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weight. Photosynthetic pigment levels were lower under 
LED light compared to control lamps. Phenolic acids and 
flavonoids were identified in M. communis leaf extracts. 
Myricetin was the major constituent with highest concen-
tration under red LEDs and highest BA level.

Keywords  Myrtle · Light quality · Photosynthetic 
pigments · Secondary metabolites · HPLC

Abbreviations
LED	� Light emitting diode
B	� 100% blue LED
RB	� 70% red and 30% blue LED
R	� 100% red LED
C	� Control fluorescent light
BA	� 6-Benzyladenine
NAA	� 1-Naphthaleneacetic acid
MS	� Murashige and Skoog medium
HPLC	� High performance liquid chromatography
PPFD	� Photosynthetic photon flux density

Introduction

In recent years, there has been increasing interest in the use 
of medicinal plants as a source of healthy raw materials 
(Scarpa et al. 2000). According to Touaibia and Chaouch 
(2015), more than 25% of medicines is directly or indirectly 
derived from plants. This is related to the preventive action 
of antioxidants against “civilisation diseases”, including can-
cer (Aidi Wannes et al. 2010; Pereira et al. 2012; Goncalves 
et al. 2013; Bouaziz et al. 2015), and related to the abuse of 
synthetic drugs, the discovery of adverse side effects and 
high cost of conventional medicinal products (Aleksic and 
Knezevic 2014).

Abstract  The influence of light quality and cytokinin 
content in media on growth, development, photosynthetic 
pigments and secondary metabolite content of Myrtus com-
munis L. was evaluated in an in vitro culture. Various treat-
ments with light emitting diodes (LEDs): 100% blue (B), 
a mix of 70% red and 30% blue (RB) and 100% red were 
applied and compared with a traditional fluorescent lamp 
as control. Axillary shoots were incubated on Murashige 
and Skoog medium with 30 g dm−3 sucrose, 0.5% BioAgar, 
0.5 μM 1-naphthaleneacetic acid and different concentra-
tions of 6-benzyladenine (BA): 1, 2.5 and 5 µM. Cultures 
were maintained for 6 weeks in 23/21 ± 1 °C (day/night), 
80% relative humidity and 16/8 h photoperiod; photosyn-
thetic photon flux density (PPFD) was 35 µmol m−2 s−1 in all 
treatments. Light spectra and BA content in media affected 
biometrical and phytochemical M. communis properties. Red 
LEDs and 5 µM BA resulted in the highest multiplication 
rate. The highest shoots were obtained under red LEDs, but 
with the lowest concentration of cytokinin in media. Fresh 
weight was greatest on LEDs containing blue light in the 
spectrum (B and RB); moreover, 5 µM BA increased dry 
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Myrtus communis L., also known as true myrtle, is a per-
ennial, evergreen shrub or small tree, typical of the Mediter-
ranean region (Nassar et al. 2010; Sumbul et al. 2011; Alek-
sic and Knezevic 2014; Alipour et al. 2014; Asgarpanah and 
Ariamanesh 2015; Yildirim et al. 2015). It is the only spe-
cies of the Myrtus genus that occurs in this region (Canhoto 
et al. 1999). The species is very important for the forestation 
of costal zones damaged by fires. Moreover, in Europe, it is 
widely known and used as an ornamental plant in the florist 
and garden industry (Nobre 1997; Ruffoni et al. 2010), and 
as a potted plant (Jędrzejko et al. 1997). For many years, it 
has been propagated by seeds or woody stem cuttings (Ruf-
foni et al. 2010; Lim 2012), and is currently also produced 
in vitro (Ruffoni et al. 2010). Different parts of M. communis 
(leaves, flowers, fruits) contain many components significant 
for medicine, food, liqueur and cosmetic industries, thus the 
production of this plant in large numbers is greatly needed 
(Amensour et al. 2009; Aidi Wannes et al. 2010; Romani 
et al. 2012).

Myrtus communis has been used in medical practice for 
many years and it exhibits therapeutic effects (Romani et al. 
2004; Kalachanis and Psaras 2005; Gardeli et al. 2008; 
Yoshimura et al. 2008; Frohne and Classen 2006; Gon-
calves et al. 2013; Taheri et al. 2013; Aleksic and Knezevic 
2014; Alipour et al. 2014; Asgarpanah and Ariamanesh 
2015; Bouaziz et al. 2015; Yildirim et al. 2015). Healing 
properties are related to the content of volatile oils, but also 
phenolic compounds, which can be divided into phenolic 
acids, flavonoids and tannins that have a strong antioxidant 
effect (Romani et al. 1999, 2012; Balasundram et al. 2006; 
Gardeli et al. 2008; Yoshimura et al. 2008; Pereira et al. 
2012; Aleksic and Knezevic 2014). Currently, vademecums 
of medicinal plants provide possible M. communis appli-
cations and recommendations in the form of ready-made 
medicines (Hoppe 1975; Frohne and Classen 2006).

Polyphenols are one of the most important secondary 
metabolites found in M. communis L. leaf extracts (Tumen 
et al. 2012). They have been shown to protect the metabo-
lism of cells exposed to high temperatures and excess UV-B 
radiation (Romani et al. 1999). Moreover, these compounds 
may reduce the risk of some chronic diseases at higher die-
tary intakes (Romani et al. 2004). According to Hayder et al. 
(2008), there are approximately 4000 known structures of 
polyphenol compounds. They have a number of biological 
properties, including antioxidant, antimicrobial (Mansouri 
et al. 2001; Amensour et al. 2009), antitumor and antimuta-
genic properties (Hayder et al. 2008). Plant phenolics are 
biosynthesised by two basic pathways: the shikimic acid 
pathway and the malonic acid pathway, the former of which 
is responsible for the synthesis of most phenolic compounds 
in plants (Lattanzio 2013). They have the capacity to neu-
tralise free radicals and reduce their harmful effects on the 
human body (Aidi Wannes et al. 2010; Goncalves et al. 

