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Abstract
Endophytic bacteria promote plant growth, reduce stress caused by biotic and abiotic factors, and can trigger active defense 
reactions in plants. This study aimed to evaluate enzyme activity of in vitro jojoba (Simmondsia chinensis) plants inoculated 
with endophytic bacteria. In vitro shoots of female and male plants were inoculated with strains of Azospirillum brasilense 
(Cd), Methylobacterium aminovorans (JRR11), Rhodococcus pyridinivorans (JRR22) or co-inoculated with a mixture of 
JRR11 + JRR22. A total of 10 treatments were performed to evaluate shoot and root length; changes in key enzymes involved 
in plant defense (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and phenylalanine ammonia lyase) after 
post-inoculation (45 days). All endophytic bacteria strains used promoted plant growth and rhizogenesis. Differences were 
found in enzyme activity between female and male plants. The plants inoculated with JRR22 strain, showed the highest 
enzyme activity suggesting an induced systemic response and a potential increase in plant resistance to pathogen attack.

Keywords  Methylobacterium aminovorans · Rhodococcus pyridinivorans · Chlorophyll · Carotenoids · Catalase · 
Peroxidase · Superoxide dismutase

Introduction

New sources of renewable energy to help sustainable devel-
opment, such as oils from non-edible vegetables and deriva-
tives as biodiesel, are receiving increased attention because 
of their promising characteristics (Aly et al. 2008). Some 
of these characteristics include being biodegradable, non-
toxic, carbon neutral, and clean-burning fuels with almost 
zero sulfur content. Jojoba oil has an ideal chemical struc-
ture for biodiesel as it contains long chain monoesters of 
fatty acids connected directly to fatty alcohols. Likewise, 
this oil releases considerable energy on combustion, and it 
is stable at high operating temperatures (Al-Hamamre and 
Al-Salaymeh 2014). Jojoba (Simmondsia chinensis) is a 
native shrub of southwestern United States of America and 
northwestern Mexico; it can grow in semi-arid regions and 
tolerate temperatures in the range from 5 to 54 °C; it also 
requires small amounts of water, fertilizers, and little main-
tenance (Gentry 1958).

In recent years, research on this plant has focused on 
increasing seed production; however, the limiting factor has 
been that the plant has a high genetic variability resulting 
in a high diversity in oil content and quality (Al-Hamamre 
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and Al-Salaymeh 2014). The presence of pathogenic fungi 
that causes losses in plants, especially young plants, has also 
been reported (Baqir-Hussain et al. 2014). Some alterna-
tives to solve these limitations are in vitro cultures and the 
use of beneficial bacteria (Daros-Salla et al. 2014). The first 
one allows the establishment of plantations with the desired 
proportions of female and male plants creating uniformity, 
high yields, early production, and cost reduction. The use 
of beneficial bacteria induces plant defense and lowers sus-
ceptibility to diseases caused by pathogens (El-Deeb et al. 
2013).

Endophytic bacteria are among the beneficial bacteria 
that colonize plants without apparently causing any damage 
(Fedorov et al. 2013). These bacteria can benefit plant devel-
opment through multiple mechanisms of action, directly by 
producing indole-3-acetic acid (IAA) and facilitating nutri-
ent absorption in soil, or indirectly by antagonizing plant 
pathogens (Jain et al. 2013). For example, the genus Rhodo-
coccus, endophytic bacteria associated with plants such as 
Panxi plateau, has an antagonistic activity against pathogens 
and also promotes growth (Zhao et al. 2011). Similarly, the 
genus Methylobacterium promotes plant growth, induces 
systemic resistance, and inhibits pathogen infection (Jain 
et al. 2013) besides synthesizing several antioxidant regu-
lators and genes associated with stress (PhyR), especially 
when it is associated with Arabidopsis thaliana (Gururani 
et al. 2013).

The responses of plants to inoculation with growth-pro-
moting bacteria may be physical or biochemical, which can 
include reinforcement of the plant cell wall, production of 
antimicrobial phytoalexins and pathogenesis-related proteins 
(PRs), increased ability to synthesize defense enzymes, such 
as peroxidase (PO), polyphenol oxidase (PPO), phenyla-
lanine ammonia lyase (PAL), and synthesis of secondary 
metabolites (El-Deeb et al. 2013; Gururani et al. 2013). 
Therefore, the aim of this study was to evaluate the enzyme 
activity of in vitro jojoba (S. chinensis) plants inoculated 
with endophytic bacteria.

