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stress produced by CuO nanoparticles on S. rebaudiana was 
affirmed by antioxidant activities i.e. total antioxidant activ-
ity (TAC), total reducing power (TRP) and 2,2-diphenyl-
1-picryl hydrazyl (DPPH)-free radical scavenging activity. 
The oxidative stress generated by NPs involved production 
of antioxidative molecules total phenolic content (TPC), 
total flavonoid content (TFC) depending on NPs concentra-
tion. The study concludes that copper oxide nanoparticles 
functions as a stimulator of bioactive components produc-
tions, and can be employed in in vitro batch cultures.

Keywords  Copper oxide nanoparticles · Stevia 
rebaudiana · Steviol glycosides · Oxidative stress · 
Phytotoxicity · Reactive oxygen species (ROS)

Introduction

Nanoparticles having 1–100 nm size possess large surface 
area as compared to their bulk counterparts. The physical 
and chemical nature of nanoparticles make them highly reac-
tivity therefore are employed in industrial scale and also 
have biological properties (Yadav 2013; Kołodziejczak-
Radzimska and Jesionowski 2014). Nanoparticles have 
positive as well as negative influence on biological systems 
(Boczkowski and Hoet 2010). In agriculture perspective, 
nanoparticles have been elucidated including biocide in 
plants, nano-fertilizer and nano-pesticide formulations, soil 
condition sensors, and targeted gene delivery in transforma-
tion (Aslani et al. 2014; Perreault et al. 2014).

Stevia rebaudiana belongs to family Asteraceae and is 
a perennial herb native to South America. The secondary 
metabolites such as steviol glycosides (rebaudioside A, 
stevioside, rebaudioside C, etc.) are well known as anti-
diabetic, anti-bacterial and anti-cancerous (Dey et al. 2013) 
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which produce in leaves at higher level. Different kinds of 
abiotic and biotic stresses have been employed to S. rebau-
diana during in-vitro propagation to enhance the steviol 
glycosides production (Javed et al. 2017a).

Metal oxide nanoparticle stress elicitors such as zinc 
oxide (ZnO) and copper oxide (CuO) have gained enormous 
importance in recent years (Javed et al. 2017b). The reactiv-
ity and toxicity of metallic oxide NPs depend on their size, 
surface, structure, concentration, dissolution and exposure 
routes (Franklin et al. 2007; Jiang et al. 2009; Chang et al. 
2012). CuO nanoparticles belong to the group of nanoparti-
cles that are used for both household and industrial purposes. 
However, the CuO toxicity has largely been demonstrated 
in aquatic organisms such as algae and zebrafish (Aruoja 
et al. 2009). CuO intracellular oxidative stress involves the 
release of Cu ions (Cu+2) causing toxicity after exceeding 
the maximum physiological tolerance range, hence disturb 
the balance between oxidation and anti-oxidation processes. 
CuO has largely been found phytotoxic because of genera-
tion of reactive oxygen species (ROS) and necrotic lesions, 
ultimately leading to the cell death (Chang et al. 2012).

The effect of CuO nanoparticles on the growth, photo-
synthesis and oxidative response has recently been studied 
in crop plant, Oryza sativa, Brassica napus (Da Costa and 
Sharma 2016; Zafar et al. 2016), Lemna minor (Duckweed), 
(Song et al. 2016; Perreault et al. 2014), Landolti apunctata 
(Shi et al. 2011), Elodea nuttallii (Regier et al. 2015). The 
production of steviol glycosides has been accomplished in 
the presence of abiotic stress i.e. metal (Pal et al. 2013; Jain 
et al. 2009), nutrient application (Allam et al. 2011; Utumi 
et al. 1999), osmotic stress (Vives et al. 2017); biotic stress 
i.e. endophytic fungi, genetic transformation (Pandey et al. 
2016; Kilam et al. 2017).Copper is required for normal plant 
growth and development; however, it is toxic at higher lev-
els. Due to its prominent role in development and stimu-
latory effect on secondary metabolites production, copper 
has received noticeable attention. However, despite of ions, 
to determine role of nanoparticles in secondary metabo-
lite production, copper oxide nanoparticles were applied 
during in vitro propagation and for metabolite production 
of S. rebaudiana. Physiological characteristics of micro-
propagated shoots, steviol glycosides production, and non-
enzymatic anti-oxidant activities in leaves of regenerated S. 
rebaudiana are evaluated.

