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Abstract
The aerial tissues of Tilia americana var. mexicana produce compounds with anxiolytic activity, such as quercetin 3-O-β-d-
glucoside and tiliroside, in addition to ones with anti-inflammatory properties, such as scopoletin. These three compounds 
were initially identified in callus cultures of apical buds. In the present study, suspension cultures from leaf explant callus 
were established; the accumulation of scopoletin and quercetin 3-O-β-d-glucoside in these cultures were found to be cell-
growth-associated using cell growth and active compound-production kinetics assays. The effects of varying the nitrate and 
copper concentrations in Murashige and Skoog (MS, 27.4 mM total nitrates and 0.01 µM copper) medium on the growth 
of a suspension culture of T. americana cells and on the production of active compounds were tested by means of central 
composite design (CCD) generally used in the response surface methodology (RSM). Cell growth, measured as maximal 
biomass, improved when the total nitrate concentration decreased in the MS medium to 13.7 mM (p < 0.01) regardless of 
the copper concentration. As a phytoalexin, scopoletin accumulated rapidly in plants after pathogen infection, in the suspen-
sion cultures scopoletin yield was stimulated by increased copper concentration to 1.2 μM (p < 0.01). According to the C:N 
hypothesis, the carbon excess generated by nitrates reduced to 8.03 mM (p < 0.01) stimulated the production of quercetin 
3-O-β-d-glucoside. Cell suspension of T. americana represents a potential biotechnological alternative for industrial exploi-
tation in a stirred-tank bioreactor using a two-phase process: (1) the first step will be to grow the cell suspension, (2) the 
second stage will consist in handle the suspension culture towards the production of anxiolytic compounds or towards the 
production of anti-inflammatory compounds. As well as to evaluate another elicitors to stimulate tiliroside production in 
the T. americana suspension cultures.

Key message 
Tilia americana cells grown in a two-phases suspension culture system produce more scopoletin and quercetin 3-O-β-d-
glucoside when exposed to increased concentrations of copper and decreased concentrations of total nitrates.
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Abbreviations
2,4-D	� 2,4-Dichlorophenoxyacetic acid
CCD	� Central composite design
Dt	� Duplication time
DW	� Dried weight
FD	� Factorial design
GI	� Growth index
IBA	� Indol-3-butyric acid
Kin	� Kinetin
µ	� Maximal growth rate
MS	� Murashige and Skoog
rf	� Reference front
RSM	� Response surface methodology
SD	� Star design
TDZ	� Thidiazuron
TPA	� 12-O-Tetradecanoylphorbol-13-acetate

Introduction

Tilia americana var. mexicana (Schlecht.) Hardin is the 
only species from the family Tiliaceae distributed in North 
America and four different varieties of this tree exist in 
Mexico (Hardin 1990). T. americana var. mexicana grows 
from Chihuahua and Coahuila to Guerrero and Oaxaca in 
low mountain forests, warm climates, and sub-warm cli-
mates (Martínez 1987; Hardin 1990; Pavón and Rico-Gray 
2000). In traditional Mexican medicine, T. americana is 
mainly utilized for its tranquilizing and sedative effects, 
as well as under conditions associated with inflammation 
and pain (Martínez and Matuda 1979; Aguilar et al. 1994; 
Argueta et al. 1994; Viola et al. 1994; Monroy-Ortiz and 
Castillo-España 2007). The methanolic extracts from inflo-
rescences and bracts of T. americana have demonstrated the 

presence of glycosylated flavonoids derived from quercetin 
and kaempferol (Fig. 1), their properties to treat conditions 
such as anxiety and depression were validated in murine 
models (Aguirre-Hernández et al. 2007; Herrera-Ruiz et al. 
2008; Aguirre-Hernández et al. 2010; Noguerón-Merino 
et al. 2015). Additionally, a synergic effect was observed 
upon combining the flavonoids quercetin, rutin, and iso-
quercitrin (quercetin 3-O-β-d-glucoside) on the inhibition 
of the GABAergic system, such as GABA/BDZ and 5HT1A 
serotonin, to achieve sedative and anxiolytic effects (Agu-
irre-Hernández et al. 2016). Moreover, the neuroprotective 
properties of the hexane and water extracts of inflorescences 
of T. americana were corroborated in mice and guinea pigs 
models of intestinal ischemia in situ and cerebral ischemia 
(Angeles-López et al. 2013, 2015).

The collection of bracts and flowers from T. americana 
trees in their natural habitat has been restricted since 2001 
by the Mexican Ministry of the Environment and Natural 
Resources (SEMARNAT 2010), as it is considered to be 
at risk of extinction. Consequently, identifying any means 
of preserving the T. americana medicinal tree is manda-
tory. There are few reports related to the micropropagation 
of T. americana from axillary buds derived from seedlings 
(Zurita-Valencia et al. 2014) and through the rooting of cut-
tings by application of Radix® rooter powder 10,000 ppm 
of indole-3-butyric acid (IBA) (Muñoz-Flores et al. 2011; 
Flores-Sánchez et al. 2019).

