thaliana Eudicot LEC LEC2 Promote somatic embryogenesis induction Wójcikowska et al. (2013)
A. thaliana Eudicot LEC LEC2 Rapid changes in auxin activity and induce 

cell-dedifferentiation in the maturation 
phase of embryogenesis

Stone et al. (2008)

A. thaliana Eudicot LEC LEC2 Trigger the accumulation of oil and seed 
specific mRNAs

Mendoza et al. (2005)

A. thaliana Eudicot LEC LEC2 Seed maturation Kim et al. (2014)
A. thaliana Eudicot LEC LEC1 To induce plant embryo development Suzuki et al. (2007)
A. thaliana Eudicot LEC LEC1; FUS3 Somatic embryogenesis dedifferentiation 

and development
Ledwoń and Gaj (2011)

A. thaliana Eudicot LEC LEC1 Involved in controlling late embryogenesis 
develoment

West et al. (1994)

A. thaliana Eudicot LEC LEC1 Essential for embryo development Kwong et al. (2003)
A. thaliana Eudicot LEC LEC2 Induces a leaf anatomy and development Feeney et al. (2013)
A. thaliana Eudicot LEC LEC1 Regulates trichome development and con-

trols cell fate determination
Huang et al. (2015a)

A. thaliana Eudicot LEC ZmLEC1 Essential for enhancing oil yield Zhu et al. (2018)
A. thaliana Eudicot LEC FUS3 Seed development Wang and Perry (2013)
A. thaliana Eudicot LEC FUS3 Seed development Roscoe et al. (2019)
A. thaliana Eudicot LEC FUS3–LEC2 com-

plex
Essential to control lateral root formation Tang et al. (2016)

A. thaliana Eudicot LEC LEC1/ LEC2/ FUS3 Induction of somatic embryogenesis Horstman et al. (2017b)
A. thaliana Eudicot LEC LEC1 Promotes epigenetic reprogramming during 

early embryogenesis
Tao et al. (2017)

A. thaliana Eudicot LEC LEC2/ FUS3 Involved in early embryogenesis Tao et al. (2019)
Z. mays Monocot LEC ZmLEC1 Induction of zygotic and somatic embryo-

genesis
Zhang et al. (2002)

Z. mays Monocot LEC ZmLEC1 Increases seed oil production in maize Shen et al. (2010)
D. carota Eudicot LEC DcLEC1 Induction of zygotic and somatic embryo-

genesis
Yazawa et al. (2004)

M. sativa Eudicot LEC MsLEC1 Somatic embryogenesis induction from leaf 
protoplast cells

Domoki et al. (2006)

C. sativa Eudicot LEC ZmLEC1 Essential for enhancing oil yield Zhu et al. (2018)
T. cacao Eudicot LEC LEC1 Induction of somatic embryogenesis Alemanno et al. (2007)
T. cacao Eudicot LEC LEC2 Induction of somatic embryogenesis Shires et al. (2017)
T. cacao Eudicot LEC LEC2 Induction of somatic embryogenesis in leaf 

tissue
Fister et al. (2018)

G. hirsutum Eudicot LEC LEC1 Regulates somatic embryogenesis by regu-
lating auxin homeostatis

Min et al. (2015)

C. annuum Eudicot LEC LEC1 Induction of somatic embryogenesis Irikova et al. (2012)
C. sinensis Eudicot LEC LEC1 To induce embryo-like structures Zhu et al. (2014)
M. trunculata Eudicot LEC LEC1 Induction of somatic embryogenesis Orlowska et al. (2017)
G. max Eudicot LEC LEC1 Regulates gene sets and involved in seed 

development
Pelletier et al. (2017)

G. max Eudicot LEC LEC2 Regulates gene sets and involved in seed 
development

Manan et al. (2017)

B. napus Eudicot LEC LEC1& LEC-1LIKE Enhanced seed oil production Tan et al. (2011)
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body is established and the embryo is expressed as a shoot 
(plumule) and root (radicle) axis. (Harada 2001; Laux and 
Jurgens 1997). During maturation phase several metabolic 
activities allow the embryo to germinate (Harada 1997). 
Storage proteins and lipids are stored in protein and lipid 
bodies throughout the embryo and these are utilized by the 
growing seedling as a nutrient source.