Materials and methods

Synthesis of CuO nanoparticles

CuO nanoparticles were synthesized by co-precipitation 
method as described by Javed et al. (2017a, b). It involved 
addition of 30  mL of 6  M aqueous sodium hydroxide 

(NaOH) solution to 600 mL of 0.2 M copper acetate mono-
hydrate [Cu (CH3COO)2·H2O; 98%, Sigma-Aldrich) solution 
and 2 mL of glacial acetic acid (CH3COOH) solution in a 
drop-wise manner under continuous stirring at 100 °C. Blue 
color of solution changed to green and then brown. Finally, 
a black solution was obtained at pH 6–7 that was subse-
quently filtered, washed and then heated at 100 °C. Later 
on, the dried grinded powder was subjected to calcination 
at 500 °C for 4 h.

Characterization of CuO nanoparticles

Different analytical methods including X-ray diffraction 
(XRD), Fourier-transform infra-red (FTIR) spectra, scan-
ning electron microscopy (SEM) and Energy dispersive 
X-ray (EDX) spectra were performed for characterization 
of CuO nanoparticles. The crystalline phase of the prepared 
sample was identified by X-ray diffraction (XRD) technique 
using a PANalytical Empyrean system. X-ray powder dif-
fraction was performed at room temperature using Cu Kα 
radiation (λ = 1.5406 Å). The Fourier transform infrared 
(FTIR) spectra were recorded using FTIR spectrometer 
(Tensor 27 Bruker Germany) in the wave number ranging 
from 4000 to 500 cm−1. Morphological studies of CuO NPs 
were done by field emission scanning electron microscope 
(FESEM, Nova NanoSEM 450) and operated at an accelerat-
ing voltage of 10 kV. Energy dispersive X-ray (EDX, Oxford 
Aztec) was utilized to determine the elemental composition 
(purity) of prepared CuO nanoparticles.

Preparation of medium having CuO nanoparticles

Murashige and Skoog (MS) (1962) medium was used as 
basal medium for shoot organogenesis. In MS media solu-
tion CuO nanoparticles were added at 0, 0.1, 1, 10, 100 or 
1000 mg/L. Sucrose (30 g/L) was added and pH was adjusted 
to 5.7–5.8 using 0.1 N NaOH. The media was sonicated in 
water bath for 30 min for thorough dispersion of nanopar-
ticles followed by addition of agar (8 g/L). The agar was 
dissolved by heating and media was dispensed as 30/100 mL 
conical flask while thorough mixing. The culture media was 
then autoclaved for 15 min at 121 °C and 1.06 kg/cm2 pres-
sure. The media was allowed to cool at room temperature 
before inoculation of explant.

Growth conditions of shoot organogenesis

The seeds of S. rebaudiana were purchased from 
POLISAN Tarim, Istanbul, Turkey. The seeds were cul-
tured on plain MS medium after being disinfected with 
0.1% (w/v) mercuric (II) chloride (HgCl2) for 3 min. The 
axillary shoot nodes were excised from 4 weeks-old seed-
lings and incubated in media treatments having different 
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concentrations of CuO nanoparticles. The cultured flasks 
were kept in growth room chamber having 16 h light/8 h 
dark photoperiod, provided by cool-white fluorescent 
light of 35 μmol/m/s irradiance and 24 ± 1 °C tempera-
ture at 55–60% rate of relative humidity. Each treatment 
had 15 nodal explants that were cultivated for 4 weeks. 
Finally, the physiological parameters involving percent-
age of shooting, mean length of shoots, mean number of 
leaves, and fresh weight of shoots produced by direct shoot 
organogenesis were revealed.

Extraction and analysis of steviol glycosides

Steviol glycosides were extracted from the leaves of 
in vitro regenerated shoots grown under CuO nanoparti-
cles stress. The shoots propagated were carefully washed 
with sterile distilled water, and soaked on filter paper to 
remove excess water and dried in oven at 60 °C for 48 h.

The analysis of steviol glycosides was performed 
through high performance liquid chromatography (HPLC) 
according to method described by Yücesan et al. (2016). 
The dried plant material was grinded and 20  mg was 
suspended in 1 mL of 70% (v/v) methanol in a micro-
centrifuge tube. After incubation in an ultrasonic bath 
at 55 °C for 15 min, samples were centrifuged at 25 °C 
and 12,000 rpm for 10 min. The pellet was discarded and 
supernatant was filtered using 0.22 µm PTFE Millipore 
syringe filters.

