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Abstract
Tree peony is a well-known ornamental plant that is also valued for its medical uses and edible oil production. A long breed-
ing period and low propagation rate are the main hurdles hindering the development of the tree peony industry, for which 
micropropagation can offer a solution. This article reviews the advances in tree peony micropropagation during the past 
three decades, providing a detailed analysis of the conditions required for the four stages of micropropagation (initiation, 
multiplication, in vitro rooting, and acclimatization). Additionally, potential of tree peony micropropagation for commercial 
application was evaluated. This review provides valuable information for the successful micropropagation of tree peony, 
permitting more targeted and in-depth research into tree peony micropropagation.

Key message 
The review summarized in detail the results achieved in tree peony micropropagation over the last three decades. Further-
more, the potential of the existing micropropagation protocol was evaluated and the problems and the future perspectives 
were summarized.
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Abbreviations
2-iP	� 2-Isopentenyladenine
AMF	� Arbuscular mycorrhizal fungi
BA	� 6-Benzylaminopurine
CCFL	� Cold cathode fluorescent lamps
GA3	� Gibberellic acid
IAA	� Indole-3-acetic acid
IBA	� Indole-3-butyric acid
iPA	� Isopentenyladenosine
KT	� Kinetin
LEDs	� Light-emitting diode
MS	� Murashige and Skoog medium
mT	� meta-Topolin
NAA	� Naphthaleneacetic acid
PGRs	� Plant growth regulators
WPM	� Woody plant medium

Why is micropropagation important in tree 
peony breeding and propagation?

Tree peony (Paeonia sect. Moutan) is a perennial woody 
plant native to China (Wister 1995), now grown extensively 
throughout temperate regions of the world as outdoor orna-
mental, pot flower, and cut flower (Cheng 2007). Recently, 
tree peony has been proposed as a new source for edible oil 
due to the high oil content of its seeds (> 25%) with abun-
dant unsaturated fatty acids (> 90%), which are especially 
beneficial for human health (Li et al. 2015; Gao et al. 2018).

The disadvantages of conventional propagation methods 
(seeding, division, and grafting) have highly constrained the 
breeding and propagation of tree peony. Currently, seedling 
selection and hybridization are the main strategies for tree 
peony breeding; however, its long breeding cycle is the 
major obstacle for these procedures (Cheng 2007). The tree 
peony seeds take 2 to 3 years to germinate due to dormancy 
(Barton and Chandler 1958). Moreover, tree peony is an 
inherently slow grower with a long juvenile stage (Zhu et al. 
2018), and it takes 4 to 6 years for the seedlings to reach 
the flowering stage and then another 3 to 4 years to obtain 
stable and typical blooms (Barton and Chandler 1958), 
whereby breeding a new cultivar can take at least 10 years. 
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In addition, vegetative propagation of tree peony remains 
problematic: division has a low multiplication rate because 
it can only be practiced every 3 to 4 years (Yu 1998), and 
grafting is complex and time-consuming (Aoki and Inoue 
1992). Therefore, alternative and efficient large-scale propa-
gation methods are urgently needed in tree peony.

Micropropagation is a useful tool for the rapid and large-
scale propagation of plants which has been widely used 
to overcome the limitations of conventional propagation 
methods. Although the first definition of micropropagation 
reads as ‘any aseptic procedure involving the manipulation 
of plant organs, tissues or cells that produces a population 
of plantlets’, now it is widely defined as ‘clonal propaga-
tion of plants from small plant parts (0.2–10.0 mm) under 
in vitro conditions’ (Read and Preece 2009). Micropropaga-
tion of tree peony has been extensively exploited since the 
pioneering work of Li et al. (1984) who induced axillary 
shoot from buds. Both Teixeira da Silva et al. (2012) and 
Qin et al. (2012) reviewed advances in the tissue culture 
of tree peony, and proposed micropropagation as the most 
promising way for its large scale propagation. However, they 
failed to report the detailed in vitro conditions essential for 
tree peony micropropagation. Additionally, rapid strides 
have been achieved in tree peony micropropagation in recent 
years, which changed the problems and perspectives in this 
domain. Therefore, it is essential to give a new review on the 
micropropagation of tree peony.