In addition, at this stage the embryo acquires the ability 
to withstand desiccation; seeds desiccate at the late develop-
ment of embryogenesis (Harada 2001).

It is so that the LEC1/2 and FUS3 participate in an impor-
tant role in controlling several aspects of embryogenesis 
including early morphogenesis and late maturation phase 
(Harada 2001; Parcy et al. 1997; Nambara et al. 2000; Kroj 
et al. 2003; Gaj et al. 2005). The LEC genes are essential 
to maintain suspensor cell identity during morphogenesis 
phase in embryogenesis (Meinke and Yeung 1993). A fur-
ther function during morphogenesis of the LEC genes is the 

specification of cotyledon identity (Meinke 1992; Meinke 
et al. 1994; West et al. 1994). Cotyledons are reverting par-
tially to a leaf-like organ and incompletely specified in the 
absence of LEC gene activity.

During maturation phase, the LEC genes regulate and are 
responsible for the storage of macromolecule synthesis and 
accumulation. The LEC genes ectopically expressed in plants 
accumulates lipids and proteins characteristic of seeds in 
reproductive and vegetative tissues (Stone et al. 2001, 2008; 
Mendoza et al. 2005; Baud et al. 2007; Wang et al. 2007a, b). 
Storage protein synthesis and lipid accumulation is defective 
in loss-of-function LEC mutants, however, these LEC mutants 
are involved in the accumulation of starch grains and protein in 
the distal tips and in basal regions respectively (Meinke et al. 

Fig. 2  Schematic overview of regulation of the embryo matura-
tion phase by LEC TFs. During embryo maturation phase LEC 
TFs exhibit complex regulatory interrelationship to activate sev-
eral genes to induce maturation. The LEC2 activates both LEC1 
and FUS3 (Stone et  al. 2008), whereas, LEC1 activates LEC2 
and FUS3 (Kagaya et  al. 2005b; To et  al. 2006). LEC TFs interact 
with GA; LEC2 directly induces and activates AGL15 (Braybrook 
et  al. 2006). The AGL15 positively activates GA degrading enzyme 
 GA3ox2 (Wang et  al. 2004; Kumar and Van Staden 2017). The 
FUS3 represses the  GA3ox1 and  GA3ox2 (GA biosynthesis genes) 
(Gazzarrini et  al. 2004; Curaba et  al. 2004). PKL represses LEC 
genes in seedlings (Ogas et al. 1997; Rider et al. 2003). pkl mutants 
express LEC genes ectopically and the overexpression of LEC genes 
is enhanced by GA synthesis inhibitors. However, PKL-mediated 
repression of maturation process is still unclear

Table 1  (continued)

Plant species Eudicot/Monocot Gene type Name of gene Biological function References

M. esculenta Eudicot LEC MeLEC1
MeLEC2

Induction of somatic embryogenesis Brand et al. (2019)

S.moellendorffii Lycophyte LEC LEC1 Seed development Kirkbride et al. (2013)
C. sinensis Rutaceae FUSCA3 CsFUS3 Promotes somatic embryogenesis Liu et al. (2018)

Fig. 1  Schematic model which explain the role of LEC TFs in 
somatic embryogenesis. Ectopic expression of LEC genes induces 
embryogenesis without exogenous auxin. Based on the articles 
reviewed we suggest that the endogenous auxin level was increased 
by LEC1-mediated activation of YUC10 gene and LEC2-mediated 
activation of YUC2 and YUC4 gene that encodes auxin biosynthesis 
and IAA30 (negative regular of auxin signaling), which modulate the 
auxin-mediated signaling during embryogenesis. The FUS3 repressed 
biosynthesis of GA. Arrows with dotted line indicate transcriptional 
regulation that molecular mechanisms are not clear and arrows with 
solid line indicates direct transcriptional regulation by molecular evi-
dence
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1994; Ikeda et al. 2006). Likewise, a number of researchers 
have identified that the expression of genes usually active dur-
ing maturation phase, including genes related to storage lipid 
and protein accumulation, is defective in LEC mutants (Harada 
2001; Bäumlein et al. 1994; Parcy et al. 1997).