Materials and methods

Plant material and culture conditions

Assays were performed using shoots of approximately 3 cm 
long obtained from female and male plants for introduction 
in vitro. The basal culture medium for multiplication was 
prepared with mineral salts (Murashige and Skoog 1962); 
B5 vitamins (Gamborg et al. 1968), 100 mg L−1 myoinositol, 
3% sucrose, 0.7% agar, N-6-benzyladenine (BA: 4.44 µM), 
pH 5.8. The root induction medium (RIM) consisted of 
a concentration of 50% of MS salts, 3% sucrose, indole-
3-butyric acid (IBA: 49.6 µM), 0.6% agar; the shoots were 

cultured on RIM for 6 days. Subsequently, each shoot was 
transferred to medium rooting (RM), which consisted of a 
concentration of 50% of MS salts, 0.6% agar, 3% sucrose, 
pH 5.8 and hormone-free (Llorente and Apóstolo 2013). 
Inoculation was made at the time of transferring them to the 
RM by adding 0.1 mL of bacterial culture (106 cfu mL−1) at 
the base of each explant (Larraburu et al. 2010). Treatments 
without inoculation were controlled. Cultures were incu-
bated in a growth chamber at 24 ± 2 °C, with light intensity 
of 100 µmol m−2 s−1 under a 16 h photoperiod.

Bacterial strains and culture conditions

The strain of Azospirillum brasilense Cd (American Type 
Culture Collection; ATCC 29710) was used as control; 
also isolates M. aminovorans JRR22 (KT964148), Rhodo-
coccus pyridinivorans JRR11 (KT985910) (Perez-Rosales 
et al. 2017) were used for wild jojoba plant roots. Bacteria 
were grown in Erlenmeyer flaks (250 mL) with 150 mL of 
medium for A. brasilense Cd (Larraburu et al. 2010) and 
150 mL of minimal media for M. aminovorans JRR22 and 
R. pyridinivorans (Kumar et al. 2012). Strains were incu-
bated at 30 ± 1 °C at 120 rpm for 72 h. The experiments 
were performed in a completely randomized design, which 
consisted of a 2 × 5 factorial arrangement with eight repeti-
tions per treatment where the factors were the two jojoba 
genotypes (male and female plants) and bacterial inocula-
tion. The treatments are shown in Table 1.

Chlorophyll and Carotenoids

Eighteen plants were used per treatment; shoot and root were 
assessed after 45 days. To measure chlorophyll (Chl) and 

Table 1   Shoot length and root length of female and male plants of 
jojoba S. chinensis inoculated with suspensions of endophytic bacte-
ria and A. brasilense Cd. Data evaluated after 45 days

Different letters indicate significant difference between treatments 
and sex P ≤ 0.05 by Tukey Test among inoculation of bacteria per 
organ analyzed
a Values are means of eight replicates

Sex Treatments Stem length (cm)a Root length (cm)a

Male Control 2.4 ± 0.22 b 2.4 ± 0.21 b
Cd 4.02 ± 0.43 a 4.02 ± 0.18 a
JRR22 + JRR11 4.12 ± 0.25 a 4.12 ± 0.13 a
JRR22 4.24 ± 0.32 a 4.38 ± 0.08 a
JRR11 4.38 ± 0.27 a 4.24 ± 0.08 a

Female Control 3.2 ± 0.13 B 4.12 ± 0.13 C
Cd 4.86 ± 0.11 A 4.54 ± 0.11 B
JRR22 + JRR11 4.38 ± 0.18 A 5 ± 0.18 A
JRR22 5 ± 0.2 A 5.2 ± 0.2 A
JRR11 4.92 ± 0.30 A 5.04 ± 0.30 A
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carotenoid (Car) content, 0.5 g of fresh leaf were mixed with 
5 mL acetone. After centrifuging for 5 min at 4000 rpm, 
absorbance was measured at 649 and 665 nm for Chl and 
480 and 510 nm for Car, estimated on spectrophotometer 
(Perveen et al. 2013).

Enzyme activity

Enzyme activity was determined in leaves and roots sepa-
rately; 0.5 g of fresh tissue was homogenized in 5 mL of 
0.1 M phosphate buffer (pH 7.0), 10 mM EDTA and 1% PVP 
(polyvinylpyrrolidone w/v). The extracts were centrifuged 
at 10, 000 g at 4 °C for 15 min (Kumar et al. 2012), and 
the supernatant was collected for determination of enzyme 
assays and protein content as described by Bradford method 
(Bradford 1976).