2013; Aleksic and Knezevic 2014; Asgarpanah and Aria-
manesh 2015; Bouaziz et al. 2015). Their antioxidant activ-
ity depends on the number and position of phenolic hydrox-
yls in aromatic ring moieties (Aleksic and Knezevic 2014). 
The main compounds responsible for the flavor and scent of 
M. communis oil are monoterpenes: 1,8-cineole, myrtenyl 
acetate, α-pinene, myrtenol, and limonene (Gardeli et al. 
2008). Among the flavonoids, myricetin, quercetin, catechin, 
and their derivatives, have so far been found in M. communis 
leaves and stems (Aleksic and Knezevic 2014; Asgarpanah 
and Ariamanesh 2015). Myricetin is a substance specific to 
the family Myrtaceae (Haron et al. 1992), exhibiting anti-
bacterial, antiviral, antioxidant, anti-inflammatory, antial-
lergic, anticoagulant, antitumor and antimicrobial properties 
(Aleksic and Knezevic 2014), and studies have shown that 
it is a much stronger antioxidant than traditional vitamins 
(Miean and Mohamed 2001). Other researchers reported that 
myricetin can also be detected in red grape wines (Vitrac 
et al. 2004), similar to catechin, which is known to be the 
most abundant monomeric flavon-3-ol in wines. Alamanni 
and Cossu (2004) confirmed that the antioxidant activity of 
liqueurs obtained from M. communis leaves was comparable 
to red wines. It has also been shown that M. communis can, 
due to the presence of these specific substances, have thera-
peutic effects in the treatment of some diseases (Benkhayal 
et al. 2009; Ahmadvand and Bagheri 2011; Sumbul et al. 
2011; Goncalves et al. 2013; Bouaziz et al. 2015). Moreover, 
M. communis leaves extracts are practically non-toxic, very 
safe, and exerted significant therapeutic effects compared to 
a control group of medinices (Nassar et al. 2010).

Meanwhile, despite numerous advantages and beneficial 
properties, environmental pollution, heterogeneity of wild 
plant material and its inaccessibility in some areas make the 
collected herbal material not only slightly toxic, but also the 
quality of raw material would not be homogenous (Magher-
ini 1988; Scarpa et al. 2000). There is potential for the use 
of in vitro plant cultures for obtaining medicinal products 
from plants propagated in this manner. In this way, geneti-
cally homogeneous and healthy material is obtained, and is 
also produced in large quantities in a short period of time 
(Pierik 1987; Scarpa et al. 2000). This creates new opportu-
nities for the commercial use of the M. communis on a larger 
scale. Despite many advantages it is still not very popular in 
economic use because of the low yield (Gardeli et al. 2008). 
Although there are many difficulties with respect to in vitro 
cultures of woody plants compared to herbaceous plants, 
currently M. communis is considered to be a model plant for 
woody shrub tissue cultures (Mascarello et al. 2009; Parra 
et al. 2001; Ruffoni et al. 2010). The protocols are known 
and there are reports of in vitro M. communis propagation 
and proliferation (Nobre 1997; Parra and Amo-Marco 1998; 
Ruffoni et al. 2010). New procedures are investigated and 
examined also for commercial use (Rezaee and Kamali 
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2014). Şan et al. (2015) reports the application of thidiazu-
ron, 6-benzylaminopurine and naphthalene acetic acid for 
shoot proliferation and rooting of M. communis clone. Aka 
Kaçar et al. (2017) tested influence of activated charcoal and 
indole-3-butyric acid on the rooting stage. The use of in vitro 
techniques allows the rapid multiplication of disease-free 
and true-to-type selected clones (Nobre 1997; Rezaee and 
Kamali 2014) of M. communis, which could be essential 
in obtaining plants with sufficient quantities of beneficial 
compounds. However, to our knowledge, no studies have 
reported the composition or biological properties of poly-
phenol compounds isolated from the leaves of M. communis 
L. propagated in vitro.

According to Tattini et al. (2006) and Agati et al. (2011), 
the content of polyphenols, particularly flavonoids, may be 
related to the reaction of plants to particular environmental 
conditions, such as light conditions. Light emitting diodes 
(LED) lighting has great potential for plant in vitro propa-
gation and production. There are many reports confirm-
ing LED advantages compared to traditional horticultural 
lighting (such as incandescent, fluorescent, high-pressure 
sodium or metal-halide lamps) (Nhut et al. 2003; Gupta and 
Jatothu 2013). Durability, small size, low heat emission and 
energy efficiency makes them ideal for the in vitro grow-
ing environment (Alvarenga et al. 2015). However, the most 
important factor is that LED wavelength is much narrower 
than in traditional light sources. Therefore, a specific and 
more precise spectral quality can be selected and adjusted 
to the requirements of a particular plant (Massa et al. 2008; 
Silva et al. 2017). The appropriate blue and red light ratio 
seems to be most essential for plant growth. Many research-
ers have reported the effects of red or blue light on plant 
morphogenesis and metabolic processes (Kim et al. 2004; 
Li et al. 2013; Alvarenga et al. 2015), including ornamental 
species, such as Lilium (Lian et al. 2002), Chrysanthemum 
(Kim et al. 2004; Kurilčik et al. 2008), Tripterospermum 
japonicum (Moon et al. 2006) and Dendrobium officinale 
(Lin et al. 2011).

The objectives of this study were to determine how the 
growth of M. communis L. plantlets and their secondary 
metabolite contents were affected by the light source (dif-
ferent LED spectra vs. fluorescent lamps) in combination 
with varying 6-benzyladenine (BA) cytokinin concentrations 
in media.

Materials and methods

Plant material

Potted plants of M. communis L. growing in Department 
of Ornamental Plants University of Agriculture in Kra-
kow greenhouse collection provided shoot tips for in vitro 

culture. Axillary shoots were multiplied on Murashige and 
Skoog (1962) medium (MS) containing 5 μM 6-benzy-
ladenine (BA), 0.5 μM 1-naphthaleneacetic acid (NAA), 
30 g dm−3 sucrose and 0.5% BioAgar. The pH was adjusted 
to 5.7. Multiplied plantlets were used for the experiment.