The LEC TFs directly target the genes involved in the syn-
thesis of storage macromolecule. The LEC2 and FUS3 TF 
genes bind with the RY sequence repeats, which is conserved 
in the 5′ flanking regions of seed protein genes and involved in 
the regulation of transcription of these genes (Dickinson et al. 
1988; Kroj et al. 2003; Reidt et al. 2000; Monke et al. 2004; 
Braybrook et al. 2006). During maturation phase, ABSCISIC 
ACID INSENSITIVE3 (ABI3) interacts with LEC genes to reg-
ulate the seed protein genes (Kroj et al. 2003; To et al. 2006). 
Activation of LEC1 seed protein gene is dependent on the 
ABI3 and other LEC genes. Ectopic expression of LEC1 acti-
vates the ABI, LEC2 and FUS3 genes (Kagaya et al. 2005a).

A complex relationship among the LEC TFs for the regu-
lation of embryo maturation has been shown in Fig. 2. Dur-
ing embryo maturation phase LEC TFs exhibit complex reg-
ulatory interrelationships to activate several genes to induce 
maturation. The LEC2 activates both LEC1 and FUS3 (Stone 
et  al. 2008), whereas, LEC1 activates LEC2 and FUS3 
(Kagaya et al. 2005b; To et al. 2006). LEC TFs interact with 
GA; LEC2 directly induces and activates AGL15 (Braybrook 
et al. 2006). The AGL15 positively activates GA degrading 
enzyme  GA3ox2 (Wang et al. 2004; Kumar and Van Staden 
2017). The FUS3 represses the  GA3ox1 and  GA3ox2 (GA 
biosynthesis genes) (Gazzarrini et al. 2004; Curaba et al. 
2004). PKL represses LEC genes in seedlings (Ogas et al. 
1997; Rider Jr. et al. 2003). PKL mutants express LEC genes 
ectopically and the overexpression of LEC genes is enhanced 
by GA synthesis inhibitors. However, PKL-mediated repres-
sion of the maturation process is still unclear. These char-
acteristics revealed that the LEC TF genes play an essential 
role in controlling embryogenesis processes in plants. The 
LEC genes have distinct differences, although they share 
similar mutant phenotypes. Finally, the LEC genes are candi-
date markers that coordinate embryogenesis being involved 
in both morphogenesis and maturation stages.

Other transcription factor genes controlling 
plant embryogenesis

SE consists of various developmental phases which initiates 
with embryonic induction. While the cells are in induction 
phase, several genes are functional, possibly due to biotic or 
abiotic stresses or extrinsic hormones. The induction phase 
can further be classified into three sub stages: embryogenic 
dedifferentiation, totipotency expression and embryogenic 
commitment. Cell dedifferentiation is a cellular regression 

process in which mature cells are converted into transient 
stages.

As discussed above, LEC genes have been found to be key 
regulators for embryogenesis when ectopically expressed. 
However, other TF genes have also been recognized to pro-
mote embryogenesis which includes SERK (Schmidt et al. 
1997; Hecht et al. 2001), BBM (Boutilier et al. 2002), AGL15 
(Harding et al. 2002), WUS (Zuo et al. 2002), and EMBRYO 
MAKER (Tsuwamoto et al. 2010).

SERK role is identified during embryogenesis in several 
plant species such as A. thaliana (Hecht et al. 2001), Z. mays 
(Zhang et al. 2011), M. truncatula (Nolan et al. 2009), T. 
cacao (Santos et al. 2005) and T. nigrescens (Pilarska et al. 
2016). In a study on Arabidopsis, by Hecht et al. (2001), 
AtSERK1 was found to be highly expressed during early 
embryogenesis. The study suggested that AtSERK1 gene is 
initially expressed during megasporogenesis in the mega-
spore and in cells of embryo sac till fertilization stage. How-
ever, least expression of the same gene has been found in 
matured vascular tissues. ZmSERK1 and ZmSERK2 genes 
isolated from Z. mays, has been found to express during 
embryogenesis (Zhang et al. 2011). Interestingly, ZmSERKs 
genes expression are associated to embryo development and 
hormone signaling. These studies indicates that SERK gene 
is involved in cell to embryonic transition in plant cells.