The present study aims to summarize in detail the results 
achieved in tree peony micropropagation over the last three 
decades, including establishment of aseptic culture, axillary 
shoot multiplication, rooting and acclimatization. Further-
more, the potential of the existing micropropagation protocol 
was evaluated for commercial application, and the problems 
and the future perspectives were summarized. This review 
provides useful information for the micropropagation of 
tree peony and should be of great value for the researchers 
concerned with the breeding and propagation of tree peony.

Establishment of aseptic culture

Explant selection

Li et al. (1984) published the first protocol for in vitro pro-
duction of tree peony starting with the blade, petiole and 
bud; they proposed buds as the optimal explant and obtained 
viable plantlets. Since then, buds have been commonly used 
for micropropagating the tree peony (Table 1). Among axil-
lary buds, terminal buds and underground buds used for 
tree peony micropropagation, underground buds showed the 
best differentiation with 65–80% success (Kong and Zhang 
1998; Meng 2011). A significant linear correlation (p < 0.01) 
was found between the developmental stage of the bud and 

the in vitro performance; for instance, just-emerged buds, 
with progressively expanded leaves, were associated with 
a substantially higher success rate (64%) than buds with 
unexpanded leaves (43%) (Beruto and Curir 2007). How-
ever, the proper time for bud collection is then limited from 
November to March (in the Northern hemisphere), when the 
buds have been released from dormancy and become fully 
differentiated (He et al. 2009).

Surface sterilization

By optimizing the sterilizing agent type and sterilizing 
time, a successful surface sterilization technique has been 
established which produced 80–100% survival for tree 
peony buds (Zhang 2008; Qiu 2010). First, the surface bud 
scales are excised, buds are washed under running tap water 
(30–60 min), and then soaked in commercial liquid detergent 
(1% v/v; 10 min). Second, they are transferred to a clean 
bench, sterilized by dipping in ethanol (70% v/v; 25–30 s) 
and then a solution of NaClO (0.2% v/v; 11–15 min), and 
then rinsed three times with sterile distilled water. Finally, 
the buds are excised of bud scales and expanded young 
leaves and then inoculated in an initial culture medium.

With the above mentioned techniques, aseptic culture has 
been successfully established in a wide range of tree peony 
cultivars. However, almost all of the existing studies have 
focused on bud culture (Table 1), which as said can only be 
collected for a limited period (He et al. 2009). To date, there 
is still a lack of explants with year round availability, which 
should be of great value for annual production.

Initiation and multiplication

The formation of healthy shoots and high multiplication 
rates are the prerequisites of an economically viable micro-
propagation protocol, and the in vitro shoot formation of 
tree peony is usually influenced by the basal medium, plant 
growth regulators (PGRs), culture conditions, and some 
other factors.

Basal medium

Although the woody plant medium (WPM) (Lloyd and 
McCown 1980) has been considered as optimal for the 
in vitro shoot proliferation of tree peony (Table 1), the con-
centration of Ca2+ and the ratio of NO3

−/NH4
+ in WPM need 

to be modified for better in vitro performance (Bouza et al. 
1994a; Wang and Van Staden 2001; Li and Cheng 2008). 
Doubling the concentration of Ca2+ (by adding CaCl2) 
increased the multiplication rate and decreased the shoot 
apical necroses in tree peony (Bouza et al. 1994a; Wang and 
Van Staden 2001). Increasing the ratio of NO3

−/NH4
+ not 
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only improved the multiplication rate, but also reduced vit-
rification and browning in tree peony shoots (Li and Cheng 
2008). Considering the addition of Ca(NO3)2 in WPM can 
improve both the concentration of Ca2+ and the ratio of 
NO3

−/NH4
+, Wen et al. (2016a) increased the multiplication 

rate of P. × lemoinei ‘High Noon’ from 1.7 to 3.0 by adding 
three times the original quantity of Ca(NO3)2 in WPM (Wen 
et al. 2016a). Currently, the modified WPM, containing 2–3 
times Ca(NO3)2, is commonly used for the multiplication 
of tree peony (Li 2007; Zhang 2008; Qiu 2010; Wen et al. 
2016a, b, c; Wang et al. 2016). All of these studies show that 
high concentrations of Ca2+ and the ratio of NO3

−/NH4
+ 

could be effective in enhancing the morphogenic responses 
of tree peony, and the specific underlying mechanism is 
worth further research. In the future study, design of experi-
ments methodology could be used for further mineral nutri-
tion optimization of tree peony by testing many factors at 
various levels simultaneously, and advanced statistical tech-
niques as machine learning could be utilized for the optimi-
zation process which has been reported in hazelnut (Akin 
et al. 2016) and apricot (Kovalchuk et al. 2018).