Culture and light treatments

Axillary shoots of M. communis (10 mm in height) were 
cultured on a basal medium (BM) containing MS minerals 
and vitamins, 30 g dm−3 sucrose and 0.5 µM NAA. BM was 
gelled with 0.5% BioAgar and supplemented with three BA 
concentrations: 1, 2.5 and 5 μM. The medium was distrib-
uted into Erlenmeyer flasks (size 250 ml) as 30 ml in each 
one, sealed with aluminium foil and autoclaved at 121 °C 
for 21 min. Plant material was treated with four different 
light quality combinations: B—100% blue LEDs (peak 
at 430 nm); RB—a mix of 70% red and 30% blue LEDs; 
R—100% red LEDs (peak at 670 nm); and C—fluores-
cent lamp (Philips TL-D 36W/54) as control (Fig. 1). The 
experiment was conducted in two replications with six rep-
etitions, with six explants each (in total 864 explants). Cul-
tures were maintained for 6 weeks in a growth chamber at 
23/21 ± 1 °C (day/night), 80% relative humidity and different 
light sources; 16/8 h photoperiod (day/night) was used and 
PPFD was kept constant at 35 µmol m−2 s−1 in all treatments.

Data collection

Biometrical observations comprised shoot multiplication 
rate, shoot height and number of leaves per shoot, which 
were recorded after a 6-week cycle. Photographic documen-
tation of plantlet growth and development was made (Sony 
CyberShot DSCH200, China).

Fresh weight (FW) was determined immediately after 
removing the plants from vessels. The whole developed 
plant was weighed by Agrogen (Freibourg, Switzerland).

Multiplied plantlets were oven-dried in an air steriliser 
at 40 °C for 4 days to determine dry weight (DW) (Sanyo 
Electric Co MOV-112S).

For photosynthetic pigment content measurements, 
200-mg samples of cut leaves were subjected to the extrac-
tion procedure according to methods of Lichtenthaler and 
Buschmann (2001) and dissolved in 80% acetone. The 
absorbance was measured using a UV/VIS Helios Alpha 
spectrophotometer (Unicam Ltd., Cambridge, UK). The 
content of chlorophyll a, b and carotenoids was measured 
at the following wavelength maxima (Amax): chlorophyll 
a—663.2  nm, chlorophyll b—646.8  nm, total carote-
noids—470 nm. The concentration of photosynthetic pig-
ments was calculated using the following formulas: chloro-
phyll a (ca) (µg/ml) = 12.25 A663.2 − 2.79 A646.8; chlorophyll 
b (cb) (µg/ml) = 21.50 A646.8 − 5.10 A663.2; carotenoids (µg/
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ml) = (1000 A470 − 1.82 ca − 85.02 cb)/198 (where A is the 
absorption level) (Lichtenthaler and Buschmann 2001).

RP-HPLC analyses were conducted to measure phe-
nolic acid and flavonoid contents in 0.5-g samples of dry 
biomass. Phenolic acids and flavonoids were quantified in 
methanol extracts (sonication, 30 °C, 1 h) after hydrolysis 
in 2 M aqueous HCl, 100 °C, 1 h (Harborne 1998). RP-
HPLC analyses were conducted according to the method 
described elsewhere (Ellnain-Wojtaszek and Zgórka 1999) 
with our modifications for a Merck-Hitachi liquid chroma-
tograph (LaChrom Elite) equipped with a DAD detector 
L-2455 and Purospher® RP-18e (250 × 4 mm/5 μm) col-
umn. Analyses were carried out at 25 °C, with a mobile 
phase consisting of A—methanol, B—methanol: 0.5% 
acetic acid 1:4 (v/v). The gradient was as follows: 100% 
B for 0–20 min; 100–80% B for 20–35 min; 80–60% B for 
35–55 min; 60–0% B for 55–70 min; 0% B for 70–75 min; 
0–100% B for 75–80 min; 100% B for 80–90 min at a flow 
rate of 1 ml min−1, λ = 254 nm (phenolic acids, catechins), 
λ = 370 nm (flavonoids). The identification was carried out 
by comparing peak retention times with authentic reference 
compounds and co-chromatography with standards. Quan-
tification was performed by peak area measurements with 
reference to the standard curve derived from five concentra-
tions (0.03125–0.5 mg ml−1). Standards for caffeic, chloro-
genic, cinnamic, gallic, gentizic, o-coumaric, protocatechuic, 
salicylic, sinapic and syringic acids, and apigetrin (apigenin 
7-glucoside), hyperoside (quercetin 3-galactoside), isorham-
netin, kaempferol, luteolin, populnin (kaemferol 7-O-gluco-
side), quercetin, quercitrin, rhamnetin, rutin and vitexin were 
purchased from Sigma Aldrich, while p-coumaric, vanillic, 
ferulic and p-hydroxybenzoic acids were purchased from 
Fluka, and catechin, epigallocatechin, epicatechin gallate, 
epicatechin, epigallocatechin gallate, cinaroside (luteolin 
7-O-glucoside) were from ChromaDex.

Statistical analysis

The results of the experiment were subjected to ANOVA 
using Statistica 12 software (StatSoft). The effects of light 
quality, benzyladenine content and interactions between 
them were evaluated at three levels of significance: p ≤ 0.05 
(*), p ≤ 0.01 (**) and p ≤ 0.001 (***). A Duncan post-hoc 
multiple range test was used for mean separation and to 
provide homogeneous groups for the means (at p ≤ 0.05). 
Standardised data were subjected to multivariate analysis, 
i.e., k-means clustering and ellipse fitting and principal 
component analysis (PCA), using Statistica software, for 
the assessment of chemical composition diversity of M. 
communis plants treated with various light sources and BA 
concentrations. The eigenvalues were: 3.804, 1.447, 1.266, 
and below 1 for the remaining PCs. The first two principal 
components together explained 65.7% of the total variance, 
and they were included in the discussion. Correlation-based 
PCA of chemical constituents (including secondary metabo-
lites and DW) contained in M. communis plants was per-
formed. Multiple regression analysis was also conducted, 
using a stepwise backward elimination method to determine 
which variables (secondary metabolites and chlorophylls) 
were most closely related to myricetin concentration. A sim-
plified regression equation was developed; determination 
coefficient (R2), adjusted determination coefficient (R2

adj.) 
as well as standard estimation error (SEE) were determined, 
with a significance level at p ≤ 0.05.