WUS encodes the homoeodomain TF, reported to play an 
important role in plant embryogenesis. It has been observed 
that WUS is positively up-regulated during SE in various 
plant species (Zuo et al. 2002; Zheng et al. 2014; Tvorogova 
et al. 2019). Ectopic expression of WUS gene was shown 
to be involved in vegetative-to-embryonic transition in all 
tissues (leaf petiole, leaves, stem and root), without add-
ing exogenous growth hormones in A. thaliana (Zuo et al. 
2002). In C. canephora, overexpression of WUS significantly 
enhanced the embryo development up to 400%, and also 
increased the SE in a heterologous system, however exog-
enous PGRs were essential for the initiation of SE (Arroyo-
Herrera et al. 2008).

A. thaliana WUS (AtWUS) significantly increased 
embryogenic callus formation (47.75%) in G. hirsutum 
(cotton), when ectopically expressed (Zheng et al. 2014), 
and also positively upregulated LEC1, LEC2 and FUS3 in 
the embryogenic callus. Similarly, Bouchabké-Coussa et al. 
(2013) also revealed that WUS overexpression significantly 
promoted (×3) embryogenic capacity and triggered in vitro 
regeneration competence in cotton when WUS was expressed 
ectopically. However, these researchers also examined that 
WUS overexpression resulted in the initiation of embryo-like 
structures (abnormal) and that leaf-like structures developed 
on the somatic embryos (Bouchabké-Coussa et al. 2013).

In tobacco, Zhou et al. (2018) uncovered a novel function 
of WOXs in regulating embryo patterning, and confirmed 
by expression pattern analysis that WOX2 and WOX9 are 



480 Plant Cell, Tissue and Organ Culture (PCTOC) (2020) 140:475–487

1 3

essential for early embryo patterning. In a recent report 
with M. truncatula, it was showed that the WOX9 homolog, 
MtWOX9-1, participates in embryogenesis and its overex-
pression enhances embryogenic capacity by changing the 
expression levels of various SE-associated genes (Tvorogova 
et al. 2019). These findings confirmed that WUS and WOX 
family members have an important impact on improving SE 
competence in plant cells.

BBM TF is a master regulator, which induces embryo 
development without any exogenous PGRs (Boutilier et al. 
2002; Jha and Kumar 2018). In a breakthrough report, it 
was observed that BBM transcriptionally regulates LEC1/2, 
ABI3 and FUS3 network during plant embryogenesis (Hor-
stman et al. 2017b). This observation indicates that LEC1 
and FUS3 are crucial for embryo development, where as 
ABI3 and LEC2 positively regulates BBM-mediated SE. 
However, it is a context and dose-dependent mechanism. 
In a breakthrough report by Boutilier et al. (2002), it was 
found that in Arabidopsis an ortholog gene (AtBBM) and 
in B. napus two ortholog genes (BnBBM1 and BnBBM2) 
were recognized and it was revealed that overexpression of 
these ortholog genes encourage embryo development. A 
transgene constructs 35S::BBM and UBI::BBM were used 
for transformation in Arabidopsis and B. napus respectively 
and responsible for cotyledon-shaped embryo development 
on post-germination organs. Interestingly, in P. tomentosa, 
overexpression of BBM-mediated embryogenesis signifi-
cantly improved regeneration pathway (Deng et al. 2009). 
BBM induces embryo development from P. tomentosa calli, 
when expressed ectopically. Approximately 12 embryo were 
developed from 6 calli after 28 days, however, among 12 
only 6 embryo survived and developed into complete plant-
lets (Deng et al. 2009). Similarly, in T. cacao, an ortholog 
gene (TcBBM) has been identified, which is found to pro-
mote the vegetative to embryonic transition of T. cacao 
somatic cells (Florez et al. 2015).