Calluses cultures from apical and axillary buds from T. 
americana cuttings were developed in MS medium supple-
mented with 0.005 mg L−1 of thidiazuron (TDZ) in combi-
nation with 0.1 mg L−1 of IBA. The methanolic extracts of 
leaves and calluses showed anti-inflammatory activity in a 
tetradecanoylphorbol-13-acetate (TPA)-induced ear edema 
model, with a median effective dose (ED50) of 0.38 mg per 

Fig. 1   Active compounds a 
tiliroside and b quercetin 3-O-β-
d-glucoside isolated from bracts 
and leaves, and c scopoletin 
from cell suspension cultures of 
Tilia americana var. mexicana 
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ear for the leaf extract and 1.73 mg per ear for the callus 
extract. Quercetin 3-O-β-d-glucoside and tiliroside anxio-
lytic compounds and the anti-inflammatory compound sco-
poletin were identified in the methanol extracts (Fig. 1). Cell 
suspension cultures of T. americana represents a biotechno-
logical alternative with the potential for bioactive compound 
production and industrial exploitation. The aim of this study 
was to culture T. americana cells in suspension and to evalu-
ate the production of anxiolytic compounds already identi-
fied from this tree, as well as of scopoletin, derived from the 
leaves and calluses (Flores-Sánchez et al. 2019).

The numerous interactions between the components in 
Murashige and Skoog (MS) medium (Murashige and Skoog 
1962) and their effects on cellular metabolism and the pro-
duction of bioactive compounds have been documented 
extensively (Rozita et  al. 2005; Fritz et  al. 2006; Mak-
symiec 2007; Lea et al. 2007; Zhou and Zhong 2009; Mora-
Izquierdo et al. 2011; Nicasio-Torres et al. 2012, 2016). 
In this study, scopoletin and quercetin 3-O-β-d-glucoside 
production was characterized in T. americana cells grown 
in suspension in MS medium; after this phase, modifica-
tions to the (1) total nitrates and (2) copper contents in the 
MS medium were evaluated as strategies to promote cell 
growth and as abiotic stimulation to improve the produc-
tion of scopoletin and quercetin 3-O-β-d-glucoside from the 
cultures. The outcome was analyzed by means of the cen-
tral composite design (CCD), the most widely used in the 
response surface methodology (RSM), an efficient statisti-
cal experimental approach used in the optimization process. 
The CCD consists of a factorial design (FD) with points 
to the center plus adding a star design (SD) used to model 
the curvature with respect to each factor (Van Ryswyk and 
Van Hecke 1991; Palasota and Deming 1992; Gilmour 2006; 
Bruns et al. 2006; Bezerra et al. 2008; Hanchinal et al. 2008; 
Pérez-Hernández et al. 2019).

Materials and methods

Calluses

Tilia americana var. mexicana calluses were previously 
developed from leaf explants of branches (Fig. 2a, b) col-
lected in Mexicapan, Mexico State, Mexico in October and 
November 2015. This species was authenticated by Abigail 
Aguilar, M.Sc., Head of the Herbarium at the Instituto Mexi-
cano del Seguro Social in Mexico City [IMSSM] and vouch-
ers were stored for reference under #IMSSM-5099.

Callus grown in sterile MS medium with 2,4-dichloro-
phenoxyacetic acid (2,4-D) at 0.5, 1.0 or 2.0 mg L‒1 mixed 
with kinetin (Kin) at 0.5 mg L‒1, supplied with 30.0 g L−1 
of sucrose and adjusted to pH 5.7; 3.0 g L−1 of PhytaGel 
(Sigma-Aldrich, México) as a gelling and 1.0 g L−1 of 

Polyvinylpolypyrrolidone as an antioxidant. Calluses were 
incubated at 26 ± 2 °C, with a 16 h:8 h (light:dark) photo-
period under 50 μM m−2 s−1 warm, white-fluorescent light 
intensity, and 60% relative humidity. Calluses were trans-
ferred into new medium every 5 weeks.