Results

Light spectrum and BA content in media affected the bio-
metrical properties of M. communis L. during micropropaga-
tion (Table 1; Fig. 2). Shoot multiplication rate ranged from 
2.94 to 12.56 and was highest under red (R) LED at a BA 

Fig. 1   Different LED wave-
lengths and control fluorescent 
lamp tested in the experiment: 
C control, fluorescence Philips 
TK-D 36W/54 lamps; B 100% 
blue LED; RB 70% red LED 
and 30% blue LED; R 100% 
red LED
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concentration of 5 μM (12.56) and 1 and 2.5 μM (10.33 and 
9.20, respectively) (Fig. 2j–l). A high rate was also obtained 
at 1 μM BA under blue (B) LED (9.48) (Fig. 2d). It was 
found that under the B LED light spectrum [monochromatic 
or with red (i.e. RB)], the increase in BA had an inhibitory 
effect on the micropropagation rate. Considering the effect 
of light irrespective of the cytokinin content, it can be stated 
that the monochromatic red LED light stimulated the multi-
plication rate. If blue light was present (B or RB), then the 
multiplication rate was lower.

Shoots grew the highest at lower cytokinin concentrations 
in the medium and under red LED (Table 1; Fig. 2j–l); R 
stimulated shoot height (regardless of cytokinin content). 
The more cytokinin there was in the medium, the shorter 
the shoots were, especially under B light.

Shoots had the most leaves when they were propagated 
under light emitting diodes containing blue waves (B or 
RB) in media with the highest BA concentration. This was 

confirmed by the main effect analysis—M. communis under 
blue LED diodes (B and RB) had significantly more leaves 
in comparison to other treatments. Plants growing on the 
medium with the highest cytokinin concentration had sig-
nificantly more leaves.

Plantlet FW ranged from 154.2 to 324.2 mg. Light as the 
main factor influenced the level of FW—the highest FW was 
obtained under B or RB LEDs compared to control. Plant 
FW was the highest at extreme cytokinin concentrations in 
the medium (1 or 5 μM). The highest BA content (5 µM) in 
the media increased DW the most, on average by 85–103%, 
in comparison to the plants micropropagated with 2.5 and 
1 µM BA.

Medium composition and the type of light affected 
photosynthetic pigment contents (Fig. 3). Chlorophyll 
a level ranged from 0.36 to 1.02  mg g−1 FW, chloro-
phyll b was 0.13–0.32 mg g−1 FW, and carotenoids were 
found at 0.13–0.33 mg g−1 FW. Generally, there was less 

Table 1   Effect of light quality and cytokinin BA concentration on growth and development of M. communis L. from in vitro culture

Significant effect: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; n.s. not significant
a Means ± standard deviations within a column followed by the same letter are not significantly different according to Duncan’s multiple range 
test at p ≤ 0.05
b C control, fluorescence Philips TK-D 36W/54 lamps; B 100% blue LED; RB 70% red LED and 30% blue LED; R 100% red LED

Light quality BA (μM) Shoot multiplication rate Shoot height (cm) Mean number of leaves Plantlet weight (mg)

Fresh Dry

Cb 1 8.14 ± 2.44 cda 8.39 ± 1.83 cd 3.89 ± 0.53 a 200.0 ± 36.83 ab 33.07 ± 4.33 ab
2.5 6.75 ± 1.04 a–d 8.55 ± 2.90 cd 4.92 ± 0.74 a 154.2 ± 13.767 a 27.45 ± 1.67 ab
5 8.52 ± 2.10 cd 6.00 ± 2.29 a–c 5.17 ± 1.59 a 185.0 ± 57.66 ab 42.33 ± 9.43 a–c

B 1 9.48 ± 0.98 de 8.94 ± 1.83 cd 4.94 ± 0.91 a 324.2 ± 31.26 c 43.30 ± 4.86 a–c
2.5 7.33 ± 1.50 b–d 6.39 ± 3.39 a–d 4.43 ± 0.55 a 250.8 ± 51.32 bc 32.43 ± 5.86 ab
5 3.81 ± 1.10 ab 3.86 ± 1.50 a 13.88 ± 4.17 b 251.7 ± 41.56 bc 52.65 ± 13.86 bc

RB 1 7.16 ± 2.99 b–d 7.77 ± 1.67 b–d 3.99 ± 1.43 a 247.5 ± 33.63 bc 27.24 ± 3.56 ab
2.5 5.17 ± 1.48 a–c 7.01 ± 2.19 a–d 5.44 ± 1.48 a 207.2 ± 26.58 ab 30.59 ± 3.71 ab
5 2.94 ± 2.79 a 4.72 ± 1.67 ab 11.19 ± 5.80 b 260.8 ± 90.50 bc 59.41 ± 18.69 cd

R 1 10.33 ± 2.64 de 12.56 ± 3.87 e 4.54 ± 0.48 a 213.3 ± 8.04 ab 21.71 ± 2.17 a
2.5 9.20 ± 3.40 c–e 9.49 ± 3.38 d 3.58 ± 1.01 a 184.2 ± 32.63 ab 23.81 ± 2.21 a
5 12.56 ± 3.10 e 7.97 ± 2.79 b–d 4.23 ± 1.49 a 267.5 ± 61.44 bc 74.45 ± 38.00 d

Means for light quality
 C 7.80 ± 3,69 b 7.65 ± 2.54 a 4.66 ± 1.14 a 179.7 ± 40.34 a 33.87 ± 8.06 a
 B 6.87 ± 3,42 ab 6.40 ± 3.09 a 7.75 ± 3.32 b 275.6 ± 51.61 c 42.91 ± 11.99 a
 RB 5,09 ± 2,94 a 6.50 ± 2.20 a 6.87 ± 2.62 b 238.5 ± 55.60 bc 38.89 ± 17.94 a
 R 10.69 ± 3,22 c 10.01 ± 3.73 b 4.11 ± 1.09 a 221.7 ± 50.67 ab 40.84 ± 33.37 a

Means for BA
 1 8.78 ± 2,55 a 9.41 ± 2.99 c 4.34 ± 0.96 a 246.3 ± 56.36 b 31.25 ± 8.98 a
 2.5 7.11 ± 2,42 a 7.86 ± 3.07 b 4.59 ± 1.17 a 199.1 ± 46.85 a 28.44 ± 4.73 a
 5 6.96 ± 3,58 a 5.64 ± 2.53 a 8.61 ± 3.32 b 241.3 ± 65.41 b 57.70 ± 23.69 b

Source of variation
 Light quality × BA * *** ** *** ***
 Light quality *** *** ** ** n.s
 BA n.s *** *** * ***
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Fig. 2   Growth and development of M. communis after 6 weeks 
of culture under different light qualities. a–c control, fluorescence 
Philips TK-D 36W/54 lamps (C); d–f 100% blue LED (B); g–i 70% 

red LED and 30% blue LED (RB); j–l 100% red LED (R), and vari-
ous BA content in media. Bar = 2 cm
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photosynthetic pigment under LED lights than under con-
trol (C) fluorescent light. The lowest amount of photosyn-
thetic pigment was recorded under B light. The highest 
photosynthetic pigment contents were always on 2.5 μM 
BA medium, except for the R LED, where the highest 
amount of pigment was found on 5 μM BA media.