Plant growth regulators (PGRs)

Compared with zeatin (Z), 2-isopentenyladenine (2-iP), 
isopentenyladenosine (iPA), and kinetin (KT), BA was the 
most effective cytokinins to stimulate multiplication of tree 
peony shoots (Bouza et al. 1994a). To improve the mul-
tiplication rate, researchers have combined BA with other 
PGRs, including KT (Li et  al. 1984), 2-iP (Harris and 
Mantell 1991), naphthaleneacetic acid (NAA) (Černá et al. 
2001), 3-Indole acetic acid (IAA) (Wang et al. 2018) and 
gibberellic acid (GA3) (Bouza et al. 1994a; Wen et al. 2016b; 
Wang et al. 2016), among which GA3 was the most effective. 
Although GA3 alone could not induce shoots in tree peony, 
when combined with BA, it dramatically increased the mul-
tiplication rate (3.9–4.8) compared to BA alone (0.6–2.9) 
(Bouza et al. 1994a; Wen et al. 2016b; Wang et al. 2016). 
In addition, a recent report showed that meta-topolin (mT), 
a natural hydroxylated BA, could produce similar in vitro 
shoot multiplication as BA (Wen et al. 2016c); however, 
further screening of the efficacy of mT with a wide range 
of tree peony genotypes is required to confirm its broader 
application.

Culture conditions

The in vitro culture conditions, particularly the temperature 
and light (photoperiod and intensity), are important factors 
affecting the proliferation and growth of shoots (Table 1). 
A suitable temperature of 25 ± 1 °C was determined, with 
higher or lower temperatures causing a reduction in the 
multiplication rate and increasing vitrification (Zhang Ta
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et al. 2001). Both Yan (2009) and Wen (2016) proposed 
50 μmol m−2 s−1 as the optimal light intensity for multipli-
cation of tree peony, resulting in the highest multiplication 
rate, fresh weight, leaf number, and chlorophyll content. In 
addition, recent studies have proposed light-emitting diodes 
(LEDs) and cold cathode fluorescent lamps (CCFL) as 
alternatives to traditional fluorescent lamps, but the optimal 
ratio of red to blue light varies among cultivars (Yue 2008; 
Ding et al. 2010; Wen 2016). Both P. suffruticosa ‘Wulong 
Pengsheng’ and P. × lemoinei ‘High Noon’ showed a bet-
ter multiplication and growth at 7:3 (‘Wulong Pengsheng’ 
in CCFL; ‘High Noon’ in LEDs) (Ding et al. 2010; Wen, 
2016), while 3:1 (LEDs) for P. suffruticosa ‘Luoyang Hong’ 
(Yue 2008) and 1:1 (LEDs) for P. suffruticosa ‘Hu Hong’ 
were optimal (Yue 2008).

Other factors

Constantine (1986) proposed that a multiplication rate of 
2.5–3.5-fold for a four week cycle was realistic for the com-
mercial production of many ornamentals. However, in tree 
peony, a 3 week culture with a frequent supply of fresh 
medium is considered as the optimal subculture regime, 
which produced an increased number of shoots by encour-
aging further shoot proliferation (Harris and Mantell 1991). 
The inclusion of 2.0 mg/L silver nitrate in the medium was 
found to reduce browning and promote multiplication (Li 
et al. 2008a, b). Additionally, lateral bud cutting and carving 
promoted the in vitro shoot induction rate by 2.6–4.8 times, 
with the maximum reaching 96% (Liu and Jia 2010).

In vitro rooting

For a long time, rooting has been considered as a bottle-
neck problem hindering the micropropagation of tree peony. 
According to previous studies, in vitro rooting of tree peony 
depends on the medium, rooting methods, culture condi-
tions, and some other factors.

Medium and rooting method

Half-strength MS (Murashige and Skoog 1962) is the most 
commonly used basal medium in tree peony (Table 1). Addi-
tion of auxins to the medium is essential for adventitious 
rooting of tree peony, because there is no root primordium in 
its in vitro shoots (He et al. 2011; Jia et al. 2013). Compared 
with IAA and NAA, indole-3-butyric acid (IBA) is the only 
auxin that triggers adventitious rooting in tree peony and 
can be used in different ways (Li et al. 1984). Bouza et al. 
(1994b, c) compared three methods of rooting, i.e., quick 
dip rooting, one-step rooting, and two-step rooting; two-step 
rooting was the most effective means. Later, Beruto et al. 