Expression level of TcBBM gene was found throughout 
the embryogenesis process including several stages such as 
globular-stage, heart-stage, early and late torpedo stage and 
cotyledonary stages. These expression levels led to pheno-
type in T. cacao, without any exogenous PGRs for direct 
embryogenesis, however, TcBBM overexpression enhanced 
embryonic potential significantly. Overall, these findings 
showed that TcBBM transcriptional level plays a vital role 
in embryogenesis and it could use as marker gene in T. cacao 
tissue for embryonic growth (Florez et al. 2015).

AGL15 encodes a MADS domain TF that is expressed 
during embryogenesis, although not exclusively (Heck et al. 
1995; Rounsley et al. 1995; Perry et al. 1999; Wang et al. 
2004; Zheng et al. 2016). In Arabidopsis, AGL15 can stim-
ulate SE and lead to extended periods (over 12–19 years 
to date), when expressed ectopically (Harding et al. 2003; 
Thakare et al.2008; Zheng et al. 2016). A transgene (35S 

promoter:AGL15), promotes SE from apical region of shoots 
which is germinated in the medium supplemented with 
2,4-D (Harding et al. 2003; Thakare et al.2008). In addi-
tion, overexpression of AGL15-like TF gene is responsible 
for early embryogenesis in Zea mays (Salvo et al. 2014). 
Moreover, gene encoding putative ortholog, GmAGL15 
(isolated from Glycine max) can enhance embryo develop-
ment in Arabidopsis (Thakare et al. 2008). However, loss-
of-function alleles of agl15 showed significant reduction in 
SE (Thakare et al. 2008). Finally, the different TF genes are 
master regulators that coordinate SE being involved in both 
early and late embryo development.

LEC TFs gene mediated oil content 
accumulation

Oilseed crop improvement is one of the major objectives 
to fulfil the ever-increasing oil needs by humans and for 
biodiesel production. A number of plants accumulate oils in 
the seeds with several beneficial effects. Mainly plant oil is 
synthesized as triacylglycerols (TAGs) from fatty acyl-CoA 
and glycerol-3-phosphate (Ohlrogge and Browse 1995; Shen 
et al. 2010).

Seed oil content in plants is controlled by several phases 
in the oil biosynthetic pathway. Oilseed accumulation and 
biosynthesis are influenced by various genes which are 
involved directly or indirectly in embryo or seed develop-
ment (Wang et al. 2007a, b; Shen et al. 2010; Tan et al. 
2011; Zhu et al. 2018). In A. thaliana, two important TFs 
LEC1 and WRINKLED1 (WRI1) have been found which are 
involved in the regulation of oil accumulation (Lotan et al. 
1998; Cernac and Benning 2004). Several studies by pioneer 
scientists have been documented that overexpression of TFs 
enhance the oil production in plants when compared to the 
overexpression of pathway enzymes (Broun 2004; Grote-
wold 2008; Van Erp et al. 2014). The LEC TFs are key regu-
lators of embryogenesis and are also involved in fatty acid 
biosynthesis by increasing the expression of genes.

In Zea mays (maize), ZmLEC1 (maize LEC1) is overex-
pressed as a key regulator and increases the seed oil pro-
duction (Shen et al. 2010). The ZmLEC1 gene homolog 
exhibited 41% identity to Arabidopsis LEC1 in amino acid 
sequence. Overexpression of ZmLEC1 enhanced the oil 
content by 48.7% in transgenic maize, however, seed ger-
mination and leaf growth reduced significantly (Shen et al. 
2010). The transgenic leaves were 40–50% shorter, and were 
narrow and dark green in colour. Transgenic ZmLEC1 seed-
lings shoot and root growth were slower, resulting in reduced 
height of the plant in the field.