Chromatography was performed using an autosampler 
(WPS-3000-SL Dionex Semi Prep Autosampler) injecting 
10 µL of each sample, a binary pump (LPG 3400SD Dionex) 
solvent delivery system working at a flow rate of 0.8 mL/
min, and a dual wavelength absorbance detector operating 
at 210 and 350 nm (MWD-3100 Dionex UV–VIS Detec-
tor). The column, Inertsil® ODS-3 (GL Sciences Inc., Japan) 
with 150 × 4.6 mm in length and 5 μm particle size, was 
kept warm at 40 °C in a column oven system (TCC-3000SD 
Dionex). At the end, isocratic flow was performed using 
acetonitrile and 1% (w/v) phosphoric acid buffer mixture 
(68:32) for 20 min.

Preparation of extract and anti‑oxidant assays

The leaf extracts of S. rebaudiana were prepared by dry-
ing the leaves, and then taking 0.1 g of their fine powder 
obtained under different CuO concentrations. 500 μL of 
methanol was used for the dissolution of powder. It was 
vortexed for 5 min and then sonicated for 30 min followed 
by 15 min centrifugation at 10,000 rpm. The pellet was 
discarded and supernatant was stored to perform different 
antioxidant activities.

Determination of total phenolic content

Method of Ali et  al. (2017) was performed after slight 
modifications, to estimate the total phenolic content in leaf 
extracts of Stevia. The process involved transfer of an aliquot 
of 20 µL (4 mg/mL) dimethyl sulfoxide (DMSO) stock solu-
tion of each sample to the respective well of 96 well plate, 
and then the addition of 90 µL of Folin–Ciocalteu reagent 
in it. The plate was kept for 5 min and later on, 90 µL of 
sodium carbonate was added to the reaction mixture. All 
samples were run in triplicate and their absorbance was 
obtained at 630 nm using microplate reader. Gallic acid was 
used as standard and the results were expressed as mg Gallic 
acid equivalent (µg GAE/mg).

Determination of total flavonoid content

Aluminum chloride colorimetric method of Zafar et al. 
(2017) was performed after slight modification, to determine 
total flavonoid content of different leaf extracts of Stevia. 
10 µL of 10% aluminum chloride, 10 µL of 1.0 M potas-
sium acetate and 160 µL of distilled water were added to the 
aliquot of 20 µL (4 mg/mL) DMSO stock solution of each 
sample contained in the respective well of 96 well plate. 
It was kept at room temperature for 30 min. The samples 
were run in triplicate and their absorbance was measured 
at 630 nm using microplate reader. Quercetin was used as 
standard and the results were expressed as mg quercetin 
equivalent (µg QE/mg).

Determination of total antioxidant capacity

Total antioxidant capacity was evaluated by the procedure of 
Ali et al. (2015) after slight modification. An aliquot of 100 
μL from stock solution of each sample (4 mg/mL in DMSO) 
was mixed with 900 µL reagent solutions containing 0.6 M 
sulfuric acid, 4 mM ammonium molybdate and 28 mM 
sodium phosphate. The reaction mixture was incubated at 
95 °C for 90 min, and later on cooled at room temperature. 
All samples were run in triplicate and their absorbance was 
measured at 695 nm using microplate reader. Ascorbic acid 
was used as standard and the results were expressed as mg 
ascorbic acid equivalent (µg AA/mg).

Determination of total reducing power

Total reducing power of samples was calculated according 
to the procedure of Rehman et al. (2014) after slight modi-
fications. 100 µL of each sample (4 mg/mL in DMSO) was 
mixed with 200 µL of phosphate buffer (0.2 M, pH 6.6) 
and 250 µL of 1% w/v potassium ferricyanide. The result-
ing mixture was incubated at 50 °C for 20 min. Thereaf-
ter, the reaction was acidified with 200 µL of 10% w/v 
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trichloroacetic acid and centrifugation was performed at 
3000 rpm for 10 min. The pellet was discarded and the 
supernatant (150 µL) obtained was mixed with 50 µL of 
0.1% w/v ferric chloride solution. All samples were run in 
triplicate and their absorbance was measured at 630 nm. 
Ascorbic acid was used as standard and the results were 
expressed as mg ascorbic acid equivalent (µg AA/mg).