Superoxide dismutase activity

Superoxide dismutase (SOD; EC 1.15.1.1) activity was 
determined using the system xanthine/xanthine oxidase as 
O2

·− generator and nitroblue tetrazolium (NBT) as detec-
tor (Suzuki 2000). The reaction mixture contained 25 µL of 
enzyme extract, 25 µL of xanthine oxidase (0.1 U mL−1 in 
ammonium sulfate 2 M) and 1450 µL of sodium–carbonate 
solution (50 mM, xanthine 0.1 mM, NBT 0.025 mM NBT, 
0.1 mM EDTA). The mixture was quantified in a spectropho-
tometer at 560 nm for 300 s; SOD activity was expressed in 
units of SOD mg−1 protein.

Catalase activity

Catalase (CAT; EC1.11.1.6) activity was determined by 
monitoring H2O2 decomposition as described by Aebi 
(1984). The reaction mixture contained 50 mM KH2PO4 (pH 
7.0), 10 mM H2O2, and 10 µL of enzyme extract. Decrease 
in absorbance of H2O2 was recorded at 240 nm for 3 min. 
The enzyme activity was expressed as units of CAT mg−1 
protein.

Peroxidase activity

Peroxidase (POX; EC 1.11.1.7) activity was determined by 
mixing 500 µL of enzyme extract with 1350 µL distilled 
water, 125 µL 0.1 mM phosphate buffer (pH 6.5), 24.5 µL at 
5% H2O2 and 500 µL of 1 mM pyrogallol. The reaction was 
monitored at 420 nm for 90 s (Zhou and Leul 1999). POX 
activity was expressed in units POX mg−1 protein.

Ascorbate peroxidase activity

Ascorbate peroxidase (APX; EC1.11.1.11) activity was 
measured according to Nakano and Asada (1981) method. 

Fresh leaf and root material (0.5 g) were ground in 5 mL of 
50 mM phosphate buffer (pH 7.0), 1 mM EDTA, 1% PVP 
and centrifuged at 10,000 rpm at 4 °C for 10 min. APX 
activity was determined in supernatant by the decrease in 
ascorbate absorbance at 290 nm due to its enzymatic break-
down; 1 mL of reaction buffer containing 0.5 mM ascorbic 
acid, 0.1 mM H2O2 and 0.5 mL of enzyme extract. The reac-
tion was run for 5 min and the activity was calculated using 
the extinction coefficient (2.8 mM−1 cm−1) for ascorbate, 
which was expressed as µM min−1 mg−1protein.

PAL activity

PAL (EC 4.3.1.5) activity was determined with 100 µL of 
enzyme extract, 900 µL of 6 mM l-phenylalanine solu-
tion in 500 mM Tris HCl (pH 8). The reaction mixture was 
incubated in a water bath at 37 °C for 70 min. The reaction 
stopped by adding HCl 5 N; absorbance was read at 290 nm. 
Trans-cinnamic acid (1 mg mL−1) was used as standard and 
expressed as µg trans-cinnamic acid min−1 mg−1 protein 
(Paynet et al. 1971).

Statistical analysis

The results are shown as mean ± standard error. Significant 
differences were observed between treatments and plant sex 
with two-way ANOVA; means were compared using Tuk-
ey’s (P ≤ 0.05). All statistical analyses were performed using 
the software STATISTICA 6.0 (Stat Soft, 1999).

Results and discussion

Inoculation effect on jojoba growth 
and rhizogenesis

Several studies have shown the use of endophytic bacteria 
for increasing plant growth (Andressen et al. 2009; El-Deeb 
et al. 2013; Larraburu and Llorente 2015). Certain bacteria 
appeared to have a beneficial effect on the explants in vitro, 
increasing multiplication and rooting, explant quality, recal-
citrant organ and embryogenesis (Orlikowska et al. 2017). 
Biotization of jojoba explants with Azotobacter chroococum 
also increased the number of shoots generated per bud and 
multiplication rate significantly (Andressen et al. 2009). 
In this study, we found that inoculations with the strains 
M. aminovorans (JRR 22) and R. pyridinivorans (JRR11) 
increased shoot and root length in jojoba plants of both 
sexes compared to the control treatment (Table 1), likely 
related to the ability of these two strains to produce IAA 
(Perez-Rosales et al. 2017). Endophytic bacteria can release 
phytohormones that can be absorbed by plant roots, thus 
promoting plant growth (Benson et al. 2014). According to 
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Abitha et al. (2014) inoculating with IAA-producing bacte-
ria increases plant growth and rhizogenesis in vitro culture. 
Likewise, plant growth-promoting rhizobacterium (A. bra-
silense strain Cd) stimulated in vitro rooting of jojoba. The 
inoculated explant reached a rooting percentage of 86% and 
rooted 5 days earlier than the control. They also showed a 
significant increase in the mean number of roots per shoot, 
and exhibited less callus production than the control (Carletti 
et al. 1998; Larraburu et al. 2010). The endophytic bacteria 
isolated from jojoba roots might result in more vigorous 
plants, promoting productivity.