In a recent promising report, LEC gene was shown to 
increase oil production in Arabidopsis and Camelina seeds 
(Zhu et al. 2018). By using Agrobacterium-mediated floral 
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dip method ZmLEC1 binary vector were constructed, driven 
by seed-specific serine carboxypeptidase-like (SCPL17) and 
acyl carrier protein (ACP5) promoters and introduced into 
Arabidopsis and Camelina for expression. The overexpres-
sion of ZmLEC1 enhanced the total oil content by < 20% 
in Arabidopsis and < 26% in Camelina mature seeds (Zhu 
et al. 2018). Interestingly, there was no phenotypic variation 
or abnormal growth identified throughout the life cycle of 
both the plants. These results suggest that ZmLEC1, a master 
regulator, trigger and increases the oil content in Arabidopsis 
and Camelina seeds and might be useful for the enhance-
ment of oil production in different crops or oilseed crop 
improvement. Similarly, in Brassica napus, overexpression 
of BnLEC1 and Bn LEC1-like TFs significantly increases the 
total seed oil content by 2–20% in transgenic seeds without 
any abnormal effects on agronomic traits (Tan et al. 2011). 
In a report by Angeles-Núñez and Tiessen (2011), they pro-
posed that overexpression of LEC2 TF reduced the seed oil 
content by 30% while maintaining high levels of sucrose 
(140%) and starch (> fivefold more) in transgenic Arabidop-
sis seeds. Future research with more extensive analysis may 
help to understand the molecular mechanisms on how LEC 
genes are involved in the expression of genes for fatty acid 
biosynthesis.

LEC crucial for seed development

Seed development (SD) is a critical and complex phase of 
the higher plant life cycle. A seed comprises three differ-
ent regions (filial embryo, filial endosperm and maternal 
seed coat) with distinct variation on a common genotype 
(Jo et al. 2019). Furthermore, each region contains distinct 
subregions, cell and tissues. SD process starts with a double 
fertilization event that generate the zygote and endosperm 
(Goldberg et al. 1994; Harada 2001). Many TFs have been 
shown to express and regulate diverse processes during SD 
(Pradhan et al. 2014; Jia et al. 2014; Devic and Roscoe 2016; 
Jo et al. 2019). Among the TFs involved in SD, LEC1 has 
been considered to be a central regulator of SD (Harada 
2001; To et al. 2006; Braybrook and Harada 2008; Pelletier 
et al. 2017; Jo et al. 2019). LEC1 TF acts sequentially and 
controls diverse processes at several stages of SD (Pelletier 
et al. 2017). During SD, LEC1 acts indirectly to regulate 
diverse processes by activating TFs controlling structural 
genes, however, LEC1 also regulate directly by establish-
ing a feed-forward loop (FFL) network with association of 
other TFs (Mangan and Alon 2003). In addition, LEC1 also 
interacts with several other TFs and activates a particular set 
of genes during SD (Huang et al. 2015b).

LEC1 is also positively involved in chloroplast biogen-
esis and photosynthesis during SD (Pelletier et al. 2017; 

Jo et al. 2019). In Arabidposis and Glycine max (soybean) 
embryos, LEC1 TF transcriptionally activates and expressed 
a genes encoding the light-reaction components of photosys-
tems I and II and other set of genes involved in photosyn-
thesis and chloroplast biogenesis (Pelletier et al. 2017). It 
was also identified that LEC1 TF also regulates and control 
endosperm development (Lotan et al. 1998). In rice, LEC1 
control endosperm development through its interaction with 
AP2 TFs (Zhang and Xue 2013; Xu et al. 2016).

It was found that LEC1 may regulate directly or indirectly 
different TFs to regulate gene sets involved in early and late 
stages of SD (Junker et al. 2012; Pelletier et al. 2017; Jo 
et al. 2019). The LEC1 directly regulates the LEC2, ABI3 
and FUS3 TFs, which all are master regulators of seed matu-
ration (Santos-Mendoza et al. 2008; Braybrook and Harada 
2008; Boulard et al. 2017, 2018). It confirms that LEC1 tran-
scriptionally regulates ABI3 and FUS3 and together they 
form a feed-forward loop (FFL) network, a three-gene pat-
tern and regulates a target gene (Mangan and Alon 2003). 
Similarly, LEC1 directly regulates WRINKLED1 (WRI1) (TF 
which plays a key role in seed maturation), and make a FFL 
network and directly regulate genes involved in the fatty acid 
accumulation during SD in Arabidopsis (Baud et al. 2007; 
To et al. 2012; Jo et al. 2019). Moreover, LEC1 TF also 
control SD indirectly by regulating the expression of TFs 
that independently control SD.