Determination of DPPH free radical scavenging activity

Since the over-production and accumulation of free radi-
cals is damaging to plant cells, the ability of antioxidants 
produced to prevent oxidative damage was elucidated by 
2,2-diphenyl-1-picryl hydrazyl (DPPH) reagent. This assay 
was performed according to the protocol of Haq et al. (2012) 
after slight modifications. 10 µL (4 mg/mL) of Stevia leaf 
extracts was mixed with 190 µL of DPPH (0.004% w/v in 
methanol). The resulting reaction mixture was incubated 
in darkness for a period of 1 h. All samples were run in 
triplicate and their absorbance was measured at 515 nm of 
wavelength using microplate reader. Ascorbic acid was used 
as positive control while DMSO as negative control. 

where Abs indicates the absorbance of DPPH solution with 
sample, and Abc is the absorbance of only DPPH solution. 
The IC50 was calculated by using Table curve software 2D 
Ver. 4.

Statistical analysis

The design of experiments was randomized and the statisti-
cal analysis of data was performed using SPSS, Version 17.0 
(SPSS Inc., Chicago, IL, USA). Statistical difference was 
determined using ANOVA, and the significance of difference 
between means ± SE (standard error) values was obtained 
using Duncan’s multiple range tests performed at p < 0.05.

Results and discussion

XRD results

The powder patterns were recorded with the use of Empy-
rean PANalytical X-ray diffractometer with Bragg–Bren-
tano geometry using Cu Kα radiation (λ = 1.54 Å). The 
step-scan covered the angular range 20–80° with the step 
of 0.02°. Figure 1a shows the XRD pattern of CuO nano-
particle. The diffraction data revealed that the material was 

(1)
% inhibition of test sample = %scavenging activity

= (1 − Abs∕Abc) × 100

composed of crystalline monoclinic cubic cuprous oxides 
(Fig. 1a). The peak positions are in good agreement with 
the PCPDFWIN data card 895899. The crystallite size 
determination was carried out using the Scherrer equa-
tion (Eq. 2) (Cullity 1978). 

where D is the crystallite size, k is a constant (~0.94 assum-
ing that the particles are spherical), λ is the wavelength of 
the X-ray radiation, β is the line width at half maximum 
intensity of the peak and θB is the angle of diffraction. The 
particles size obtained from the XRD data for CuO, is 
47 nm. The lattice parameter of CuO monoclinic structure 
and the plane spacing d is related to the lattice constant and 
the Miller indices (hkl) by Eq. 3 (Cullity 1978) 
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Fig. 1   a X-ray diffraction pattern, b FTIR spectrum of the CuO nan-
oparticles



615Plant Cell Tiss Organ Cult (2017) 131:611–620	

1 3

Using above equation along with the Bragg’s law 
(2dhklsinθ = nλ), we calculate the values of lattice param-
eters. Monoclinic CuO crystal have the lattice con-
stants a = 4.69 Å, b = 3.418 Å and c = 5.122 Å and angle 
β = 99.57°.

FTIR results

Figure 1b shows the FTIR spectrum of CuO nanoparticles. 
Various well-defined peaks were observed at 535, 594, 869, 
1052, 1411, 2094, 2847, 2920 and 3419 cm−1. The appear-
ance of the peaks at 535, 594 corresponds to the character-
istic stretching vibrations of Cu–O bonds in the monoclinic 
crystal structure of CuO (Zheng and Liu 2007; Ethiraj and 
Kang 2012) and 869 cm−1 corresponds well to Cu–O–H 
vibration (Yu et al. 2012; Park and Kim 2004). The bond 
at 1052 cm−1 is due to the C–O stretching vibration (Zhao 
et al. 2012). Origin of two well-defined absorption bands 
at 1411 cm−1 is due to the CH3 group and CH3 asymmetri-
cal stretching mode present on the surface of CuO nano-
structures. The bands at 2847 and 2920 cm−1 are assigned 
to –CH2 and C–H stretching mode. The absorption peak 
around 2094 cm−1 is due to the existence of CO2 molecules 
in air, and the peak around 3419 cm−1 is assigned to the O–H 
stretching vibration.

SEM and EDX analysis

Morphology of the sample was investigated using field emis-
sion scanning electron microscope (FESEM). Specimens 
were prepared by sticking CuO nanoparticles to the carbon 
tape, and blow away the excess of powder with compressed 
air. This specimen was sputter coated with a thin Au–Pd 
layer of about 3 nm thick in vacuum to avoid the charging. 
Typical SEM micrograph for prepared CuO nanoparticles 
is shown in Fig. 2. The SEM micrograph clearly showed 
irregular shaped morphologies of CuO nanoparticles. The 
SEM observation showed the presence of agglomerated 
nanoparticles with an average size of 40–100 nm.