Chlorophyll and carotenoids

Carotenoids act as light-harvesting pigment and protect Chl 
from degradation; in our results, we found a higher con-
centration of pigments in inoculated plants when compared 
with the control in plants of both sexes (P ≤ 0.05). In male 
plants, we found increased concentration of chlorophyll α, 
β, total and carotenoids when the plants were inoculated 
with the strain JRR11 (R. pyridinivorans) (Fig. 1a–d). While 
in female plants, increased concentration of pigments was 
observed in the treatment where co-inoculation was per-
formed. Benson et al. (2014) reported similar results in 
Naravelia zeylanica plant inoculated with Achromobacter 
xylosoxidan, showing a significant increase in chlorophyll 
content (46.3%). The combinations of plant growth promot-
ing rhizobacterial strains significantly increased plant height, 

chlorophyll and protein content in Solanum nigrum when 
compared to the uninocultated control. Microbial inocula-
tion increased 5.96 mg g−1 of chlorophyll (Megala and Par-
anthaman 2017).

SOD activity

Scavenging free radicals is an important mechanism in 
which several antioxidant enzymes play a role as part of the 
plant defense response. The main reactive oxygen species 
(ROS) formed after electron transfer are superoxide radi-
cals (O2

·−), which are dismutated to H2O2 by SOD (Guru-
rani et al. 2013). SOD enzyme activity in leaves of female 
and male plants was higher in the presence of the strain 
M. aminovorans (JRR22) when compared with other treat-
ments (P < 0.05) (Fig. 2a). This result is consistent with 
Giri et al. (2013) who reported that the strains of the genus 
Methylobacterium increased SOD activity, resulting in the 
elimination of free radicals and increasing plant resistance to 
possible stress because M. aminovorans might have induced 
defense mechanisms in jojoba plants.

Although it is known that SOD is the first line of defense 
in cells (Fedorov et al. 2013), in this study, no significant dif-
ferences were found in the roots between treatments except 
for the control in female plants (Fig. 2b). Our results are 
consistent with Ibáñez et al. (2014) who reported that SOD 
activity was not expressed in Vicia sativa when inoculated 
with Bacillus sp.

Fig. 1   Effect of endophytic bacterial inoculation on chlorophyll α (a), chlorophyll β (b), total chlorophyll (c) carotenoid (d) changes. Data are 
means ± SE (n = 8); different letters indicate significant differences according to Tukey’s test (P < 0.05)
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Fig. 2   Effect of endophytic bacterial inoculation on enzymatic activ-
ity of jojoba S. chinensis. SOD enzyme activity in leaves (a) and roots 
(b); CAT enzyme activity in leaves (c) and roots (d); POX enzyme 
activity in leaves (e) and roots (f); APX enzyme activity in leaves (g) 

and roots (h); PAL enzyme activity in leaves (i) and roots (j). Data 
are means ± SE (n = 8). Different letters indicate significant differ-
ences according to Tukey’s test (P < 0.05)
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CAT activity

In our study, significant differences were found in CAT 
activity in leaves (Fig. 2c) of female plants inoculated with 
A. brasilense (Cd) when compared to those with the other 
treatments (Fig. 2c). The association of plants inoculated 
with Azospirillum spp. has been reported to have higher 
activity of CAT, showing that this interaction is beneficial as 
the plant is alert to possible stress (El-Deeb et al. 2013). The 
female and male plants co-inoculated with JRR11 and JRR 
22 strains had the lowest CAT activity (Fig. 2c), possibly 
because this treatment did not stimulate the enzyme activ-
ity, which was consistent with Baqir-Hussain et al. (2014).

CAT activity was lower in roots compared with leaves. 
In female plants, the activity of this enzyme was higher in 
plants inoculated with the strain M. aminovorans (JRR22) 
than in those not inoculated (Fig. 2d) while male plants 
inoculated with the same strain had the highest CAT activ-
ity (Fig. 2d). These results are similar to those observed in 
leaves, suggesting that bacterial inoculation plays an impor-
tant role in reducing ROS and serves as a defense barrier to 
possible stress (Jha and Subramanian 2013).