Few studies suggested that LEC1 may interact with other 
TFs to regulate diverse development processes during SD 
(Parcy et al. 1997; To et al. 2006; Pelletier et al. 2017; Jo 
et al. 2019). In a recent report published in PNAS, they pro-
pose that LEC1 acts sequentially and interacts with different 
TFs and respond to different developmental signals during 
seed development (Pelletier et al. 2017). LEC1 interacts with 
LEC2, ABI3 and FUS3 TFs and control gene expression in 
seeds and are involved in the regulation of diverse processes 
during seed maturation (Devic and Roscoe 2016; Boulard 
et al. 2018; Lepiniec et al. 2018).

LEC1 control the maturation phase by interacting with B3 
and bZIP (basic leucine zipper TF) TFs which accumulate 
during SD (Mendes et al. 2013; Baud et al. 2016).

In addition, LEC1 interacts with PHYTOCHROME 
INTERACTING FACTOR4 (PIF4) (a transcriptional modu-
lator), which is responsible for the expression of hypocotyl 
elongation related genes through G box element (Huang 
et al. 2015b). LEC1 also interacts with TCL2 to repress 
trichome formation during embryogenesis (Huang et al. 
2015a). Finally, the interaction of LEC1 with many other 
TFs provides an outline to define how LEC1 regulate and 
express distinct gene sets during different phases of SD. In 
future, LEC1 interaction with all TFs and their impact on 
LEC1 could provide novel insights into the multitasking of 
LEC1 during SD. In A. thaliana, FUS3 phosphorylation at 
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SnRK1 (conserved eukaryotic kinase complex) sites posi-
tively regulates seed yield and plant growth at heat stress 
(Chan et al. 2017). They concluded that FUS3 phosphoryla-
tion plays an important role for SD and plant growth at high 
temperature. However, the molecular mechanism by which 
FUS3 regulates is still elusive. Finally, LEC1 TF has been 
identified as a central regulator of SD, however, very little is 
known about the mechanisms by which LEC1 controls and 
regulates diverse biological processes of SD.

Multi‑functionality of LEC TFs during plant 
development

The LEC TFs acts as a master regulator and are involved 
in diverse functions including plant embryogenesis, growth 
and development. In A. thaliana, Junker and Baumlein 2012 
and Junker et al. 2012 identified that LEC1 TF affects light 
and brassinosteroid (BR) signaling during embryogenesis. 
In addition, LEC1 expression has also been detected in etio-
lated seedlings (Warpeha et al. 2007; Siefers et al. 2009; 
Junker et al. 2012).

Lateral root development is critical for higher plants and 
is responsible for the uptake of water and nutrient acqui-
sition for the growth and development of plants (Charlton 
1996; Tang et al. 2016). Embryonic master regulators LEC2 
and FUS3 are involved in the lateral root formation by regu-
lating YUC  functions (Tang et al. 2016). In A. thaliana, a 
FUS3 and LEC2 complex function synergistically and acti-
vates auxin biosynthesis and YUC  gene during lateral root 
formation. However, expression of FUS3 during lateral root 
formation is activated by LEC2 (Tang et al. 2016). In future, 
more extensive studies will hopefully provide novel findings 
for the better understanding of the molecular mechanisms of 
lateral root formation.

