
Vol.:(0123456789)1 3

Plant Cell, Tissue and Organ Culture (PCTOC) (2019) 137:455–464 
https://doi.org/10.1007/s11240-019-01581-y

ORIGINAL ARTICLE

Use of multiple regression analysis and artificial neural networks 
to model the effect of nitrogen in the organogenesis of Pinus taeda L.

Javier Orlando Barone1 

Received: 2 November 2018 / Accepted: 8 February 2019 / Published online: 20 February 2019 
© Springer Nature B.V. 2019

Abstract
Mineral nutrition is a very important factor in the success of in vitro plant cultures. The aim was to compare the predictive 
capacity of the models obtained using a parametric technique such as multiple regression analysis with a nonparametric one 
such as artificial neural networks. These techniques were used for modeling the effect of total nitrogen concentration and 
the ratio nitrate: ammonium in the regeneration rate, oxidation rate, callus proliferation rate, number of buds per explant and 
buds-forming capacity index. Both the concentration of total nitrogen and the relationship between the concentrations of 
nitrate and ammonium influenced the morphogenetic responses. Optimal buds regeneration was in the range of 10–20 mM 
of the total nitrogen concentration and 1–2 of the nitrate: ammonium ratio. Higher concentrations of nitrogen produced an 
increase in the oxidation rate while the low nitrate: ammonium ratio favored the callus proliferation rate. Artificial neural 
network models presented a better precision to predict the different responses to the total content of nitrogen and the nitrate: 
ammonium rate, with higher coefficients of determination and correlation. They also presented a lower root mean square 
error for all the variables studied than the multiple regression analysis.

Key message 
The use of artificial neural networks allows obtaining a better model of the effect of nitrogen on the organogenesis of Pinus 
taeda L. than traditional statistical techniques.
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Abbreviations
ANNs  Artificial neural networks
BFC  Bud-forming capacity
MRA  Multiple regression analysis
NO3/NH4  Nitrate: ammonium rate
r  Pearson’s correlation coefficient
R2  Coefficient of determination
RMSE  Root mean squared error
TNC  Total nitrogen concentration

Introduction

Nitrogen is one of the main factors limiting the growth and 
development of plants among nutrients. Many essential com-
pounds for the life of the plant are composed of this element, 
such as proteins, nucleic acids and chlorophyll, among oth-
ers. Inorganic nitrogen, such as nitrate and ammonium, is 
incorporated into organic compounds that are used by the 
plant cell. In typical regeneration media, nitrogen is pre-
sent in a greater proportion in the ionic forms of ammonium 
and nitrate (Ramage and Williams 2002) The optimal total 
nitrogen concentration (TNC) and nitrate: ammonium rate 
(NO3/NH4) in the medium depend on the type of tissue, the 
genetic material and the incubation conditions (Poothong 
and Reed 2016).

To understand the effect of a factor on a process it is 
necessary to create a model that allows predicting the 
value of the response from values of the independent vari-
ables. Multiple regression analysis (MRA) is a statisti-
cal technique for estimating the relationship between a 
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dependent variable and independent variables, and for-
mulates a linear relation equation between these variables 
(Uyanik and Guler 2013).

Another option that has been little used to model 
in vitro processes in plants are artificial neural networks 
(ANNs). It is a non-parametric technique, so it does not 
require assumptions such as normality and linearity, being 
able to detect non-linear effects that with other statisti-
cal techniques such as multiple regression could not be 
determined.

ANNs are computational models that manage to obtain 
and store information from processing units (artificial 
neurons) with multiple interconnections (Da Silva et al. 
2017). Among the types of neural networks, there is a 
model called multilayer perceptrons that is characterized 
because the interconnection of neurons is created by feed-
back trained with the backpropagation algorithm. These 
networks learn to transform input data (independent vari-
ables) in a given response (dependent variable) (Panchal 
et al. 2011). The input layer is composed of input vari-
ables in separate neurons, while the output layer consists 
of the response variables. Between the input and output 
layer are the layers called hidden layers, which contain a 
variable number of interconnected neurons and a constant 
neuron related to the intercept synapses, which are not 
directly influenced by any input variable (Günther and 
Fritsch 2010).

The aim of this work was to compare the predic-
tive capacity of the models obtained by multiple linear 
regressions and artificial neural networks on Pinus taeda 
in vitro organogenesis processes.