POX activity

POX is a key enzyme plant defense response, participat-
ing in lignin biosynthesis by the oxidation of phenolic com-
pounds, thus strengthening the cell wall (Jha and Subrama-
nian 2013). No significant differences between treatments 
were found (P < 0.05) in POX activity in leaves of male and 
female plants; however, the treatments of the co-inoculated 
plants had the highest POX activity (Fig. 2e).

In roots of female plants co-inoculated with JRR11 and 
JRR22 strains had the highest POX activity (Fig. 2f), which 
was consistent with the results of Daros-Salla et al. (2014) 
in eucalyptus plants inoculated with Streptomyces sp. that 
had higher PPO and POX activities. Similarly, Indiragandhi 
et al. (2008) reported that inoculation with Methylobacte-
rium strains increased POX activity conferring resistance 
to foliar pathogen-Pseudomonas syringae, which is impor-
tant since pathogens are responsible for generating ROS 
restricting growth of pathogenic bacteria. Roots of male 
plants inoculated with A. brasilense (Cd) showed the high-
est POX activity; however, no significant differences were 
found compared to the control.

APX activity

APX has a role in protecting cells against deleterious 
effects caused by ROS production and accumulation, which 
increased notably under environmental stress (Gururani 
et al. 2013). APX activity increased in male plants compared 
with female plants, both in leaves and roots in all treatments 

(Fig. 2g, h). Leaves of female and male plants co-inoculated 
with JRR11 and JRR22 strains showed higher APX com-
pared to other treatments (P < 0.05) (Fig. 2g, h). However, 
APX activity in roots of jojoba plants inoculated with strains 
of A. brasilense (Cd) was higher than in the other treatments 
(Fig. 2h). Jain et al. (2013) reported that the activity of this 
enzyme provided stability to the cell membrane with less 
water loss by perspiration and elimination of H2O2 in the 
chloroplast and cytosol of plant cells, so bacterial inocula-
tion provided increased expression of this enzyme.

PAL activity

PAL plays an important role in biosynthesis of various 
defense chemicals in phenylpropanoid metabolism besides 
PAL activity that could be induced during plant–pathogen 
interactions (Nagendran et al. 2014). In our study the PAL 
activity in leaves of female plants was higher in the treat-
ment inoculated with the strain M. aminovorans (JRR22) 
than with the other treatments (P < 0.05); however, other 
plants inoculated with the treatments showed lower PAL 
activity in comparison with the control (Fig. 2i). The leaves 
of inoculated male plants did not show differences compared 
with the control. The PAL activity is an indirect measure 
when the plant is under stress, as it shows a reflection of the 
immune system (Larraburu and Llorente 2015). Our results 
suggest that in the jojoba plants inoculated with the strain 
M. aminovorans (JRR22) PAL activity was higher, as men-
tioned by Jain and Kumar-Choudhary (2014) who suggested 
that the organism degraded phenylalanine to obtain NH3, 
carbon, or both.

Moreover, PAL activity was lower in roots compared with 
leaves. In male plants no significant differences were found 
(P < 0.05) between control and inoculated plants. While PAL 
activity in female plants was lower in the co-inoculation 
treatment (Fig. 2j). Our results were consistent with Ting 
et al. (2010) who found that the activities of POX and PAL 
and total phenol and lignin content increased in banana seed-
lings inoculated with endophytic bacteria Serratia marces-
cens, a strain capable of stimulating host defense as their 
main mode of defense mechanism.

In our study, the endophytic bacteria M. aminovorans 
(JRR11) and R. pyridinivorans (JRR22) promoted growth 
and increased rhizogenesis in in vitro cultures of jojoba. 
Likewise, the strain JRR22 increased SOD and PAL activi-
ties. The co-inoculated treatment with strains JRR22 and 
JRR11 increased POX and APX activities. The strain A. 
brasilense (Cd) increased CAT activity in leaves and roots. 
In general, activities of the enzymes CAT and PAL were 
lower in roots than in leaves. Inoculation with endophytic 
bacteria increased the activities of antioxidant enzymes pro-
viding protection from oxidative stress, avoiding cell mem-
brane damage, and inhibiting photosynthesis. There were 
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differences in enzyme activities between female and male 
plants. Further studies should be performed on the asso-
ciation of jojoba plants and endophytic bacteria to explain 
these results.
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