The EDX spectrum of CuO nanoparticles is given in 
Fig. 3. The EDX results show that there are no other elemen-
tal impurities present in the prepared CuO nanoparticles.

Estimation of physiological parameters and steviol 
glycosides

The results (Table 1 and Fig. 4a, b) show that the growth of 
S. rebaudiana shoots reached to maximum at 10 mg/L of 
CuO nanoparticles. However, after attaining this threshold 
level, further increase in NPs concentration resulted in tox-
icity to the plant. Table 1 indicates that the highest amount 
of shooting (~90%) occurred in MS medium supplemented 
with 10 mg/L of CuO nanoparticles. In contrary, the least 

Fig. 2   FESEM image of CuO nanoparticles a high resolution image, 
b low resolution image

Fig. 3   Energy dispersive X-ray profile of CuO nanoparticles
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shooting frequency (~41%) was obtained in MS medium 
containing 1000 mg/L of CuO nanoparticles. Maximum 
shoot length (4.9 cm) was achieved with MS medium aug-
mented with 10 mg/L of CuO nanoparticles, followed by MS 
containing 1 mg/L (4.5 cm). Similarly, highest number of 
nodes (4.9) and leaves (16.1) were also recorded by 10 mg/L 
CuO nanoparticles treatment. Fresh weight of shoots was 
also measured to be highest in MS medium fortified with 
10 mg/L of CuO nanoparticles (0.44 g).Direct shoot organo-
genesis is a method used to perform in vitro shoot growth 
of S. rebaudiana and presence of nanoparticles stimulates 
metabolic pathways for production of active constituents 
(Dimkpa et al. 2013). Mineral nutrients are the basic compo-
nents of tissue culture media and the explant responds based 
on type and concentration of nutrient. Various Cu-containing 
enzymes involved in electron transport, protein and carbo-
hydrate biosynthesis also play a role in plant regeneration 
(Niedz and Evens 2007). However, the threshold level of 
each component is critical. Copper has been investigated 
as stimulatory component for induction of in vitro culture 
of many plant species i.e. Eleusine, Cucumis, Sorghum, 
Lepidium, Capsicum, Triticale, barley, wheat, rice, Tinos-
pora (Garcia-Sago et al. 1991; Purnhauser and Gyulai 1993; 
Dahleen 1995; Sahrawat and Chand 1999; Pande et al. 2000; 
Kumar et al. 2003; Nirwan and Kothari 2003; Kothariet al. 
2004; Tahiliani and Kothari 2004). Based on these findings 
Cu nanoparticles were used in this study that reflects that 
CuO NPs also has stimulatory effect on in vitro shoot regen-
eration and production of secondary metabolites.

Figure  5 shows the production of steviol glycosides 
(rebaudioside A and stevioside) in S. rebaudiana in the 
presence of up to 10 mg/L of CuO nanoparticles, thereaf-
ter, it causes phytotoxicity. The amount of rebaudioside A 
enhanced from 2.07% in control MS treatment to 4.17% in 
MS treatment supplemented with 10 mg/L of CuO nanopar-
ticles. On gradual increasing the CuO nanoparticles concen-
tration, decrease in rebaudioside A amount was observed. 
Similarly, HPLC spectra for quantity of stevioside reveales 
that the amount of stevioside was 0.73% obtained in con-
trol group that increased up to 1.19–2.06% in treatments 

having 1 and 10 mg/L of CuO nanoparticles, respectively. 
CuO nanoparticles have been considered as abiotic stress 
elicitors that positively effect the growth parameters, and 
enhance the quantity of steviol glycosides as well as non-
enzymatic antioxidant activities found specifically in the 
Stevia leaves. This positive influence had been observed in 
the start, but after crossing a threshold barrior of 10 mg/L 
of CuO nanoparticles, a sudden decline was investigated as 
a result of continued addition of CuO nanoparticles to the 
growth medium. Zafar et al. (2017) have reported that at 
some level CuO NPs have beneficial role and it is mainly 
due to release of Cu ions from the nanoparticles that are 
taken up by the cells and play a pivotal role in plant bio-
chemistry. Therefore, significant variation in plant biomass, 
steviol glycoside and antioxidants are observed. Allam et al. 
(2001) showed a significant effect of nitrogen to enhance the 
concentration of stevioside in the stevia leaf while deficiency 
of some nutrients like potassium and calcium decreased the 
concentration of stevioside on a dry weight basis (Utumi 
et al. 1999). The accumulation of steviol glycoside in cells 
of S. rebaudiana relates to the extent of the development 
of the membrane system of chloroplast and the content of 
photosynthetic pigments (Ladygin et al. 2008).