Materials and methods

Vegetal material consisted in mature zygotic embryos col-
lected and isolated from clonal seed orchard of Pinus taeda 
L. (Livingston Parish) located at the geographical coordi-
nates 27°59′ 0.4′S 55 58′ 6′W. Half strength Murashige and 
Skoog (1962) semisolid (agar 6.5 g  L−1) medium with dif-
ferent TNC (5, 10, 20 and 30 mM) and NO3/NH4 (0.5, 1, 
2 and 3) (Table 1), and supplemented with sucrose (30 g 
 L−1), thidiazuron (0.45 mM), and 6-benzylaminopurine 
(0.44 mM) was used.

The isolated mature embryos were incubated under light 
(116 µmol  m−2  s−1 PPFD, 14 h photoperiod) and tempera-
ture (27 ± 2 °C) controlled conditions. After 35 days of 
incubation the regeneration rate, oxidation rate, callus pro-
liferation, number of buds originated per explant and bud-
forming capacity (BFC) index were measured. BFC index 
was calculated as follows:

A factorial experimental design completely randomized 
with 16 treatments, five repetitions and an experimental unit of 
ten explants was used. MRA and ANNs were used to modeling 
the nitrogen effect, three repetitions were used for modeling 
and two to test the model. R 3.0.2 program (R Core Team 
2013) with “MASS” (Venable and Ripley 2002) and “rsm” 
(Lenth 2009) packages were used for MRA and “neuralnet” 
(Fritsch et al. 2016) to build a multilayer perceptron neural 
network. In MRA, starting from a cubic model (formula 1), 
it was simplified using only the statistically significant terms 
(p < 0.05), when NAR is the NO3/NH4 and TNC is the total 

BFC index =
Regenerationrate × number of buds per explant

100

Table 1  NO3/NH4, TNC tested 
and salt concentration in the 
treatments

Treatments NO3/NH4 TNC (mM) NH4NO3 (mg 
 L−1)

KNO3 (mg  L−1) (NH4)2SO4 
(mg  L−1)

1 0.5:1 30 806.8 0 650.1
2 1:1 30 1200 0 0
3 2:1 30 800 1010 0
4 3:1 30 600 1515 0
5 0.5:1 20 537.9 0 433.4
6 1:1 20 800 0 0
7 2:1 20 533 673 0
8 3:1 20 400 1010 0
9 0.5:1 10 268.9 0 216.7
10 1:1 10 400 0 0
11 2:1 10 267 337 0
12 3:1 10 200 505 0
13 0.5:1 5 134.5 0 108.4
14 1:1 5 200 0 0
15 2:1 5 133.7 168.8 0
16 3:1 5 99.25 255.8 0
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nitrogen concentration in mM. Box-Cox transformations were 
applied to all the variables because they did not comply with 
the assumptions for parametric analysis (normal distribution 
and homogeneous variance) (Box and Cox 1964).

 

Response = cte + β1(NAR) + β2(TNC)

+ β3(NAR:TNC) + β4(NAR2) + β5(TNC2)

+ β6(NAR2 ∶TNC) + β7(NAR:TNC2)

+ β8(NAR3) + β9(TNC3)

Residuals vs fitted, normal Q-Q, scale-location and residu-
als vs leverage plots were used to diagnose the nature of 
the variables, such as normal distribution, homogeneity of 
variance and linearity.

Neural networks were made with a layer input with two 
neurons (one per independent variable), a hidden layer with 
three neurons and a neuron output (the response variable that 
was modeled) (Fig. 1). Previously the variables were trans-
formed to a scale of between 0 for the minimum values and 1 
for the maximum values.

To evaluate the predictive capacity of the models was used 
the coefficient of determination  (R2), Pearson’s correlation 
coefficient (r) and the root mean square error (RMSE) using 
values that were not used to generate the models, which were 
calculated using the following formulas:

R2 = 1 −
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Fig. 1  Artificial neural network model and its components

Fig. 2  Different type of explant 
response after 35 days of 
incubation. The illustrations 
are disposed of according to 
the number of treatment. In all 
cases, bars indicated 2 mm
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where  Yi are the experimental values to evaluate the model, 
 Yp is the corresponding data predicted, Yi is the mean value 
of experimental data and n is the number of the experimental 
data.