Among the secondary metabolites present in methanol 
extracts of M. communis leaves, we identified the pres-
ence of phenolic acids, such as gallic, protocatechuic and 
p-hydroxybenzoic acids by using the above-listed stand-
ards. Of other polyphenolic compounds, we found flavo-
noids, such as myricetin, catechin, and its derivatives, 
epigallocatechin and epigallocatechin gallate. Of the poly-
phenols found, M. communis leaves contained the highest 
amounts of myricetin (347.02–1118.69 mg 100 g−1 DW). 
Table 2 shows that the concentration of BA in the medium, 
the light spectrum and the interaction of these experimen-
tal factors had a significant effect on the content of sec-
ondary metabolites. The highest content of flavonoids was 
observed in the medium with a 5-μM BA concentration.

The highest flavonoid contents were always observed 
under R light, when only the effect of light on the content 
of secondary metabolites in M. communis leaf extracts was 
considered. The lowest amount of catechins and epigal-
locatechins were found in M. communis under fluorescent 
lamps, whereas the level of myricetin and epigallocatechin 
gallate decreased due to the use of blue diodes. Analysing 
in detail the interactions of the medium with light type, 
the lowest content of the flavonoids, epigallocatechin gal-
late and myricetin, was observed in a 2.5-μM medium and 
blue light, while less catechin and epigallocatechin was 
recorded under fluorescent light. The highest amounts 
of catechin and its derivatives as well as myricetin were 
found in M. communis produced on a 5-μM medium and 
R light.

Of the phenolic acids, the highest concentrations were 
observed for gallic acid (95.58 mg 100 g−1 DW on average), 
while the remaining protocatechic and p-hydroxybenzoic 
acids amounted to 2.59 and 5.13 mg 100 g−1 DW, respec-
tively. The highest content of gallic acid was observed under 
R LED and C light on the medium containing 5 μM BA. 
The highest amount of protocatechuic acid was found in M. 
communis under RB diodes and 1 μM BA, while the high-
est level of p-hydroxybenzoic acid was found in plantlets 
in C with BA content in media equal to 1 μM. Considering 
the main effect of light quality, it is important to highlight 
the lowest phenolic acid contents were found under B light. 
LED light reduced the gallic acid content, while the high-
est protocatechuic acid content was found in M. communis 
under RB light, while for p-hydroxybenzoic acid, the highest 
concentration was found under R light. The lowest amounts 
of phenolic acids were observed on media containing 2.5 μM 
BA.
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Fig. 3   Effect of different light qualities and BA content on photo-
synthetic pigment concentrations in M. communis in vitro. a Control, 
fluorescence Philips TK-D 36W/54 lamps (C); b 100% blue LED (B); 
c 70% red LED and 30% blue LED (RB); d 100% red LED (R) and 
various BA content in media
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The highest total content of all detected secondary 
metabolites was observed under R LED (1045.2 mg 100 
g1 DW), followed by C light (971.6 mg 100 g−1 DW), RB 
(862.3 mg 100 g−1 DW), and the lowest was found under 
B LED (674 mg 100 g−1 DW). Plantlets propagated under 
fluorescent light had more secondary metabolites than under 
LED with blue wavelength in their spectrum (B, RB). The 
highest amount of secondary metabolites was synthesised by 
plantlets in the medium containing 5 μM BA. Low contents 
of secondary metabolites were found in plantlets cultured 
under B LED and on a 2.5-μM BA medium (summative 
data not shown).

The resulting score plot provides a conceptual over-
view of the treatments by showing a total of 65.7% of the 
variance (Fig. 4). PC1 separated these treatments, where 

the BA content of 5 µM was distinguished (including one 
treatment with 100% R light and 2.5 µM of BA content) 
from the plants subjected to lower BA concentrations. PC2 
separated all treatments with 100% B light, and also R/2.5 
and RB/5 µM, from others. The loads of plants supple-
mented with R light and grown on the medium containing 
5 µM with PC1 was the highest (− 5.423), while RB/1 µM 
had the highest negative factor loadings with the second 
component (− 2.110). Taking into account the highest 
negative loading of PC1, it is possible to conclude that M. 
communis illuminated with 100% R LED light and grown 
on the medium with 5 µM BA differed from the other treat-
ments by its higher contents of catechin, epigallocatechin, 
epigallocatechin gallate, gallic acid and myricetin.

Table 2   Effect of light quality and cytokinin BA concentration on secondary metabolites (mg 100 g−1 dry weight) in the leaves of M. communis 
L. from in vitro culture

Significant effect: ***p ≤ 0.001; n.s. not significant
a Means ± standard deviations within a column followed by the same letter are not significantly different according to Duncan’s multiple range 
test at p ≤ 0.05
b C control, fluorescence Philips TK-D 36W/54 lamps; B 100% blue LED; RB 70% red LED and 30% blue LED; R 100% red LED

Light qual-
ity

BA (μM) Before hydrolysis After hydrolysis

Flavonoids Phenolic acids

Catechin Epigallocat-
echin

Epigallocat-
echin gallate

Myricetin Gallic acid Protocat-
echuic acid

p-hydroxy-
benzoic acid

Cb 1 51.62 ± 2.46 aa 29.95 ± 0.86 a 13.67 ± 0.37 c 680.93 ± 14.82 g 152.37 ± 0.61 h 0.01 ± 0.00 a 16.92 ± 0.18 j
2.5 55.42 ± 3.42 ab 40.20 ± 4.27 a 14.22 ± 0.54 cd 713.02 ± 6.38 h 139.57 ± 1.22 g 3.50 ± 0.27 d 0.38 ± 0.04 a
5 86.46 ± 3.45 e 109.82 ± 4.79 e 11.28 ± 0.06 b 618.13 ± 12.61 e 172.36 ± 0.61 j 3.44 ± 0.24 d 1.43 ± 0.10 b