Cell suspension cultures

After 15 months of callus development (Fig. 2c), T. ameri-
cana cell suspension in batch cultures were started with a 
6% inoculum of fresh friable callus in 80 mL of liquid MS 
medium supplemented with 2,4-D (2.0 mg L‒1), Kin (0.5 mg 
L‒1), and sucrose (30.0 g L‒1), adjusted to pH 5.7, and steri-
lized. Flasks of cell suspensions were placed in an orbital 
shaker (New Brunswick Scientific Co., New Brunswick, NJ, 
USA) at 110 rpm and incubated under the same conditions 
employed for the callus cultures. Successfully established 
T. americana cell suspensions were transferred into new 
medium under sterile conditions every 2 weeks using the 
same inoculum. Cell viability was determined considering 
membrane integrity by means of the Evans blue dye (0.25%, 
w/v) exclusion test (Orozco-Sanchez et al. 2011).

Growth kinetics of cell suspension culture

The batch cell suspension cultures of T. americana were 
developed over a period of 28 days, during which nine flasks 
were analyzed at the beginning of the study (day 0) and 
every following Monday, Wednesday, and Friday until the 

Fig. 2   Leaves from Tilia americana var. mexicana cuttings (a) used 
as explants (b) and cultivated in Murashige and Skoog (MS) medium 
for calluses generation (c) with 2.0  mg L−1 of 2,4-dichlorophenoxi-
acetic acid (2,4-D) mixed with kinetin (Kin) at 0.5  mg  L−1, and d 
cells in suspension started with these calluses and stained by means 
of the Evans blue
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end of the experimental period. Each flask was vacuum-
filtered in a Buchner funnel (Whatman filter paper No. 1, 
5.5-cm diameter); the retained biomasses were washed with 
distilled water and then dried in an oven (Thelco 160 DM) 
at 65 °C for 48 h.

Cell growth

The growth curve of T. americana was constructed by reg-
istration of the mean of the cell biomass in dry weight (DW, 
g L−1) throughout the culture period. The DW of the maxi-
mal cell biomass and the time required for its growth were 
recorded. The growth index (GI) was calculated considering 
the maximal biomass obtained at the end of the logarithmic 
growth period, minus the inoculum, and divided by the inoc-
ulum. Maximal growth rate (μmax) was calculated by gener-
ating linear regression equations of a semi-log calculation 
of the biomasses from the logarithmic growth phase versus 
time (graph not shown). Doubling time (Dt) was determined 
from the equation Dt = ln 2/µmax and biomass produced 
according to the sucrose content (30.0 g L−1) were deter-
mined based on the theoretical value (Y = 0.5 g of biomass/g 
of sucrose) reported for plants (Katoh and Yoshida 2009).

Extraction of cells in suspension

Dry biomasses (200 mg) from six flasks taken at the begin-
ning (0 days) and six flasks after 7, 14, 21, and 28 days of 
batch cell suspension cultures were extracted at room tem-
perature at a 1:20 (w/v) proportion with methanol three 
times (24 h for each procedure). The extracts obtained for 
each sample were filtered through filter paper, pooled, con-
centrated to dryness (Pérez-Hernández et al. 2014; Nicasio-
Torres et al. 2016; Flores-Sánchez et al. 2019), and dissolved 
in high-purity methanol (Merck, Mexico, Mexico) for chro-
matographic analysis. Production kinetics were obtained by 
quantifying the scopoletin and quercetin 3-O-β-d-glucoside 
levels in these methanolic extracts.

HPLC conditions for quercetin 3‑O‑β‑d‑glucoside 
and scopoletin analyses

HPLC analyses were performed using a Waters system (2695 
Separation Module) coupled to a diode array detector (2996) 
with a 190–600-nm detection range and operated through the 
Manager Millennium software system (Empower 1; Waters 
Corp., Boston, MA, USA). Separation of the compounds from 
the biomass extracts for quercetin 3-O-β-d-glucoside and sco-
poletin quantification was performed in a Spherisorb® RP-18 
column (250 × 4.6 mm, 5 µm; Waters); a constant tempera-
ture of 25 °C was maintained during all analyses. Samples 
(20 μL) were eluted at a 1.0 mL min−1 flow rate with (A) high-
purity H2O with CF3COOH to 0.5% v/v (TFA, Sigma-Aldrich, 

Mexico, Mexico) and (B) high-purity CH3CN gradient 
(Merck) mobile phases and were detected by absorbance at 
λ = 343 nm for scopoletin and λ = 355 nm for quercetin 3-O-β-
d-glucoside (Pérez-Hernández et al. 2014; Nicasio-Torres et al. 
2016; Flores-Sánchez et al. 2019). Analyses of scopoletin 
(99%, Sigma-Aldrich) and quercetin 3-O-β-d-glucoside (90%, 
Sigma-Aldrich) were performed by comparing their retention 
times (9.54 min and 11.2 min, respectively) and the absorb-
ance spectra, and quantification by method of external standard 
with calibration curves (Flores-Sánchez et al. 2019).