Results and discussion

Both the TNC and the NO3/NH4 influenced the morpho-
genetic responses (Fig. 2). The numbers represent the treat-
ments described in Table 1. It was observed that treatments 

RMSE =

�

∑n

i=1

�

Yi − Yp

�2

n

with low TNC and high NO3/NH4 favored the formation 
of calluses, while high TNC and NO3/NH4 decreased the 
regeneration of the buds. Influences of TNC and NO3/NH4 
on the induction and differentiation of plant cell cultures 
have been reported for some in vitro systems (Kovalchuk 
et al. 2018; Poothong and Reed 2016; Wada and Reed 2015).

Table 2 shows the regression coefficients, significance 
(based on a t-test), determination coefficients  (R2) and 
adjusted  R2 for the models obtained by MRA.

Optimal buds regeneration was in the range of 10–20 mM 
of TNC and 1–2 of NO3/NH4 in MRA and ANNs models 
(Figs. 3, 4).

Higher concentrations of nitrogen produced an increase 
in the oxidation rate (Figs. 5, 6), while the low NO3/NH4 

Table 2  Regression coefficients, 
coefficients of determination 
 (R2) and adjusted  R2 (adj.  R2) 
for models developed by MRA

*, **, *** are the significant coefficients at the 95, 99 and 99.9% respectively

Coefficient Regeneration rate Oxidation rate Callus proliferation rate Buds per explant BFC index

cte − 12.82 1.48 113.14*** − 13.69** − 35.32***
β1 173.7*** − 227.82*** 50.63*** 58.35***
β2 2.63** 3.36***
β3 5.25*** 0.15* − 2.9* 0.92***
β4 − 113.1*** 140.76*** − 33.89*** − 32.9***
β5 − 0.26** 0.02** − 0.02*** − 0.18**
β6 − 0.59* 0.74* − 0.23***
β7 − 0.08**
β8 19.93*** − 26.03*** 6.28*** 5.43***
β9 0.01* 0.01*
R2 0.81 0.51 0.76 0.68 0.71
Adj.  R2 0.77 0.49 0.72 0.63 0.68

Fig. 3  Contour graph and basic diagnostic plots for regeneration rate obtained by MRA
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favored the formation of calluses (Figs. 7, 8), to the detri-
ment of the production of buds.

The number of buds per explant was greater in the range 
of 1–2 of NO3/NH4 in both models, and with TNC between 
20 and 30 mM for MRA, while for ANNs it was greater 
between 10 and 20 mM (Figs. 9, 10).

BFC index was higher in the range of 10–20 mM of TNC 
and 1–2 of NO3/NH4 respectively in both models (Figs. 11, 
12).

The relation NO3/NH4 present in the culture medium 
affects the activity of the growth regulators, and that the 
requirement of cytokinins for the meristematic activity is 
lower when the content of reduced nitrogen is reasonably 
high (George et al. 2008).

Residual vs fitted plot is used to detect nonlinearity and 
unequal error variations. Normal quantile–quantile graph 
(normal Q-Q) is a graphical technique to determine if the 
variable has a normal distribution. Scale-location plot shows 
the square root of the standardized residuals as a function of 
the fitted values. Residuals versus leverage plot help to iden-
tify influential data points in the model. Regeneration and 
oxidation rates transformed completely met the requirements 
of parametric analysis. This is observed in the residual vs 
fitted plots which results in a horizontal line close to 0 and in 
the distribution of the points in the normal Q-Q plot, which 
means that they have a normal distribution, homogeneity 
of variances and linearity. Transformed callus proliferation 
rate, number of buds and BFC index had no normal distribu-
tion, homogeneity of variance and linearity.

Fig. 4  Plot of neural networks 
including trained synaptic 
weights and the contour graph 
of the regeneration rate obtained 
by ANNs

Fig. 5  Contour graph and basic diagnostic plots for oxidation rate obtained by MRA
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Table 3 shows the observed values, the values predicted 
by both models, coefficients of determination  (R2), Pear-
son’s correlation coefficients (r) and root mean square errors 
(RMSE) for all the evaluated variables obtained with the test 
values. Models obtained by ANNs for the regeneration, cal-
lus proliferation, number of bud per explant and BFC index 
had high r (> 0.9) and  R2 (> 0.8), while the oxidation rate 
showed a very low  R2 for both models (< 0.3). For all the 
variables evaluated, r and  R2 were higher while RMSE was 
lower in the models obtained by ANNs than those obtained 
from MRA.  R2 is widely used to understand the sources of 
variation, since it represents the proportion of the variance 
explained by a given model (Nakagawa et al. 2017). On the 
other hand, the correlation is a measure of the association 
between two variables, which can be positive or negative. 