B 1 77.22 ± 1.93 d 52.12 ± 0.98 b 12.06 ± 0.11 b 395.44 ± 8.60 b 72.11 ± 0.10 f 2.76 ± 0.01 c 1.03 ± 0.01 b
2.5 58.02 ± 2.61 b 72.39 ± 2.18 c 3.41 ± 0.02 a 347.02 ± 0.11 a 15.51 ± 0.31 a 0.01 ± 0.00 a 1.05 ± 0.08 b
5 96.87 ± 5.51 f 133.24 ± 15.20 f 14.78 ± 0.17 de 658.97 ± 6.75 f 19.41 ± 0.36 b 0.10 ± 0.00 a 4.05 ± 0.02 d

RB 1 63.54 ± 3.84 c 52.66 ± 1.23 b 26.70 ± 0.23 g 458.46 ± 5.66 c 166.82 ± 1.51 i 7.47 ± 0.59 f 3.22 ± 0.04 c
2.5 73.63 ± 4.57 d 60.71 ± 1.29 b 18.49 ± 0.59 f 551.46 ± 4.78 d 43.65 ± 0.19 e 5.30 ± 0.00 e 5.20 ± 0.27 f
5 85.11 ± 0.13 e 112.26 ± 9.07 e 15.64 ± 0.03 e 750.57 ± 7.85 i 73.17 ± 0.31 f 3.08 ± 0.04 c 7.81 ± 0.90 h

R 1 78.43 ± 0.84 d 35.65 ± 1.97 a 18.53 ± 0.73 f 714.62 ± 5.72 h 42.48 ± 0.13 d 3.52 ± 0.01 d 6.95 ± 0.04 g
2.5 100.74 ± 2.21 f 99.73 ± 5.70 d 40.75 ± 1.38 h 455.87 ± 6.05 c 25.44 ± 0.66 c 0.01 ± 0.00 a 4.59 ± 0.04 e
5 132.81 ± 1.99 g 199.26 ± 3.15 g 45.85 ± 0.94 i 1118.69 ± 12.17 j 224.05 ± 0.36 k 1.91 ± 0.01 b 8.89 ± 0.18 i

Means for light quality
 C 64.50 ± 16.78 a 59.99 ± 37.77 a 13.06 ± 1.39 b 670.69 ± 43.04 c 154.77 ± 14.33 d 2.31 ± 1.74 c 6.24 ± 8.02 c
 B 77.37 ± 17.13 c 85.92 ± 37.36 c 10.08 ± 5.15 a 467.14 ± 145.49 a 35.68 ± 27.38 a 0.95 ± 1.35 a 2.04 ± 1.50 a
 RB 74.10 ± 9.81 b 75.21 ± 28.38 b 20.28 ± 4.98 c 586.83 ± 129.35 b 94.55 ± 55.70 b 5.28 ± 1.93 d 5.41 ± 2.04 b
 R 104.00 ± 23.72 d 111.55 ± 71.48 d 35.04 ± 12.61 d 763.06 ± 289.39 d 97.32 ± 95.33 c 1.81 ± 1.53 b 6.81 ± 1.86 d

Means for BA
 1 67.70 ± 11.66 a 42.60 ± 10.51 a 17.74 ± 5.96 a 562.36 ± 144.10 b 108.45 ± 54.80 b 3.44 ± 2.80 b 7.03 ± 6.36 c
 2.5 71.95 ± 19.03 b 68.26 ± 22.70 b 19.22 ± 14.21 b 516.84 ± 140.43 a 56.04 ± 51.46 a 2.20 ± 2.39 a 2.81 ± 2.21 a
 5 100.32 ± 20.37 c 138.64 ± 38.60 c 21.89 ± 14.56 c 786.59 ± 206.61 c 122.25 ± 83.98 c 2.13 ± 1.36 a 5.54 ± 3.14 b

Source of variation
 Light quality × BA *** *** *** *** *** *** ***
 Light quality *** *** *** *** *** *** ***
 BA *** *** *** *** *** *** ***
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There were several significant relationships between plant 
constituents (secondary metabolites, DW) (Fig. 5). DW was 
positively correlated with catechin, epigallocatechin, and 
myricetin (r = 0.684; 0.835; 0.645, respectively). We also 
found significant and close relationships between catechin 
and epigallocatechin (r = 0.896) or epigallocatechin gallate 
(r = 0.718). Positive and statistically significant correlations 
between myricetin and epigallocatechin (r = 0.578) was also 
observed.

Multiple regression analysis confirmed that variations 
in catechin and chlorophyll a concentrations were primar-
ily responsible for the content of myricetin in M. commu-
nis plants. Variables of the preliminary regression model 
included secondary metabolites and chlorophylls (Chl a 
and Chl b). The simplified model obtained through regres-
sion multiple analysis contained two independent vari-
ables: catechin and chlorophyll a contents. The fitting of 
the model stood at the level of 62% (R2 = 0.623), hence it 
follows that the remaining 38% of the myricetin content 
variance was dependent on other variables that were not 
included in the analysis; the adjusted determination coeffi-
cient (R2

adj. = 0.539) was at an intermediate level (p ≤ 0.012). 
Standard estimation error (SEE) was 140.5, i.e. the equation 
is accurate to an average of about 140 mg myricetin 100 g−1 
DW in estimating myricetin concentration in M. commu-
nis plants. Comparison of the observed data and simulated 
values, calculated from a regression equation, is presented 
in Fig. 6.

Discussion

Myrtus communis L. is a very well-known plant for its vari-
ous properties associated with secondary metabolites. Many 
works have focused on volatile or phenolic compounds in M. 
communis berries (Alipour et al. 2014; Bajalan and Ghasemi 
Pirbalouti 2014; Badra et al. 2016), but there are also stud-
ies on the antioxidant activity of M. communis leaf extracts 
(Amessis-Ouchemoukh et al. 2014; Bouaziz et al. 2015). To 
our knowledge, there have been no studies into the effects of 
light on growth, development and secondary metabolite con-
tents of M. communis cultivated in vitro. In our experiment, 
plantlets from in vitro conditions were used for biochemical 

Fig. 4   Score plot of principal 
components 1 and 2 for 12 
experimental treatments: C 
control, fluorescence Philips 
TK-D 36W/54 lamps; B 100% 
blue LED; RB 70% red LED 
and 30% blue LED; R 100% red 
LED; BA content—1, 2.5, 5 µM
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analyses. According to the literature, M. communis leaves 
contain higher amounts of phenolic compounds compared 
to flowers, stems or even fruits (Amensour et al. 2009; Aidi 
Wannes et al. 2010; Aleksic and Knezevic 2014). Among 
the polyphenols contained in M. communis, previous authors 
have pointed to a significantly higher proportion of flavo-
noids compared to phenolic acids, which occur in small 
amounts (Romani et al. 1999; Aleksic and Knezevic 2014; 
Asgarpanah and Ariamanesh 2015). Our results are consist-
ent with those findings.