(2004) improved the two-step rooting protocol by applying 
a cold treatment (2 °C in darkness for 7 days) prior to root 
induction, which greatly promoted the rooting of 20 tree 
peony cultivars. Based on this improved two-step rooting 
protocol, recent studies further improved the in vitro rooting 
of tree peony by adding polyamines (1–5 mg/L) (Wen et al. 
2016b) and caffeic acid (1 mg/L) (Shang et al. 2017) to the 
root induction medium. Therefore, the optimal in vitro root-
ing method for tree peony is the improved two-step rooting 
protocol with IBA, putrescine, and caffeic acid used in the 
root induction phase; however, the concentration and root 
induction time need to be optimized for each cultivar.

Culture conditions

Environmental conditions (low temperature and dark-
ness during root induction) are also critical factors for the 
in vitro rooting of tree peony. For the two-step rooting of tree 
peony, the optimal temperature differed in the two phases: 
(i) 17 ± 1 °C was suitable for root induction (Albers and 
Kunneman 1992; Bouza et al. 1994b) with cold treatment 
(2 °C, 7 days) usually applied at the initial induction period 
(Beruto and Curir 2007), and (ii) 25 ± 1 °C was favored 
for root development (Bouza et al. 1994b). In addition, the 
entire rooting stage needs to be maintained in darkness due 
to the low photostability of IBA (Bouza et al. 1994b).

Other factors

In tree peony, BA is the most widely used cytokinin for 
promoting shoot multiplication and can be used alone or in 
combination with other PGRs (Table 1). Recently, BA was 
found to cause negative carryover effects on subsequent root-
ing in many species including tree peony (Aremu et al. 2012; 
Wen et al. 2016c). Furthermore, Wen et al. (2016c) found 
that substituting BA with mT, a natural hydroxylated BA, 
during the multiplication stage could produce a substantially 
higher rooting percentage in tree peony, and proposed that 
the inhibitory carryover effect of BA could be an important 
reason for the poor in vitro rooting of tree peony. In addition, 
shoots selected from a five-week shoot multiplication sub-
culture regime exhibited higher rooting performance (Harris 
and Mantell 1991). These studies show that the physiologi-
cal state of shoots is an important factor affecting in vitro 
rooting of tree peony, and further work on rooting enhance-
ment can also be undertaken during the multiplication stage.

Acclimatization

The ultimate success of micropropagation depends on the 
ability to acclimatize plantlets at a large-scale and with 
high survival rates under ex vitro conditions. In tree peony, 
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previous research has mainly focused on releasing the api-
cal dormancy of the shoot and helping the plantlets gradu-
ally adapt to ex vitro conditions.

Dormancy release of plantlets

Shoot apical dormancy is a typical problem in the accli-
matization of tree peony. It is marked by decreased mitotic 
activity and endogenous abscisic acid (ABA) accumula-
tion in shoot tips, and the dormant plantlets did not grow 
and eventually perished during ex vitro acclimatization 
(Bouza et al. 1992). To release the dormancy, a cold treat-
ment was applied prior to transplantation, but the cold-
treated plantlets went into dormancy again and eventually 
died after 60 days of ex vitro acclimatization (Bouza et al. 
1994c; Wen et al. 2016b; Wang et al. 2016). A recent study 
demonstrated that arbuscular mycorrhizal fungi (AMF) 
inoculation may be a useful tool for overcoming the poor 
survival and arrested growth of tree peony plantlets, as the 
plantlets inoculated with Glomus mossea (an important 
AMF living symbiotically with tree peony under natural 
conditions) had a significantly higher survival rate and 
better growth than the non-inoculated plantlets during ex 
vitro establishment (Wen et al. 2016b).