One of the ways to measure the correlation between vari-
ables is through the Pearson correlation coefficient (Emerson 
2015). When the values of RMSE are smaller, the greater 
the prediction capacity of the model, because the difference 
between the values predicted by the model and the values 
observed in the experiment is smaller. This indicates that 
the models obtained by ANNs have better predictive capac-
ity, since the predicted values are closer to those observed. 
It is also interesting to note that the models for regenera-
tion and oxidation that comply with the assumptions of the 
parametric analysis have a similar prediction capacity with 
MRA and ANNs methodology, while the prediction capac-
ity is notably greater in ANNs models for variables with a 
non-linear nature.

Fig. 6  Plot of neural networks 
including trained synaptic 
weights and the contour graph 
of the oxidation rate obtained 
by ANNs

Fig. 7  Contour graph and basic diagnostic plots for callus proliferation rate obtained by MRA
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Biological processes, such as organogenesis, are non-
linear in nature due to their complexity, since they depend 
on multiple factors and their interactions (Gallego et al. 
2011). Various nonparametric analysis were used for min-
eral optimization in vitro cultures such as Chi-squared auto-
matic interaction detection (CHAID) analysis (Akin et al. 
2017), Classification and Regression Tree (CART) analysis 
(Kovalchuk et al. 2017) and Neurofuzzy logic (Alanagh 
et al. 2014).

Sarve et al. (2015) compared the prediction capacity of 
response surface models (RSM) and ANNs for the synthesis 
of biodiesel from sesame oil, who concluded that ANNs pre-
sented better prediction capacity with higher  R2, and lower 
RMSE. Moreover, Astray et al. (2016) compared the models 

obtained by RSM and the ANN methodology to optimize the 
production of mixtures of oligosaccharides from sugar beet 
pulp. The ANNs models improved the RSM models between 
5.58 and 61.78%.

Gago et al. (2010) came to the same conclusion using 
traditional statistical analysis and ANNs methodology in 
the proliferation of kiwis in vitro. ANNs methodology is 
easy to use and does not require assumptions such as tradi-
tional statistical analysis (regression analysis and ANOVA 
for example) and allows modeling using a limited number 
of experiments.

Other advantages offered by ANNs over traditional sta-
tistical analysis are the ability to process many types of data 
at the same time (continuous, discrete, binomial variables) 

Fig. 8  Plot of neural networks 
including trained synaptic 
weights and the contour graph 
of the callus proliferation rate 
obtained by ANNs

Fig. 9  Contour graph and basic diagnostic plots for buds per explant obtained by MRA
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Fig. 12  Plot of neural networks 
including trained synaptic 
weights and the contour graph 
of the BFC index obtained by 
ANNs

Fig. 11  Contour graph and basic diagnostic plots for BFC index obtained by MRA

Fig. 10  Plot of neural networks 
including trained synaptic 
weights and the contour graph 
of the number of buds per 
explant obtained by ANNs
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that allows complex models and does not require a specific 
experimental design allowing the use of data generated pre-
viously (Gallego et al. 2011).

In conclusion, both TNC and NO3/NH4 influenced the 
morphogenetic responses and artificial neural network 
models presented a better precision to predict the different 
responses, with higher coefficients of determination and cor-
relation. They also presented a lower root mean square error 
for all the variables studied.
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Table 3  Observed values  (Yi), predicted by MRA  (YMRA), predicted by ANN  (YANNs), coefficients of determination  (R2), Pearson’s correlation 
coefficients between the observed and expected values and root mean square errors (RMSE) for all response

Treatments Regeneration rate Oxidation rate Callus proliferation rate Buds per explant BFC index