Effect of nitrate and copper on cell growth 
and scopoletin and quercetin 3‑O‑β‑d‑glucoside 
production

Experimental design

Total nitrates (27.4 mM, 11.5 mM KNO3, and 15.9 mM 
NH4NO3) and copper (0.1 μM CuSO4) contents in the com-
plete MS medium were used as independent variables (X1 and 
X2, 0 and 0, central points) in a 2K FD, in which these factors 
were coded at two levels (+ 1, − 1). The codification of the 
experimental design is shown in Table 1.

The cell growth (maximal biomass DW, Y1), productions 
(µg L−1) and/or yields (μg per g of dry biomass) of scopoletin 
(Y2) and quercetin 3-O-β-d-glucoside (Y3) were compared 
using an analysis of variance (ANOVA), which generated the 
following linear mathematical model:

where: Y = predicted responses according to the model 
(Y1 = maximal biomass, productions and/or yields of 
Y2 = scopoletin, and Y3 = quercetin-3-O-β-d-glucoside); 
β0 = intercept term; β1 = coefficient indicative of the lin-
ear effect of total nitrates on the response; β2 = coefficient 
indicative of the linear effect of copper on the response; 
β1,2 = coefficient of the interaction effect of total nitrates and 
copper on the response.

With this model, it was possible to detect the levels of total 
nitrate and copper that would define the optimal concentra-
tions for the growth (Y1) and for the yields of scopoletin (Y2) 
and quercetin 3-O-β-d-glucoside (Y3) at day 14 of culture, 
period established for maximal cell growth (Van Ryswyk and 
Van Hecke 1991; Palasota and Deming 1992). A central com-
posite design (CCD) for the two independent variables was 
performed to five codified levels (− 1.41, − 1, 0, 1, and 1.41).

Analytical determinations

Cell growth

At the end of the culture period (14 days), six flasks for each 
experimental condition were withdrawn. The cell suspension 

Y = �0 + �1X1 + �2X2 + �1,2X1X2
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from each flask was vacuum-filtered in a Buchner funnel 
(Whatman Paper No. 1, 5.5 cm diameter) and the retained 
biomass was washed with distilled water. Subsequently, the 
biomass was dried in an oven at 65 °C for 48 h, the cell-bio-
mass DW determined (g L−1), and the mean cellular-biomass 
growth rate under each nutrient condition recorded (Y1).

Quercetin 3‑O‑β‑d‑glucoside and scopoletin yields

Biomasses (200 mg) from each flask were extracted with 
methanol for the HPLC analyses of scopoletin (Y2) and 
quercetin 3-O-β-d-glucoside (Y3). Reported yields repre-
sent the mean of 6 independently grown flasks from each 
experimental condition.

Cell growth (biomass DW, Y1) and yields (μg per g of 
dry biomass) of scopoletin (Y2) and of quercetin 3-O-β-
d-glucoside (Y3) of CCD were analyzed with an ANOVA 
assay, the results of which can be expressed according to the 
following quadratic equation:

β0 = the intercept term; β1 = linear effect of total nitrate 
on response; β2 = linear effect of copper on response; 
β1,1 = quadratic effect of total nitrate on response; β2,2 = quad-
ratic effect of copper on response; β1,2 = coefficient of the 
effect of the interaction between variables.

Using the above model, the response surface was plotted 
for each response variable.

To know whether the production of both compounds was 
favored by abiotic stimulation, the yields of scopoletin and 
quercetin 3-O-β-d-glucoside productions were compared 
with an ANOVA and a Tukey’s post-test (ρ ≤ 0.05).

Y = �0 + �1X1 + �2X2 + �1,2X1X2 + �1,1X
2

1
+ �2,2X

2

2

Results and discussion

Cell suspension growth

All the calluses generated from leaf explants of T. americana 
var. mexicana in MS medium with 2,4-d at 0.5, 1.0 or 2.0 mg 
L‒1 mixed with kinetin (Kin) at 0.5 mg L‒1 were friable and 
presented a dark brown color, and in the subsequent changes 
to fresh medium the coloration changed to a light brown 
color (Fig. 2c). The T. americana cell suspension started 
with this callus and cultivated in batch in full MS medium 
(27.4 mM of total nitrates and 0.1 µM copper) was consti-
tuted of small cell aggregates light brown in color (Fig. 2d). 
In the logarithmic growth phase, the culture appeared brown 
in color, possibly due to the production of phenolic com-
pounds (Bourgaud et al. 2001; Matkowski 2008). When the 
culture reached its stationary phase, the light-brown color 
was recovered and retained until the end of the culture (day 
28).