Transplanting techniques

Shoot dormancy hinders survival during acclimatization in 
tree peony, yet few studies have reported on transplanting 
techniques. Beruto and Curir (2007) developed a two-step 
procedure that yielded true-to-type blooming micropropa-
gated plants. They found that (i) it is necessary to allow 
the propagules to gradually adapt to the non-tissue cul-
ture conditions with a sterilized mixture instead of agar 
medium; and (ii) the plantlets should be transferred into 
normal substrate, and the propagules should be watered 
adequately and carefully. Pearlite, vermiculite, and turfy 
soil at 1:1:1 is typically used as the matrix for the trans-
plantation of in vitro-derived tree peony plantlets (Zhang 
2008; Qiu 2010).

Potential evaluation of micropropagation 
for commercial application

Based on the above mentioned studies, a complete micropro-
pagation protocol has been developed for tree peony (Fig. 1); 
however, whether it can be used for commercial applica-
tion remains unknown. In this study, potential of tree peony 
micropropagation for commercial application was evaluated.

Genetic stability assessment 
of the micropropagated plantlets

The assessment of genetic stability is essential for a micro-
propagation protocol, because genetic variations can be 
easily induced by in vitro processes (e.g., stress, auxin-
cytokinin ratio, and nutritional conditions). Due to their 
desirable properties (reproducibility, level of polymor-
phism, information content, and inheritance; Agarwal 
et al. 2008), SSR markers have been widely used to evalu-
ate the genetic stability of the micropropagated plantlets, 
such as in Olea spp. (Lopes et al. 2009; Brito et al. 2010), 
Jatropha curcas (Rathore et al. 2014), and Asparagus spp. 
(Regalado et al. 2015). In 2016, the genetic stability of 
micropropagated tree peony plantlets was assessed using 
20 SSR markers, and genetic profiling data suggested 
the absence of genetic variations in the micropropagated 
plants (Wen et al. 2016c). Therefore, the micropropaga-
tion protocol is reliable for producing true-to-type tree 
peony plants.

Productivity evaluation of the micropropagation 
protocol

To date, a wide range of cultivars have been successfully 
multiplied in vitro with high rates ranging from two to eight, 
and several cultivars have been reported to root in vitro 
and survive after being transplanted to ex vitro conditions. 
According to the method by Kaur and Sandhu (2015) in the 
industrialized production of sugarcane micropropagation, 
the productivity of the reported tree peony micropropaga-
tion protocols was evaluated (Table 2). It was found that the 
productivity varies from 1536 to 75,570,220 among different 
researches. In P. suffruticosa ‘Wu Long Peng Sheng’, ‘Jin 
Pao Hong’, P. × lemoinei ‘High Noon’, more than 10,000 
plantlets can be produced from one bud after one year’s 
in vitro culture (Wang 2008; Zhang 2008; Qiu 2010; Wen 
et al. 2016b; Wang et al. 2016), which demonstrates the 
great potential of micropropagation for commercial appli-
cation in tree peony.

Problems and future perspectives

After the development in the past three decades, some of 
the existing micropropagation protocols have demonstrated 
great potential in the commercial application of tree peony; 
however, they are still unviable for commercial use due to 
the rooting and acclimatization problems. Moreover, there 
remains numerous tree peony genotypes, which are unable 
to proliferate under in vitro conditions due to the following 
issues.
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In vitro rooting problems

Although some of the existing protocols have obtained rather 
high rooting percentage (80–100%) (Table 1), the commonly 
used two-step rooting method is complex and time-consum-
ing thus increasing the production costs. Moreover, poor 
rooting was previously reported (≤ 60%) for more than half 
of the cultivars tested (Table 1), and many cultivars are still 
unable to root under the existing technical conditions.

As one of the most difficult-to-root plant, it is essential 
to explore the in vitro rooting mechanism of tree peony. 
By observing the histological changes that occur during 
in vitro rooting, it was found that no root primordia exist in 
the shoots before rooting (He et al. 2011; Jia et al. 2013), 
and thus rooting needs to be induced by exogenous auxin 
(IBA) (Table 1). By analyzing the endogenous hormone 
and enzyme changes during IBA-induced rooting, research-
ers proposed deficiencies in auxin content, transport, or 

Fig. 1   Micropropagation of tree peony though bud culture. I. Initia-
tion: buds (a) are used as explants and develop into shoot clusters (b) 
after initial culture. II. Multiplication: the shoot cluster is subdivided 
into single shoots (1–1.5 cm in length) (c) and the basal portions con-
taining little buds (d) for the subculture, which develop into primary 
shoot clusters (e) and secondary shoot clusters (f), respectively. III. 