Yi YMRA YANNs Yi YMRA YANNs Yi YMRA YANNs Yi YMRA YANNs Yi YMRA YANNs

1 0 4.71 5.61 0 18.26 16.84 80 72.09 71.3 0 1.41 2.31 0 − 0.08 − 0.97
1 0 4.71 5.61 20 18.26 16.84 50 72.09 71.3 0 1.41 2.31 0 − 0.08 − 0.97
2 30 53.75 45.99 40 20.58 23.62 0 13.97 11.36 16 15.46 16.29 4.8 9.18 7.79
2 50 53.75 45.99 30 20.58 23.62 20 13.97 11.36 17.6 15.46 16.29 8.8 9.18 7.79
3 50 60.51 61.3 30 25.23 27.13 20 5.3 8.06 11 15.3 12.21 5.5 6.85 8.78
3 80 60.51 61.3 0 25.23 27.13 0 5.3 8.06 8.88 15.3 12.21 7.1 6.85 8.78
4 80 45.15 49.6 10 29.88 27.32 10 9.92 5.98 6.75 8.88 8.88 5.4 3.89 4.18
4 60 45.15 49.6 40 29.88 27.32 0 9.92 5.98 6.67 8.88 8.88 4 3.89 4.18
5 0 22.83 19.76 0 9.46 7.45 80 58.45 66.98 0 5.51 3.94 0 3.74 1.13
5 22.22 22.83 19.76 0 9.46 7.45 66.67 58.45 66.98 7.5 5.51 3.94 1.67 3.74 1.13
6 80 70.03 85.04 0 11.01 7.89 10 9.33 10.52 18.5 16.67 19.63 14.8 12.99 15.59
6 77.78 70.03 85.04 0 11.01 7.89 22.22 9.33 10.52 26.14 16.67 19.63 20.33 12.99 15.59
7 80 81.86 81.74 20 14.11 11.44 0 7.64 7 18.13 14.21 13.55 14.5 10.66 11.42
7 90 81.86 81.74 0 14.11 11.44 10 7.64 7 15.33 14.21 13.55 13.8 10.66 11.42
8 70 83.28 75.04 30 17.21 22.85 0 4.52 4.05 13.14 10.1 9.55 9.2 7.71 6.82
8 90 83.28 75.04 0 17.21 22.85 0 4.52 4.05 8 10.1 9.55 7.2 7.71 6.82
9 33.33 48.63 46.33 0 3.86 4.78 55.56 44.81 53.53 5.67 6.35 5.17 1.89 4.73 3.19
9 33.33 48.63 46.33 22.22 3.86 4.78 44.44 44.81 53.53 7.33 6.35 5.17 2.44 4.73 3.19
10 90 85.96 92.47 0 4.64 5.07 10 4.69 9.17 16.11 14.62 17.51 14.5 13.98 15.35
10 100 85.96 92.47 0 4.64 5.07 0 4.69 9.17 18.2 14.62 17.51 18.2 13.98 15.35
11 100 86.85 90.77 0 6.19 5.41 0 9.98 5.44 14.6 9.86 13.48 14.6 11.65 12.31
11 90 86.85 90.77 0 6.19 5.41 10 9.98 5.44 14 9.86 13.48 12.6 11.65 12.31
12 80 89.04 88.08 0 7.74 5.67 0 − 0.87 1.71 10.88 8.08 9.79 8.7 8.7 8.39
12 100 89.04 88.08 0 7.74 5.67 0 − 0.87 1.71 9.5 8.08 9.79 9.5 8.7 8.39
13 70 53.82 56.58 20 2.27 3.49 10 37.99 21.51 5.71 5.55 6.8 4 − 1.02 3.15
13 50 53.82 56.58 20 2.27 3.49 0 37.99 21.51 6.8 5.55 6.8 3.4 − 1.02 3.15
14 90 83.22 74.83 0 2.66 3.74 0 2.38 6.53 4.33 12.38 7.1 3.9 8.23 5.69
14 90 83.22 74.83 0 2.66 3.74 0 2.38 6.53 4.89 12.38 7.1 4.4 8.23 5.69
15 80 72.63 71.3 10 3.43 4.02 0 11.15 4.45 5.38 6.47 5.29 4.3 5.9 4.59
15 60 72.63 71.3 10 3.43 4.02 10 11.15 4.45 5.33 6.47 5.29 3.2 5.9 4.59
16 88.89 69.19 66.94 0 4.21 4.03 0 − 3.57 0.47 2.88 5.84 5.1 2.56 2.95 2.58
16 80 69.19 66.94 0 4.21 4.03 0 − 3.57 0.47 7 5.84 5.1 5.6 2.95 2.58
R2 0.8 0.83 0.19 0.26 0.75 0.87 0.64 0.85 0.72 0.89
r 0.9 0.92 0.48 0.55 0.87 0.94 0.81 0.93 0.86 0.95
RMSE 13.32 12.34 11.77 11.18 11.97 8.57 3.69 2.36 2.87 1.83
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