The kinetics of cell suspensions demonstrated a sig-
moid growth pattern (Fig. 3): the lag phase lasted 2 days; 
thereafter, the logarithmic growth phase began and lasted 
12 days, obtaining maximal biomass (17.86 g DW L−1) 
at day 14 followed by the stationary phase; subsequently, 
the cellular biomass gradually decayed until the end of 
the culture period. The growth parameters of batched 
cells grown in suspension, for example, GI = 4.81 ± 0.88, 
Dt = 6.603 ± 0.78 days, µ = 0.107 ± 0.011 days−1, and the cel-
lular biomass produced with respect to the carbon source 
(sucrose) Y = 0.637 ± 0.067 g DW biomass/g sucrose, can be 
found within the values already reported for another woody 
species, such as Taxus globosa (Tapia et al. 2013), Bur-
sera linanoe (Pavón-Reyes et al. 2016), Prosopis laevigata 

Table 1   Maximal biomass, scopoletin and quercetin 3-O-β-d-glucoside production in the Tilia americana var. mexicana cell suspension after 
14 day in culture, and coefficients obtained in the 2K factorial design

Coefficient values were significantly different when these were followed by ** (p < 0.01)

X1 (NO3
−) X2 (Cu2+) NO3

− (mM) Cu2+ (µM) Maximal bio-
mass (g L−1)

Scopoletin Quercetin 3-O-β-d-glucoside

(µg L−1) (µg g−1) (µg L−1) (µg g−1)

+ 1 − 1 41.1 0.01 16.53 ± 0.33 86.31 ± 2.23 6.35 ± 0.49 445.45 ± 16.71 26.70 ± 1.07
− 1 − 1 13.7 0.01 20.91 ± 0.97 187.04 ± 11.16 10.27 ± 0.79 626.98 ± 62.12 28.60 ± 1.95
+ 1 + 1 41.1 1 16.31 ± 0.86 103.32 ± 27.77 8.35 ± 1.03 269.22 ± 24.96 23.88 ± 2.76
− 1 + 1 13.7 1 23.07 ± 0.68 256.98 ± 11.13 10.89 ± 0.76 606.01 ± 63.37 26.43 ± 2.26
0 0 Full MS medium 18.05 ± 0.09 182.13 ± 21.73 10.69 ± 0.73 10.69 ± 0.73 25.81 ± 0.79

27.4 0.1

Coefficients (linear model)

β0 18.98 163.11 9.31 491.84 26.28
β1 (NO3

−) − 2.79** − 63.66** − 1.62 ** − 129.60** − 1.10**
β2 (Cu2+) 0.49** 21.68** 0.66** − 49.31** − 1.24**
β1,2 (NO3

−,Cu2+) − 0.59** − 13.29** 0.35 − 38.81** − 0.17
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(Trejo-Espino et al. 2011), and Pinus pinaster (Azevedo 
et al. 2008).

The largest biomass in the complete MS medium was 
obtained at day 14 (Fig. 3), then, the cells in suspension 
cultivated in MS medium with different concentration of 
total nitrates and copper of 2K FD (Table 1) were stopped 
and analyzed at this point. The effect of both nutrients and 
their interaction were significant for the growth of cellular 
suspension (p < 0.01). The negative effect of total nitrates 
and the positive effect of copper indicate that, indepen-
dently or in combination, the levels of total nitrates should 
be decreased and copper should be increased to optimize 
the growth of the cell suspension according to the following 
equation Y1 = 18.98 − 2.79X1 + 0.49X2 − 0.59X1X2.

With this model, it was possible to determine the con-
centrations of total nitrates and copper that would define 
the optimal concentrations for the growth of cells in sus-
pension (Y1) to complete a CCD with five (− 1.41, − 1, 0, 
1, and 1.41) codified levels (Table 3). Coefficients of CCD 
model indicated ratify that total nitrate concentration should 
decrease and copper concentration increase independently 
or interaction (p < 0.01) in order to favor the growth of 
cells in suspension according to the following equation 
Y1 = 18.05 − 1.8X1 + 0.63X2 − 0.6X1X2 + 1.06X2

1
− 0.98X2

2
 . 

The highest maximal biomasses were obtained with 
13.7 mM of total nitrates in combination with 1 µM of cop-
per (Table 3, Fig. 4a).

Morphologically, the T. americana cells cultured in sus-
pension grew as very small multicellular aggregates that 
were light brown in color (Fig. 5e). The cells assumed simi-
lar characteristics when cultivated without copper (Fig. 5c); 

however, they were dark brown in color when the concen-
tration of total nitrates was increased (Fig. 5b), light yellow 
when the copper concentration was increased (Fig. 5d), and 
gray-green in color when the total nitrate concentration was 
reduced (Fig. 5a). Based on the C:N hypothesis, the color 
change and increase in the maximum biomass, that occurs in 
cells grown in MS medium with reduced total nitrate content 
(Fig. 5a), could be due to the synthesis of compounds with 
many carbon, such as phenolic, by increasing the formation 
of cell agglomerates probably by lignification of the cell 
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wall (Fritz et al. 2006). The change in cellular characteris-
tics caused by the increased copper content (Fig. 5d) could 
be due to interactions between this metal and the hydroxyl 
groups of lignin and cellulose in the cell wall, which would 
create conditions that are unfavorable for cell growth (Chen 
et al. 2004).