Rooting: shoots (1–1.5 cm in length) (c) are excised from the shoot 
cluster and cultured for adventitious rooting. IV. Acclimatization: 
the rooted shoots (g) are transplanted to ex vitro conditions, and the 
plantlets (h) are acclimatized under ex vitro conditions. The bars in 
the figure equal to 2 cm
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perception mechanisms as the major explanations for the 
rooting recalcitrance of tree peony (Bouza et al. 1992; He 
et al. 2011). In addition, non-auxin related factors can also 
block rooting. For instance, Fu et al. (2016) attributed the 
poor rooting of tree peony to deficiencies in phenolic acid 
contents, as some of the phenolic acid (paeoniflorin, benzoic 
acid, and 4-hydroxy benzoic acid) contents were higher in 
easy-to-root tree peony cultivars. However, those studies 
are still insufficient to reveal the mechanism for the root-
ing recalcitrance of tree peony; the molecular mechanisms 
involved remain unknown and should be the emphasis for 
future research.

Acclimatization problems

Although several tree peony cultivars have been reported 
to acclimate ex vitro, poor survival rates ranging from 30 
to 80% occured during acclimatization (Table 1). Accord-
ing to previous studies, the main reasons for the poor 

survival of plantlets can be concluded as follows: (i) apical 
bud dormancy is induced during the root induction (Bouza 
et al. 1992, 1994c; Wen et al. 2016b; Wang et al. 2016); 
and (ii) in comparison with in vitro conditions, the ex 
vitro conditions have substantially lower relative humid-
ity, higher light levels, and a septic environment, which are 
stressful to micropropagated plants (George et al. 2008). 
Recently, although AMF inoculation have been proposed 
as a useful tool for overcoming these problems (Wen et al. 
2016b), the study was conducted using pure and expensive 
AMF, and commercial AMF fertilizer is still unavailable 
in the market. Therefore, the development of commercial 
AMF fertilizer is required for the improved acclimatiza-
tion of tree peony plantlets. In addition, as the response to 
AMF was found to be dependent on both the genotype and 
the AMF species used for inoculation (Zeng et al. 2011), 
future studies also need to develop suitable host-endophyte 
combinations in a wide range of tree peony cultivars.

Table 2   Productivity evaluation of the micropropagation protocol

MR multiplication rate, R rooting percentage, S Survival during acclimatization, C contamination rate
P = MRn·R·S·(1 − C) (Kaur and Sandhu 2015)
Contamination rate (C) was taken as 3% for calculation

Species or cultivar Multiplication Rooting Survival during 
acclimatization
(S: %)

Plantlets obtained 
from one bud for 
year (P)

References

MR Subculture 
duration 
(days)

R (%) Rooting 
duration 
(days)

P. suffruticosa ‘Bai Yu’, ‘Feng-
dan Bai’, ‘Shiyuan Bai’, 
‘White Pearl’, ‘Yao Huang’, 
‘Huang Hu’, ‘Orange Yel-
low’, ‘Golden Palace’, ‘Hu 
Hong’, ‘Da Jinfeng’, ‘Fish 
Scale Pink’, ‘Zhuangyuan 
Hong’, ‘Zi Erqiao’, ‘First 
Red’, ‘Red Diamond’, ‘Zhu-
sha Lei’, ‘Orange’, ‘Red’, 
‘Old Pink’, P. rockii ‘Xue 
Lian’

1.0–3.9 50 50 50 70–90 22–6820 Beruto and Curir 
(2007), Beruto 
et al. (2004)

P. suffruticosa ‘Wulong 
Pengsheng’, ‘Da Huhong’, 
‘Jin Ge’

5.4 30 55 50 30 3,374,374 Wang (2008)

P. suffruticosa ‘Wulong 
Pengsheng’, P. × lemoinei 
‘High Noon’

4.4 40 87–100 50 59 80,398 Zhang (2008)

P. × lemoinei ‘High Noon’ 4.8–7.0 35 81 58 33-85 359,364–27,615,386 Qiu (2010)
P. suffruticosa ‘Wulong 

Pengsheng’, ‘Jinpao Hong’, 
P. × lemoinei ‘High Noon’

4.4–4.8 35 80–100 50 83 90,482–226,871 Wen et al. (2016b)