A number of studies have been reported that during post-
embryonic development cell fate determination is controlled 
by TFs (Peris et al. 2010; Perianez-Rodriguez et al. 2014). 
Few researchers documented a significant role of LEC1 in 
post-embryonic cell differentiation, including formation of 
trichomes, mesophyll cells and vascular tissue (Junker and 
Baumlein 2012; Junker et al. 2012). The regulation of tri-
chome formation by different TFs has been well studied by 
several researchers (Marks and Feldmann 1989; Oppenhe-
imer et al. 1991; Wang and Chen 2014; Zhao et al. 2008; 
Zhou et al. 2014). Huang et al. (2015a) documented that 
LEC1 is positively involved in cell fate determination dur-
ing post-embryonic development in A. thaliana. They found 
that LEC1 interacts in vitro with transcription repressors 
such as TRICHOMELESS1/2 (TCL1/2), CAPPICE (CPC) 
and ENHANCER OF TRY AND CPC1 (ETC1) to repress 
trichome formation. It was identified that TCL1 was highly 
expressed in developing seeds, whereas TCL2 in cotyledons 

(Wang et al. 2007a, b; Gan et al. 2011). The interaction with 
these repressors provides a mechanism by which LEC1 regu-
lates cell fate determination.

In a recent breakthrough report by Tao et al. (2019), they 
discovered that LEC2 and FUS3 TFs are involved in expres-
sion of key flowering gene and embryonic resetting in Arabi-
dopsis. The LEC2 and FUS3 TFs compete against VAL1 and 
VAL2 (epigenome readers) to disrupt the Polycomb silencing 
during early embryogenesis. Furthermore, LEC2 and FUS3 
recruit the FRIGIDA (scaffold protein) in order to establish 
an active chromatin state, resulting in the activation of FLC 
(FLOWERING LOCUC C, a floral repressor) and erasing 
the parental memory in early somatic embryos during win-
ter cold. However, LEC2 and FUS3 were silenced during 
post-embryonic phase (Tao et al. 2019). Reprogramming of 
epigenetic mechanisms during embryogenesis by LEC TF is 
well reported (Tao et al. 2017).

Further research will help to unlock the different bio-
logical and molecular mechanism underlying these pro-
cesses. These results suggest that over-expression of LEC 
gene has been used for multifunction in different plant spe-
cies. Increasing current advances and better understanding 
of the mechanism of LEC genes will lead to new opportu-
nities and development of different biological applications.

Conclusions and future perspectives

The findings presented reveal that the LEC transcription 
factor genes have emerged as a master regulator that con-
trols diverse aspects of somatic embryogenesis and has 
potential application in the plant biology. The LEC TFs 
are used as candidate markers to define the molecular 
mechanisms that control the initiation and maturation 
phase of SE. The expression of the LEC gene provides 
clear evidence of its role in embryogenesis and diverse 
developmental signaling pathways including oil content 
accumulation, cell fate determination, lateral root develop-
ment and chloroplast biogenesis and photosynthesis during 
seed development. The LEC gene acts as a master regula-
tor to participate in initiation and maturation of somatic 
embryos but how the LEC-mediated cellular process initi-
ates the maturation phase is still unclear. In addition, how 
the LEC TFs control signaling transmission specificity to 
regulate initiation and maturation of somatic embryo at 
the molecular level remains unclear. In addition, LEC also 
acts as a pioneer TF gene, which activates different sets 
of genes and controls diverse biological processes during 
SD. However, we are only at the beginning to understand 
the potential insight and molecular mechanism by which 
LEC1 regulates diverse functions of SD. Recent discover-
ies have explored the multiple roles of LEC TFs in diverse 
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aspects of plant growth and development. However, a few 
future challenges still need to be clarified such as LEC1 
and LEC2 are involved in the diverse signaling pathways 
related to embryogenesis including embryo morphogen-
esis and maturation, but how these pathways are regulated 
remains unclear. In addition, how is the specificity of these 
LEC TFs obtained? Apart from known processes, what 
additional physiological and biological processes are regu-
lated by LEC TFs? The underlying molecular mechanism 
by which LEC regulates diverse biological processes of 
SD is still unclear. Therefore, research should shed some 
light on how these LEC TFs control embryogenesis and 
several aspects of plant dynamics. In order to decode these 
regulatory networks, a single-molecule imaging technol-
ogy will be required to understand the diverse functions of 
individual LECs in different signaling pathways. Together, 
structural studies of different LECs may open new road-
maps for better understanding their signaling specificity 
and developmental plasticity. It would also help to find 
new insights into the molecular mechanisms and unex-
plored signaling pathways for the better understanding of 
the functions of LEC TFs in plant cells.
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