Scopoletin and quercetin 3‑O‑β‑d‑glucoside 
production

Methanolic extracts from calluses developed with 1.0 and 
2.0 mg L−1 of 2,4-d mixed with 0.5 mg L−1 of kin and cells 
in suspension biomass shown a similar TLC and HPLC 
profile. The presence of scopoletin and quercetin 3-O-β-d-
glucoside in the methanolic extracts of the dry biomasses 
from cells in suspensions was confirmed by comparing the 
retention time, the absorption spectrum, and by co-elusion 

with the standards (Fig. 6). The production of both com-
pounds was growth-associated (Fig. 3) and the highest con-
centrations were obtained during the maintenance phase. 
The maximal production of both compounds occurred con-
currently with maximal biomass (14 days). The content of 
quercetin 3-O-β-d-glucoside (669.15 µg L−1) was greater 
than that determined for scopoletin (394.78 µg L−1).

Given that scopoletin and quercetin 3-O-β-d-glucoside 
production was growth-associated, the effect of total 
nitrates and copper concentration was evaluated at day 
14 of culture in the 2K FD experiments. According to 
ANOVA, scopoletin (p < 0.01) and quercetin 3-O-β-d-
glucoside production (p < 0.01) was maximized by the 
combined effect of both factors. To optimize scopole-
tin production, similar to cell growth, nitrate concen-
trations must be reduced and copper increased inde-
pendently or in combination according to the equation 

Fig. 5   Effect of total nitrates and copper contents in the MS medium tested in CCD on cell suspension growth: a 8.03 mM NO3
−, 0.01 µM Cu2+; 

b 46.77 mM NO3
−, 0.1 µM Cu2+; c 27.4 mM NO3

−, 0 µM Cu2+; d 27.4 mM NO3
−, 1.2 µM Cu2+; e 27.4 mM NO3

−, 0.1 µM Cu2+

Fig. 6   HPLC chromatograms and absorption spectra of scopoletin and quercetin 3-O-β-d-glucoside in a the methanolic extract of Tilia ameri-
cana var. mexicana cell suspension and in b the methanolic extract with the standards
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Y2 = 163.11 − 63.66X1 + 21.68X2 − 13.29X1X2  ;  w h i l e 
for quercetin 3-O-β-d-glucoside production, nitrate 
and copper concentrations must decrease indepen-
dently or in combination according to the equation 
Y3 = 491.84 − 129.60X1 − 49.31X2 − 38.81X1X2 (Table 1). 
To evaluate the effect of both elicitors on scopoletin and 
3-O-β-d-glucoside production, the yields (µg g−1) of each 
compound from the 2K FD experiments were compared 
(Table 1). The β values from the ANOVA (ρ < 0.01) and 
the equation Y2 = 9.31 − 1.62X1 + 0.66X2 + 0.35X1X2 , 
scopoletin yields could be optimized by an independ-
ent effect of total-nitrate-concentration reduction 
and a copper-concentration increase (Table  2). When 
quercetin 3-O-β-d-glucoside yields were compared, 
ANOVA showed a significant effect (ρ < 0.01) by the 

reduction of both nutrients according to the equation 
Y3 = 26.28 − 1.10X1 − 1.24X2 − 0.17X1X2 (Table 1).

To know whether the production of both compounds was 
favored by abiotic stimulation, the yields of scopoletin and 
quercetin 3-O-β-d-glucoside productions were compared 
with an ANOVA and a Tukey’s post-test (ρ ≤ 0.05). The 
highest scopoletin and quercetin 3-O-β-d-glucoside yields 
were obtained with 27.4 mM and 13.7 mM of total nitrate 
(Table 2); with 13.7 mM of total nitrate concentration the 
growth of cells in suspension was improved (Table 1). The 
copper concentrations evaluated exhibited no significant 
effect (ρ > 0.05) for these responses.