P. × lemoinei ‘High Noon’ 3.0 35 77 70 92 4508 Wen et al. (2016a)
P. × lemoinei ‘High Noon’ 2.7 35 62 50 91 4173 Wen et al. (2016c)
P. suffruticosa ‘Feng Dan’ 3.9 40 57 50 67 19,826 Wang et al. (2016)
P. suffruticosa ‘Feng Dan’ 2.7 35 40 30 98 8743 Wang et al. (2018)
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Browning

Browning is a common problem in the tissue culture of 
woody plants such as tree peony and is usually attributed 
to phenolic compounds being oxidized to highly toxic qui-
nones by polyphenol oxidase (PPO) (An and Zhao 2005). 
Browning is a stumbling block for the micropropagation of 
tree peony, which has been reported to inhibit growth, cause 
lower rates of multiplication or rooting, and even lead to 
cell/tissue/plant death (George et al. 1984).

To prevent or ameliorate browning in tree peony, some 
advances have been made, including the sampling of 
explants at low temperature in the winter or early spring 
(Chen 2005; Kong and Zhang 1998), using dark culture (e.g., 
during the root induction stage of tree peony) (Chen 2005), 
and using low-salt medium (WPM) and suitable PGRs (He 
et al. 2005; Lang et al. 2007). In addition, some more tar-
geted approaches of amending the culture medium with anti-
browning agents have also been employed. The majority of 
anti-browning agents can be divided into two categories: 
(i) antioxidants, such as ascorbic acid, melatonin, or citric 
acid, which reduce oxidative stress and prevent the oxidation 
of phenolic compounds; (ii) adsorbents, such as activated 
charcoal or polyvinylpyrrolidone, which bind phenolic com-
pounds, rendering them less toxic (Zhang and Luo 2006; Li 
et al. 2008a, b). While the aforementioned approaches have 
reduced browning in several micropropagation systems, the 
problem persists in many cultivars. More efficient methods 
are still needed to address this fundamental challenge in tree 
peony micropropagation.

Vitrification

Vitrification, also known as hyperhydricity, is a common 
morphological, anatomical, and physiological disorder 
during plant in vitro culture (Kevers et al. 2004). The typi-
cal ‘glassy’ morphology is characterized by a translucent, 
less green, turgid, wrinkled, curled, and brittle appearance, 
which is the result of chlorophyll deficiency, poor lignifica-
tion, and excessive hydration of the tissues (Sreedhar et al. 
2009; Huang et al. 2010; Hassannejad et al. 2012).

In tree peony micropropagation, the degree of vitrifica-
tion varies from 0 to 76.2% among cultivars (Li and Kong 
2010). Moreover, micropropagation of P. rockii (an impor-
tant tree peony species for oil production) was completely 
hindered by vitrification, as 8 cultivars showed 100% vit-
rification under in vitro conditions (unpublished results of 
our laboratory). The vitrified shoots, including those that 
are only very slightly vitrified, are difficult to proliferate and 
almost impossible to root and survive after transplantation 
(Chu and Li 1992). Tree peony pollen after vitrification cry-
opreservation has a variety of change trends in viability, with 
most pollens showing decreased viability (Ren et al. 2019). 

Although some methods have been tested to reduce vitrifica-
tion in tree peony, including modifying the concentrations of 
gelling agents, changing the light intensity, and reducing the 
BA concentration (An 2005; Li and Kong 2010), using one 
or several methods together described above usually cannot 
suitably prevent vitrification. Currently, research concern-
ing the vitrification of tree peony is insufficient and further 
studies are required to control vitrification for commercial 
clonal propagation.

Conclusion

Over the past three decades, the great advances in tree peony 
micropropagation have brightened the prospects of the effi-
cient propagation and breeding of this plant (Table 1; Fig. 1). 
The advances include that (i) aseptic culture has been devel-
oped for most of the cultivars tested; (ii) a wide range of cul-
tivars have been successfully multiplicated in vitro with high 
multiplication rates ranging from 2 to 8; and (iii) several 
cultivars have been reported to root in vitro and survive after 
transplantation to ex vitro conditions. However, the protocol 
is still unviable for commercial application, and there are 
still major issues concerning in vitro rooting, acclimatiza-
tion, browning and vitrification. This review should facilitate 
a more targeted and in-depth level of research for the suc-
cessful micropropagation of tree peony, thus promoting its 
propagation and breeding.
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