Evaluation of antioxidant activities

Table 2 illustrates that a premier quantity of total phe-
nolic content (6.22 µg GAE/mg), total flavonoid con-
tent (7.49 µg QE/mg), total anti-oxidant capacity (11.9 
µgAAE/mg), total reducing power (11.5  µg AAE/mg)
and % DPPH inhibition (74.8%) was assessed from Ste-
via leaves obtained from MS medium containing 10 mg/L 
of CuO nanoparticles. However, the lowest total phe-
nolic content (3.99 µg GAE/mg), total flavonoid content 
(2.11 µg QE/mg), total anti-oxidant capacity (9.16 µgAAE/
mg), total reducing power (10.3 µg AAE/mg) and % DPPH 
inhibition (58.5%) were found out from extracts contain-
ing 1000 mg/L of CuO nanoparticles employed in MS 
medium.The enzymatic and non-enzymatic antioxidants 
naturally present in plants actually help them cope with 

Table 1   Comparison of 
physiological parameters in 
4 weeks old shoots produced 
from nodal explants on MS 
medium supplemented with 
different concentrations of CuO 
nanoparticles

±: standard error, the means with the same letter within the columns are not significantly different accord-
ing to Duncan’s multiple range test at confidence level of 95%

Conc. of CuO 
nanoparticles 
(ppm)

% of nodal 
explants shoot-
ing

Mean shoot 
length (cm)

Mean no. of 
nodes per 
explant

Mean no. of leaves 
per regenerated shoot

FW of shoots 
per explant 
(g)

0 84.7 4.1 ± 0.1d 4.6 ± 0.1a 13.1 ± 0.3c 0.16 ± 0.0d

0.1 85.4 4.3 ± 0.1bc 4.7 ± 0.1a 13.5 ± 0.3c 0.30 ± 0.0c

1.0 86.7 4.5 ± 0.1b 4.8 ± 0.1a 14.3 ± 0.3b 0.39 ± 0.0b

10 88.5 4.9 ± 0.2a 4.9 ± 0.1a 16.1 ± 0.4a 0.44 ± 0.0a

100 68.5 3.8 ± 0.0d 2.3 ± 0.0b 9.88 ± 0.2d 0.14 ± 0.0d

1000 40.8 1.0 ± 0.0e 0.3 ± 0.0c 4.66 ± 0.0e 0.01 ± 0.0e
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an oxidative stress of metal ions or free radicals (Klaper 
et al. 2009). Hence, the imbalance of endogeneous plant 
growth regulators and an accumulation of reactive oxygen 
species (ROS) causes depletion of plant cells and their 
activities (Choi and Hu 2008). Based on our study, CuO 
nanoparticles implicated an intracellular oxidative stress 
by the release of metal ions (Cu+2) or free radicals into 
MS culture medium (Gajewska and Skłodowska 2007; 
Dimkpa et al. 2014), and as a consequence of oxidative 
damage at 1000 mg/L, an impaired growth, reduced steviol 

glycoside quantity, and mitigation of antioxidant activities 
was observed.

Conclusion

In conclusion, it has been demonstrated from these find-
ings that CuO nanoparticles confer positive effect for in-
vitro Stevia growth dynamics and steviol glycoside pro-
duction. In this regard, a significantly enhanced amount 

Fig. 4   A Shoot organogen-
esis of Stevia in MS basal 
medium containing a no CuO, b 
0.1 mg/L CuO, c 1 mg/L CuO, 
d 10 mg/L CuO, e 100 mg/L 
CuO, f 1000 mg/L CuO 
nanoparticles. B Comparison of 
different-sized shoots of Stevia 
obtained in MS medium having 
a no CuO, b 0.1 mg/L CuO, c 
1 mg/L CuO, d 10 mg/L CuO, 
e 100 mg/L CuO, f 1000 mg/L 
CuO nanoparticles
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of secondary metabolites and antioxidant activities have 
been obtained at 10 mg/L of CuO nanoparticles concen-
tration employed in MS basal medium. In the meanwhile, 
phytotoxic effects of CuO nanoparticles have also been 
observed, and the highest level of phtotoxicity has been 
achieved by CuO nanoparticles at 1000 mg/L concentra-
tion. Our research opens up new avenues for the study of 
metabolic pathways in context of an interaction between 
different concentrations of nanoparticles and in  vitro 
grown medicinal plants.
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