With the aim to improve scopoletin and quercetin 3-O-β-
d-glucoside yields a CCD (+1.414, 0, − 1.414) was com-
pleted for intracellular analyses at 14 day. The CCD model 

Table 2   Effect of total nitrate 
and copper concentrations 
for scopoletin and quercetin 
3-O-β-d-glucoside yields in the 
Tilia americana var. mexicana 
cell suspension after 14 day in 
culture

According to Tukeys’ test the values with ** were significantly different (scopoletin: F = 4.71, ρ < 0.05; 
Tukey0.05 = 3.52; quercetin 3-O-β-d-glucoside: Ftotal nitrates = 4.22, ρ < 0.05, Fcopper = 10.12, ρ < 0.01, 
Tukey0.05 = 3.52)

X1 (NO3
−) X2 (Cu2+) NO3

− (mM) Cu2+ (µM) Scopoletin (µg g−1) Quercetin 3-O-β-d-
glucoside (µg g−1)

+ 1 − 1 41.1 0.01 6.35 ± 0.49 26.70 ± 1.07
− 1 − 1 13.7 0.01 10.27 ± 0.79** 28.60 ± 1.95**
+ 1 + 1 41.1 1 8.35 ± 1.03 23.88 ± 2.76
− 1 + 1 13.7 1 10.89 ± 0.76** 26.43 ± 2.26**
0 0 Full MS medium 10.69 ± 0.73** 25.81 ± 0.79**

27.4 0.1

Table 3   Matrix of CCD used for the analyses of total nitrate and copper content in the MS medium on scopoletin and quercetin 3-O-β-d-
glucoside production in the the Tilia americana var. mexicana cell suspension

Coefficient values were significantly different when these were followed by ** (p < 0.01)

X1 (NO3
−) X2 (Cu2+) NO3

− (mM) Cu2+ (µM) Maximal biomass 
(g L−1)

Scopoletin (µg g−1) Quercetin 3-O-β-d-
glucoside (µg g−1)

+ 1 − 1 41.1 0.01 16.53 ± 0.33 6.35 ± 0.49 26.70 ± 1.07
− 1 − 1 13.7 0.01 20.91 ± 0.97 10.27 ± 0.8 28.57 ± 1.95
+ 1 + 1 41.1 1 16.31 ± 0.86 8.35 ± 1.026 23.88 ± 2.76
− 1 + 1 13.7 1 23.07 ± 0.68 10.89 ± 0.76 26.43 ± 2.26
0 0 Full MS medium 18.05 ± 0.09 10.70 ± 0.73 25.81 ± 0.80

27.4 0.1
0 − 1.414 27.4 0 13.95 ± 0.33 10.77 ± 3.19 32.38 ± 2.11
0 + 1.414 27.4 1.2 16.13 ± 0.80 28.78 ± 4.29 21.09 ± 2.42
− 1.414 0 8.03 0.1 20.28 ± 0.23 13.36 ± 2.01 66.14 ± 4.77
+ 1.414 0 46.77 0.1 17.97 ± 0.27 9.83 ± 1.12 33.51 ± 3.41

Coefficients (cuadratic model)

β0 18.05 10.69 25.81
β1 (NO3

−) − 1.8** − 1.432** − 6.32**
β2 (Cu2+) 0.63** 3.51** − 2.62**
β1,2 (NO3

−,Cu2+) − 0.6 0.35 − 0.17
β1,1 (NO3

−)2 1.06** − 1.23 9.04**
β2,2 (Cu2+)2 − 0.98** 2.86** − 2.51
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coefficients indicated that total nitrate concentration should 
decrease and/or copper concentration increase independently 
(p < 0.01) in order to favor scopoletin production (Table 3; 
Fig. 4b). Instead of favoring quercetin 3-O-β-d-glucoside 
production, independently, the total nitrate and copper con-
centrations should be reduced (Table 3; Fig. 4c). Maximal 
level of scopoletin (threefold increase) was obtained with 
27.4 mM of nitrate and 1.2 μM of copper. For quercetin 
3-O-β-d-glucoside (threefold increase), the best condition 
was 8.03 mM of total nitrate and 0.1 μM of copper (Table 3). 
The copper content and total nitrate concentrations that 
favors the scopoletin and quercetin 3-O-β-d-glucoside 
production affect the cell growth of the T. americana cell 
suspension; the condition that best supported its growth 
was 13.7 mM of total nitrate and 1 μM of copper (Table 3; 
Fig. 4a).

There are other reports on the production of secondary 
metabolites in cell suspension cultures of plants stimulated 
by modification of the nitrogen source or with copper uti-
lized as an abiotic elicitor, but there are few reports in which 
both nutrients were modified at the same time. One example 
of the modification of both factors and evaluated by CCD 
was showed in cell suspension cultures of Sphaeralcea 
angustifolia. Scopoletin production by cell suspension cul-
tures of T. americana is greater than that produced by the 
cultures of S. angustifolia in flasks grown in complete MS 
medium, and reduced medium in nitrates (2.74 mM). Similar 
to the results described here, the reduction of the total nitrate 
content stimulated its production. Copper concentrations of 
2.35 µM with 2.42 mM of total nitrates were reported to ena-
ble the highest levels of coumarins (4.0 mg L−1) and sphaer-
alcic acid (6.1 mg L−1) production in suspensions cultures 
of S. angustifolia; interestingly, this condition did not affect 
cell growth (Pérez-Hernández et al. 2014, 2019; Nicasio-
Torres et al. 2016). In Angelica archangelica suspension cul-
tures, altering the copper content (5-50 μM) stimulated with 
a dose-dependent effect on scopoletin production (Siatka 
et al. 2017). These results are similar to those obtained with 
the copper increase at 1.2 μM, unrelated to the nitrate con-
centration, for scopoletin production in the cell-suspension 
T. americana cultures.