Studies of the content of secondary metabolites concerned 
plant material obtained from natural sites or pot plants, e.g., 
Saitama Greenery Promotion Center of Kawaguchi City In 
Japan (Yoshimura et al. 2008), the Greek island Zakynthos 
(Gardeli et al. 2008), southern Tuscany (Romani et al. 2004), 
northeastern Tunisia-Nabeul (Aidi Wannes et al. 2010), 
Zaranjan in the district of Fasa (Taheri et al. 2013) and oth-
ers (Mansouri et al. 2001; Hayder et al. 2004; Tattini et al. 
2006; Amensour et al. 2009; Nassar et al. 2010; Agati et al. 
2011; Kumar et al. 2011; Pereira et al. 2012; Tumen et al. 
2012; Goncalves et al. 2013; Bouaziz et al. 2015; Babou 
et al. 2016; Feuillolay et al. 2016). In a study on Myrtus niv-
elli, Batt & Trap (Touaibia and Chaouch 2015), the authors 
found that methanol extracts from in vivo sites were richer 
in polyphenol content (348 μg eq/mg DW total polyphenol 
content and 152 μg eq/mg DW total flavonoid content) than 
in vitro culture extracts (respectively 73 and 91). But in those 
research only one standard was used for polyphenols (gallic 
acid) and flavonoids (quercetin) total content. Comparing to 
our studies we used 31 standards for identification phenolic 

compounds. However, other studies showed that M. com-
munis leaves are richer in antioxidant phenolic compounds 
at the earlier developmental stage (Babou et al. 2016). In 
this context, in vitro cultures are a good source of plant 
material for the production of secondary metabolites. Our 
research, making use of the RP-HPLC analysis, confirmed 
the presence of small amounts of phenolic acids and a higher 
content of flavonoids in M. communis extracts. The stand-
ards used allowed the identification of gallic, protocatechuic 
and p-hydroxybenzoic acids and catechins and its deriva-
tives, epigallocatechin and epigallocatechin gallate, as well 
as a particularly important myricetin, which was the most 
highly abundant of the remaining phenolic compounds in M. 
communis extracts from in vitro cultures. The raw material 
obtained from in vitro cultures has an additional advantage, 
because it can be produced at high yields throughout the 
year, regardless of the growing season. In addition, it will 
not be contaminated, as sometimes happens in field crops 
and natural sites (Pierik 1987; Scarpa et al. 2000); moreover, 
it is homogeneous, with the optimised and desired composi-
tion of phenolic antioxidants (Babou et al. 2016). Studies 
carried out so far on plant material derived from field condi-
tions have shown that polyphenol concentrations and their 
antioxidant effect is even affected by the season of the year 
(Gardeli et al. 2008). Further investigations will be neces-
sary to compare samples multiplied in vitro with plant mate-
rial collected in vivo, due to the high variability of external 
conditions and their influence on plant material.

In vitro culture is a stressful environment for plants, 
especially because light determines the direction of 

Fig. 6   Predicted myricetin con-
tent in myrtle plants vs. values 
observed in the experiment, 
plotted on the basis of regres-
sion model, including catechin 
and chlorophyll a concentra-
tions
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morphogenesis. If the gas exchange is provided light inten-
sity affects photosynthetic capacity. Too high irradiation 
can destroy the photosynthetic apparatus and photopigment 
synthesis (Singh and Patel 2014; Silva et al. 2017). Too low 
irradiation makes photosynthesis not efficient (Silva et al. 
2017). Also for M. communis light intensity affects chlo-
rophyll content (Ruffoni et al. 2010). The low irradiation is 
sufficient for plant morphogenesis in in vitro conditions by 
providing sucrose in medium (Begna et al. 2002). In addi-
tion, the spectral composition of light, such as the ratio of 
blue and red LED, is important not only for morphogen-
esis but also for the production of phenolic compound con-
tents (Li and Kubota 2009; Ki-ho and Myung-Min 2013) 
and secondary metabolism (Silva et al. 2017). For exam-
ple, M. communis has been reported to synthesise a wide 
array of phenylpropanoids in response to high-light stress 
(Agati et al. 2011). In our experiment the influence of light 
quality was investigated and some interesting results were 
obtained. LED light affected phenolic contents, resulting in 
an increased content of flavonoids under 100% R diodes. The 
addition of B light in the spectrum reduced their content, and 
the use of 100% B light caused the lowest phenolic contents 
in the extracts. Li and Kubota (2009) obtained similar light 
effects on phenolics in leaf lettuce in a greenhouse—red 
LED addition resulted in increased phenolic content. Fur-
thermore, total flavonoid content was increased under red 
LED in Rehmannia glutinosa in vitro cultures (Manivan-
nan et al. 2015).The greater content of total phenolic acids 
under LEDs was also found in Melissa oficinallis cultivated 
in growing rooms (Frąszczak et al. 2015). The mechanism 
responsible for this phenomenon is still unknown, but 
Qamaruddin and Tillberg (1989) concluded that increased 
phenol contents under red light stimulation could be asso-
ciated with an increase of cytokinin levels also due to red 
light.

For this reason, growth regulator levels in media and their 
appropriate proportions are also important and have an influ-
ence on plant development and productivity (Baque et al. 
2010). When added to the medium, they can have both a 
stimulating and inhibiting effect on plant growth (Parzymies 
and Dąbski 2012). In our research, medium BA content had 
an effect on phenolic levels in M. communis extracts, as the 
highest concentration of the cytokinin resulted in the highest 
level of polyphenols. The lowest content of myricetin was 
recorded in the application of 2.5 μM BA to the medium. 
Baque et al. (2010) obtained an increased proportion of sec-
ondary metabolites, including phenolics and flavonoids in 
cultures in vitro, as a result of auxin and cytokinin combina-
tion in Morinda citrifolia.

The use of appropriate growth regulator proportions has 
a fundamental influence on biometric parameters of plants 
cultivated in vitro. The application of BA and NAA in M. 
communis caused a higher shoot multiplication rate (Nobre 

1997; Scarpa et al. 2000), while in vitro experiments of the 
rooting stage by Mascarello et al. (2009) showed that the 
addition of a small amount of cytokinin caused better root-
ing of cultured material and a higher chlorophyll level. In 
the case of Cassia angustifolia, enriching the regulator free 
MS medium with cytokinins concentration not higher than 
5.0 µM caused the induction and increased shoot multiplica-
tion rate (Siddique et al. 2015). Nobre et al. (2000) reported 
that BA concentration in the medium is the most impor-
tant factor responsible for shoot multiplication of Viburnum 
tinus. Our study demonstrated that the increasing BA content 
(1–5 μM) in media did not affect M. communis multiplica-
tion rate, but it inhibited shoot elongation and stimulated leaf 
formation; shoots in the medium with highest BA concen-
tration (5 μM) had the most leaves. The lowest FW content 
was observed on 2.5 μM media, while the largest dry mat-
ter content was on the medium with the highest BA con-
tent. The highest level of photosynthetic pigments was also 
observed in media with intermediate BA content (2.5 μM). 
However, the effect of the second factor—light—changed 
plant responses in some instances. The study conducted by 
Kozak (2011) showed that the presence of 5 μM BA under 
blue and red light resulted in shoot elongation of Gardenia 
jasminoides, and a further increase in cytokinin concentra-
tion caused elongation inhibition.

Light provides the possibility to manipulate growth con-
ditions in in vitro culture. Light emitting diode systems seem 
to be very promising for the plant propagation industry—
where light affects growth and development of the plant at 
each stage. It influences morphogenesis, differentiation of 
plant cell, tissue and organ cultures (Li et al. 2010; Gupta 
and Jatothu 2013) as well as the proliferation rate (Sæbø 
et al. 1995), which could be essential for the production 
of secondary metabolites. It was shown in M. communis 
that light intensity during the rooting phase in vitro could 
modulate biomass production (Ruffoni et al. 2010). In our 
study, light quality affected multiplication rate and chloro-
phyll content. Analysing both the effect of light and medium 
composition, multiplication rate was greatest under R LED 
light and highest BA content compared to other combina-
tions. However, higher concentrations of cytokinin inhib-
ited the multiplication rate when B LED light was used. 
Moreover, low levels of BA in combination with R LED 
light provided longer multiplied shoots. Blue LED light with 
high BA content stimulated the growth of a greater number 
of M. communis leaves. Manivannan et al. (2015) showed 
that the effect of red light stimulated endogenous gibberel-
lins involved in mitosis and cell proliferation. Meanwhile, 
blue light improved leaf characteristics, such as leaf number, 
and modifications in spectrum composition and light qual-
ity are easily perceived by leaf photoreceptors, which affect 
their morphogenesis. Our study showed a lower concentra-
tion of photosynthetic pigments in M. communis cultured 
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under LED light compared to the fluorescent lamp light. 
The lowest content of these compounds was recorded under 
blue LED light. The highest concentration was observed 
for plants grown on the medium supplemented with 2.5 µM 
BA. Numerous studies in other plant species have been con-
ducted to investigate the effects of LED lighting in in vitro 
cultures (Gupta and Jatothu 2013). Some of the results were 
consistent with our study: red light increased multiplica-
tion rate (Mengxi et al. 2011) and shoot elongation (Hahn 
et al. 2000; Heo et al. 2002; Kim et al. 2004; Poudel et al. 
2008), whereas monochromatic blue caused a greater num-
ber of leaves (Macedo et al. 2011; Manivannan et al. 2015). 
However, in contrast to our results, photosynthetic pigment 
content was elevated in some studies after LED light appli-
cation, especially monochromatic blue (Jao et al. 2005; 
Kurilčik et al. 2008; Poudel et al. 2008; Manivannan et al. 
2015). The work of Lin et al. (2013) showed that light quality 
treatments did not significantly affect chlorophyll or carot-
enoid contents. There are also reports in the literature on 
changes in FW and DW in plant cultures in vitro under vari-
ous light conditions. Our study demonstrated that LED light 
with the addition of blue spectrum (B and RB) increased the 
FW compared to fluorescent lamps, but did not affect the 
DW. The results obtained by Kim et al. (2004), Jeong et al. 
(2006), Moon et al. (2006), Li et al. (2010, 2013), Lin et al. 
(2013) and Manivannan et al. (2015) confirmed the effect 
of mixed LEDs on FW increase and also showed a similar 
tendency for DW. Despite the effect of B and R LED on the 
growth and development of plants through photoreceptor 
stimulation, the results of many studies are inconsistent. It 
is difficult to understand how plants respond to changes in 
light quality because studies compare only specific ratios in 
many different species, and their responses are often contra-
dictory (Ki-ho and Myung-Min 2013; Wojciechowska et al. 
2016). However, the best results were often obtained with 
a mixture of red and blue light, where blue LED influenced 
chlorophyll formation and chloroplast development rather 
than having a direct effect on biomass accumulation and 
elongation growth, as exerted by red light (Shin et al. 2008; 
Li and Kubota 2009; Ki-ho and Myung-Min 2013).

Conclusions

Light is critical for the in vitro cultivation of M. communis 
L., since it affects the growth, morphogenesis and produc-
tion of phytochemical compounds. Our research has shown 
a stimulating effect of red light on multiplication rate, 
shoot height and the highest increase in antioxidant poly-
phenol concentrations. Therefore, the use of 5 μM BA in 
the medium produced better results in terms of increasing 
multiplication rate, leaf number, DW and polyphenol con-
centrations compared to the lower content of this cytokinin.

Under the controlled in  vitro conditions, conscious 
manipulation of light quality, coupled with the benefits of 
LED technology, will contribute to the economic enhanced 
biomass production with high secondary metabolite con-
tents. Furthermore, it will ensure obtaining homogeneous 
material in a relatively short period of time without the need 
to cultivate the plant to the fructification stage or collect-
ing organic matter from fully developed plants from field 
conditions.
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