The production of scopoletin and other coumarins has 
also been demonstrated using in vitro cultures of differ-
ent plant species, such as Ammi majus (Staniszewska et al. 
2003) with the use of elicitors (e.g., 1,2,3-benzothiadiazole-
7-carbothioic acid, S-methyl ester (BION®), and Enterobac-
ter sakazaki lysate). Scopoletin was identified in the callus 
culture derived from hypocotyls of A. majus seedlings; the 
most effective elicitor was the E. sakazaki lysate. Moreover, 
Siatka and Reichling (2000) reported a 12-fold increase in 
the accumulation of scopoletin in cell suspension cultures of 
Archangelica officinalis treated with Fusarium oxysporum 
compared with the control (0.2 mg mL−1).

There was an increase in the accumulation of quercetin 
3-O-β-d-glucoside when the T. americana cell suspension 
was cultivated in MS medium with 8.03 mM of total nitrates; 
increasing the copper concentration diminished the produc-
tion of this flavonoid. Korsangruang et al. (2010), using the 
cell suspensions of Pueraria candollei var. candollei and 
Pueraria candollei var. mirifica, reported that a five-fold 
increase in the concentration of the nutrient in the culture 
medium (0.5 to 2.5 μM of copper) led to a slight accumula-
tion of total isoflavonoids in the stationary phase of both 
cultures, possibly induced by copper. A similar effect was 
observed on increasing gingenosides’ production in Panax 
ginseng roots by increasing the copper content from 5 to 
25 μM in a bioreactor culture (Ali et al. 2006).

There are, to our knowledge, few reports of quercetin 
3-O-β-d-glucoside production using cell suspension cul-
tures; the existing reports are mainly oriented toward the 
bioconversion of quercetin in vitro cultures of Vitis sp., 
Ipomea batata, and Crocus sativum to quercetin gluco-
sides among them quercetin 3-O-β-d-glucoside. Glycosyl-
transferase enzyme regulates the conversion of quercetin to 
glycosyl esters and stored them in vacuoles (Kodama et al. 
1990; Kokubo et al. 1991). Several glycosylated flavonoids 
derived from quercetin and kaempferol were identified in 
leaves and inflorescence T. americana (Aguirre-Hernández 
et al. 2007; Herrera-Ruiz et al. 2008; Aguirre-Hernández 
et al. 2010; Noguerón-Merino et al. 2015).

These T. americana suspension cultures did not produce 
tiliroside anxiolytic compound. Tiliroside production was 
recently reported in T. americana calluses established from 
apical buds cultivated in MS medium with 0.005 mg L−1 of 
TDZ in combination with 0.1 mg L−1 of IBA. Conversely, 
scopoletin and quercetin-3-O-β-d-glucoside contents are 
higher in the suspensions cultures to those detected in api-
cal bud calluses (Flores-Sánchez et al. 2019). The difference 
in the chemical profile could be due to the growth regulators 
employed for callus generation, as well as to the origin of 
the explant.

Conclusions

Tilia americana cells grown in suspension cultures pro-
duce the anxiolytic quercetin 3-O-β-d-glucoside and the 
anti-inflammatory scopoletin. By modifying the nutrient 
conditions of the MS culture medium using a mathematical 
model of CCD, it was possible to stimulate cellular growth 
by reducing the amount of total nitrates and increasing the 
copper content. Scopoletin production was mainly associ-
ated with the increase of copper concentration, indicating 
that this metabolite is inducible as phytoalexin. Future stud-
ies should include a broader range (particularly higher) of 
copper concentration. The CCD-based analysis indicated 
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that the production of quercetin 3-β-d-glucoside was stim-
ulated by reducing the total nitrate content; according to 
the C:N hypothesis, the carbon excess generated under this 
condition could be used for quercetin 3-β-d-glucoside pro-
duction. It will be necessary to cultivate T. americana cell 
suspensions in the best condition to support the growth and 
transiently modify the nutritional conditions to temporarily 
increase scopoletin or quercetin 3-O-β-d-glucoside produc-
tion. As well as to evaluate another abiotic or biotic elici-
tors to stimulate tiliroside production in the T. americana 
suspension cultures.
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